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Abstract
Categorization has a deep impact on behavior, but whether category learning is served by a single system or multiple
systems remains debated. Here, we designed two well-equated nonspeech auditory category learning challenges to
draw on putative procedural (information-integration) versus declarative (rule-based) learning systems among adult
Hebrew-speaking control participants and individuals with dyslexia, a language disorder that has been linked to a
selective disruption in the procedural memory system and in which phonological deficits are ubiquitous. We observed
impaired information-integration category learning and spared rule-based category learning in the dyslexia group
compared with the neurotypical group. Quantitative model-based analyses revealed reduced use of, and slower
shifting to, optimal procedural-based strategies in dyslexia with hypothesis-testing strategy use on par with control
participants. The dissociation is consistent with multiple category learning systems and points to the possibility that
procedural learning inefficiencies across categories defined by complex, multidimensional exemplars may result in
difficulty in phonetic category acquisition in dyslexia.
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Categorization is essential for human behavior, including
recognizing common objects, interpreting complex and
variable speech signals, and giving meaning to high-level
concepts. There is a long-standing debate on whether
novel category learning is supported by a single system
(e.g., Kruschke, 2020; Love & Tomlinson, 2010; Newell
et al., 2011; Nosofsky, 1986) or multiple systems (e.g.,
Ashby et al., 1998, 2020; Chandrasekaran, Yi, & Maddox,
2014; Maddox & Chandrasekaran, 2014). According to
one influential dual-systems model of category learning
(Competition Between Verbal and Implicit Systems, or
COVIS; Ashby et al., 1998), multiple category learning
systems may differentially support learning categories
that optimally draw on declarative, explicit processes
versus procedural, implicit processes. In this study, we
investigated auditory category learning in dyslexia, a

language disorder that may involve selective disruption
in the procedural memory system (Krishnan et al., 2016;
Nicolson & Fawcett, 2011, 2019; Ullman et al., 2020;
Ullman & Pullman, 2015), to assess the hypothesis that
dyslexia should implicate impaired category learning via
procedural strategies and spared category learning
across hypothesis-testing strategies.

According to the COVIS model, category learning
involves at least two systems that recruit distinct neural
substrates with unique computational specialties. Cat-
egories that are discriminated easily by an explicit rule
(rule-based categories) are proposed to be optimally
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learned by a hypothesis-testing system that depends
heavily on working memory and executive attention
(Ashby et al., 1998; Waldron & Ashby, 2001). In contrast,
categories that cannot easily be discriminated by an
explicit rule and involve integration across multiple
stimulus dimensions (information-integration catego-
ries) are proposed to be optimally learned by an implicit
striatal reinforcement learning system in which dopa-
mine serves as the training signal (Ashby et al., 2011).
Instead of accessing exemplar representations, indi-
viduals learn stimulus-response associations and, thus,
the learning and memory involved are procedural
(Ashby et al., 1998).

Critically, researchers can assess how individuals
learn these categories by assessing learners’ decision
strategies using decision-bound computational models
(Ashby, 1992; Maddox & Ashby, 1993). An optimal strat-
egy for learning rule-based categories encompasses
testing rules that can be discovered optimally by a
hypothesis-testing strategy, whereas the optimal strat-
egy for learning information-integration categories
involves integration from two or more stimulus dimen-
sions at a predecisional stage and procedural learning
across stimulus-response associations (procedural-
based strategy).

There is substantial support for a dual-systems frame-
work for visual categorization from behavioral, neuro-
biological, and patient studies (Ashby et al., 2011), and
recent studies have made the case for its involvement in
auditory categorization, as well (Chandrasekaran, Yi, &
Maddox, 2014; Maddox & Chandrasekaran, 2014;
Roark & Holt, 2018). However, there are substantial
critiques of the dual-systems account that instead argue
in favor of a single exemplar-based system that accounts
for learning phenomena (e.g., Kruschke, 2020; Love &
Tomlinson, 2010; Newell et al., 2011; Nosofsky, 1986).

