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ABSTRACT: Multiple applied studies of slow nonadiabatic processes in nanoscale and
condensed matter systems have adopted the “repetition” approximation in which long trajectories
for such simulations are obtained by concatenating shorter trajectories, directly available from ab
initio calculations, many times. Here, we comprehensively assess this approximation using model
Hamiltonians with parameters covering a wide range of regimes. We find that state transition time
scales may strongly depend on the length of the repeated data, although the convergence is not
monotonic and may be slow. The repetition approach may under- or overestimate the time scales
by a factor of ≤7−8, does not directly depend on the dispersion of energy gap and nonadiabatic
coupling (NAC) frequencies, but may depend on the magnitude of the NACs. We suggest that
the repetition-based nonadiabatic dynamics may be inaccurate in simulations with very small
NACs, where intrinsic transition times are on the order of ≥100 ps.

N onadiabatic molecular dynamics (NA-MD) is a powerful
technique for modeling the dynamics of excited states in

various light-harvesting systems.1 It can provide mechanistic
insights into non-equilibrium charge and excitation energy
transfer mechanisms and kinetics in various materials and helps
in rationalizing available time-resolved spectroscopy experi-
ments. The NA-MD simulation requires nonadiabatic
couplings (NACs) and energies of electronic states that can
be obtained from the on-the-fly electronic structure calcu-
lations. However, directly modeling the nonadiabatic processes
that occur on time scales of hundreds of picoseconds to
nanoseconds in large systems remains impossible because of
the demanding computational expenses. A number of methods
for extending the system size and time scales in such
calculations have been developed, including the use of
semiempirical wave function and tight-binding theories,2−5

non-self-consistent approximation to hybrid functionals,6

fragmentation-based approaches,7−10 and machine learning
(ML)-based methods.11−20 In the latter, the short-time
trajectories can be used as the training sets to create a ML
model of the vibronic Hamiltonian. Once constructed, the
model can be used to forecast the NACs and energy levels for
indefinite times, thus providing a basis for e6cient long-time
NA-MD calculations, eliminating the need for expensive
explicit electronic structure calculations. Similar in spirit to
ML-based procedures, the quasi-stochastic Hamiltonian
(QSH) NA-MD approach uses the short-time NAC and
energy gap data to derive the key parameters of a new
Hamiltonian that is meant to capture the essential statistical
properties of the short-time data but does not aim to
reproduce them exactly.21 Prezhdo and co-workers employed
inverse fast Fourier transform (iFFT) for interpolation of a
vibronic Hamiltonian along a precomputed trajectory.22

Finally, an even simpler version of this approach was utilized
by several researchers. In it, the few-picosecond ab initio data
(NACs and energies) are iterated multiple times to generate
arbitrarily long time series of NACs and state energies that are
subsequently used in the NA-MD calculations.23−27 However,
the validity of such a vibronic Hamiltonian repetition approach
remains unexplored. It is unclear how much the time scales
obtained from the repeated short-time data could vary in
comparison to the reference time scales obtained from the
direct simulations based on the genuine long-time data, if they
would be accessible. Such an assessment would be very
expensive if it were to rely solely on atomistic simulations.
However, with the help of analytic model Hamiltonians, this
question can be addressed.
In this work, we report our comprehensive assessment of the

vibronic Hamiltonian repetition approach for NA-MD
simulation. We rely on an extensive set of model Hamiltonians
spanning various regions of the parameter space. We aim to
address the following questions: (a) How does the overall
kinetics of the state transitions depend on the lengths of the
repeated data? (b) How does it depend on the intrinsic
properties of the data (e.g., frequencies, their distribution, the
magnitude of the energy gap and NACs, and the magnitude of
their fluctuations)? We demonstrate that the results of the
rNA-MD simulations depend crucially on the length of the
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provided data sets and the convergence toward the reference
time scales is not monotonic and may not be strictly accessible.
Given this result, we estimate that the variation of the time
scales is generally bound to the factor of 5 for a wide range of
FT frequencies and their variations. The time scale variations
normally increase for slower dynamics, indicating that the
repetition procedure may be less accurate for the intrinsically
slower dynamics.
In our NA-MD calculations, the time-dependent wave

function of an abstract system is expanded in the adiabatic
basis, {ψi}: Ψ(r, R, t) = ∑ici(t)ψi(r; R(t)), where ci(t) is the
time-dependent expansion coe6cients and r and R are
electronic and nuclear coordinates, respectively. Here, the
nuclear variables are represented by the trajectories R(t).
Following the quantum-classical trajectory surface hopping
(TSH) methodology of Tully,28 we obtain the trajectories
classically. Furthermore, we adopt the neglect of back-reaction
approximation (NBRA) of Prezhdo and co-workers,29,30

according to which the nuclear trajectories remain unaFected
by the electronic state changes during the course of the NA-
MD simulation. In other words, the trajectories R(t) are
precomputed first and then used to derive the time-dependent
Hamiltonians. The dynamics of electronic states is described
by the time-dependent Schrodinger equations (TD-SE),

