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A B S T R A C T 

With unparalleled rotational stability, millisecond pulsars (MSPs) serve as ideal laboratories for numerous astrophysical studies, 
many of which require precise knowledge of the distance and/or velocity of the MSP. Here, we present the astrometric results for 
18 MSPs of the ‘MSPSR π’ project focusing e xclusiv ely on astrometry of MSPs, which includes the re-analysis of three previously 

published sources. On top of a standardized data reduction protocol, more comple x strate gies (i.e. normal and inverse-referenced 

1D interpolation) were employed where possible to further impro v e astrometric precision. We derived astrometric parameters 
using sterne , a new Bayesian astrometry inference package that allows the incorporation of prior information based on pulsar 
timing where applicable. We measured significant ( > 3 σ ) parallax-based distances for 15 MSPs, including 0.81 ± 0.02 kpc for 
PSR J1518 + 4904 – the most significant model-independent distance ever measured for a double neutron star system. For each 

MSP with a well-constrained distance, we estimated its transverse space velocity and radial acceleration. Among the estimated 

radial accelerations, the updated ones of PSR J1012 + 5307 and PSR J1738 + 0333 impose new constraints on dipole gravitational 
radiation and the time deri v ati ve of Newton’s gravitational constant. Additionally, significant angular broadening was detected 

for PSR J1643 −1224, which offers an independent check of the postulated association between the HII region Sh 2-27 and the 
main scattering screen of PSR J1643 −1224. Finally, the upper limit of the death line of γ -ray-emitting pulsars is refined with 

the new radial acceleration of the hitherto least energetic γ -ray pulsar PSR J1730 −2304. 

Key words: gravitation – stars: kinematics and dynamics – pulsars: individual: PSR J0030 + 0451, PSR J0610 −2100, 
PSR J0621 + 1002, PSR J1024 −0719, PSR J1537 + 1155, PSR J1853 + 1303, PSR J1910 + 1256, PSR J1918 −0642, 
PSR J1939 + 2134 – gamma-rays: stars – radio continuum: stars. 

1  I N T RO D U C T I O N  

1.1 Millisecond pulsars: a key for probing theories of gravity 
and detecting the gra vitational-wa ve background 

Pulsars are an observational manifestation of neutron stars (NSs) that 
emit non-thermal electromagnetic radiation while spinning (Gold 
1968 ; Pacini 1968 ; Hewish et al. 1969 ). Over 3000 radio pulsars 

� E-mail: hdingastro@hotmail.com (HD); adeller@astro.swin.edu.au (ATD) 

hav e been disco v ered to date throughout the Galaxy and the nearest 
members of the Local Group (Manchester et al. 2005 ). Due to the 
large moment of inertia of pulsars, the pulses we receive on the 
Earth from a pulsar exhibit highly stable periodicity. By measuring 
a train of pulse time-of-arri v als (ToAs) of a pulsar and comparing it 
against the model prediction, a long list of model parameters can be 
inferred (e.g. Detweiler 1979 ; Helfand et al. 1980 ). This procedure 
to determine ToA-changing parameters is known as pulsar timing, 
hereafter referred to as timing. 

In the pulsar family, recycled pulsars (commonly refereed to as 
millisecond pulsars, or MSPs) have the shortest rotational periods. 

© 2022 The Author(s) 
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The y are believ ed to hav e been spun-up through the accretion from 

their donor stars during a previous evolutionary phase as a low-mass 
X-ray binary (LMXB) (Alpar et al. 1982 ). As the duration of the 
recycling phase (and hence the degree to which the pulsar is spun- 
up) can vary depending on the nature of the binary, there is no clear 
spin period threshold that separates MSPs from canonical pulsars. In 
this paper, we define MSPs as pulsars with spin periods of � 40 ms 
and magnetic fields � 10 10 G. This range encompasses most partially 
recycled pulsars with NS companions, such as PSR J1537 + 1155 
(also known as PSR B1534 + 12) and PSR J1518 + 4904. Compared 
to non-recycled pulsars, ToAs from MSPs can be measured to higher 
precision due to both the narrower pulse profiles and larger number 
of pulses. Additionally, MSPs exhibit more stable rotation (e.g. 
Hobbs, Lyne & Kramer 2010 ); both factors promise a lo wer le vel of 
random timing noise. Consequently, MSPs outperform non-recycled 
pulsars in the achie v able precision for probing theories underlying 
ToA-changing astrophysical effects. In particular, MSPs provide the 
hitherto most precise tests for gravitational theories (e.g. Freire et al. 
2012 ; Zhu et al. 2019 ; Kramer et al. 2021 ). Einstein’s theory of 
general relativity (GR) is the simplest form among a group of possible 
candidate post-Newtonian gravitational theories. The disco v ery of 
highly relativistic double neutron star (DNS) systems (e.g. Hulse & 

T aylor 1975 ; W olszczan 1991 ; Burgay et al. 2003 ; Lazarus et al. 
2016 ; Cameron et al. 2018 ; Stovall et al. 2018 ), and their continued 
timing have resulted in many high-precision tests of GR and other 
gravity theories (Fonseca, Stairs & Thorsett 2014 ; Weisberg & Huang 
2016 ; Ferdman et al. 2020 , and especially Kramer et al. 2021 ). 
The precise timing, optical spectroscopy and VLBI observations of 
pulsar-white-dwarf (WD) systems have, in addition, achieved tight 
constraints on several classes of alternative theories of gravity (Deller 
et al. 2008 ; Lazaridis et al. 2009 ; Freire et al. 2012 ; Antoniadis et al. 
2013 ; Ding et al. 2020b ; Guo et al. 2021 ; Zhao et al. 2022 ). 

Gra vitational Wa ves (GWs) are changes in the curvature of 
spacetime (generated by accelerating masses), which propagate at 
the speed of light. Individual GW events in the Hz–kHz range have 
been detected directly with GW observatories (e.g. Abbott et al. 
2016 ; see the third Gra vitational-Wa ve Transient Catalog 1 ), and 
indirectly using the orbital decay of pulsar binaries (e.g. Taylor & 

W eisberg 1982 ; W eisberg & Huang 2016 ; Kramer et al. 2021 ; 
Ding et al. 2021a ). Collectively, a gra vitational wa ve background 
(GWB) formed with primordial GWs and GWs generated by later 
astrophysical events (Carr 1980 ) is widely predicted, but has not 
yet been confirmed by any observational means. In the range of 
10 −9 –0 . 1 Hz , supermassive black hole binaries are postulated to be 
the primary sources of the GWB (Sesana, Vecchio & Colacino 2008 ). 
In this nano-hertz regime, the most stringent constraints on the GWB 

are provided by pulsar timing (Detweiler 1979 ). 
To enhance the sensitivity for the GWB hunt with pulsar timing, 

and to distinguish GWB-induced ToA signature from other sources of 
common timing ‘noise’ (e.g. Solar system planetary ephemeris error, 
clock error and interstellar medium, Tiburzi et al. 2016 ), a pulsar 
timing array (PTA), composed of MSPs scattered across the sky 
(see Roebber 2019 for spatial distribution requirement), is necessary 
(Foster & Backer 1990 ). After two decades of efforts, no GWB has 
yet been detected by a PTA, though common steep-spectrum timing 
noise (in which GWB signature should reside) has already been 
confirmed by several radio PTA consortia (Arzoumanian et al. 2020 ; 
Chen et al. 2021 ; Goncharov et al. 2021 ; Antoniadis et al. 2022 ). 
At γ -rays, a competitive GWB amplitude upper limit was recently 

1 ht tps://www.ligo.org/science/Publication-O3aFinalCat alog/

achieved using the Fermi Large Area Telescope with 12.5 years of 
data (Fermi-LAT Collaboration 2022 ). 

1.2 Very long baseline astrometry of millisecond pulsars 

In timing analysis, astrometric information for an MSP (reference 
position, proper motion, and annual geometric parallax) can form 

part of the global ensemble of parameters determined from ToAs. 
Ho we ver, the astrometric signatures can be small compared to the 
ToA precision and/or covariant with other parameters in the model, 
especially for new MSPs that are timed for less than a couple of 
years (Madison, Chatterjee & Cordes 2013 ). Continuing to add 
newly disco v ered MSPs into PTAs is considered the best pathway 
to rapidly impro v e the PTA sensitivity (Siemens et al. 2013 ), and is 
particularly important for PTAs based around newly commissioned 
high-sensitivity radio telescopes (e.g. Bailes et al. 2020 ). Therefore, 
applying priors to the astrometric parameters can be highly beneficial 
for the timing of individual MSPs (especially the new ones) and for 
enhancing PTA sensitivities (Madison et al. 2013 ). 

Typically, the best approach to independently determine precise 
astrometric parameters for MSPs is the use of phase-referencing 
(e.g. Lestrade et al. 1990 ; Beasle y & Conway 1995 ) v ery long 
baseline interferometry (VLBI) observations, which can achieve 
submas positional precision (relative to a reference source position) 
for MSPs in a single observation. By measuring the sky position 
of a Galactic MSP a number of times and modelling the position 
evolution, VLBI astrometry can obtain astrometric parameters for 
the MSP. Compared to pulsar timing, VLBI astrometry normally 
takes much shorter time to reach a given astrometric precision (e.g. 
Brisken et al. 2002 ; Chatterjee et al. 2009 ; Deller et al. 2019 ). 

One of the limiting factors on searching for the GWB with PTAs is 
the uncertainties on the Solar system planetary ephemerides (SSEs) 
(Vallisneri et al. 2020 ), which are utilized to convert geocentric ToAs 
to ones measured in the (Solar system) barycentric frame (i.e. the 
reference frame with respect to the barycentre of the Solar system). 
Various space-mission-driven SSEs have been released mainly by 
two SSE providers – the NASA Jet Propulsion Laboratory (e.g. 
Park et al. 2021 ) and the IMCCE (e.g. Fienga, Avdellidou & Hanu ̌s 
2020 ). In pulsar timing analysis adopting different SSEs may lead to 
discrepant timing parameters (e.g. Wang et al. 2017 ). On the other 
hand, VLBI astrometry measures offsets with respect to a source 
whose position is measured in a quasi-inertial (reference) frame 
defined using remote quasars (e.g. Charlot et al. 2020 ). Although 
VLBI astrometry also relies on SSEs to derive annual parallax, 
it is robust against SSE uncertainties. In other words, for VLBI 
astrometry, using different SSEs in parameter inference would not 
lead to a noticeable difference in the inferred parameters. Therefore, 
VLBI astrometry of MSPs can serve as an objective standard to 
be used to discriminate between various SSEs. Specifically, if an 
SSE is inaccurate, the barycentric frame based on the SSE would 
display rotation with respect to the quasar-based frame. This frame 
rotation can be potentially detectable by comparing VLBI positions 
of multiple MSPs against their timing positions (Chatterjee et al. 
2009 ; Wang et al. 2017 ). By eliminating inaccurate SSEs, VLBI 
astrometry of MSPs can suppress the SSE uncertainties, and hence 
enhance the PTA sensitivities. 

Besides the GWB-related moti v ations, interferometer-based astro- 
metric parameters (especially distances to MSPs) have been adopted 
to sharpen the tests of gravitational theories for individual MSPs (e.g. 
Deller, Bailes & Tingay 2009 ; Deller et al. 2018 ; Guo et al. 2021 ; 
Ding et al. 2021a ). Such tests are normally made by comparing 
the model-predicted and observed post-Keplerian (PK) parameters 
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that quantify e xcessiv e gravitational effects be yond a Newtonian 
description of the orbital motion. Among the PK parameters is 
the orbital decay Ṗ b (or the time deri v ati ve of orbital period). The 
intrinsic cause of Ṗ b in double neutron star systems is dominated 
by the emission of gra vitational wa ves, which can be predicted 
using the binary constituent masses and orbital parameters (e.g. 
Lazaridis et al. 2009 ; Weisberg & Huang 2016 ). To test this model 
prediction, ho we v er, requires an y e xtrinsic orbital decay Ṗ 

ext 
b due 

to relative acceleration between the pulsar and the observer to 
be remo v ed from the observ ed Ṗ b . Such e xtrinsic terms depend 
crucially on the proper motion and the distance of the pulsar, ho we ver 
these (especially the distance) can be difficult to estimate from 

pulsar timing. Precise VLBI determination of proper motions and 
distances can yield precise estimates of these extrinsic terms, and 
therefore play an important role in orbital-decay tests of gravitational 
theories. Likewise, Gaia astrometry on nearby pulsar-WD systems 
can potentially serve the same scientific goal though the method is 
only applicable to a small number of pulsar-WD systems, where 
the WDs are sufficiently bright for the Gaia space observatory (see 
Section 5.2 ). 

Last but not least, pulsar astrometry is crucial for understanding 
the Galactic free-electron distribution, or the Galactic free-electron 
number density n e ( � x ) as a function of position. An n e ( � x ) model is 
normally established by using pulsars with well determined distances 
as benchmarks. As the pulsations from a pulsar allow precise 
measurement of its dispersion measure (DM), the average n e between 
the pulsar and the Earth can be estimated given the pulsar distance. 
Accordingly, a large group of such benchmark pulsars across the 
sky would enable the establishment of an n e ( � x ) model. In a rele v ant 
research field, extragalactic fast radio bursts (FRBs) have been used 
to probe intergalactic medium distribution on a cosmological scale 
(e.g. Macquart et al. 2020 ; Mannings et al. 2021 ), which, ho we ver, 
demands the removal of the DMs of both the Galaxy and the FRB host 
galaxy. The Galactic DM cannot be determined without a reliable 
n e ( � x ) model, which, again, calls for precise astrometry of pulsars 
across the Galaxy. 

1.3 The MSPSR π project 

Using the Very Long Baseline Array (VLBA), the PSR π project 
tripled the sample of pulsars with precisely measured astrometric 
parameters (Deller et al. 2019 ), but included just three MSPs. The 
successor project, MSPSR π, is a similarly designed VLBA astro- 
metric program targeting e xclusiv ely MSPs. Compared to canonical 
pulsars, MSPs are generally fainter. To identify MSPs feasible for 
VLBA astrometry, a pilot program was conducted, which found 31 
suitable MSPs. Given observational time constraints, we selected 18 
MSPs as the targets of the MSPSR π project, focusing primarily on 
sources observed by pulsar timing arrays. The 18 MSPs are listed in 
Table 1 along with their spin periods P s and orbital periods P b (if 
a vailable) that ha ve been obtained from the ATNF Pulsar Catalogue 2 

(Manchester et al. 2005 ). The astrometric results for three sources 
(PSR J1012 + 5307, PSR J1537 + 1155, PSR J1640 + 2224) involved 
in the project have already been published (Vigeland et al. 2018 ; 
Ding et al. 2020b , 2021a ). In this paper, we present the astrometric 
results of the remaining 15 MSPs studied in the MSPSR π project. 
We also re-derived the results for the three published MSPs, in order 
to ensure consistent and systematic astrometric studies. 

2 ht tps://www.at nf.csiro.au/research/pulsar/psrcat /

Along with the release of the catalogue results, this paper cov- 
ers several scientific and technical perspectives. First, this paper 
e xplores no v el data reduction strate gies such as inv erse-referenced 
1D phase interpolation (see Section 3.2 ). Second, a new Bayesian 
astrometry inference package is presented (see Section 4 ). Third, with 
new parallax-based distances and proper motions, we discriminate 
between the two pre v ailing n e ( � x ) models (see Section 6.1.1 ), and 
investigate the kinematics of MSPs in Section 6.2 . Fourth, with new 

parallax-based distances of two MSPs, we re-visit the constraints on 
alternative theories of gravity (see Section 7 ). Finally, discussions 
on individual pulsars are given in Section 8 , which includes a 
refined ‘death line’ upper limit of γ -ray pulsars (see Section 8.7 ). 
The study of SSE-dependent frame rotation, which depends on an 
accurate estimation of the reference points of our calibrator sources 
in the quasi-inertial VLBI frame, requires additional multifrequency 
observations and will be presented in a follow-up paper. 