In summary, there remain unanswered questions
about the nature of category learning. In the current
study, we leveraged a special population that, according
to a dual-systems perspective, should have selective
disruption of category learning that relies on procedural
learning mechanisms—developmental dyslexia. Exami-
nation of category learning processes in adults with
dyslexia can contribute to the debate of single versus
multiple category learning systems and provide impor-
tant insights into the learning difficulties encountered
by individuals with dyslexia.

Developmental Dyslexia

Developmental dyslexia traditionally has been suggested
to arise from a phonological impairment (Snowling,
2001). But domain-general accounts assert that dyslexia
is a consequence of a selective dysfunction in procedural
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Statement of Relevance

Learning to carve perceptual input into coherent
categories has a deep impact on human behavior.
Yet debate remains about whether category learn-
ing is served by a single system or multiple
systems. A multiple memory systems account pro-
poses that distinct neural systems with unique
computational specializations mediate declarative
(“knowing that”) versus procedural (“knowing
how”) memories. Here, we observed that adults
with dyslexia are selectively impaired at learning
sound categories that require integration across
input dimensions and that are optimally acquired
with procedural decision strategies; learning cat-
egories optimally acquired with conjunctive rules
is spared. This dissociation is consistent with mul-
tiple category learning systems. Moreover, it sug-
gests the possibility that phonetic category
acquisition in dyslexia may arise from procedural
learning inefficiencies across categories defined
by complex, multidimensional exemplars.

learning and memory (Nicolson & Fawcett, 2011, 2019;
Ullman et al., 2020; Ullman & Pullman, 2015), which
provides a mechanistic account for the diverse range of
nonphonological linguistic and nonlinguistic symptoms
observed in dyslexia (Beach et al., 2022; Gabay, 2021;
Gabay et al., 2012, 2015; Hedenius et al., 2021; Howard
et al., 2006; Lum et al., 2013; Massarwe et al., 2022;
Pavlidou et al., 2009, 2010; Sperling et al., 2004; Stoodley
et al., 2006; Vicari et al., 2003, 2005). Individuals with
dyslexia demonstrate structural and functional differ-
ences in core structures of the procedural memory sys-
tems, including the cerebellum (Alvarez & Fiez, 2018)
and basal ganglia (Brunswick et al., 1999; Hedenius &
Persson, 2022; Kita et al., 2013; Wang et al., 2019), pro-
viding further evidence for a general procedural learning
and memory deficit.

Despite evidence of procedural learning and memory
impairments in dyslexia, the nature of impairment is
unclear (Bogaerts et al., 2021; West et al., 2021). Many
tasks that are considered “procedural” (e.g., weather pre-
diction task, serial reaction time task) involve a mixture
of procedural and declarative task demands (Bochud-
Fragnière et al., 2022; Packard & Goodman, 2013; Squire
& Dede, 2015; Sun et al., 2005). Further, although prior
studies of category learning among individuals with dys-
lexia have observed differences in overall accuracy, they
have not examined the processes underlying these dif-
ferences. This work has shown poorer categorization
accuracy among dyslexia compared with control groups
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in learning complex, difficult-to-verbalize categories
(e.g., information-integration categories) in the auditory
and visual modalities (Gabay et al., 2015; Gabay & Holt,
2015; Sperling et al., 2004). In contrast, category learning
(as assessed by accuracy) is spared in dyslexia when
learning requires selective attention and explicit rules
(e.g., rule-based categories; Sperling et al., 2004).

Yet differences in categorization accuracy across
groups do not provide insight into why the groups dif-
fer; qualitatively different strategies can yield the same
level of performance (Filoteo et al., 2017; Maddox et al.,
2010; Roark & Holt, 2019). In the current study, dyslexia
and neurotypical control groups learned both rule-based
and information-integration auditory categories. We
used decision-bound computational models to assess
the multiple-systems hypothesis that procedural learning
impairments in dyslexia arise from reduced use of, and
slower shifting to, optimal procedural-based strategies
during information-integration category learning.