=i H
t

. Considering the wave function ansatz presented

above, it simplifies to iℏci̇(t) = Hvib(t)ci(t). Here, Hvib,ij(t) =
Ei(t)δij − iℏdij(t) is the time-dependent vibronic Hamiltonian,
where Ei(t) is the energy of adiabatic state i and dij(t) is the
scalar NAC between states i and j. Because of the NBRA, the
vibronic Hamiltonian and its components are the functions of
solely time. In other words, they constitute the time series. The
rNA-MD approach essentially assumes that short time series
already contain the essential information and therefore can be
repeated indefinitely to propagate the electronic wave function
(as represented by the coe6cients {ci(t)}) for as long as
needed. Once the coe6cients are propagated to a certain time,
they can be used to compute the state hopping probabilities at
that time. Because we focus on the assessment of the repetition
approach, we choose to use Tully’s fewest switches surface
hopping (FSSH) algorithm to compute the hopping
probabilities. In particular, the hopping probability between
states j and k during the time interval [t, t + Δt] is given by
gjk(t, t + Δt) = max[0, bjk(t)Δt/ρmm(t)]; bjk = −2Re[ρjk*(t)
djk(t)]; ρjk(t) = cj(t)ck*(t). Following the NBRA adaptation of
the TSH, the proposed hops (j → k) are accepted with the
probability exp(−ΔEkj/kBT), if ΔEkj = Ek − Ej > 0 and 1 if ΔEkj

< 0. Here, kB is the Boltzmann constant and T is the
temperature of the environment. The NA-MD calculations are
carried out using the NBRA implementation of the FSSH
method as available in the open-source Libra package31

(version 5.2.032). Further discussion of the essentials of the
FSSH algorithm and its implementation within NBRA can be
found elsewhere.33

We focus on model time-dependent Hamiltonians with
energy and NAC components given as scaled and shifted
superpositions of periodic functions of time (eqs 1) (details in
Table S1):
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where a is the overall scaling factor used to explore diFerent
regimes of the dynamics, b is the mean value of the
corresponding property before the shift, and c is the scaling
that controls the fluctuation of the original unscaled (a = 1)
data. Such a behavior is typical for many classes of systems,
such as halide perovskites,34−36 two-dimensional dichalcoge-
nides,37,38 monolayer black phosphorus,39 metal particles,40,41

colloidal semiconductor quantum dots,42 graphene43 and
carbon nanotubes,44−46 molecular crystals,47 etc. The selection
of the parameters b and c was motivated by the typical values
of the energy gaps, the NACs, and the fluctuations of these
properties in the classes of materials mentioned above. The
parameter a is manually varied to accelerate or decelerate the
overall dynamics. The detailed scripts implementing these
model Hamiltonians can be found in the GitHub repository.48

Our expectation is that slowing the rates of nonadiabatic
transitions by using smaller NAC scaling factors could make
the data repetition a cruder approximation. For instance, one
could design the NAC time series with notably increased
NACs at later times but smaller NACs at earlier times. If the
NACs are large enough, the transitions could be completed on
the ultrafast time scale, long before the trajectory would reach
the region of increased NACs. Thus, the intrinsically fast
transitions are expected to be less sensitive to the repetition
approach. On the contrary, for smaller NAC scaling factors, the
intrinsic dynamics would be slow enough to make the
repetition approach yield notably diFerent results compared
to those using the genuine time series. In this situation,
repeating the data without locally increased NACs present in
the original time series would yield slower transitions than
when using the genuine data. In this work, however, we do not
consider such specially designed models explicitly. Instead, we
explore a range of generic random models.
The parameters ci,k

E and ωi,k
E correspond to the kth

amplitudes and corresponding frequencies of the modes
included in the time dependence of energy level i. Analogously,
cij,k
NAC and ωij,k