Throughout this paper, we abide by the following norms unless 
otherwise stated. (1) The uncertainties are provided at 68 per cent 
confidence level. (2) Any mention of flux density refers to unresolved 
flux density S unres in our observing configuration (e.g. a 10-mJy 
source means S unres = 10 mJy). (3) All bootstrap and Bayesian results 
adopt the 50th, 16th, and 84th percentile of the marginalized (and 
sorted) value chain as, respectively, the estimate and its 1- σ error 
lower and upper bound. (4) Where an error of an estimate is required 
for a specific calculation but an asymmetric error is reported for 
the estimate, the mean of upper and lower errors is adopted for the 
calculation. (5) VLBI positional uncertainties will be broken down 
into the uncertainty of the offset from a chosen calibrator reference 
point, and the uncertainty in the location of that chosen reference 
point. This paper focuses on the relative offsets, which are relevant for 
the measurement of proper motion and parallax, and the uncertainty 
in the location of the reference source is presented separately. 

2  OBSERVATI ONS  A N D  C O R R E L AT I O N  

As is mentioned in Section 1.2 to achieve high-precision pulsar 
astrometry requires the implementation of a VLBI phase referencing 
technique. There are, ho we ver, a v ariety of such techniques, including 
the normal phase referencing, relayed phase referencing, inverse 
phase referencing, and interpolation. These techniques are described 
and discussed in Chapter 2 of Ding 2022 . Generally, a given phase 
referencing approach and hence observational set-up maps directly to 
a corresponding data reduction procedure though occasionally other 
data reduction opportunities could arise by chance (see Section 3 ). 

The MSPSR π project systematically employs the relayed phase 
referencing technique, in which a secondary phase reference source 
(explained in Chapter 2 of Ding 2022 ) very close to the target on the 
sky is observed to refine direction-dependent calibration effects. The 
observing and correlation tactics are identical to those of the PSR π

project (Deller et al. 2019 ). All MSPs in the MSPSR π catalogue 
(see Table 1 ) were observed at L -band with the VLBA at 2-Gbps 
data rate (256 MHz total bandwidth, dual polarization) from mid- 
2015 to no later than early 2018. To minimize radio-frequency 
interference (RFI) at L -band, we used eight 32 MHz subbands 
with central frequencies of 1.41, 1.44, 1.47, 1.50, 1.60, 1.66, 1.70, 
and 1.73 GHz, corresponding to an ef fecti v e central frequenc y of 
1.55 GHz. The primary phase calibrators were selected from the 
Radio Fundamental Catalogue. 3 The secondary phase calibrators 
were identified from the FIRST (Faint Images of the Radio Sky at 

3 astr ogeo.org/r fc/
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Twenty-cm) catalogue (Becker, White & Helfand 1995 ) or the NVSS 

(NRAO VLA sk y surv e y) catalogue (Condon et al. 1998 ) (for sky 
re gions not co v ered by the FIRST surv e y) using a short multifield 
observation. Normally, more than one secondary phase calibrators 
were observed together with the target. Among them, a main one that 
is preferably the brightest and the closest to the target is selected to 
carry out self-calibration; the other secondary phase calibrators are 
hereafter referred to as redundant secondary phase calibrators. The 
primary and the main secondary phase calibrators for the astrometry 
of the 18 MSPs are summarized in Table 1 , alongside the project 
codes. At correlation time, pulsar gating was applied (Deller et al. 
2011 ) to impro v e the S/N on the target pulsars. The median values 
of the gating gain, defined as (S/N) gated /(S/N) ungated , are provided in 
Table 1 . 

3  DATA  R E D U C T I O N  A N D  F I D U C I A L  

SYSTEMATIC  E R RO R S  

We reduced all data with the psrvlbireduce pipeline 4 written in 
parseltongue (Kettenis et al. 2006 ), a python -based interface 
for running functions provided by AIPS (Greisen 2003 ) and DIFMAP 
(Shepherd, Pearson & Taylor 1994 ). The procedure of data reduction 
is identical to that outlined in Ding et al. ( 2020b ), except for four 
MSPs – PSR J1518 + 4904, PSR J0621 + 1002, PSR J1824 −2452A, 
and PSR J1939 + 2134. For PSR J1518 + 4904, the self-calibration so- 
lutions acquired with NVSS J151733 + 491626, a 36-mJy secondary 
calibrator 13 . ′ 8 away from the pulsar, are extrapolated to both the 
pulsar and NVSS J151815 + 491105 – a 4.5-mJy source about a factor 
of two closer to PSR J1518 + 4904 than NVSS J151733 + 491626. The 
positions relative to NVSS J151815 + 491105 are used to derive the 
astrometric parameters of PSR J1518 + 4904. For the other excep- 
tions, the data reduction procedures as well as fiducial systematics 
estimation are described in Sections 3.1 and 3.2 . 

At the end of the data reduction, a series of positions as well 
as their random errors σR 

i (where i = 1, 2, 3,. . . refers to right 
ascension or declination at different epochs) are acquired for each 
pulsar. For each observation, on top of the random errors due to 
image noise, ionospheric fluctuations would introduce systematic 
errors that distort and translate the source, the magnitude of which 
generally increases with the angular separation between a target 
and its (secondary) phase calibrator (e.g. Chatterjee et al. 2004 ; 
Pradel, Charlot & Lestrade 2006 ; Kirsten et al. 2015 ; Deller et al. 
2019 ). We estimate fiducial values for these systematic errors σS 

i 

of pulsar positions using the empirical relation (i.e. equation 1 of 
Deller et al. 2019 ) derived from the whole PSR π sample. While 
this empirical relation has pro v en a reasonable approximation to 
the actual systematic errors for a large sample of sources, for an 
indi vidual observ ational set-up σS 

i may o v erstate or underestimate 
the true systematic error (see Section 4 ). We can account for our 
uncertainty in this empirical estimator by re-formulating the total 
positional uncertainty as 

σi ( ηEFAC ) = 

√ (
σR 

i 

)2 + 

(
ηEFAC · σS 

i 

)2 
, (1) 

where ηEFAC is a positive correction factor on the fiducial systematic 
errors. In this work, we assume ηEFAC stays the same for each 
pulsar throughout its astrometric campaign. The inference of ηEFAC 

is described in Section 4 . We reiterate that the target image frames 
have been determined by the positions assumed for our reference 

4 available at https:// github.com/dingswin/ psrvlbireduce 

Table 2. An example set of astrometric results for J1738 + 0333, where the 
presented uncertainty excludes the calibrator reference point uncertainty as 
described in the text. 

obs. date αJ2000 (RA.) δJ2000 (Decl.) 
(yr) 

2015.6166 17 h 38 m 53 . s 969242(3 | 5) 03 ◦33’10 . ′′ 90430(9 | 17) 
2015.8106 17 h 38 m 53 . s 969329(3 | 6) 03 ◦33 ′ 10 . ′′ 90491(9 | 18) 
2016.6939 17 h 38 m 53 . s 969726(5 | 6) 03 ◦33’10 . ′′ 90981(16 | 21) 
2017.1304 17 h 38 m 53 . s 970000(6 | 7) 03 ◦33’10 . ′′ 91262(21 | 25) 
2017.2068 17 h 38 m 53 . s 970040(2 | 4) 03 ◦33’10 . ′′ 91217(7 | 15) 
2017.2860 17 h 38 m 53 . s 970078(3 | 5) 03 ◦33’10 . ′′ 91307(11 | 17) 
2017.2997 17 h 38 m 53 . s 970062(17 | 17) 03 ◦33’10 . ′′ 91272(59 | 61) 
2017.7232 17 h 38 m 53 . s 970208(15 | 16) 03 ◦33’10 . ′′ 91484(64 | 74) 
2017.7669 17 h 38 m 53 . s 970248(7 | 8) 03 ◦33’10 . ′′ 91466(27 | 33) 

Notes. •This table is compiled for PSR J1738 + 0333. 
•The values on the left and the right side of ‘ | ’ are, respectively, statistical 
errors given in J1738 + 0333.pmpar.in.preliminary 5 , and systematics-included 
errors provided in J1738 + 0333.pmpar.in 5 . 

sources (or virtual calibrators, see Section 3.1 ), and that any change 
in the assumed reference source position would transfer directly into 
a change in the reco v ered position for the target pulsar. Accordingly, 
the uncertainty in the reference source position must be accounted 
for in the pulsar’s reference position error budget, after fitting the 
pulsar’s astrometric parameters. 

All pulsar positions and their error budgets are provided in 
the online 5 ‘pmpar.in.preliminary’ and ‘pmpar.in’ files. The only 
difference between ‘pmpar.in.preliminary’ and ‘pmpar.in’ (for each 
pulsar) files are the position uncertainties: ‘pmpar.in.preliminary’ and 
‘pmpar.in’ of fer, respecti vely, position uncertainties σi (0) = σR 

i and 
σi (1) = 

√ 

( σR 

i ) 2 + ( σS 
i ) 2 . As an example, the pulsar positions for 

PSR J1738 + 0333 are presented in Table 2 , where the values on the 
left and right side of the ‘ | ’ sign stand for, respectively, σ i (0) and 
σ i (1). Additionally, to facilitate reproducibility, the image models 
for all primary and secondary phase calibrators listed in Table 1 are 
released 6 along with this paper. Following Deller et al. ( 2019 ), Ding 
et al. ( 2020b ), the calibrator models were made with the calibrator 
data concatenated from all epochs in an iterative manner. 

3.1 1D interpolation on PSR J0621 + 1002 and 

PSR J1824 −2452A 

One can substantially reduce propagation-related systematic errors 
using 1D interpolation with two phase calibrators quasi-colinear with 
a target (e.g. Fomalont & Kopeikin 2003 ; Ding et al. 2020a ). After 
1D interpolation is applied, the target should in effect be referenced 
to a ‘virtual calibrator’ much closer (on the sky) than either of the 
two physical phase calibrators, assuming the phase screen can be 
approximated by a linear gradient with sky position (Ding et al. 
2020a ). 

According to Table 1 , seven secondary phase calibrators (or 
the final reference sources) are more than 20’ away from their 
targets, which would generally lead to relatively large systematic 
errors (e.g. Chatterjee et al. 2004 ; Kirsten et al. 2015 ; Deller 
et al. 2019 ). Fortunately, there are three MSPs – PSR J0621 + 1002, 
PSR J1824 −2452A, and PSR J1939 + 2134, for which the pulsar and 
its primary and secondary phase calibrators are near-colinear (see 
online 5 calibrator plans as well as Fig. 1 ). Hence, by applying 1D 

5 https:// github.com/dingswin/ publication related materials 
6 https:// github.com/dingswin/ calibrator models for astrometry 
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Figure 1. Left: The calibrator plan for VLBI astrometry of PSR J1939 + 2134 (see Table 1 for full source names), where PSR J1939 + 2134 serves as the 
secondary phase calibrator and J1935 is the primary phase calibrator. Right: The zoomed-in field for reference sources as well as the virtual calibrator (VC) 
along the J1935-to-pulsar line. For the inverse 1D interpolation on PSR J1939 + 2134, we used the VC location that forms the largest included angle (65 . ◦7) with 
the two reference sources (see Section 3.2 for explanation), which corresponds to � VC − PC / � PC − psr = 1.2836 (i.e. the VC-to-J1935 separation is 1.2836 times 
the J1935-to-pulsar separation). 

interpolation, each of the 3 ‘1D-interpolation-capable’ MSPs can 
be referenced to a virtual calibrator much closer than the physical 
secondary phase calibrator (see Table 1 ). 

We implemented 1D interpolation on PSR J0621 + 1002 and 
PSR J1824 −2452A in the same way as the astrometry of the radio 
magnetar XTE J1810 −197 carried out at 5.7 GHz (Ding et al. 
2020a ). None the less, due to our different observing frequency (i.e. 
1.55 GHz), we estimated σS 

i differently. The post-1D-interpolation 
systematic errors should consist of (1) first-order residual systematic 
errors related to the target-to-virtual-calibrator offset � psr-VC and 
(2) higher-order terms. Assuming negligible higher-order terms, we 
approached post-1D-interpolation σS 

i with equation ( 1 ) of Deller 
et al. ( 2019 ), using � psr-VC as the calibrator-to-target separation. The 
assumption of negligible higher-order terms will be tested later and 
discussed in Section 4.1.3 . 

3.2 Inverse-r efer enced 1D interpolation on PSR J1939 + 2134 

For PSR J1939 + 2134, normal 1D interpolation (Fomalont & 

Kopeikin 2003 ; Ding et al. 2020a ) with respect to the primary 
phase calibrator ICRF J193510.4 + 203154 (J1935), and the brightest 
secondary reference source NVSS J194104 + 214913 (J194104) is 
still not the optimal calibration strategy. The ≈10-mJy (at 1.55 GHz) 
PSR J1939 + 2134 is the brightest MSP in the northern hemisphere, 
and only second to PSR J0437 −4715 in the whole sky. After 
pulsar gating, PSR J1939 + 2134 is actually brighter than J194104. 
PSR J1939 + 2134 is unresolved on VLBI scales, and does not 
show long-term radio feature variations (frequently seen in quasars), 
which makes it an ideal secondary phase calibrator. Both factors 
encouraged us to implement the inverse-referenced 1D interpolation 
(or simply inverse 1D interpolation) on PSR J1939 + 2134, where 
PSR J1939 + 2134 is the de-facto secondary phase calibrator and 
the two ‘secondary phase calibrators’ serve as the targets. To a v oid 
confusion, we refer to the two ‘secondary phase calibrators’ for 
PSR J1939 + 2134 (see Table 1 ) as secondary reference sources or 
simply reference sources. 

Though inverse phase referencing (without interpolation) has been 
an observing/calibration strategy broadly used in VLBI astrometry 
(e.g. Imai et al. 2012 ; Yang et al. 2016 ; Li et al. 2018 ; Deller 
et al. 2019 ), inverse interpolation is new with the 2D approach of 
Hyland et al. ( 2022 ) at 8.3 GHz being a recent and independent 
dev elopment. We implemented inv erse 1D interpolation at 1.55 GHz 
on PSR J1939 + 2134 in three steps (in addition to the standard 
procedure) detailed as follows. 

3.2.1 Tying PSR J1939 + 2134 to the primary-calibrator r efer ence 
frame 

Inverse 1D interpolation relies on the residual phase solutions 
�φn ( � x , t) of self-calibration on PSR J1939 + 2134 (where � x , t , and 
n refers to, respectiv ely, sk y position, time, and the n -th station in a 
VLBI array), which, ho we ver, change with � � x psr – the displacement 
from the ‘true’ pulsar position to its model position. When | � � x psr | 
is much smaller than the synthesized beam size θ syn , the changes 
in �φn ( � x , t) would be equal across all epochs, hence not biasing 
the resultant parallax and proper motion. Ho we ver, if | � � x psr | � θsyn , 
then the phase wraps of �φn ( � x , t) would likely become hard to 
unco v er. The main contributor of considerable | � � x psr | is an inaccurate 
pulsar position. The proper motion of the pulsar would also increase 
| � � x psr | with time, if it is poorly constrained (or ne glected). F or 
PSR J1939 + 2134, the effect of proper motion across our observing 
duration is small ( � 1 mas across the nominal observing span of 
2.5 years; see the timing proper motion in Section 5 ) compared to 
θ syn ∼ 10 mas. 