Method

Participants

Twenty-nine neurotypical individuals (12 male, 17
female) and 27 individuals with dyslexia (13 male, 14
female) participated. A power analysis (calculated using
the pwr package in the R programming environment;
Version 3.6.1.; R Core Team, 2019; see Champely, 2020)
indicated that a sample of 21 participants per group
would be needed to obtain statistical power at a 0.80
level (a = .05) to detect a small-to-medium difference
among conditions (d = 0.37 or f = 0.185). The effect
size was estimated from the smallest between-groups
difference from a recent study of auditory categoriza-
tion (Roark et al., 2022).

All participants were native Hebrew speakers, were
free of neurological or psychiatric disorders and atten-
tion deficits (American Psychiatric Association, 2013),
had normal or corrected-to-normal vision and normal
hearing, and came from families with middle to high
socioeconomic status. The dyslexia group was recruited
through Yael’s Learning Disabilities Center at Haifa Uni-
versity in Israel and had a formal diagnosis of dyslexia
by a qualified psychologist, a score of at least 1 standard
deviation below the average of the local norms in tests
of phonological decoding (nonword-reading test; Shatil,
1995), and intelligence scores within the normal range
(assessed by the Raven Matrices Test; Raven & Court,
1998). The presence of a diagnosed learning disability
such as attention-deficit/hyperactivity disorder, specific
language impairment, or any sensory or neurological
disability excluded participation. The control group was
at or above the inclusion criteria of the dyslexia group
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on the nonword-reading test and had intelligence
scores within the normal range. Participants completed
assessments of cognitive ability, verbal memory, rapid
automated reading skills, and phonological awareness
(see Table S1 in the Supplemental Material available
online). The dyslexia group differed from the control
group in reading and phonological skills but not in
intelligence (see Table S2 in the Supplemental Material).
The institutional review board at the University of Haifa
approved the study, which was conducted in accor-
dance with the Declaration of Helsinki, with written
informed consent provided by all participants. Partici-
pants received compensation for their participation in
the study (120 shekels, or approximately $30).

AX discriminat ion task

To confirm whether the dyslexia group had auditory
processing difficulties that could affect learning, we had
participants discriminate between pairs of stimuli drawn
from the same stimulus space as the auditory catego-
ries. The exemplars were not experienced in training,
were approximately equidistant in perceptual space,
and were chosen intentionally to be highly discrim-
inable to screen for perceptual processing challenges
(Fig. 1a). Participants judged whether sounds were the
same or different and heard each pairwise combination
twice in a different order of presentation (275-ms inter-
stimulus interval; 10 randomized repetitions; 1:1 same/
different AX trials).

Rule-based a n d  information-integration
category learning tasks

The tasks were similar to those used in previous studies
that examined rule-based and information-integration
category learning in the auditory domain (Roark et al.,
2022). Each participant completed both rule-based and
information-integration tasks, and the order was coun-
terbalanced across participants.

Stimulus distributions

Each participant learned two types of nonspeech audi-
tory categories (information integration and rule based;
Fig. 1a); each category type comprised four individual
categories of sounds sampled from a bivariate normal
distribution. The rule-based categories can be separated
by decision boundaries (dashed lines in Fig. 1a) that
involve selective attention to both acoustic dimensions,
and the information-integration categories can be sepa-
rated by diagonal boundaries across both dimensions
that require integration across the dimensions.
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Fig. 1. Category distributions and spectrograms. (a) Rule-based (left) and information-integration (right) auditory cat-
egory structures. Dashed lines reflect optimal boundaries between categories, and different colors denote stimuli from
different categories. (b) Spectrograms of four stimuli with varying temporal and spectral modulation values.

Stimuli

Stimuli were complex nonspeech ripples varying in
spectral and temporal modulation with a duration of
1 s (Fig. 1b). These dimensions reflect complex prop-
erties of sound perception (Schönwiesner & Zatorre,

2009; Visscher et al., 2007; Woolley et al., 2005) and
have been studied in category learning contexts in
prior research (Roark et al., 2021). Stimuli were gener-
ated using a custom script in MATLAB (The Math-
Works, Natick, MA) and were amplitude matched at
70 dB.