NAC are the parameters controlling the time
variation of the NACs between states i and j. The form of
vibronic Hamiltonian is chosen to model the typical data
obtained in ab initio calculation of solid state and nanoscale
systems within the NBRA. Such a model approach has been
adopted in the earlier works of one of us, and it focused on
exploring the properties of the TSH schemes within NBRA
and developing new methodologies.13,21 In the work presented
here, the parameter sets {ci,k

E , ωi,k
E } and {cij,k

NAC, ωij,k
NAC} are chosen

to represent a wide variety of electron−phonon coupling
regimes as characterized by the Fourier transforms of the
corresponding data and are summarized in detail in section S1
of the Supporting Information. For a simple two-state system,
there are only two components of the vibronic Hamiltonian.
One is the energy gap, and the other is the NAC. The
fluctuation of each of them can be controlled by low-,
intermediate-, or high-frequency modes or can be coupled to
multiple modes spanning a wide range of frequencies.
For all parameter sets (models) considered in this work, we

generate the 100 ps data series for the time-dependent vibronic
Hamiltonian. We consider such data to be the reference data
mimicking the direct ab initio calculations, as if such
calculations are accessible for realistic atomistic systems. This
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mode constitutes the regular NA-MD calculation approach.
We also utilize smaller subsets of such data (e.g., first 1, 5, 10,
20, or 50 ps), which are then repeated to recreate the total of
100 ps of data. This mode constitutes the rNA-MD approach.
Such short data subsets represent what is typically accessible or
what could be accessible in practical calculations.
Our expectations are as follows. On one hand, one can

expect that the larger the repeated data unit size (fewer
repetitions involved), the closer the agreement of the rNA-MD
simulations to the reference data should be. Indeed, using
overly short trajectories may accidentally favor the prevalence
of small (case 1, Figure 1) or large (case 2, Figure 1) couplings,

leading to decelerating or accelerating of the corresponding
transitions, respectively. Furthermore, one can expect that the
repetition approximation may be better justified in situations in
which the dominant vibrational modes driving the fluctuations
of NACs and energy gaps are well captured by the data unit to
be repeated. For instance, if the transition is coupled to a low-
frequency mode, using a short data set would be inadequate,
because it may not contain even a single period of the
corresponding mode (e.g., case 3, Figure 1). Repeating such a
short data set can significantly alter the time-dependent
Hamiltonian and aFect the resulting dynamics. In the example
shown in case 3 in Figure 1, using an overly small repetition
unit means that regions of higher NACs (for instance) would
not be present in the repeated data set, and one would predict
underestimated transition rates.
The comparison of the cases shown in Figure 1 also suggests

that it may be easier to apply the repetition approach to the
data sets with higher intrinsic frequencies, because smaller data
sets would be more likely to capture the important fluctuations
(e.g., compare cases 1 and 3). Indeed, in cases 1 and 3, the
high-NAC regions of the time-dependent Hamiltonian are
missing. However, in case 1, the larger NAC values are
sampled only rarely, whereas in case 3, the larger NACs exist
for longer periods of time; therefore, missing them would be
more critical. On the basis of the discussions presented above,
we hypothesize that the validity of the repetition approx-
imation may be tied to the dispersion of the frequencies in the
FT of the corresponding elements of the vibronic Hamiltonian.
However, having dominant frequencies at 2000 and 3000 cm−1

is not the same as having them at 100 and 1100 cm−1. Thus, it
makes sense to consider the dispersion of frequencies on the
logarithmic scale. We thus introduce the following parameter:

= p a a( )X

i
i i

2 2

(2a)

=a p a

i

i i

(2b)

=a ln( )
i i

X
(2c)

=

| |

| |
p

p

pi

i

i i (2d)

where X is the property in which we are interested, such as a
particular NAC or energy gap, pi′ is the normalized intensity of
peak i, and ωi is the position of FT peak i. The use of the
logarithmic scale in the definition of the σX

2 parameter also
makes it invariant with respect to the choice of frequency units.
To test the hypothesis presented above, we design 46 vibronic
Hamiltonian models (section S1) such that they cover various
regions on the (σE

2, σNAC
2) plane (Figure 2).