In order to minimize | � � x psr | , we shifted the pulsar model position 
on an epoch-to-epoch basis by � � x cor (which ideally should approxi- 
mate −� � x psr ) to the position measured in the J1935 reference frame 
(see Section 4.1 of Ding et al. 2020a for explanation of ‘reference 
frame’). This J1935-frame position was derived with the method 
for determining pulsar absolute position (Ding et al. 2020b ) (where 
J194104 was used temporarily as the secondary phase calibrator) 
except that there is no need to quantify the position uncertainty. 
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We typically found | � � x psr | ∼ 50 mas, which is well abo v e θ syn ∼
10 mas. After the map centre shift, PSR J1939 + 2134 becomes tied 
to the J1935 frame. 

3.2.2 1D interpolation on the tied PSR J1939 + 2134 

The second step of inverse 1D interpolation is simply the normal 1D 

interpolation on PSR J1939 + 2134 that has been tied to the J1935 
frame as described abo v e (in Section 3.2.1 ). When there is only 
one secondary reference source, optimal 1D interpolation should see 
the virtual calibrator mo v ed along the interpolation line (that passes 
through both J1935 and PSR J1939 + 2134) to the closest position 
to the secondary reference source (e.g. Ding et al. 2020a ). Ho we ver, 
there are two reference sources for PSR J1939 + 2134 (see Table 1 ), 
and the virtual calibrator point can be set at a point that will enable 
both of them to be used. 

After calibration, a separate position series can be produced for 
each reference source. While we used each reference-source position 
series to infer astrometric parameters separately, we can also directly 
infer astrometric parameters with the combined knowledge of the two 
position series (which can be realized with ste rne 7 ). If the errors in 
the two position series are (largely) uncorrelated, this can provide 
superior astrometric precision. Since position residuals should be 
spatially correlated, we would ideally set the virtual calibrator at 
a location such that the included angle between the two reference 
sources is 90 ◦. While achieving this ideal is not possible, we chose 
a virtual calibrator location that forms the largest possible included 
angle (65 . ◦7) with the two reference sources to minimise spatially 
correlated errors (see Fig. 1 ). This virtual calibrator is 1.2836 times 
further away from J1935 than PSR J1939 + 2134. Accordingly, the 
�φn ( � x , t) solutions (obtained from the self-calibration on the tied 
PSR J1939 + 2134) were multiplied by 1.2836, and applied to the 
two reference sources. 

3.2.3 De-shifting r efer ence sour ce positions 

After data reduction involving the two steps outlined in Sections 3.2.1 
and 3.2.2 , one position series was acquired for each reference 
source. At this point, ho we ver, the two position series are not yet 
ready for astrometric inference, mainly because both proper motion 
and parallax signatures have been remo v ed in the first step (see 
Section 3.2.1 ) when PSR J1939 + 2134 was shifted to its J1935- 
frame position. Therefore, the third step of inverse 1D interpolation 
is to cancel out the PSR J1939 + 2134 shift (made in the first step) 
by moving reference source positions by −1 . 2836 · � � x cor , where the 
multiplication can be understood by considering fig. 1 of Ding et al. 
2020a . This de-shifting operation was carried out separately outside 
the data reduction pipeline 4 . After the operation, we estimated σS 

ij 

of the reference sources (where j = 1, 2 refers to an individual 
reference source) following the method described in Section 3.1 . The 
final position series of the reference sources are available online 5 . 
The astrometric parameter inference based on these position series 
is outlined in Section 4 . 

4  ASTROM ETR IC  INFERENCE  M E T H O D S  A N D  

QUASI- V LBI-ON LY  ASTROMETRIC  RESULTS  

After gathering the position series 5 with basic uncertainty estimation 
(see Section 3 ), we proceed to infer the astrometric parameters. 

7 https:// github.com/dingswin/ sterne 

The inference is made by three different methods: (a) direct fit- 
ting of the position series with pmpar , 8 (b) bootstrapping (see 
Ding et al. 2020b ), and (c) Bayesian analysis using sterne 7 

(see Ding et al. 2021a ). The two former methods directly adopt 
σi (1) = 

√ 

( σR 

i ) 2 + ( σS 
i ) 2 as the position errors. In Bayesian analy- 

sis, ho we ver, we inferred ηEFAC along with other model parameters 
using the likelihood terms 

P 1 ∝ 

( ∏ 

i 

σi 

) −1 

exp 

[ 

−1 

2 

∑ 

i 

(
�εi 

σi 

)2 
] 

, (2) 

where σ i = σ i ( ηEFAC ) obeys equation ( 1 ); �εi refers to the model 
offsets from the measured positions. As is discussed in Section 4.2 , 
Bayesian inference outperforms the other two methods, and is hence 
consistently used to present final results in this work. In all cases, 
the uncertainty in the reference source position should be added 
in quadrature to the uncertainty in the pulsar’s reference position 
acquired with any method (of the three), in order to obtain a final 
estimate of the absolute positional uncertainty of the pulsar. 

To serve different scientific purposes, we present two sets of 
astrometric results in two sections (i.e. Sections 4 and 5 ), which 
differ in whether timing proper motions and parallaxes are used as 
prior information in the inference. 

4.0.4 Priors of canonical model parameters used in Bayesian 
analysis 

To facilitate reproduction of our Bayesian results, the priors (of 
Bayesian inference) we use for canonical model parameters and 
ηEFAC are detailed as follows. Priors for the two orbital parame- 
ters can be found in Section 4.3 . We universally adopt the prior 
uniform distribution U(0, 15) (i.e. uniformly distributed between 
0 and 15) for ηEFAC . This prior distribution can be refined for 
future work with an ensemble of results across many pulsars. With 
regard to the canonical astrometric parameters (seven parameters 
for PSR J1939 + 2134 and five for the other pulsars), we adopt 
U 

(
X 

(DF) 
0 − 20 ˜ σ (DF) 

X , X 

(DF) 
0 + 20 ˜ σ (DF) 

X 

)
for each X , where X refers 

to one of αref , δref , μα , μδ , and � . Here, X 

(DF) 
0 stands for the direct- 

fitting estimate of X ; ˜ σ (DF) 
X represents the direct-fitting error corrected 

by the reduced chi-square χ2 
ν (see Table 3 ) with ˜ σ (DF) 

X ≡ σ
(DF) 
X · √ 

χ2 
ν . 

The calculation of prior range of X is made with the function 
ste rne .pri ors .ge ne rate i ni tsf i le 7 . We note that the adopted priors 
are relaxed enough to ensure robust outcomes: shrinking or enlarging 
the prior ranges by a factor of two would not change the inferred 
values. Meanwhile, the specified prior ranges are also reasonably 
small so that the global minimum of equation ( 2 ) can be reached. 

4.1 Astr ometric infer ence disr egarding orbital motion 

4.1.1 Single-r efer ence-sour ce astrometric inferences 

All MSPs (in this work) excepting PSR J1939 + 2134 have only one 
reference source. For each of these single-reference-source MSPs, 
we fit for the five canonical astrometric parameters, i.e. reference 
position ( αref and δref ), proper motion ( μα ≡ α̇ cos δ and μδ), and 
parallax ( � ). In the Bayesian analysis alone, ηEFAC is also inferred 
alongside the astrometric parameters. At this stage, we neglect any 
orbital reflex motion for binary pulsars – the effects of orbital 
reflex motion are addressed in Section 4.3 . The proper motions 

8 https:// github.com/walterfb/ pmpar
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Figure 2. The common parallax signature of PSR J1939 + 2134 revealed by 
the position measurements of both reference sources (see Table 1 ). In both 
panels, the best-fit proper motion has been subtracted. The magenta curve in 
each panel represents the best-inferred astrometric model. The fuzzy region 
around the curve consists of various Bayesian simulations, the scatter of which 
can visualize the uncertainty level of the underlying model parameters (see 
Section 4.1.2 ). As a result of the inverse referencing, the common parallax 
revealed here is actually the negative of the PSR J1939 + 2134 parallax 
presented in Table 3 . 

and parallaxes derived with single-reference-source astrometry and 
disregarding orbital motion are summarized in Table 3 . The reference 
positions are presented in Section 4.4 . 

4.1.2 Multisource astrometry inferences 

When multiple sources share proper motion and/or parallax (while 
each source having its own reference position), a joint multisource 
astrometry inference can increase the degrees of freedom of inference 
(i.e. the number of measurements reduced by the number of param- 
eters to infer), and tighten constraints on the astrometric parameters. 
Multisource astrometry inference has been widely used in maser 
astrometry (where maser spots with different proper motions scatter 
around a region of high-mass star formation, Reid et al. 2009 ), 
but has not yet been used for any pulsar, despite the availability 
of several bright pulsars with multiple in-beam calibrators (e.g. 
PSR J0332 + 5434, PSR J1136 + 1551) in the PSR π project (Deller 
et al. 2019 ). 

PSR J1939 + 2134 is the only source (in this work) that has 
multiple (i.e. two) reference sources, which provides a rare op- 
portunity to test multireference-source astrometry. We assumed 
that the position series of J194104 is uncorrelated with that of 
NVSS J194106 + 215304 (hereafter J194106), and utilized sterne 7 

to infer the common parallax and proper motion, alongside two 
reference positions (one for each reference source). The acquired 
proper motion and parallax are listed in Table 3 . As inverse phase 
referencing is applied for PSR J1939 + 2134, the parallax and proper 
motion of PSR J1939 + 2134 are the inverse of the direct astrometric 
measurements. For comparison, the proper motion and parallax 
inferred solely with one reference source are also reported in Table 3 . 
Due to the relative faintness of J194106 (see Table 1 ), the inclusion 
of J194106 only marginally impro v es the astrometric results (e.g. � ) 
o v er those inferred with J194104 alone. 

The constraints on the parallax (as well as the proper motion) 
are visualized in Fig. 2 . The best-inferred model (derived from the 

J194104 and J194106 positions) is illustrated with a bright magenta 
curve, amidst two sets of Bayesian simulations – each set for a 
reference source. Each simulated curve is a time series of simulated 
positions, with the best-inferred reference position ( αref, j and δref, j , 
where j refers to either J194104 or J194106) and proper-motion- 
related displacements (i.e. μα� t and μδ� t , where � t is the time 
delay from the reference epoch) subtracted. As the simulated curve 
depends on the underlying model parameters, the degree of scatter 
of simulated curves would increase with larger uncertainties of 
model parameters. Though sharing simulated parallaxes and proper 
motions with J194104, the simulated curves for J194106 exhibits 
broader scatter (than the J194104 ones) owing to more uncertain 
reference position (see Section 4.4 for αref, J194106 and δref, J194106 ). The 
large scatter implies that the J194106 position measurements impose 
relatively limited constraints on the common model parameter (i.e. 
parallax and proper motion), which is consistent with the findings 
from Table 3 . 

4.1.3 Implications for 1D/2D interpolation 

On the three 1D-interpolation-capable MSPs, we compared astromet- 
ric inference with both the 1D-interpolated and non-1D-interpolated 
position series (one at a time). For PSR J1939 + 2134, the ηEFAC 

of the three 1D-interpolated realizations are consistent with each 
other, but larger than the non-1D-interpolated counterpart. This 
post-1D-interpolation inflation of ηEFAC also occurs to the other 
two 1D-interpolation-capable pulsars (see Table 3 ), which suggests 
the post-1D-interpolation fiducial systematic errors σS 

i might be 
systematically under-estimated. One obvious explanation for this 
under-estimation is that the higher-order terms of systematic errors 
are non-negligible (as opposed to the assumption we started with 
in Section 3.1 ): they might be actually comparable to the first- 
order residual systematic errors (that are related to � psr-VC ) at the 
∼1.55 GHz observing frequencies. 

On the other hand, the astrometric results based on the 
non-1D-interpolated J194104 positions inverse-referenced to 
PSR J1939 + 2134 are less precise than the 1D-interpolated coun- 
terpart by ≈40 per cent, as is also the case for PSR J0621 + 1002 
(see Table 3 ). Moreo v er, the post-1D-interpolation parallax of 
PSR J1824 −2452A becomes relatively more accurate than the 
ne gativ e parallax obtained without applying 1D interpolation. All 
of these demonstrate the utility of 1D/2D interpolation, even in 
the scenario of in-beam astrometry that is already precise. In the 
remainder of this paper, we only focus on the 1D-interpolated 
astrometric results for the three 1D-interpolation-capable MSPs. 

4.2 Bayesian inference as the major method for MSPSR π

We now compare the three sets of astrometric parameters (in Table 3 ) 
obtained with different inference methods, and seek to proceed with 
only one set in order to simplify the structure of this paper. Among 
the three inference methods we use in this work, direct least-square 
fitting is the most time-efficient, but is also the least robust against 
improperly estimated positional uncertainties. Conversely, the other 
two methods (i.e. bootstrap and Bayesian methods) do not rely 
solely on the input positional uncertainties, and can still estimate 
the model parameters, and their uncertainties σ ( Y ) 

X ( X = μα , μδ or 
� ; Y = ‘Bo’ or ‘Ba’) more robustly in the presence of incorrectly 
estimated positional errors. 

Generally speaking, σ ( Y ) 
X inferred from a pulsar position series 

are expected to change with the corresponding χ2 
ν -corrected direct- 
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Figure 3. Bootstrap (denoted as ‘Bo’) and Bayesian (‘Ba’) errors (of three inferred parameters) divided by the corresponding χ2 
ν -corrected direct-fitting errors. 

Here, ˜ σ (DF) 
X ≡ σ

(DF) 
X · √ 

χ2 
ν represents the χ2 

ν -corrected errors of direct fitting, where X stands for one of the μα , μδ , and � groups. The dimensionless ˆ σ (DF) 
X is 

defined as an indi vidual ˜ σ (DF) 
X di vided by the standard deviation s (DF) 

X for all ˜ σ (DF) 
X of the group X . The grey and orange shaded regions sho w, respecti vely, the 

standard deviation of σ (Bo) 
X / ̃ σ

(DF) 
X and σ (Ba) 

X / ̃ σ
(DF) 
X across all of the three groups (i.e. μα , μδ , and � ) around the respective mean value outlined with the grey 

and orange dashed lines. Both bootstrap and Bayesian errors are generally slightly higher than the level of direct-fitting errors illustrated with the cyan dashed 
line, and are well consistent with each other as anticipated. Despite the consistency, bootstrap errors show larger scatter than Bayesian ones. 

fitting error ˜ σ (DF) 
X ≡ σ

(DF) 
X · √ 

χ2 
ν . In order to investigate the relation 

between σ ( Y ) 
X and ˜ σ (DF) 

X , we divided σ ( Y ) 
X by ˜ σ (DF) 

X for each pulsar entry 
in the top block of Table 3 . The results are displayed in Fig. 3 . For 
the convenience of illustration, we calculated the dimensionless ˜ σ (DF) 

X 

defined as ˜ σ (DF) 
X /s 

(DF) 
X (where s (DF) 

X represents the standard deviation 
of ˜ σ (DF) 

X o v er the group X ), which allows all the three sets (i.e. μα , 
μδ , and � ) of dimensionless ˜ σ (DF) 

X to be horizontally more evenly 
plotted in Fig. 3 . 

Across the entire MSPSR π sample, we see that σ ( Y ) 
X scales with 

˜ σ (DF) 
X in a near-linear fashion. The mean scaling factors across all of 

the three parameter groups (i.e. μα , μδ , and � ) are 
〈
σ

(Bo) 
X / ̃  σ

(DF) 
X 

〉 = 

1 . 67 ± 0 . 85 and 
〈
σ

(Ba) 
X / ̃  σ

(DF) 
X 

〉 = 1 . 49 ± 0 . 24 (see Fig. 3 ). The two 
mean scaling factors show that parameter uncertainties inferred using 
either a bootstrap or Bayesian approach will be slightly higher (and 
on average, consistent between the two approaches) than would be 
obtained utilizing direct-fitting (illustrated with the cyan dashed line 
in Fig. 3 ). 