Psychological Science XX(X)

Procedure

After completing an assessment session, participants
completed two sessions separated by 1 week, in which
they first completed the AX discrimination task and then
completed both the information-integration and rule-
based category learning tasks; the order was counterbal-
anced across participants. In each category learning
task, participants completed eight 50-trial training
blocks. Participants were not informed of the dimen-
sions that defined the categories and were told to listen
to the sounds and decide which of four possible catego-
ries the sound stimuli belong to. On each trial, partici-
pants heard the 1-s sound and were immediately
prompted to identify the category (“Which category?”).
Participants pressed one of four buttons (1, 2, 3, or 4)
and received immediate feedback (“Correct” or “Incor-
rect”) for 1 s followed by a 1-s intertrial interval. Partici-
pants were given unlimited time to respond to ensure
that they made a response on every trial. After training,
participants completed a 100-trial generalization test in
which they encountered novel stimuli and received no
feedback.

Learning strategies

To assess participants’ learning strategies, we applied
decision-bound computational models (Ashby, 1992;
Ashby & Maddox, 1993). Four classes of decision-
bound models were applied to category response data:
hypothesis-testing models, a procedural-based model,
and a guessing model, as in previous work (e.g., Roark
et al., 2022; Maddox & Ashby, 2004).

Hypothesis-testing models. We fitted a series of
hypothesis-testing models that use linear decision bound-
aries orthogonal to the dimensions. There were unidi-
mensional models that use a single dimension (e.g.,
temporal or spectral modulation) and conjunctive mod-
els that use both dimensions (e.g., temporal and spectral
modulation). The unidimensional models had four free
parameters—three for the placement of the decision
boundaries along the relevant dimension and one for
perceptual and criterial noise. The conjunctive models
had two free parameters—one for the placement of a
decision boundary along each dimension and one for
perceptual and criterial noise. A conjunctive strategy was
the optimal strategy for the rule-based categories.

Procedural-based model. We fitted a procedural-
based model that uses linear decision boundaries nonor-
thogonal to the dimensions to separate the categories.
The implementation of the procedural-based model is the
Striatal Pattern Classifier (Ashby & Waldron, 1999; Ashby
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et al., 2007) based on the neurobiology of the striatum.
The model has four hypothetical “striatal” units that each
represent a different category in the two-dimensional
stimulus space. It has nine free parameters—two for each
of the striatal units’ placement in space (x/y dimensions)
for each of the four categories and one for perceptual
and criterial noise. A procedural strategy, captured by the
procedural-based model, is the optimal strategy for learn-
ing information-integration categories. It is unknown
whether this model is “procedural” in all the senses that
this common term is used in the literature, but informa-
tion-integration learning is sensitive to feedback delay
and response switching and is insensitive to dual task
interference—common features of procedural learning in
other domains (Ashby & Valentin, 2017; Chandrasekaran,
Koslov, & Maddox, 2014; Chandrasekaran, Yi, & Maddox,
2014; Maddox & Chandrasekaran, 2014).

Guessing model. Finally, we fitted a separate model that
assumes that participants guess the category identity on
each trial. This model assumes that participants respond
with different category identities with equal probability
across a block of trials.

Model f i t t ing a n d  selection

These models were separately fitted to each block of
each participant’s data using maximum likelihood pro-
cedures (Wickens, 1982). To identify the best-fitting
model for each participant and each block, we used
the Bayesian information criterion (BIC) as a measure
of goodness of fit: BIC = rlnN – 2lnL, where r is the
number of free parameters, N is the number of trials in
a given block for a given subject, and L is the likelihood
of the model given the data (Wickens, 1982).