We first investigate the lifetime convergence with respect to
the repeated data unit length. The lifetime variation plots for
each model are summarized in Table S2. Here, we demonstrate
only five representative models: models 3, 5, and 7, with 1, 20,
and 40 randomly selected frequencies, respectively, in the
range of 0−3000 cm−1, model 11 with a high frequency of
NACs and a low frequency of energy gaps, and model 12 with
a low frequency of NACs and a high frequency of energy gaps
(Figure 3). These models correspond to the distinctly colored
dots in Figure 2. Because the mean value of the NAC
magnitude in the model Hamiltonian is quite large, we
consider scaling NACs by multiplying them by factors of 0.2,
0.1, and 0.05 to explore the performance of rNA-MD
simulations on various time scale regimes. For the models
explored (Figure 3 and section S2), we observe only a weak
convergence of the computed lifetimes with respect to the size
of the repeated data unit. Increasing this parameter may lead to
decreasing the lifetimes (e.g., model 7), increasing them (e.g.,
model 5, with a scaling factor of 0.2), modest variation (e.g.,
model 3), or nonmonotonic behavior. A more or less
monotonous convergence of the computed lifetimes with the
size of the repeated data unit may be observed in some models
and some scaling parameters (see section S2), but it is not
guaranteed in general. This is a reasonable expectation because
the repeated data unit may resemble the entirety of the data for

Figure 1. Schematic representation of some situations in the
repetition approach.

Figure 2. Representation of the 46 model Hamiltonians on the (σE
2,

σNAC
2) plane. Model Hamiltonians 3, 5, 7, 11, and 12 discussed below

correspond to red, blue, green, gold, and purple dots, respectively.
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a hypothetical infinitely long trajectory. Thus, it is more
appropriate to discuss the overall variation of the computed
lifetimes rather than analyzing their convergence, as shown
below.
We find that the models with smaller NACs (e.g., after

scaling them by smaller factors) show longer lifetimes and
larger error bars, as expected. The lifetimes can vary by several
hundred percent. The magnitude of such variations generally
increases for slower dynamics (e.g., going down the rows in
Figure 3), whereas it may be less sensitive to the details of the
model Hamiltonian [e.g., comparing diFerent models in each
row (Figure 3)]. We further look into the influence of the
number of frequencies on the lifetime convergence with
respect to the repeated data unit length. As Figure 3 suggests,
the presence of a larger number of frequencies in the NAC and
energy gap data leads to faster dynamics in general (shorter
lifetime) and to smaller variations of the computed lifetimes
with respect to the repeated data unit length; the convergence
is easier to reach. This observation can be rationalized as
follows. The larger number of frequencies makes it more likely
for the system to pass through points with larger NACs and
smaller energy gaps. Indeed, we also observe that including
more frequencies leads to larger fluctuations of NACs and
energy gaps. The points with larger NACs and/or smaller
energy gaps would be the main regions where the nonadiabatic
transitions would often occur, contributing to the overall
acceleration of the ground state recovery. Our calculations also
suggest that in systems with strong electron−phonon coupling
(and hence large NACs) and with a broad range of phonon

modes, the repetition approach may be reasonably justified.
The presence of many frequencies (especially the high-
frequency ones) in the spectrum of a Hamiltonian means
that a short repeated data unit used in the rNA-MD already
samples the dominant frequencies and thus is an adequate
sample of a longer trajectory. This also points to the important
correlation between dispersion of the σX

2 parameter and
lifetime convergence with respect to the original data length. In
addition, the models with more frequencies generally show
lifetimes shorter than those for the models with fewer
frequencies in the spectrum of the Hamiltonian, i.e., model 7
versus model 3 in particular. We note that the contributions of
the NAC and energy gap to the NA-MD are independent, as
demonstrated with models 11 and 12, in which the frequencies
of the NAC and energy gap FTs are swapped. The lifetime
variation in model 12 is much smaller than that of model 11,
leading us to conclude that the rNA-MD approach may be
suitable for systems that contain a higher frequency of energy
gaps and a low frequency of NACs.
To comprehensively characterize the variation of the lifetime

across diFerent regions of the parameter space, we consider the
ratio of the lifetime computed for the vibronic Hamiltonian
time series of a given length, t, τt, to the lifetime computed for
the reference (100 ps) Hamiltonian data time series, τ100 ps. As
shown in Figure 3, time scale τt can be larger or smaller than
the reference time scale, τ100 ps. Because we are interested only
in the magnitude of the variation of the time scales and not
necessarily the “direction” (under- or overestimation), we
consider both the ratio τt/τ100 ps and its inverse, τ100 ps/τt.