The more optimistic uncertainty predictions of ˜ σ (DF) 
X can be 

understood as resulting from two causes: first, it neglects both 
the finite width and the skewness of the χ2 distribution, and 
second, to achieve the expected χ2 it scales the total uncertainty 
contribution at each epoch, rather than the systematic uncertainty 
contribution alone. When (as is typical for pulsar observations) the 
S/N and hence statistical positional precision can vary substantially 
between observing epochs, this simplified approach preserves the 
relative weighting between epochs, whereas increasing the estimated 
systematic uncertainty contribution acts to equalise the weighting 
between epochs (by reducing the position precision more for epochs, 
where the pulsar was bright and the statistical precision high than 
for epochs, where the pulsar was faint and the statistical precision is 
already low). 

While the consistency between 
〈
σ

(Bo) 
X / ̃  σ

(DF) 
X 

〉
and 

〈
σ

(Ba) 
X / ̃  σ

(DF) 
X 

〉
suggests that both approaches can o v ercome this shortcoming in 
the direct fitting method, σ (Bo) 

X / ̃  σ
(DF) 
X shows a much larger scatter 

(3.5 times) compared to σ (Ba) 
X / ̃  σ

(DF) 
X (see Fig. 3 ). To determine 

which approach best represents the true (and unknown) parameter 
uncertainties, it is instructive to consider the outliers in the bootstrap 
distribution results. 

First, consider cases where the bootstrap results in a lower 
uncertainty than ˜ σ (DF) 

X . For the reasons noted above, we expect ˜ σ (DF) 
X 

to yield the most optimistic final parameter uncertainty estimates, and 
yet the bootstrap returns a lower uncertainty than ˜ σ (DF) 

X in a number 
of cases. Second, the cases with the highest values of σ (Bo) 

X / ̃  σ
(DF) 
X 

reach � 3 on a number of occasions, which imply an extremely large 
(or very non-Gaussian) systematic uncertainty contribution, which 
would lead (in those cases) to a surprisingly low-reduced χ2 for the 
best-fitting model. Given the frequency with which these outliers 
arise, we regard it likely that bootstrap approach mis-estimates 
parameter uncertainties at least occasionally, likely due to the small 
number of observations available. 

Therefore, we consider the Bayesian method described in this 
paper as the preferred inference method for the MSPSR π sample, and 
consistently use the Bayesian results in the following discussions. We 
note that as continued VLBI observing campaigns add more results, 
the systematic uncertainty estimation scheme applied to Bayesian 
inference can be further refined in the future. 

4.3 Astr ometric infer ence accounting for orbital motion 

For some binary pulsars, VLBI astrometry can also refine parameters 
related to the binary orbit on top of the canonical astrometric 
parameters. The orbital inclination i and the orbital ascending 
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node longitude �asc have been previously constrained for a few 

nearby pulsars, such as PSR J1022 + 1001, PSR J2145 −0750, and 
PSR J2222 −0137 (Deller et al. 2013 ; Deller et al. 2016 ; Guo et al. 
2021 ). To assess the feasibility of detecting orbital reflex motion with 
VLBI, we computed 

ηorb ≡ 2 a 1 
1 au 

· � 

σ� 

= 2 a 1 ·
(

1 au 

� 

)−1 

· 1 

σ� 

= 

2 a 1 
D 

· 1 

σ� 

, (3) 

where D and a 1 ≡ a sin i stands for, respectively, the distance (to the 
pulsar) and the orbital semi-major axis projected onto the sightline. 
On the other hand, ˜ θorb ≡ 2 a/D reflects the apparent angular size of 
orbit. Provided the parallax uncertainty σ� 

, ˜ θorb /σ� 

quantifies the 
detectability of orbital parameters using VLBI astrometry. Hence, 

˜ θorb 

σ� 

≡ 2 a 

D 

· 1 

σ� 

≥ ηorb . (4) 

Since i is usually unknown, the ηorb defined in equation ( 3 ) serves 
as a lower limit for ˜ θorb /σ� 

, and is used in this work to find 
out pulsar systems with i and �asc potentially measurable with 
VLBI observations. In general, the orbital reflex motion should be 
negligible when ηorb � 1, easily measurable when ηorb 
 1, and 
difficult to constrain (but non-negligible) when ηorb ∼ 1. By way of 
comparison, Guo et al. ( 2021 ) were able to firmly constrain �asc and 
i for PSR J2222 −0137 ( ηorb = 10.2), while Deller et al. ( 2016 ) could 
place weak constraints for PSR J1022 + 1001 and PSR J2145 −0750 
( ηorb = 3.2 and 1.6, respectively) 

Accordingly, in this work, we fit for orbital reflex motion if all the 
following conditions are met: 

(i) a 1 is well determined with pulsar timing; 
(ii) ηorb > 1; 
(iii) the orbital period P b < 2 yr, where 2 yr is the nominal time 

span of an MSPSR π astrometric campaign. 

For the calculation of ηorb , we simply use the direct-fitting parallax 
� 

(DF) for � , and its χ2 
ν -corrected uncertainty σ (DF) 

� 

· √ 

χ2 
ν for σ� 

(see T able 3 ). W e note that this choice of parallax and its uncertainty 
would generally lead to slightly larger ηorb compared to using � 

(Ba) 

and σ (Ba) 
� 

, according to Fig. 3 and the discussion in Section 4.2 . 
Nevertheless, the choice (1) enables the comparison with ηorb of the 
historically published pulsars (that do not have � 

(Ba) and σ (Ba) 
� 

), (2) 
simplifies the procedure of analysis, (3) facilitates the reproduction 
of ηorb by other researchers, and (4) is more conserv ati ve in the 
sense that more candidates with ηorb > 1 would be found. The 
calculated ηorb as well as P b are summarized in Table 3 . Among 
the 18 MSPSR π pulsars, PSR J1518 + 4904, PSR J1640 + 2224, 
PSR J1643 −1224, and PSR J1853 + 1303 meet our criteria (see 
Table 3 ), where PSR J1518 + 4904 is a DNS system, and the others 
are pulsar-WD binaries. Hereafter, the four pulsars are referred to 
as the ‘8P’ pulsars for the sake of brevity, as we would perform 8- 
parameter (i.e. the five canonical astrometric parameters and ηEFAC 

plus i and �asc ) inference on them. 
For the 8-parameter inference, prior probability distributions of 

the canonical parameters and ηEFAC are described in Section 4.0.1 . 
Both i and �asc are defined in the TEMPO2 (Edwards, Hobbs & 

Manchester 2006 ) convention. The prior probability distribution of 
�asc follows U(0, 360 ◦). Sine distribution S(0, 180 ◦) is used for i 
of the four 8P pulsars (i.e. the probability density p ( i ) ∝ sin i , i ∈ 

[0, 180 ◦]). Where available, tighter constraints are applied to i in 
accordance with Table 4 (also see the descriptions in Section 8 ). 

Moreo v er, e xtra prior constraints can be applied to i and �asc based 
on ȧ 1 , the time deri v ati ve of a 1 (e.g. Nice, Splaver & Stairs 2001 ; 

Table 4. Prior constraints on i and �asc . 

PSR ȧ 1 ȧ 1 /a 1 i �asc 

(10 −15 lt-s s −1 ) (10 −15 s −1 ) (deg) 

J1518 + 4904 −11(3) a 1 −0.55(15) sin i ≤ 0.73 a 2 –
J1640 + 2224 12(1) b 0.22(2) sin i = 0.973(9) b –
J1643 −1224 −49.7(7) c −1.98(3) – –
J1853 + 1303 14(2) b 0.34(5) 85(14) ◦ d –

Notes. a a 1 Janssen et al. ( 2008 ); a 2 inferred from the non-detection of Shapiro 
delay effects. 
b Perera et al. ( 2019 ); c Reardon et al. ( 2021 ). 
d based on Shapiro delay measurements (Faisal Alam et al. 2021 ). 

Deller et al. 2016 ; Reardon et al. 2021 ). As a 1 ≡ a sin i , 

ȧ 1 

a 1 
= 

ȧ 

a 
+ 

∂ i 

∂ t 
cot i ≈ ∂ i 

∂ t 
cot i. (5) 

Here, the ȧ /a term reflects the intrinsic variation of the semimajor 
axis a due to GR effects (Peters 1964 ), which is ho we ver ∼8 and ∼5 
orders smaller than ̇a 1 /a 1 for the 8P WD-pulsar systems and the DNS 

system PSR J1518 + 4904, respectively (see Nice et al. 2001 for an 
analogy). Accordingly, the apparent ȧ 1 /a 1 is predominantly caused 
by apparent i change as a result of the sightline shift (Kopeikin 1996 ). 
When proper motion contributes predominantly to the sky position 
shift (as is the case for the 8P pulsars), 

∂ i 

∂ t 
= μ sin ( θμ − �asc ) , (6) 

where θμ refers to the position angle (east of north) of the proper 
motion μ (Kopeikin 1996 ; Nice et al. 2001 ). We incorporated the 
ȧ 1 /a 1 measurements (with equations 5 and 6 ) on top of other 
prior constraints, and inferred i , �asc , ηEFAC , and the canonical five 
astrometric parameters for the 8P pulsars with sterne 7 , following 
similar approaches taken by Deller et al. ( 2016 ), Guo et al. ( 2021 ). 

While we ultimately did not significantly constrain i or �asc for any 
pulsar, including their non-negligible reflex motion in the inference 
is still necessary for correctly inferring the uncertainties of the non- 
orbital model parameters. The non-orbital inferred parameters are 
provided in Section 4.4 below, along with all the non-8P pulsars. As 
we found minimal differences between the constraints obtained on 
orbital parameters with or without the adoption of priors based on 
pulsar timing, we defer the presentation of the posterior constraints 
on orbital inclinations and ascending node longitudes (of the 8P 

pulsars) to Section 5 in order to a v oid repetition. 

4.4 The quasi-VLBI-only astrometric results 

To wrap up this section, we summarize in Table 5 the full (including 
αref and δref ) final astrometric results obtained with no exterior prior 
proper motion or parallax constraints, which we simply refer to as 
quasi-VLBI-only astrometric results (we add ‘quasi’ because timing 
constraints on two orbital parameters, i.e. i and ȧ 1 , have already been 
used for the 8P pulsars). These quasi-VLBI-only results are mainly 
meant for independent checks of timing results (which would enable 
the frame connection mentioned in Section 1.2 ), or as priors for future 
timing analyses. For the most precise possible pulsar parallaxes and 
hence distances, we recommend the use of the ‘VLBI + timing’ results 
presented in Section 5 . 

The reference positions αref and δref we provide in Table 5 are 
precisely measured, but only with respect to the assumed location 
of the in-beam calibrator source for each pulsar. In all cases, the 
uncertainties on the in-beam source locations (also shown in Table 5 ) 
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dominate the total uncertainty in the pulsar’s reference position. A 

future work, incorporating additional multifrequency observations of 
the in-beam calibrations, will enable significantly more precise pulsar 
reference positions to be obtained, as is discussed in Section 1.3 . 

5  VLBI  + TIM ING  ASTROMETRIC  RESULTS  

In Bayesian inference, the output of a model parameter X j (where j 
refers to various model parameters) hinges on its prior probability 
distribution: generally speaking, tighter prior constraints (on X j ) that 
are consistent with data (in the sense of Bayesian analysis) would 
sharpen the output X j . In cases where a strong correlation between X j 

and another model parameter X k is present, tighter prior X j constraints 
that are consistent with the data would potentially sharpen both the 
output X j and the output X k . 

As noted in Section 1.2 , VLBI astrometry serves as the prime 
method to measure parallaxes of Galactic pulsars. A VLBI astro- 
metric campaign (on a Galactic pulsar) normally spans ∼2 yr, as 
a substantial parallax can likely be achieved in this time span. On 
the other hand, most MSPSR π pulsars have been timed routinely 
for � 10 yr, which allows their proper motions to be precisely 
determined, as the precision on proper motion grows with t 3/2 (see, 
e.g. Section 4.4 of Ding, Deller & Miller-Jones 2021b ) for a regularly 
observed pulsar. In Table 6 , we collect one timing proper motion 
(denoted as μ(Ti) 

α and μ(Ti) 
δ ) and one timing parallax ( � 

(Ti) ) for each 
MSPSR π pulsar. Among the published timing results, we select the 
timing proper motions measured o v er the longest time span, and the 
� 

(Ti) having the smallest uncertainties. According to Tables 5 and 6 , 
most timing proper motions are more precise than the quasi-VLBI- 
only counterparts. On the other hand, timing parallaxes are mostly 
less precise than the quasi-VLBI-only counterparts. Nevertheless, 
adopting appropriate timing parallaxes as priors can still ef fecti vely 
lower parallax uncertainties. 

The precisely measured μ(Ti) 
α and μ(Ti) 

δ provide the opportunity 
to significantly refine the quasi-VLBI-only proper motions. Further- 
more, as shown with the Pearson correlation coefficients (Pearson 
1895 ), ρμα,� 

and ρμδ,� 

, that we summarized in Table 5 , large 
correlation between parallax and proper motion is not rare for VLBI 
astrometry. Therefore, using the μ(Ti) 

α and μ(Ti) 
δ measurements as the 

prior proper motion constraints in Bayesian inference can potentially 
refine both proper motion and parallax determination. 

The astrometric results inferred with timing priors, hereafter 
referred to as VLBI + timing results, are reported in Table 6 . 
To differentiate from the notation of quasi-VLBI-only astrometric 
parameter Y , we denote a VLBI + timing model parameter in the 
form of Y 

′ . Comparing Tables 5 and 6 , we find almost all VLBI + 

timing proper motions and parallaxes more precise than the quasi- 
VLBI-only counterparts; the most significant parallax precision 
enhancement occurs to PSR J1918 −0642 (by 42 per cent), followed 
by PSR J1939 + 2134 (by 36 per cent) and PSR J1537 + 1155 (by 
33 per cent). Hence, we use the VLBI + timing results in the 
remainder of this paper. 

In 7 cases (i.e. PSR J0610 −2100, PSR J1643 −1224, 
PSR J1730 −2304, PSR J1738 + 0333, PSR J1853 + 1303, 
PSR J1824 −2452A, PSR J1910 + 1256), one of μ(Ti) 

α , μ(Ti) 
δ , or � 

(Ti) 

is more than 2 σ discrepant from the quasi-VLBI-only counterpart. 
Using such timing priors may widen the uncertainties of resultant 
model parameters, as ηEFAC would be lifted to counter-balance the 
increased χ2 

ν . Without any indication that the discrepant timing values 
are less reliable, we use them as priors regardless. Ho we ver, we 
caution the use of these seven sets of VLBI + timing results, and 

would recommend the quasi-VLBI-only results to be considered if 
our adopted timing priors are pro v en inaccurate in future. 