Results

AX discriminat ion

The dyslexia (M = .87, SD = .05) and control (M = .88,
SD = .04) groups did not significantly differ in their
ability to discriminate sounds before category training,
t(53) = 0.90, p = .37, d = 0.24. This ensures that any
group performance differences are not a result of dif-
ferences in perceptual abilities.1

Category t ra in ing

Figure 2 shows category learning performance as aver-
age accuracy. The dyslexia and control groups began
the category learning task on equal footing. There were
no significant group differences in Block 1 performance
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Fig. 2. Performance across blocks. Error bars reflect standard error of the mean.

for rule-based tasks, t(54) = 0.907, p = .368, d = 0.24,
or information-integration tasks, t(54) = 0.72, p = .47,
d = 0.19. We examined accuracy of categorization deci-
sions across groups (dyslexia, control), training blocks
(Blocks 1–8), and tasks (rule based, information integra-
tion) using a mixed-model analysis of variance
(ANOVA). In general, categorization accuracy improved
across blocks, F(7, 378) = 51.32, p = .00000, hp² = .48.
But the dyslexia group was significantly less accurate
than the control group, F(1, 54) = 8.44, p = .002, hp² =
.13. This is moderated by a group-by-block interaction,
F(7, 378) = 3.75, p = .001, h ² = .06, a task-by-block
interaction, F(7, 378) = 2.32, p = .02, h ² = .04, and
crucially, a three-way interaction of Group ´ Block ´
Task, F(7, 378) = 2.18, p = .03, hp² = .03.

We conducted linear contrast tests separately in the
information-integration and rule-based tasks to exam-
ine the three-way interaction. This enabled comparison
of performance across training blocks for the two
groups. In the information-integration task, there was
a greater linear trend (of improving categorization
accuracy) for the control, compared with the dyslexia,
group, F(1, 54) = 11.47, p = .001, hp² = .17. In contrast,
there were no significant group differences in the linear
trend across groups in the rule-based task, F(1, 54) =
0.46, p = .50052, hp² = .008. In summary, category learn-
ing in the rule-based task proceeded similarly for the
dyslexia and control groups. The groups diverged in
learning information-integration categories; the dys-
lexia group learned less effectively than the control
group. We next investigated computational modeling
of individuals’ learning strategies to understand
whether this pattern of performance is driven by a

selective impairment in procedural-based strategies
and spared hypothesis-testing strategies among indi-
viduals with dyslexia.

Computational analyses of learning
strategies

To better understand the nature of poorer information-
integration category learning in dyslexia, we examined
learning strategies (Fig. 3a), how strategies shifted from
suboptimal to task appropriate (Figs. 3b and 3c), and—
for task-appropriate strategies—how efficiently a strat-
egy was deployed (i.e., the level of accuracy reached
using the strategy; Fig. 3d). These three measures move
beyond between-groups accuracy differences to exam-
ine possible source(s) of the information-integration
learning deficit in dyslexia.

Examining participants’ learning strategies across
blocks, we found that the dyslexia group perseverated
with task-inappropriate hypothesis-testing strategies
during information-integration learning. Relative to the
control group, the dyslexia group showed limited use
of the task-appropriate procedural strategy even in the
final block of training (15% dyslexia, 59% control). In
contrast, both control and dyslexia participants were
able to find and apply the optimal conjunctive strategy
in the rule-based task (67% dyslexia, 66% control).

To understand how participants shifted from subop-
timal to task-optimal strategies, we next compared the
first block in which participants used the optimal strat-
egy (Fig. 3b) and the total number of blocks in which
participants used the optimal strategy (Fig. 3c) across
groups and tasks.
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Fig. 3. Learning strategies during training. (a) Learning strategies across blocks, tasks, and groups.
(b) Mean first block to use optimal strategy across tasks and groups. (c) Mean total blocks using
optimal strategy across tasks and groups. (d) Average final block accuracy across participants
using optimal strategies (information integration, or II: procedural; rule based, or RB: conjunctive).
Error bars reflect standard error of the mean.

First optimal block. There was a significant interaction
between group and category in the first block in which
participants used the task-optimal strategy, F(1, 54) = 10.8,
p = .002, hG

2 = .075. The dyslexia group (M = 7.44 blocks)
used the optimal procedural strategy later than the control
group for the information-integration task (M = 4.96
blocks; p = .0014, 95% confidence interval, or CI = [1.00,
3.95]). In contrast, there were no significant differences
between the dyslexia (M = 2.30 blocks) and control (M =
2.48 blocks) groups in number of blocks to first use the
optimal conjunctive strategy for the rule-based task (p =
.72; 95% CI = [–1.23, 0.86]).