Figure 3. Influence spectrum of the energy gap and NAC (first row). Dependence of the excited state lifetime on the repeated data unit size
(second to fourth rows) with NAC scaled by 0.2, 0.1, and 0.05, respectively. Each column corresponds to one of the model Hamiltonians used.
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Considering various values of the repetition unit length, t, we
compute the maximal ratio, rmax, and the maximal deviation,
dmax:

=r max ,
t

t

t

max

100 ps

100 ps
i

k

jjjjjj

y

{

zzzzzz (3a)

=

| |

d max
t

tmax 100 ps

100 ps

i

k

jjjjjj

y

{

zzzzzz
(3b)

The three-dimensional (3D) plots of rmax and dmax as
functions of σX

2 (X is the energy gap or NAC) parameters for
all of the considered models are shown in Figure 4, with the
raw data listed in Tables S3 and S4. We recall that the large σX

2

corresponds to a large dispersion of frequencies present in the
FT of the corresponding variable X. We hypothesize that larger
values of σX

2 could lead to a larger dispersion of the time scales.
However, we do not observe such a trend. Instead, the
parameters rmax and dmax are distributed rather uniformly over a
wide range of the σE

2 and σNAC
2 parameters, without a clear

dependence. Nonetheless, we observe a clear trend in which
both of these values increase when NACs are scaled down.
This is consistent with our rationalization discussed above that
the use of a small repetition data unit may be not
representative of the entire trajectory, when the nonadiabatic
couplings are weak. In this case, it is more probable to
accidentally choose a subtrajectory with artificially faster or
slower transitions. Hence, the possible variation of the
computed time scales as a function of the repeated data unit
may be large, whereas the convergence to the correct result
may be slow.

We also characterize the magnitudes of the time scale
variation as a function of the σX

2 parameters. For the NACs
scaled by the factor of 0.2, for instance, we observe that rmax

can reach 3.2, meaning that the computed time scales can be
either 3.2 times smaller or 3.2 larger than the reference value
obtained with the full set of 100 ps data. This ratio can reach
7−8 in the simulations with the original Hamiltonian NACs
scaled down by factors of 0.05−0.1. Note that these deviations
occur in a rather uncontrollable way depending on the length
of the repeated date unit used. Using longer subtrajectories
that are repeated does not necessarily guarantee the
convergence to the reference value. In terms of the dmax

parameter, the computed time scales may deviate by ≤120%
(NAC scaling by a factor of 0.2) from the reference value all
the way to >450% (NAC scaling by a factor of 0.05). Note that
the dmax parameter does not directly translate the rmax

parameter. For instance, a notable underestimation of the
time scale with respect to the reference value may lead to small
dmax magnitudes but large rmax values.
In summary, we have conducted a comprehensive assess-

ment of the feasibility of the rNA-MD approach within the
NBRA using a range of two-state model Hamiltonians. We find
that the state transition time scales may strongly depend on the
length of the repeated data, although the convergence is not
monotonic and may be rather slow, making the repetition
approach inaccurate. The computed time scales may be under-
or overestimated compared to the reference values (derived
from the explicit simulations without the variations) by a factor
of ≤7−8. The overestimation or underestimation does not
directly depend on the dispersion of frequencies in the spectra
of energy gaps and NACs of the data; however, each depends
on the magnitude of the NACs. The repetition approach

Figure 4. 3D representation of rmax (top row) and dmax (bottom row) in relation to σX
2 parameters for all two-state models. For columns 1−3, NAC

scaled by 0.2, 0.1, and 0.05, respectively.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c02765
J. Phys. Chem. Lett. 2022, 13, 9688−9694

9692

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c02765/suppl_file/jz2c02765_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02765?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02765?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02765?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02765?fig=fig4&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c02765?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


becomes increasingly inaccurate in simulations with very small
NACs, where the intrinsic transition are slow, on the order of
≥100 ps. Having said this, we understand that the repetition
approach is not guaranteed to break down in individual
simulations even in the case of intrinsically slow dynamics, but
the errors, if they occur, may be more dramatic in this case.
Although these results are given for simulations based on a
simple FSSH scheme, we anticipate that more accurate
schemes that account for decoherence eFects may lead to
even larger variations of computed lifetimes in response to the
variation of the repeated unit length, because the inclusion of
decoherence eFects often slows the dynamics. In this regard,
the presence of decoherence corrections in the dynamics may
have an eFect similar to decreasing the NACs, explored in this
work. In addition, we observe that the presence of a larger
number of frequencies in the FT of data (NACs and energy
gaps) facilitate faster transitions. We expect that the results
reported in this work can be used to assess the inaccuracies in
applied rNA-MD simulations used by the practitioners and
could serve as a general guide for using such a methodology.
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