We also now consider any possible effects that could, despite our 
best efforts to characterise all sources of position noise, bias the fitted 
VLBI positions. F or an y giv en VLBI calibrator source, evolution in 
the source structure can lead to a detectable position offset (e.g. 
Perger et al. 2018 ; Zhang, An & Frey 2020 ) that is then transferred 
to the target pulsar. Due to the long time-scales of AGN structure 
evolution, o v er the ∼2-yr time-scale of the MSPSR π observations, 
this error may be quasi-linear in time and be absorbed into the 
pulsar proper motion (e.g. Deller et al. 2013 ). Redundant secondary 
calibrators can be used to probe the astrometric effect of structure 
e volution. Ho we ver, with small numbers of redundant calibrator 
sources, such probes are hardly conclusive, as the structure evolution 
of the redundant calibrators would also be involved. Among the seven 
pulsars showing > 2 σ discrepancy between quasi-VLBI-only and 
timing results (see Table 6 ), PSR J0030 + 0451, PSR J1643 −1224, 
PSR J1730 −2304, PSR J1738 + 0333, and PSR J1824 −2452A either 
display no relative motion between the redundant secondary calibra- 
tors, and the main secondary calibrators or do not have any redundant 
calibrator (i.e. PSR J1643 −1224), although the suboptimal main sec- 
ondary calibrators of PSR J1643 −1224 and PSR J1824 −2452A (see 
Sections 8.5 and 8.9 ) may likely affect the astrometric performance. 
For PSR J1853 + 1303, the main secondary calibrator has a clear 
jet aligned roughly with the right ascension (RA) direction, and 
thus source structure evolution is potentially significant. The two 
redundant calibrators for PSR J1853 + 1303 do display a relative 
proper motion of up to 0.2 mas yr −1 with respect to the main 
secondary calibrator, so while the mean relative motion seen between 
the two redundant secondary calibrators is small, calibrator structure 
evolution remains a possible explanation for the VLBI-timing dis- 
crepancy . Finally , the main secondary calibrator of PSR J1910 + 1256 
also exhibits a jet structure at a position angle of ∼45 ◦. When using 
the only redundant calibrator of PSR J1910 + 1256 as the reference 
source, we obtained the VLBI-only result μα = 0.25 ± 0.06 mas yr −1 , 
μδ = −7.3 ± 0.1 mas yr −1 , and � = 0.61 ± 0.05 mas with 
Bayesian inference, where μα becomes consistent with μ(Ti) 

α , but 
μδ and � are further away from the timing counterparts. The 
μα consistency between VLBI and timing indicates that structure 
evolution in our chosen calibrator is likely contributing to the VLBI- 
timing discrepancy. Ho we ver, as the redundant calibrator is both 
fainter and further away from PSR J1910 + 1256 (compared to the 
main secondary calibrator), we do not use this source as the final 
reference source. 

5.1 The posterior orbital inclinations and ascending node 
longitudes 

For the four 8P pulsars, orbital inclinations i’ , and ascending node 
longitudes �′ 

asc are also inferred alongside the five canonical parame- 
ters and η′ 

EFAC (see Section 4.3 ). The full 8D corner plots out of the 8- 
parameter inferences are available online 5 . Prior constraints on i ′ and 
�′ 

asc have been provided in Section 4.0.1 . Owing to bi-modal features 
of all 1D histograms of i ′ , no likelihood component is substantially 
fa v oured o v er the other. Hence, no tight posterior constraint on i ′ is 
achiev ed for an y 8P pulsar. Likewise, all 1D histograms of �′ 

asc show 

multimodal features, which precludes stringent constraints on �′ 
asc . 

5.2 Comparison with Gaia results 

From the Gaia Data Release 2 (Gaia Collaboration et al. 2018 ), 
Gaia counterparts for pulsars with optically bright companions 
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Table 7. Gaia astrometric results. 

PSR Gaia DR3 μ
(G) 
α μ

(G) 
δ � 

(G) 
1 GoF. ∗

source ID (mas yr −1 ) (mas yr −1 ) (mas) 

J1012 + 5307 851610861391010944 2.7(3) ! -25.9(3) ! 1.7(3) −1.5 

J1024 −0719 3775277872387310208 −35.5(3) −48.35(36) 0.86(28) 0.4 

J1910 + 1256 4314046781982561920 ? !!!! −2.3(6) ! -6.1(6) −0.1(8) 1.9 

Notes. •Sources marked with ‘?’ are tentative Gaia counterpart candidates. 
•Values marked with N ‘!’s are N σ − ( N + 1) σ offset from the VLBI + timing counterparts 
∗Goodness of fitting, a parameter (of Gaia data releases) approximately following N (0 , 1) distribution. A GoF closer to 
zero indicates better fitting performance. 

have been identified and studied by Jennings et al. ( 2018 ), Min- 
garelli et al. ( 2018 ), Antoniadis ( 2021 ). In the MSPSR π sample, 
PSR J1012 + 5307 and PSR J1024 −0719 have secure Gaia coun- 
terparts, while PSR J1910 + 1256 has a proposed Gaia counterpart 
candidate (Mingarelli et al. 2018 ). In Table 7 , we updated the Gaia 
results for these three Gaia sources to the Gaia Data Release 3 (DR3, 
Gaia Collaboration et al. 2022 ). 

For PSR J1024 −0719, the Gaia proper motion { μ(G) 
α , μ(G) 

δ } and 
parallax � 

(G) 
1 are highly consistent with the VLBI + timing ones, 

which further strengthens the proposal that PSR J1024 −0719 is 
in an ultra-wide orbit with a companion star (Bassa et al. 2016 ; 
Kaplan et al. 2016 , also see Sections 6.2 and 7.2 ). The Gaia proper 
motion and parallax of PSR J1012 + 5307 is largely consistent with 
the VLBI + timing counterparts. The > 1 σ discrepancy between 
μ

(G) 
δ and � 

(G) 
1 and the respective VLBI + timing counterparts 

can be explained by non-optimal goodness of ( Gaia astrometric) 
fitting (GoF) (see Table 7 ). On the other hand, the Gaia counterpart 
candidate for PSR J1910 + 1256 (proposed by Mingarelli et al. 2018 ) 
possesses a μ(G) 

α 4 σ discrepant from the VLBI + timing one. Though 
this discrepancy is discounted by the relatively bad GoF by roughly 
a factor of 1.9 (see Table 7 ), the connection between the Gaia 
source and PSR J1910 + 1256 remains inconclusive. We note that the 
parallax zero-points � 

(G) 
0 (Lindegren et al. 2021 ) of the three Gaia 

sources are negligible and hence not considered, as � 

(G) 
0 is small 

( | � 

(G) 
0 | � 0 . 02 mas, Ding et al. 2021b ) compared to the uncertainty 

of � 

(G) 
1 (see Table 7 ). 

6  DISTA N C ES  A N D  SPAC E  VELOCITIES  

In this section, we derive pulsar distances D from parallaxes � 

′ 

(see Section 5 ), and compare them to the dispersion-measure-based 
distances. Incorporating the proper motions { μ′ 

α, μ′ 
δ} (see Section 5 ), 

we infer the transverse space velocity v ⊥ 

(i.e. the velocity with respect 
to the stellar neighbourhood) for each pulsar in an effort to enrich the 
sample of ∼40 MSPs with precise v ⊥ 

(Hobbs et al. 2005 ; Gonzalez 
et al. 2011 ), and refine the v ⊥ 

distributions of MSP subgroups such 
as binary MSPs and solitary MSPs. 

6.1 Parallax-based distances 

Inferring a source distance from a measured parallax requires 
assumptions about the source properties, for which a simple inversion 
implicitly makes unphysical assumptions (e.g. Bailer-Jones et al. 
2021 ). Various works (e.g. Lutz & Kelker 1973 ; Verbiest et al. 2012 ; 
Bailer -Jones 2015 ; Igoshev, Verb unt & Cator 2016 ) ha ve contrib uted 
to developing and consolidating the mathematical formalism of 
parallax-based distance inference, which we briefly recapitulate 
as follows, in order to facilitate comprehension and ready the 
mathematical formalism for further discussion. 

A parallax-based distance D can be approached from the condi- 
tional probability density function (PDF) 

p( D| � 

′ , l, b) ∝ p( � 

′ | D ) p( D , l, b) , (7) 

where l and b stands for Galactic longitude and latitude, respectively; 
� 

′ = � 

′ 
0 ± σ� 

′ . The first term on the right takes the form of 

p( � 

′ | D) ∝ exp 

[ 

−1 

2 

(
1 /D − � 

′ 
0 

σ� 

′ 

)2 
] 

, (8) 

assuming � 

′ 
0 is Gaussian-distributed, or more specifically, � 

′ 
0 ∼

N 

(
1 /D, σ 2 

� 

′ 
)
. The second term on the right side of equation ( 7 ) can 

be approximated as p ( D , l , b ) ∝ D 

2 , when the parent population � 

of the target celestial body is uniformly distributed spatially (Lutz & 

K elker 1973 ). Gi ven a postulated (Galactic) spatial distribution ρ( D , 
l , b ) of �, p ( D , l , b ) ∝ D 

2 ρ( D , l , b ). Hence, 

p( D| � 

′ , l, b) ∝ D 

2 ρ( D, l, b) exp 

[ 

−1 

2 

(
1 /D − � 

′ 
0 

σ� 

′ 

)2 
] 

. (9) 

We join Verbiest et al. ( 2012 ) and Jennings et al. ( 2018 ) to adopt the 
ρ( D , l , b ) (of the ‘Model C’) determined by Lorimer et al. ( 2006 ) for 
Galactic pulsars. While calculating the ρ( D , l , b ) with Equations 10 
and 11 of Lorimer et al. ( 2006 ), we follow Verbiest et al. ( 2012 ) and 
Jennings et al. ( 2018 ) to increase the scale height (i.e. the parameter 
‘ E ’ of Lorimer et al. 2006 ) to 0.5 kpc to accommodate the MSP 

population. In addition, the distance to the Galactic Centre (GC) in 
Equation 10 of Lorimer et al. 2006 is updated to d � = 8.12 ± 0.03 kpc 
(Gravity Collaboration et al. 2018 ). We do not follow Verbiest et al. 
( 2012 ), Igoshev et al. ( 2016 ) to use pulsar radio fluxes to constrain 
pulsar distances, as pulsar luminosity is relatively poorly constrained. 

Using the aforementioned mathematical formalism, we calcu- 
lated p ( D | � 

′ , l , b ) for each MSPSR π pulsar, and integrated it 
into the cumulative distribution function (CDF) � ( D| � 

′ , l, b) = ∫ D 

0 p( D 

′ | � 

′ , l, b) d D 

′ . The p ( D | � 

′ , l , b ) and � ( D | � 

′ , l , b ) is plotted 
for each pulsar and made available online 5 . An example of these plots 
are presented in Fig. 4 . The median distances D median corresponding 
to � ( D | � 

′ , l , b ) = 0.5 are taken as the pulsar distances, and 
summarized in Table 6 . The distances matching � ( D | � 

′ , l , b ) = 

0.16 and � ( D | � 

′ , l , b ) = 0.84 are respectively used as the lower and 
upper bound of the 1 σ uncertainty interval. 

6.1.1 Comparison with DM distances 

As mentioned in Section 1.2 , the precise DM measured from a pulsar 
can be used to assess the pulsar distance, provided an n e ( � x ) model. 
Using pygedm 9 , we compile into Table 6 the DM distances (i.e. 
d 

(NE) 
DM 

and d (YMW) 
DM 

) of each pulsar based on the two latest realizations 
of n e ( � x ) model – the NE2001 model (Cordes & Lazio 2002 ) and 
the YMW16 model (Yao et al. 2017 ). For all the DM distances, we 
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Figure 4. An example posterior probability density function p ( D | � 

′ , l , 
b ) (of distance) and its cumulative distribution function � ( D| � 

′ , l, b) = ∫ D 

0 p( D 

′ | � 

′ , l, b) d D 

′ . The vertical dashed lines correspond to � ( D | � 

′ , l , 
b ) = 0.16 and � ( D | � 

′ , l , b ) = 0.84, which are, respectively, used as the 
lower and upper bound of the 1 σ uncertainty interval. The mode distance 
D mode and median distance D median are marked with dot–dashed blue line 
and dotted cyan line, respectively. Plots of this kind are also made for other 
MSPSR π pulsars, and made available online 5 . Staying in line with the norm 

(see Section 1.2 ) of this paper, we universally adopt D median as the distances 
(i.e. D in Table 6 ) for all MSPSR π pulsars in this paper. 

adopt typical 20 per cent fractional uncertainties. We have obtained 
significant ( ≥3 σ ) parallax-based distances D for 15 out of 18 
MSPSR π pulsars. These distances enable an independent quality 
check of both n e ( � x ) models. 

Among the 15 pulsars with parallax-based distance measure- 
ments, YMW16 is more accurate than NE2001 in three cases 
(i.e. PSR J1012 + 5307, PSR J1643 −1224, and PSR J1939 + 2134), 
but turns out to be the other way around in four cases (i.e. 
PSR J0621 + 1002, PSR J1853 + 1303, PSR J1910 + 1256, and 
PSR J1918 −0642). In other eight cases, the D cannot discriminate 
between the two models. The small sample of 15 D measurements 
shows that NE2001 and YMW16 remain comparable in terms 
of outliers. In two (out of the 15) cases (i.e. PSR J0610 −2100, 
PSR J1024 −0719), D is about 2 . 6 σ and 6 . 8 σ away from either DM 

distance, which reveals the need to further refine the n e ( � x ) models. 
Such a refinement can be achieved, with improved pulsar distances 
including the ones determined in this work. 

6.2 Transverse space velocities 

Having determined the parallax-based distances D and the proper 
motions { μ′ 

α, μ
′ 
δ} , we proceed to calculate transverse space velocities 

v ⊥ 

for each pulsar, namely the transverse velocity with respect to the 
neighbouring star field of the pulsar. In estimating the transverse 
velocity of a pulsar neighbourhood, we assume the neighbourhood 
observes circular motion about the axis connecting the North and 
South Galactic Poles, which is roughly valid given that all MSPSR π

pulsars with significant ( > 3 σ ) D share a median | z| = D sin | b | of 
0.3 kpc. Using the Galactic rotation curve from Reid et al. ( 2019 ) 
and the full circular velocity of the Sun 247 ± 1 km s −1 , we derived 
the apparent transverse velocity of the neighbourhood v ⊥ , N , thus 
obtaining v ⊥ 

by subtracting the apparent transverse velocity of the 
pulsar by v ⊥ , N . Here, the full circular velocity (denoted as � 0 + V �

in Reid et al. 2019 ) is calculated with d � = 8.12 ± 0.03 kpc (Gravity 
Collaboration et al. 2018 ) and the proper motion of Sgr A 

∗ from Reid 
et al. ( 2019 ). 

To estimate the uncertainty of v ⊥ 

, we simulated a chain of 50 000 
distances for each pulsar based on the p ( D | � 

′ , l , b ) that we have 
obtained in Section 6.1 . Besides, we also acquired chains of 50 000 
μ′ 

α and μ′ 
δ given the VLBI + timing proper motions of Table 6 , 

assuming μ′ 
α and μ′ 

δ follow Gaussian distributions. With these chains 
of D , μ′ 

α , and μ′ 
δ , we calculated 50 000 v ⊥ 

values, which form a PDF 

of v ⊥ 

for each pulsar. The v ⊥ 

inferred from the PDFs are summarized 
in Table 6 . 

In Fig. 5 , we illustrate the v ⊥ 

in relation to | z| for 16 pul- 
sars with precise distance estimates. Among the 16 pulsars, only 
PSR J1824 −2452A does not have a significant parallax-based 
distance. Nevertheless, its v ⊥ 

can be inferred by incorporating its 
proper motion with the astrometric information (i.e. distance and 
proper motion) of its host globular cluster (see Section 8.9 ). No clear 
correlation is revealed between v ⊥ 

and | z| , which reinforces our 
decision to treat all MSPSR π pulsars across the | z| � 1 kpc regime 
equally. By concatenating the simulated v ⊥ 

chains, we acquired the 
PDF for the 16 MSPs (see Fig. 5 ), which gives v (MSP) 

⊥ 

= 53 + 48 
−37 km s −1 . 