Total optimal blocks. There was also a significant
interaction of group and category in the total number of
blocks in which they used the task-optimal strategy, F(1,
54) = 14.6, p < .001, hG

2 = .084. The dyslexia group (M =
1.19 blocks) used the optimal procedural strategy in
fewer blocks than the control group (M = 3.14 blocks) in
the information-integration task (p = .0018, 95% CI =
[0.76, 3.15]). In contrast, there were no significant differ-
ences between the dyslexia (M = 5.44 blocks) and control
(M = 4.86 blocks) groups in the total blocks in which
they used the optimal conjunctive strategy in the rule-
based task (p = .29, 95% CI = [–0.50, 1.66]). These results
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indicate that the dyslexia group has a selective deficit in
the ability to use procedural-based strategies to achieve
success in the information-integration task.

Efficiency of optimal strategies. Even though there
were fewer participants with dyslexia using optimal pro-
cedural strategies in the information-integration task
compared with controls, there were some participants in
each group using the optimal procedural strategy. We
next asked whether dyslexia participants who used the
optimal strategies in the information-integration and rule-
based tasks were less efficient at using those strategies
than control participants using the same strategies (Fig.
3d). That is, do dyslexia participants have worse final
block accuracy than control participants when they use the
same task-appropriate strategy? Our results suggest that if
individuals with dyslexia can find the task-appropriate
strategies, they perform at similar levels to controls in
both rule-based and information-integration tasks. In
both the information-integration and rule-based tasks, we
found no significant differences between dyslexia and
control groups—information integration: t(3.78) = 1.28,
p = .27, d = 0.78, 95% CI = [–12.0, 31.6]; rule based: t(35) =
1.54, p = .13, d = 0.51, 95% CI = [–2.78, 20.3]—when
participants used the task-appropriate strategy. We note
that there were many fewer dyslexia participants using
optimal strategies in the information-integration task
(information integration—dyslexia: N = 4, control: N = 17;
rule based—dyslexia: N = 18, control: N = 19), leading to
a relatively small sample size for this comparison. It is
difficult to compare the efficiency of procedural strate-
gies across groups because individuals with dyslexia do
not often find the optimal strategy in the information-
integration task. However, it appears that when they do,
they perform on par with control learners. Thus, the
selective deficit in dyslexia appears to be in accessing
optimal strategies, particularly in the case of procedural-
based strategies.

Generalization

Participants were able to generalize category knowl-
edge to novel sound exemplars (Fig. 4a). The perfor-
mance of the two groups during the test block was
examined using a mixed-model ANOVA with group
(dyslexia, control) and task (rule based, information
integration) and mean accuracy as the dependent vari-
able. Although the dyslexia group generalized signifi-
cantly less accurately than the control group, F(1, 54) =
8.22, p = .00590, h ² = .13, the group-by-task interaction
was significant, F(1, 54) = 9.57, p = .003, hp² = .15. The
dyslexia group was less able to generalize category
learning to novel exemplars in the information-
integration task, t(54) = 4.24, p = .00009, d = 1.27. There
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was no significant group difference in rule-based gen-
eralization, t(54) = 1.01, p = .31, d = 0.31, reflecting the
same pattern as training performance.

However, in examining the transfer of performance
from the final training block (with feedback) to the
generalization block (novel exemplars with no feed-
back), we did not see any differences across groups
(Fig. 4b). We examined transfer using a mixed-model
ANOVA with group (dyslexia, control) and task (rule
based, information integration) as factors. Transfer was
not significantly different across the dyslexia and con-
trol groups, F(1, 54) = 2.70, p = .11, h ² = .025, or rule-
based and information-integration tasks, F(1, 54) = 2.30,
p = .14, h ² = .020, and there was no interaction between
group and task, F(1, 54) = 0.38, p = .54, hp² = .003.