Amongst the MSPSR π sources, PSR J1024 −0719 is an obvious 
outlier, with a velocity of ∼300 km s −1 that is 3 σ abo v e the mean. 
As proposed by Bassa et al. ( 2016 ) and Kaplan et al. ( 2016 ), 
PSR J1024 −0719 is theorized to have been ejected from a dense 
stellar region, thus possibly following a different v ⊥ 

distribution from 

typical field MSPs (isolated along with their respective companions 
throughout their lives). In this regard, we turn our attention to 
the binary sample of pulsars with well determined orbital periods 
P b (see P b of Table 3 ), and obtain v (BI) 

⊥ 

= 50 + 49 
−34 km s −1 for field 

binary MSPs. Based on this small sample, we do not find the v ⊥ 

of 
the three solitary MSPs (i.e. PSR J0030 + 0451, PSR J1730 −2304, 
and PSR J1939 + 2134) to be inconsistent with v (BI) 

⊥ 

. Neither are 
the two DNSs (i.e. PSR J1518 + 4904 and PSR J1537 + 1155). If 
we exclude the two DNSs from the binary sample, we would 
come to v (WD) 

⊥ 

= 50 + 46 
−31 km s −1 for the MSPSR π pulsars with WD 

companions, which is highly consistent with v (BI) 
⊥ 

and v (MSP) 
⊥ 

. 
Compared to 113 ± 17 km s −1 previously estimated for a sample 

of ∼40 MSPs (Gonzalez et al. 2011 ), our v (MSP) 
⊥ 

is largely consistent 
but on the smaller side. Boodram & Heinke ( 2022 ) recently shows 
that MSP space velocities have to be near zero to explain the 
Galactic Centre γ -ray excess (e.g. Abazajian & Kaplinghat 2012 ). 
Interestingly, the v ⊥ 

PDF based on our small sample of 16 shows 
a multimodal feature, with the lowest mode consistent with zero. 
Specifically, the seven MSPSR π pulsars with the smallest v ⊥ 

share an 
equally weighted mean v ⊥ 

of only 25 km s −1 , which suggests MSPs 
with extremely low-space velocities are not uncommon. Accordingly, 
we suspect the MSP origin of the GC γ -ray excess can still not be 
ruled out based on our sample of v ⊥ 

. 

7  R A D I A L  AC C E L E R AT I O N S  O F  PULSARS  

A N D  ORBI TAL-DECAY  TESTS  O F  

G R AV I TAT I O NA L  T H E O R I E S  

As described in Section 1.2 , VLBI astrometry of pulsars, in con- 
junction with pulsar timing, can enhance the orbital-decay tests of 
gravitational theories. For binary systems involved in this work, the 
observed orbital decay has three significant components: 

Ṗ 

obs 
b = Ṗ 

GW 

b + Ṗ 

Shk 
b + Ṗ 

Gal 
b , (10) 

where Ṗ 

GW 

b reflects the effect of gra vitational-wa ve damping intrinsic 
to a binary system, while Ṗ 

Shk 
b and Ṗ 

Gal 
b are both extrinsic contribu- 
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Figure 5. Upper: The transverse space velocities v ⊥ versus the Galactic vertical heights | z| = D sin | b | of the 16 MSPSR π pulsars with significant ( > 3 σ ) 
distance measurements (including 15 parallax-based distances and a globular cluster distance). Lower: The probability density function (PDF) of v ⊥ for the 16 
MSPs. The median of the v ⊥ PDF is marked with the dashed line, while the 1 σ error interval is shown with the shaded region. 

tions caused, respectively, by relative line-of-sight accelerations (of 
pulsars) A Shk and A Gal . Specifically, Ṗ 

Shk 
b = A Shk /c · P b = μ2 D/c ·

P b (where μ2 = μ′ 
α

2 + μ′ 
δ

2 ) is the radial acceleration caused by 
the tangential motion of pulsars (Shklovskii 1970 ), which becomes 
increasingly crucial for pulsars with larger μ (e.g. PSR J1537 + 1155, 
Ding et al. 2021a ), as A Shk ∝ μ2 . On the other hand, 

Ṗ 

Gal 
b = 

A Gal 

c 
P b = 

[−∇ϕ ( � x ) 
] ∣∣� x target 

� x � · � e r 
c 

P b 
(11) 

is a consequence of the gravitational pull (or push) e x erted by the 
Galaxy. Here, ϕ( � x ) and � e r are, respectively, the Galactic gravitational 
potential (as a function of Galactic position � x ) and the unit vector in 
the Earth-to-pulsar direction. 

In order to test any theoretical prediction of Ṗ 

GW 

b , it is necessary to 
estimate A Shk and A Gal and remo v e their effect on Ṗ 

obs 
b . Besides this 

impact, the radial accelerations A Shk and A Gal would, more generally, 
affect the time derivative of all periodicities intrinsic to a pulsar 
system, which include the pulsar spin period deri v ati ve Ṗ s . Similar 
to Ṗ 

Shk 
b and Ṗ 

Gal 
b , Ṗ 

Shk 
s = A Shk /c · P s and Ṗ 

Gal 
s = A Gal /c · P s (where 

P s stands for the spin period of a pulsar). As MSPs consist of nearly 
half of the γ -ray pulsar population, determining the extrinsic terms of 
Ṗ s and the intrinsic spin period deri v ati ve Ṗ 

int 
s = Ṗ 

obs 
s − Ṗ 

Shk 
s − Ṗ 

Gal 
s 

is essential for exploring the ‘death line’ (i.e. the lower limit) of 
high-energy emissions from pulsars (e.g. Guillemot et al. 2016 ). In 

Sections 7.1 and 7.2 , we e v aluate A Shk and A Gal one after another. 
The e v aluation only co v ers pulsars with significant D , as both A Shk 

and A Gal are distance-dependent. 

7.1 Shklovkii effects 

We estimate the model-independent A Shk in a way similar to the 
estimation of v ⊥ 

(see Section 6.2 ). Three chains of 50 000 μ′ 
α , μ′ 

δ , 
and D were simulated from their respective PDFs. Using the relation 
A Shk = 

(
μ′ 

α
2 + μ′ 

δ
2 )

D, 50 000 A Shk were calculated to assemble the 
PDF of A Shk for each pulsar with significant D . The A Shk inferred 
from the PDFs are compiled in Table 8 along with their resultant 
Ṗ 

Shk 
s and Ṗ 

Shk 
b . 

7.2 Relati v e radial accelerations due to Galactic gravitational 
pull 

We estimate A Gal in the same way as Ding et al. ( 2021a ), following 
the pioneering work of Zhu et al. ( 2019 ). To briefly demonstrate 
this method, we present, in Table 9 , the A Gal based on five different 
ϕ( � x ) models for the 15 pulsars with significant D measurements. 
The five ϕ( � x ) models are denoted as NT95 (Nice & Taylor 1995 ), 
DB98 (Dehnen & Binney 1998 ), BT08 (Binney & Tremaine 2011 ), 
P14 (Piffl et al. 2014 ), and M17 (McMillan 2017 ), in this paper. The 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/4/4982/6948353 by O
regon State U

niversity user on 23 M
arch 2023

art/stac3725_f5.eps


The MSPSR π results and implications 4999 

MNRAS 519, 4982–5007 (2023) 

Ta
bl

e 
8.
 

E
xt

ri
ns

ic
 
te

rm
s 

of
 

Ṗ
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Ṗ
 

G
W
 

b 
(p

m
 
s −

2 
) 

∗
(p

m
 
s −

2 
) 

(m
s)
 

(z
s 

s −
1 
) 

∗
(z

s 
s −

1 
) 

(z
s 

s −
1 
) 

(z
s 

s −
1 
) 

(f
s 

s −
1 
) 

(f
s 

s −
1 
) 

∗
(f

s 
s −

1 
) 

(f
s 

s −
1 
) 

(f
s 

s −
1 
) 

J0
03

0 +
 04

51
 

9.
1(

2)
 

−3
3.

0(
3.

7)
 

4.
87

 
0.

14
8(

3)
 

−0
.5

4(
6)
 

10
.2
 

10
.5

9(
6)
 

–
–

–
–

−
J0

61
0 −

21
00

 
3 .
 9 + 0

 . 8
 

−0
 . 6
 

×1
0 2 

−9
(2

) 
3.

86
 

5 .
 0 + 1

 . 0
 

−0
 . 7
 

−0
.1

2(
3)
 

12
.3
 

a 
7.

4(
9)
 

32
 + 6

 

−5
 

−0
.7

2(
17

) 
−7

0(
30

) 
a 

−1
01

(3
1)
 

∼−
4.

6 
a 

J0
62

1 +
 10

02
 

14
 + 4

 

−3
 

23
.8

(4
.5

) 
28

.8
5 

1 .
 3 + 0

 . 4
 

−0
 . 3
 

2.
3(

4)
 

47
.3
 

43
.7

(6
) 

33
 + 1

1 
−7

 

57
(1

1)
 

−
−

–

J1
01

2 +
 53

07
 

41
9 + 1

7 
−1

5 
−2

3.
5(

2.
4)
 

5.
26

 
7.

3(
3)
 

−0
.4

1(
4)
 

17
.1
 

10
.2

(3
) 

73
(3

) 
−4

.1
(4

) 
61

(4
) 

−7
.9

(5
.0

) 
−1

3(
1)
 

b 

J1
02

4 −
07

19
 

2.
8(

2)
 
×

10
 3 

−4
0(

3)
 

5.
16

 
48

(3
) 

−0
.6

9(
5)
 

18
.6
 

−2
9(

3)
 

∗∗
–

−
–

−
–

J1
51

8 +
 49

04
 

43
(1

) 
−4

8.
5(

3.
2)
 

40
.9

3 
5.

9(
2)
 

−6
.6

(4
) 

27
.2
 

27
.9

(5
) 

10
7(

3)
 

−1
20

(8
) 

2.
4(

2.
2)
 
×

10
 2 

2.
6(

2.
2)
 
×

10
 2 

∼−
1.

2 
e 

J1
53

7 +
 11

55
 

4.
4(

3)
 
×

10
 2 

−4
2(

3)
 

37
.9

0 
55

 . 6
 + 4

 . 0
 

−3
 . 5
 

−5
.3

(4
) 

24
22

.5
 

23
72

(4
) 

53
 . 3
 + 3

 . 8
 

−3
 . 3
 

−5
.1

(4
) 

−1
36

.6
(3

) 
−1

85
(4

) 
−1

92
.4

5(
6)
 

c 

J1
64

0 +
 22

24
 

1.
3(

1)
 
×

10
 2 

−4
8.

5(
4.

3)
 

3.
16

 
1.

4(
1)
 

−0
.5

1(
5)
 

2.
8 

1.
9(

1)
 

6 .
 8 + 0

 . 6
 

−0
 . 5
 

×1
0 3 

−2
.4

5(
22

) 
×

10
 3 

−
–

–

J1
64

3 −
12

24
 

35
 + 5

 

−4
 

1.
0(

1.
7)
 

4.
62

 
0 .
 53

 + 0
 . 0

8 
−0

 . 0
6 

2(
3)
 
×

10
 −2

 

18
.5
 

17
.9

5(
7)
 

1.
5(

2)
 
×

10
 3 

41
(7

2)
 

−
−

–

J1
73

0 −
23

04
 

15
8 + 9

 

−8
 

11
.7

(9
) 

8.
12

 
4.

3(
2)
 

0.
32

(2
) 

20
.2
 

15
.6

(2
) 

–
−

–
–

–

J1
73

8 +
 03

33
 

95
 + 8

 

−7
 

−6
.2

(1
.6

) 
5.

85
 

1 .
 86

 + 0
 . 1

6 
−0

 . 1
4 

−0
.1

2(
3)
 

24
.1
 

22
.4

(2
) 

9 .
 7 + 0

 . 9
 

−0
 . 7
 

−0
.6

4(
16

) 
−1

7(
3)
 

−2
6.

1(
3.

1)
 

−2
7 .
 7 + 1

 . 5
 

−1
 . 9
 

d 

J1
85

3 +
 13

03
 

17
 + 3

 

−2
 

−1
6(

5)
 

4.
09

 
0 .
 23

 + 0
 . 0

4 
−0

 . 0
3 

−0
.2

2(
7)
 

8.
7 

8.
69

(8
) 

5 .
 6 + 0

 . 9
 

−0
 . 7
 

×1
0 2 

−5
(2

) 
×

10
 2 

–
–

–

J1
91

0 +
 12

56
 

1 .
 2 + 0

 . 4
 

−0
 . 2
 

×1
0 2 

−3
5(

17
) 

4.
98

 
2 .
 0 + 0

 . 6
 

−0
 . 4
 

−0
.6

(3
) 

9.
7 

8.
3(

6)
 

2 .
 0 + 0

 . 6
 

−0
 . 4
 

×1
0 3 

−6
(3

) 
×

10
 2 

−
–

–

J1
91

8 −
06

42
 

93
 + 1

2 
−9

 

6.
8(

1.
5)
 

7.
65

 
2 .
 4 + 0

 . 3
 

−0
 . 2
 

0.
17

(4
) 

25
.7
 

23
.1

(3
) 

2 .
 9 + 0

 . 4
 

−0
 . 3
 

×1
0 2 

21
(5

) 
−

–
–

J1
93

9 +
 21

34
 

0 .
 37

 + 0
 . 0

4 
−0

 . 0
3 

−6
0(

10
) 

1.
56

 
1.

9(
2)
 
×

10
 −3

 

−0
.3

1(
5)
 

10
5.

1 
10

5.
41

(5
) 

–
–

–
–

–

N
ot

es
. •

U
nl

es
s 

ot
he

rw
is

e 
sp

ec
ifi

ed
, w

e 
ad

op
te

d 
P
 s ,
 
Ṗ
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Table 9. Radial accelerations due to Galactic gravitational pull based on different models of Galactic gravitational 
potential. 

PSR A 

(NT95) 
Gal A 

(DB98) 
Gal A 

(BT08) 
Gal A 

(P14) 
Gal A 

(M17) 
Gal A 

(GR) 
Gal 

∗
(pm s −2 ) (pm s −2 ) (pm s −2 ) (pm s −2 ) (pm s −2 ) (pm s −2 ) 

J0030 + 0451 −29(3) ! -37.0(2) ! -27.3(2) −35.3(2) −32.5(3) –

J0610 −2100 ! -12(1) −8 . 6 + 1 . 2 −0 . 8 
! −6 . 0 + 1 . 0 −0 . 5 −10 . 9 + 0 . 7 −0 . 3 −8 . 8 + 1 . 0 −0 . 4 –

J0621 + 1002 24(4) 23(5) 24(5) 24(5) 25(5) –

J1012 + 5307 !!! -32.0(6) −24.0(2) ! -19.44(9) −24.80(9) −25.80(6) 05(29) 

J1024 −0719 ! -45.1(9) −38.5(6) ! -35.6(9) −42(1) −43(1) –

J1518 + 4904 −47.5(5) −48.1(5) ! -44.8(7) −50.4(7) ! -51.9(7) –

J1537 + 1155 !!!! -29(1) −42(1) −39(2) −43(2) −45(2) 21 + 28 
−31 

J1640 + 2224 !!! -33(1) −46(3) −45(3) −50(3) −52(4) –

J1643 −1224 !! 10(3) ! −1 . 2 + 0 . 8 −0 . 6 
! 3 . 2 + 0 . 7 −0 . 5 0 . 6 + 0 . 7 −0 . 6 1 . 3 + 0 . 6 −0 . 4 –

J1730 −2304 13.2(8) 10.8(6) 12.1(6) 11.5(6) 12.5(7) –

J1738 + 0333 !!!!!! 10.1(1.8) −6 . 4 + 0 . 4 −0 . 6 −4 . 2 + 0 . 8 −1 . 1 −7 . 5 + 0 . 7 −1 . 0 −6 . 9 + 0 . 8 −1 . 2 9(35) 

J1853 + 1303 −13(3) −13 + 3 −4 −13 + 3 −5 −19 + 4 −5 −16 + 4 −5 –

J1910 + 1256 −35(13) −29 + 8 −16 −31 + 10 
−18 −42 + 12 

−21 −36 + 10 
−20 –

J1918 −0642 !! 14(2) 5.9(5) ! 8.7(5) ! 5.0(2) 7.4(3) –

J1939 + 2134 −64(8) −53(8) −56(8) −67(9) −63(9) –

Notes . •NT95, DB98, BT08, P14, and M17 refer to five different ϕ( � x ) models (see Section 7.2 for the references). 
•The ‘!’s indicate, in the same way as Table 6 , the significance of the offset between the A Gal in Table 8 and that of each 
ϕ( � x ) model. 
∗A 

(GR) 
Gal = 

(
Ṗ 

obs 
b − Ṗ 

GW 

b − Ṗ 

Shk 
b 

)
c/P b is based on the assumption that GR is correct. 

results obtained with NT95, which uses a simple analytical approach, 
are frequently discrepant compared to the other four ϕ( � x ) models. 
Accordingly, and following Ding et al. ( 2021a ), we exclude it and 
use the remaining four models to derive the estimate for A Gal and its 
uncertainty, which we present in Table 8 (along with Ṗ 

Gal 
b and Ṗ 

Gal 
s ). 

Incorporating the Ṗ 

Shk 
s derived in Section 7.1 , we calculated 

the intrinsic spin period deri v ati ve Ṗ 

int 
s = Ṗ 

obs 
s − Ṗ 

Shk 
s − Ṗ 

Gal 
s . We 

note that the ne gativ e Ṗ 

int 
s of PSR J1024 −0719 is probably the 

consequence of radial acceleration induced by a putative companion 
in an extremely wide orbit with PSR J1024 −0719 (Bassa et al. 
2016 ; Kaplan et al. 2016 , also see Section 5.2 ). In addition to Ṗ 

int 
s , 

Ṗ 

int 
b = Ṗ 

obs 
b − Ṗ 

Shk 
b − Ṗ 

Gal 
b are estimated for four pulsar systems 

with reported Ṗ 

obs 
b . The impro v ed PSR J1738 + 0333 parallax as well 

as the re-assessed PSR J1012 + 5307 parallax calls for an update to 
the constraint on alternative theories of gravity (e.g. Freire et al. 
2012 ; Zhu et al. 2019 ; Ding et al. 2020b ), which is discussed in 
Section 7.3 . 

While performing the A Gal analysis, we found an error in the code 
that had been used to implement the calculation of equation ( 11 ) 
for the Ding et al. ( 2021a ) work (which, to be clear, is not an 
error in the GalPot 10 package that provides the ϕ( � x ) models). 
Therefore, we note that the Ṗ 

Gal 
b of PSR J1537 + 1155 in Table 8 is a 

correction to the Ding et al. ( 2021a ) counterpart. Further discussions 
on PSR J1537 + 1155 can be found in Section 8.3 . 

Last but not the least, assuming GR is correct, the approach taken 
abo v e can be inverted to infer A 

(GR) 
Gal = 

(
Ṗ 

obs 
b − Ṗ 

GW 

b − Ṗ 

Shk 
b 

)
c/P b , 

which can be used to constrain Galactic parameters for the local 
environment (of the Solar system) (Bovy 2020 ), or probe the Galactic 
dark matter distribution in the long run (Phillips et al. 2021 ). The 
A 

(GR) 
Gal for the three viable pulsars are listed in Table 9 . 

10 https:// github.com/PaulMcMillan-Astro/ GalPot

7.3 New constraints on alternati v e theories of gravity 

In the GR framework, the excess orbital decay Ṗ 

ex 
b = Ṗ 

int 
b − Ṗ 

GW 

b 

is expected to agree with zero. Ho we ver, some alternati ve theories 
of gravity expect otherwise due to their predictions of non-zero 
dipole gravitational radiation and time-v arying Ne wton’s gravita- 
tional constant G . Both phenomena are prohibited by GR. Namely, 
in GR, the dipole gravitational radiation coupling constant κD = 

0, and Ġ /G = 0. The large asymmetry of gravitational binding 
energy of pulsar-WD systems makes them ideal testbeds for dipole 
gravitational emissions (e.g. Eardley 1975 ). In an effort to test (and 
possibly eliminate) alternative theories of gravity, increasingly tight 
constraints on κD and Ġ /G have been placed using multiple pulsar- 
WD systems (Deller et al. 2008 ; Freire et al. 2012 ; Zhu et al. 2019 ; 
Ding et al. 2020b ). 

With the reassessed astrometric results of PSR J1012 + 5307, the 
Ṗ 

ex 
b of PSR J1012 + 5307 changes from 10 . 6 ± 6 . 1 fs s −1 in Ding 

et al. ( 2020b ) to 5 . 1 ± 5 . 1 fs s −1 . This change is mainly caused by 
three reasons: (1) priors are placed on the proper motion during 
inference in this work (but not in Ding et al. 2020b ); (2) a Bayesian 
framework is applied in this work (while Ding et al. 2020b reported 
bootstrap results); (3) this work adopts PDF medians as the estimates 
(while Ding et al. 2020b used PDF modes). Though barely affecting 
this work (see Fig. 4 ), the choice between PDF mode and median 
makes a difference to Ding et al. ( 2020b ) given that their parallax 
PDF is more skewed (see fig. 4 of Ding et al. 2020b ). After employing 
the new VLBI + timing distance, the Ṗ 

ex 
b of PSR J1738 + 0333 has 

shifted from 2 . 0 ± 3 . 7 (Freire et al. 2012 ) to 1 . 6 ± 3 . 5 fs s −1 . More 
discussions on PSR J1738 + 0333 can be found in Section 8.8 . 

With the new Ṗ 

ex 
b of PSR J1012 + 5307 and PSR J1738 + 0333, we 

updated the constraints on κD and Ġ /G in exactly the same way as 
Ding et al. ( 2020b ). The prerequisites of this inference are reproduced 
in Table 10 , where the two underlined Ṗ 

ex 
b are the only difference 
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Table 10. Excess orbital decay Ṗ 

ex 
b = Ṗ 

obs 
b − Ṗ 

Shk 
b − Ṗ 

Gal 
b and other pre- 

requisites for constraining Ġ /G and κD . 

PSR P b Ṗ 

ex 
b m p m c q 

(d) (fs s −1 ) (M �) (M �) 

J0437 −4715 5.74 12(32) 1.44(7) 0.224(7) –

J1012 + 5307 0.60 5.1(5.1) – 0.174(11) 10.44(11) 

J1713 + 0747 67.83 30(150) 1.33(10) 0.290(11) –

J1738 + 0333 0.35 1.6(3.5) 1.46(6) – 8.1(2) 

Note. •m p , m c and q stand for, respectively, pulsar mass, companion mass 
and mass ratio (i.e. m p / m c ). See Ding et al. ( 2020b ) for their references. 

from the Table 6 of Ding et al. ( 2020b ). We obtained 

Ġ /G = −1 . 6 + 5 . 3 
−4 . 8 × 10 −13 yr −1 , (12) 

κD = −1 . 1 + 2 . 4 
−0 . 9 × 10 −4 . 

Compared to Ding et al. ( 2020b ), κD becomes more consistent with 
zero, while the new uncertainties of κD and Ġ /G remain at the same 
level. 

8  I N D I V I D UA L  PULSARS  

In this section, we discuss the impacts of the new astrometric 
measurements (particularly the new distances) on the scientific 
studies around individual pulsars. Accordingly, special attention is 
paid to the cases where there is no published timing parallax � 

(Ti) . 
In addition, we also look into the two pulsars (i.e. PSR J1721 −2457 
and PSR J1824 −2452A) that have � 

′ consistent with zero in an 
effort to understand the causes of parallax non-detection. 

8.1 PSR J0610 −2100 

PSR J0610 −2100 is the third black widow pulsar disco v ered (Burgay 
et al. 2006 ), which is in a 7-hr orbit with an extremely low-mass 
( ≈0.02 M �, Pallanca et al. 2012 ) star. Adopting a distance of around 
2.2 kpc, van der Wateren et al. ( 2022 ) obtained a γ -ray emission 
efficiency ηγ ≡ 4 πF γ D 

2 / ̇E 

int in the range of 0.5–3.7, where Ė 

int 

and F γ are, respectively, the intrinsic NS spin-down power and the 
γ -ray flux abo v e 100 MeV. 

In addition, van der Wateren et al. ( 2022 ) estimated a mass 
function 

f ( m p , q) = m p 
sin 3 i 

q( q + 1) 2 
= 

4 π2 a 3 1 

GP 

2 
b 

(13) 

of 5.2 × 10 −6 M � for the PSR J0610 −2100 system (where q ≡
m p / m c ). Besides, they determined the irradiation temperature (of the 
companion) T irr = 2820 ± 190 K as well as the projected orbital semi- 
major axis a 1 = 7.3 × 10 −3 lt-s. Combining these three estimates, 
we calculated the heating luminosity 

L irr ≡ 4 π

[
a 1 (1 + q) 

sin i 

]2 

σSB T 
4 

irr (14) 

≈ 4 πa 2 1 

[
m p 

f ( m p , q) 

]2 / 3 

σSB T 
4 

irr 

∼ 9 . 1 × 10 32 

(
m p 

1 . 4 M �

)2 / 3 

erg s −1 , 

where σ SB represents the Stefan–Boltzmann constant. 
Our new distance D = 1 . 5 + 0 . 3 

−0 . 2 kpc to PSR J0610 −2100 is less than 
half the DM-based distances (see Table 6 ), and significantly below 

that assumed by van der Wateren et al. ( 2022 ). Assuming a NS 

moment of inertia I NS = 10 45 g cm 

2 , the Ṗ 

int 
s of PSR J0610 −2100 

(see Table 8 ) corresponds to an intrinsic spin-down power 

Ė 

int ≡ 4 π2 I NS Ṗ 

int 
s /P 

3 
s (15) 

of (5 . 1 ± 0 . 5) × 10 33 erg s −1 , which is roughly twice as large as 
the Ė 

int range calculated by van der Wateren et al. ( 2022 ). In 
conjunction with a smaller γ -ray luminosity L γ = 4 πF γ D 

2 (due 
to closer distance), the Ė 

int reduced ηγ to around 0.37 (from 0.5 
< ηγ < 3.7 estimated by van der Wateren et al. 2022 ), disfa v oring 
unusually high- γ -ray beaming towards us. Moreo v er, the heating 
efficiency εT drops to ∼0.17 (from 0.15 < εT < 0.77 e v aluated by 
van der Wateren et al. 2022 ), disfa v oring the scenario where the NS 

radiation is strongly beamed towards the companion. 

8.1.1 On the DM discrepancy 

In Section 6.1.1 , we noted that our VLBI parallax-derived distance 
and the DM model-inferred distance to this pulsar differed sub- 
stantially . Specifically , PSR J0610 −2100 has a measured DM = 

60.7 pc cm 

−3 while the NE2001 model predicts 27.5 pc cm 

−3 for a 
line of sight of length 1.5 kpc. We attribute this discrepancy to thermal 
plasma or ‘free electrons’ along the line of sight that is not captured 
fully by a ‘clump’ in the NE2001 model. The NE2001 model includes 
this ‘clump’ to describe the effects due to the Mon R2 H II region, 
centred at a Galactic longitude and latitude of (214 ◦, −12.6 ◦), located 
at an approximate distance of ∼0.9 kpc (Herbst 1975 ). Ho we ver, the 
WHAM surv e y shows considerable H α in this direction, extending 
o v er tens of degrees. Lines of sight close to the pulsar show changes 
in the H α intensity by factors of two, but an approximate value 
toward the pulsar is roughly 13 Rayleighs, equi v alent to an emission 
measure EM = 29 pc cm 

−6 (for a temperature T = 8000 K). Using 
standard e xpressions, as pro vided in the NE2001 model, to convert 
EM to DM, there is sufficient H α intensity along the line of sight 
to account for the excess DM that we infer from the difference 
between our parallax-derived distance and the NE2001 model 
distance. 

8.2 PSR J1518 + 4904 

The 41-ms PSR J1518 + 4904, disco v ered by Sayer, Nice & Taylor 
( 1997 ), is one of the only two DNSs in the current sample. According 
to Janssen et al. ( 2008 ), the non-detection of Shapiro delay effects 
suggests sin i ≤ 0.73 at 99 per cent confidence level. Accordingly, 
we adopted 0.73 as the upper limit of sin i , and carried out 8- 
parameter Bayesian inference, which led to a bi-modal posterior 
PDF on i ′ and a multimodal PDF on �′ 

asc (see the online corner 
plot 5 ). The predominant constraints on both i ′ and �′ 

asc come 
from the ȧ 1 measurement (Janssen et al. 2008 or see Table 4 ). 
Though there are three major likelihood peaks for the �′ 

asc , two 
of them gather around 171 ◦, making the PDF relatively more 
concentrated. When a much more precise ȧ 1 measurement is reached 
with new timing observations, the existing VLBI data will likely 
place useful constraints on i ′ and �′ 

asc . So will additional VLBI 
observations. 

In addition to i ′ and �′ 
asc , the 8-parameter Bayesian inference 

also renders a 40 σ parallax � 

′ , which becomes the most significant 
parallax achieved for a DNS. In contrast, to detect a timing parallax 
� 

(Ti) for PSR J1518 + 4904 would take � 600 yr (Janssen et al. 2008 ) 
due to its relatively high-ecliptic latitude of 63 ◦. 
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8.3 PSR J1537 + 1155 

PSR J1537 + 1155, also known as PSR B1534 + 12, is the second dis- 
co v ered DNS (Wolszczan 1991 ). The DNS displays an exceptionally 
high-proper motion amongst all Galactic DNSs (see Table 3 of Tauris 
et al. 2017 ), leading to an unusually large Shklovskii contribution 
to observed timing parameters. Therefore, precise astrometry of 
the DNS plays an essential role in its orbital decay test of GR. 
The most precise astrometric parameters of PSR J1537 + 1155 are 
provided by Ding et al. ( 2021a ) based on the same data set used in 
this work, which result in Ṗ 

Shk 
b = 53 ± 4 fs s −1 . Subsequently, Ding 

et al. ( 2021a ) estimated Ṗ 

Gal 
b = −1 . 9 ± 0 . 2 fs s −1 , and concluded 

Ṗ 

int 
b / Ṗ 

GW 

b = 0 . 977 ± 0 . 020. 
In this work, we inferred ηEFAC on top of the canonical astrometric 

parameters, which is the only difference from the Bayesian method of 
Ding et al. ( 2021a ). Despite this difference, our astrometric results of 
PSR J1537 + 1155 remain almost the same as Ding et al. ( 2021a ). So 
is our re-derived Ṗ 

Shk 
b = 53 . 3 + 3 . 8 

−3 . 3 fs s 
−1 . However, as is mentioned in 

Section 7.2 , the Ṗ 

Gal 
b estimated by Ding et al. ( 2020a ) is incorrect due 

to a coding error. After correction, Ṗ 

Gal 
b drops to −5.1 ± 0.4 fs s −1 

(see Table 8 ). Consequently, we obtained Ṗ 

int 
b / Ṗ 

GW 

b = 0 . 96 ± 0 . 02. 
As Ding et al. ( 2021a ) have pointed out, the limiting factor 

of the GR orbital decay test using PSR J1537 + 1155 remains 
the distance precision, which generally impro v es as t −1/2 with 
additional observations, but can be accelerated if more sensitive 
instrumentation can be deployed. On the other hand, the extremely 
high-braking index of 157 (two orders higher than the normal 
level) calculated from the rotational frequency νs ≡ 1/ P s , its 
first deri v ati ve ν̇s , and its second deri v ati v e ν̈s (F onseca et al. 
2014 ) indicate likely timing noise contributions that may affect 
the observed orbital period deri v ati ve to some degree. This will 
be clarified with continued timing observations and refined timing 
analysis. 