We also examined decision strategies during gener-
alization (Fig. 4c). The pattern was similar to training:
The dyslexia group used fewer task-appropriate proce-
dural strategies in the information-integration task com-
pared with controls (33% dyslexia vs. 55% control), but
the groups used the task-appropriate conjunctive strat-
egy in the rule-based task at similar rates (63% dyslexia
vs. 55% control). Among participants using the optimal
strategy during generalization (Fig. 4d), control partici-
pants performed significantly better than dyslexia par-
ticipants in the information-integration task, t(14.9) =
3.21, p = .0059, d = 1.36, 95% CI = [3.69, 18.3], but not
the rule-based task, t(30.5) = 1.38, p = .18, d = 0.48,
95% CI = [–3.13, 16.3]. This departs from what we
observed in training, where there were no significant
differences. We note that this analysis has greater power
than our analysis of efficiency in training because there
were more dyslexia participants using the optimal strat-
egy in the information-integration task during the test
(information integration—dyslexia: N = 9, control: N =
17; rule based—dyslexia: N = 16, control: N = 16).

Discussion

In summary, the present study used dyslexia, a disorder
that has been associated with a selective procedural
learning impairment, as a test of whether category
learning would differ from typical learners when opti-
mal performance demands a procedural strategy. Indi-
viduals with dyslexia were impaired in learning and
generalizing information-integration nonspeech catego-
ries defined by integration across input dimensions,
whereas performance on rule-based categories defined
by conjunctive rules was spared. Computational analy-
ses revealed that individuals with dyslexia were slower,
less efficient, and generally less able to use task-
appropriate procedural strategies during information-
integration learning. Participants with dyslexia needed
approximately 100 trials more to discover the optimal
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Fig. 4. Generalization test performance and strategies. Error bars reflect standard error of the mean.
Individual subject performance is shown in lighter points and group average in darker points. Dashed
lines in (a) and (c) reflect chance performance (25%) and in (b) reflect no difference between test
and final block performance. (a) Average generalization test accuracy relative to chance. (b) Aver-
age transfer of performance from the final block to generalization test. (c) Learning strategies across
tasks and groups. (d) Average generalization test accuracy across participants using optimal strategies
(information integration, or II: procedural; rule based, or RB: conjunctive).

procedural strategy and employed it over one third
fewer blocks than control participants. In marked con-
trast, individuals with dyslexia used task-appropriate
declarative strategies during rule-based learning. Like
learners from the control group, individuals with dys-
lexia discovered the optimal, conjunctive strategy for
rule-based category learning within the second block
of training. This served learners well and led the groups
to learn similarly. These findings support the existence
of multiple category learning systems, add discriminant

validity to the procedural learning deficit of language
disorders such as dyslexia (Nicolson & Fawcett, 2011,
2019; Ullman et al., 2020; Ullman & Pullman, 2015), and
illuminate cognitive processes that could contribute to
the difficulties of individuals with dyslexia to acquire
complex categories such as native and nonnative
speech sounds.

The present computational modeling results reveal
slower “switching” from suboptimal hypothesis-testing
strategies to optimal procedural-based strategies in the
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context of learning information-integration categories
among learners with dyslexia. The COVIS model (Ashby
et al., 1998) postulates that responses are initially con-
trolled by the declarative, hypothesis-testing system and
switch to control by the procedural system if necessary.
According to the model, switching between systems
originates in the prefrontal cortex, but the switching is
mediated within the basal ganglia (Ashby et al., 1998;
Ashby & Valentin, 2017). Our results suggest that sub-
optimal switching in dyslexia may arise from poor
mediation by prefrontal control processes. It is impor-
tant to note, however, that patients with damage to the
prefrontal cortex exhibit impairments in both rule-
based and information-integration learning (Schnyer
et al., 2009), rather than the selective impairment of
information-integration learning observed here among
learners with dyslexia.

Alternatively, basal ganglia dysfunction may contrib-
ute to suboptimal switching in dyslexia. Ashby et al.
(1998) argued, on the basis of human and animal find-
ings (Ashby et al., 2003; Jaspers et al., 1990; Roberts
et al., 1994), that switching may be controlled by the
tail of the caudate nucleus (Ashby & Ennis, 2006; Ashby
et al., 2002). Further, they postulated that damage to
the tail of the caudate would be most likely to produce
selective deficits to information-integration learning.
Indirectly supporting this possibility in dyslexia, Gabay
and Holt (2015) found that incidental auditory category
learning within a videogame task in which successful
learning is related to activation of the tail of the caudate
(Lim et al., 2019) is less successful among individuals
with dyslexia compared with a control group. A com-
bined approach with behavioral learning paradigms,
computational modeling, and neuroimaging will be use-
ful in future work to disentangle the source of strategy
switching deficits in dyslexia.

In the current study, learning differences cannot be
attributed to baseline perceptual differences. Discrimi-
nation across the stimulus space was highly accurate
across groups because the stimulus spaces were inten-
tionally constructed to limit differences in low-level
sensory perception. The groups exhibited equivalent
performance in the first block of each category learning
task and performed equivalently in discriminating cat-
egory exemplars. Further, task difficulty, reinforcement
schedules, and amount of training were constant across
the information-integration and rule-based learning
challenges, and observed differences between information-
integration and rule-based learning were established
within the same learners. Our results support a dissocia-
tion when the structures of category input distributions
demand different learning strategies, rather than a gen-
eral deficit in category learning in dyslexia. Even more
generally, the present dissociation of learning with

Gabay et al.

procedural and declarative strategies aligns with models
positing the existence of multiple distinct category
learning systems (Ashby et al., 2011). In the future, it
will be important to determine whether training pro-
grams designed to improve phonological skills of peo-
ple with dyslexia may capitalize on encouraging strategy
shifts or offering incremental training regimes (Tricomi
et al., 2006). Furthermore, it will be informative to exam-
ine category learning in dyslexia using subjective mea-
sures of awareness to support the notion of dissociation
between memory systems in dyslexia. Finally, it will be
important to examine whether the observed findings
generalize to samples of children with developmental
dyslexia on the basis of the differential maturation of
multiple memory systems across development (Finn
et al., 2016).

Considered from the domain of dyslexia, the impaired
learning and selective deficit in categorizing information-
integration categories is consistent with previous dem-
onstrations of a procedural learning deficit in dyslexia,
as observed across motor, cognitive, and perceptual
domains (Ballan et al., 2022; Gabay, 2021; Gabay et al.,
2012, 2015; Hedenius et al., 2021; Howard et al., 2006;
Lum et al., 2013; Massarwe et al., 2022; Pavlidou et al.,
2009, 2010; Sperling et al., 2004; Stoodley et al., 2006;
Vicari et al., 2003, 2005). The present findings also
invite consideration of the relationship between pho-
nological and nonphonological symptoms in dyslexia.
Our results suggest that procedural learning deficits in
dyslexia may be domain and modality general. Whereas
previous work has demonstrated impaired information-
integration category learning with visual categories
(Sperling et al., 2004), we demonstrate an information-
integration-specific learning impairment in the non-
speech, auditory domain. This suggests that dyslexia
not only induces a phonological or speech processing
deficit (Derawi et al., 2022; Serniclaes & Sprenger-
Charolles, 2003), as has been previously argued (e.g.,
Snowling, 2001), but instead arises from a general, pro-
cedural learning deficit. Inasmuch as information-
integration categories are like phonetic categories in
requiring integration across multiple acoustic dimen-
sions (e.g., Yi et al., 2016), phonological deficits in
dyslexia may originate in general challenges in acquir-
ing complex, multidimensional categories through
procedural-based strategies.

In summary, computational modeling of categoriza-
tion decisions among learners with dyslexia reveals
reduced use of and slower shifting to optimal procedural-
based strategies even as declarative-based strategy use
is like that of controls. Poorer category learning in
dyslexia specifically arises from group differences in
the ability to discover and capitalize on procedural
strategies, which has important implications for
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learning the complex multidimensional structure of
speech categories.
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