8.4 PSR J1640 + 2224 

PSR J1640 + 2224 is a 3.2-ms MSP (Foster et al. 1995 ) in a 
wide ( P b = 175 d) orbit with a WD companion (Lundgren et al. 
1996 ). The MSPSR π results for PSR J1640 + 2224 have been 
determined using bootstrap and published in Vigeland et al. ( 2018 ), 
which are highly consistent with our re-assessed quasi-VLBI-only 
results (see Table 2 of Vigeland et al. 2018 and Table 5 ), and 
also agree with the VLBI + timing ones (see Table 6 ). Our 8- 
parameter Bayesian inference renders a 1D histogram of �′ 

asc with 
four likelihood components at 0 ◦, 140 ◦, 200 ◦, and 320 ◦, which 
is predominantly shaped by the prior on ȧ 1 from pulsar timing 
(see Table 4 ). 

8.5 PSR J1643 −1224 

PSR J1643 −1224 is a 4.6-ms pulsar in a 147-d orbit with a WD 

companion (Lorimer et al. 1995 ). As a result of multipath propagation 
due to inhomogeneities in the ionised interstellar medium (IISM), the 
pulse profiles of PSR J1643 −1224 are temporally broadened (e.g. 
Lentati et al. 2017 ). As the Earth-to-pulsar sightline mo v es through 
inhomogeneous scattering ‘screen(s)’ (in the IISM), the temporal 
broadening τ sc varies with time; at 1 GHz, τ sc fluctuates up and down 
by � 5 μs on a yearly time-scale (Lentati et al. 2017 ). Meanwhile, 
the moving scattering ‘screen(s)’ would also change the radio 
brightness of the pulsar. This ef fect, as kno wn as pulsar scintillation, 
is used to constrain the properties of both PSR J1643 −1224, and 

the scattering screen(s) between the Earth and the pulsar (Mall 
et al. 2022 ). The scintillation of PSR J1643 −1224 has previously 
been modelled with both isotropic and anisotropic screens (Mall 
et al. 2022 ). The isotropic model renders a pulsar distance D = 

1.0 ± 0.3 kpc and locates the main scattering screen at D sc = 

0.21 ± 0.02 kpc; in comparison, the anisotropic model yields a pulsar 
distance D = 1.2 ± 0.3 kpc, and necessitates a secondary scattering 
screen 0.34 ± 0.09 kpc away (from the Earth) in addition to a main 
scattering screen at 0.13 ± 0.02 kpc distance (Mall et al. 2022 ). On 
the other hand, the HII region Sh 2-27 in front of PSR J1643 −1224 
is suspected to be associated with the main scattering screen of the 
pulsar. This postulated association is strengthened by the agreement 
between the distance to the main scattering screen (based on the 
two-screen anisotropic model, Mall et al. 2022 ) and the distance 
to the HII region (i.e. 112 ± 3 pc, Ocker, Cordes & Chatterjee 
2020 ). 

8.5.1 Independent check on the postulated association between the 
H II region Sh 2-27 and the main scattering screen 

Besides the pulse broadening effect, the scattering by the IISM 

would lead to apparent angular broadening of the pulsar, which 
has been detected with VLBI at � 8 GHz (e.g. Bower et al. 2014 ). 
By the method outlined in Appendix A of Ding et al. ( 2020a ), we 
measured a semi-angular-broadened size θ sc = 3.65 ± 0.43 mas for 
PSR J1643 −1224, which is the only significant θ sc determination in 
the MSPSR π catalogue. Likewise, the secondary in-beam calibrator 
of PSR J1643 −1224 is also scatter-broadened, which may likely 
introduce additional astrometric uncertainties (see more explanation 
in Section 8.6 ). 

As both pulse broadening and angular broadening are caused by the 
IISM deflection, θ sc , τ sc , the pulsar distance D , and the distance(s) D sc 

to the scattering screen(s) are geometrically related. Assuming there 
is one dominant thin scattering screen, we make use of following 
approximate relation 

θ2 
sc 

2 cτsc 
= 

1 

D sc 
− 1 

D 

( when θsc � 1 ◦) , (16) 

where c stands for the speed of light in vacuum. 
To estimate the unknown τ sc at our observing frequency of 

∼1.55 GHz, we used the data spanning MJD 54900–57500 from 

the PPTA second data release (Kerr et al. 2020 ). We analysed 
the dynamic spectra of observations centred around 3.1 GHz and 
recorded with the PDFB4 processor, using the scintools 11 package 
(Reardon et al. 2020 ). A model was fit to the auto-correlation function 
of each dynamic spectrum, which has an exponential decay with 
frequency (Reardon et al. 2019 ). The characteristic scintillation 
scale (in frequency) �νd is related to the scattering time-scale with 
τ sc = 1/(2 π�νd ). We found the mean temporal broadening τ sc = 

103 ± 25 ns at 3.1 GHz, with fluctuations of � 60 ns (see Fig. 6 ). To 
convert this τ sc to our observing frequency 1.55 GHz, we compare 
the maximum degree (i.e. 60 ns) of fluctuations at 3.1 GHz to that 
(i.e. 5 μs, Lentati et al. 2017 ) at 1 GHz, and acquired an indicative 
scaling relation 

τsc ∝ ν−3 . 9 , (17) 

where ν is the observing frequency. This relation reasonably agrees 
with the scaling relation τ sc ∝ ν−11/3 associated with the Kolmogorov 

11 ht tps://github.com/danielreardon/scint ools 
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Figure 6. Temporal broadening τ sc of PSR J1643 −1224 at 3.1 GHz. The 
solid red line and the dashed red line show the mean temporal broadening 
and a 68 per cent confidence interval, respectively. 

turbulence (e.g. Armstrong, Rickett & Spangler 1995 ). With the 
indicative scaling relation, we calculated τsc = 1 . 54 ± 0 . 37 μs. It 
is timely to note that θ2 

sc /τsc (on the left side of equation 16 ) is 
frequency-independent. By combining equations ( 16 ) and ( 17 ), we 
come to another equi v alent indicati ve scaling relation 

θsc ∝ ν−1 . 95 . (18) 

Substituting τsc = 1 . 54 ± 0 . 37 μs, θ sc = 3.65 ± 0.43 mas and D = 

0 . 95 + 0 . 15 
−0 . 11 kpc into equation ( 16 ), we obtained D sc = 86 + 30 

−24 pc, where 
the uncertainty is derived with a Monte-Carlo simulation. This D sc 

is consistent with the distance to the HII region Sh 2-27 (Ocker et al. 
2020 ), hence independently supporting the association between the 
HII region and the main scattering screen of PSR J1643 −1224. 

8.5.2 Probing scintillation models 

Apart from the abo v e check on the connection between the HII 
region Sh 2-27 and the main scattering screen, the angular broadening 
of PSR J1643 −1224 also promises a test of the aforementioned 
isotropic scintillation model proposed by Mall et al. ( 2022 ). To do 
so, we changed the pulsar distance to the one inferred with the model 
(i.e. 1.0 ± 0.3 kpc). With this change, we derive D sc = 86 + 30 

−24 pc, 
which disagrees with 0.21 ± 0.02 kpc based on the isotropic model. 
To investigate the impact of a different scaling relation τsc ∝ ν−αsc , 
we inferred τsc = 4 . 3 μs with both D and D sc based on the isotropic 
model (Mall et al. 2022 ), which corresponds to an unreasonably 
large αsc = 5.4. Hence, we conclude that our θ sc and τ sc cannot 
easily reconcile with the one-screen isotropic model proposed by 
Mall et al. ( 2022 ). 

Fundamentally, the irreconcilability implies a one-screen model 
might be incapable of describing both scintillation and angular 
broadening effects of PSR J1643 −1224. In principle, it is possible 
to analyse a multiscreen model with a θ sc ( t ) series (at various time 
t ), and its associated τ sc ( t ) instead of only using their mean values. 
Ho we ver, this analysis is not feasible for this work, as τ sc and θ sc were 
not measured on the same days. None the less, we can still investigate 
whether our observations of PSR J1643 −1224 can reconcile with the 
scintillation observations (Mall et al. 2022 ) in the context of a two- 
screen model. 

In the scenario of two thin scattering screens, we derived the more 
complicated relation ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 cτsc = k 1 β
2 
sc + k 2 βsc θsc + k 3 θ

2 
sc ( θsc � 1 ◦ and βsc � 1 ◦) 

k 1 = 

( D − D sc2 )( D − D sc1 ) 

D sc2 − D sc1 

k 2 = −2 D sc1 ( D − D sc2 ) 

D sc2 − D sc1 

k 3 = 

D sc1 D sc2 

D sc2 − D sc1 
, 

(19) 

where D sc1 and D sc2 are the distance to the first and the second 
scattering screen, respectively; βsc represents a half of the opening 
angle of the second scattering screen (closer to the pulsar) as seen 
from the pulsar. As a side note, equation ( 16 ) can be considered 
a special case (i.e. D = D sc2 ) of equation ( 19 ). In equation ( 19 ), 
all parameters except βsc are known, either determined with the 
anisotropic two-screen model or obtained in this work. Hence, it is 
feasible to constrain the geometric parameter βsc with the known 
parameters. 

Ho we ver, equation ( 19 ) can yield unphysical solutions (i.e. βsc > 

0). We applied the simple condition 

θ2 
sc 

2 cτsc 
≤ 1 

D sc1 
− 1 

D 

(20) 

to ensure equation ( 19 ) gives physical solutions of βsc . This equa- 
tion is equi v alent to D sc1 ≤ D sc , where D sc corresponds to the 
one-screen solution of equation ( 16 ). This is because D sc1 > D sc 

w ould al w ays lead to longer routes, thus exceeding the τ sc budget. 
It is important to note that equation ( 20 ) is valid for a model with 
any number of scattering screens. Hence, we recommend to use 
equation ( 20 ) in scintillation model inferences as a prior condition, 
to cater for the constraints imposed by θ sc and τ sc (and thereby 
truncate the parameter space of a scintillation model). 

To test the anisotropic two-screen model (Mall et al. 2022 ) with 
our θ sc and τ sc , we calculated D sc = 89 + 33 

−26 pc with the pulsar distance 
(i.e. D = 1.2 ± 0.3 kpc) based on the anisotropic two-screen model. 
This D sc is consistent with D sc1 = 129 ± 15 pc (Mall et al. 2022 ) 
(therefore not ruling out D sc1 < D sc ). That is to say, our θ sc and τ sc 

measurements can loosely reconcile with the anisotropic two-screen 
model (Mall et al. 2022 ). In comparison, we reiterate our finding 
that a one-screen model is difficult to describe both scintillation, and 
angular broadening effects of PSR J1643 −1224. 

8.6 PSR J1721 −2457 

PSR J1721 −2457 is a 3.5-ms solitary MSP disco v ered at intermedi- 
ate Galactic latitudes (Edwards & Bailes 2001 ). The main secondary 
phase calibrator of PSR J1721 −2457 (and indeed, all the sources 
near it on the plane of the sky) is heavily resolved due to IISM 

scattering, which leads to non-detections on the longest baselines 
and a lack of calibration solutions for some antennas, reducing 
the spatial resolution of the VLBI observations. The non-uniform 

IISM distribution also leads to refractive image wander as the line- 
of-sight to the pulsar changes (e.g. Kramer et al. 2021 ), which is 
most pronounced for hea vily scatter -broadened sources such as the 
calibrator for PSR J1721 −2457. In conjunction with the lower spatial 
resolutions, which reduces positional precision to begin with, this 
additional noise term likely results in the parallax non-detection (see 
Table 5 ). 
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8.7 PSR J1730 −2304 

PSR J1730 −2304 is a solitary pulsar spinning at P s = 8.1 ms 
(Lorimer et al. 1995 ). Being so far the least-energetic (in terms 
of Ė 

int ) γ -ray pulsar (Guillemot et al. 2016 ), the pulsar plays a 
key role in exploring the death line of NS high-energy radiation. 
Substituting Ṗ 

int 
s and P s of equation ( 15 ) with values listed in Table 8 , 

we substantially refined the Ė 

int death line (of all γ -ray-emitting 
pulsars) to 

Ė death ≤ Ė 

int 
J1730 = (1 . 15 ± 0 . 01) × 10 33 

(
I NS 

10 45 g cm 

2 

)
× erg s −1 , (21) 

which is consistent with (but on the higher side of) the previous esti- 
mate (8 . 4 ± 2 . 2) × 10 32 erg s −1 by Guillemot et al. ( 2016 ) (assuming 
the same I NS ). On the other hand, we updated the γ -ray luminosity 
(abo v e 100 MeV) to L γ = 4 πD 

2 F γ = (3 . 1 ± 1 . 6) × 10 32 erg s −1 , 
where the precision is limited by the less precise F γ (Guillemot 
et al. 2016 ). Accordingly, we obtained ηγ = 0.27 ± 0.14. 

8.8 PSR J1738 + 0333 

PSR J1738 + 0333, disco v ered from a 1.4-GHz high-Galactic-latitude 
surv e y with the 64-m Parkes radio telescope (Jacoby et al. 2009 ) is 
a 5.85-ms pulsar in a 8.5-hr orbit with a WD companion. Thanks to 
the relatively short P b , the WD-pulsar system plays a leading role 
in constraining alternative gravitational theories that predict dipole 
gravitational radiation (Freire et al. 2012 ; Zhu et al. 2015 ). 

Our VLBI-only � is 2 . 3 σ away from the most precise � 

(Ti) (see 
Table 5 and 6 ). After adopting timing priors, � 

′ = 0.589 ± 0.046 mas 
becomes closer to � 

(Ti) = 0.68 ± 0.05 mas (Freire et al. 2012 ), 
meaning that Ṗ 

Shk 
b is only 1.2 times larger than the previous estimate. 

On the other hand, our re-assessed Ṗ 

Gal 
b , based on more realistic 

ϕ( � x ) models, is smaller than that estimated with the NT95 ϕ( � x ) 
model (Freire et al. 2012 ). Combining the unchanged Ṗ 

obs 
b = −17 ±

3 fs s −1 the re-derived Ṗ 

Int 
b = −26 . 1 ± 3 . 1 fs s −1 is almost the same 

as the previous estimate, as the change of Ṗ 

Gal 
b happens to nearly 

cancels out that of Ṗ 

Shk 
b . 

Future pulsar timing or VLBI investigation into the discrepancy 
between � 

(Ti) (Freire et al. 2012 ) and � is merited by the importance 
of the pulsar system. Specifically, if the true parallax turns out to be 
around 0.5 mas, it would not only mean that Ṗ 

Shk 
b is 1.4 times higher 

than the estimate by Freire et al. ( 2012 ), but also suggest the WD 

radius R WD to be 1.4 larger (as R WD ∝ D according to Equation 1 of 
Antoniadis et al. 2012 ). A higher R WD would lead to lighter WD and 
NS (as the mass ratio is well determined), thus smaller Ṗ 

GW . 

8.9 PSR J1824 −2452A 

PSR J1824 −2452A is a 3-ms solitary pulsar disco v ered in the 
Globular cluster M28 (NGC 6626) (Lyne et al. 1987 ). The calibration 
configuration for this pulsar was suboptimal as the best in-beam 

phase calibrator for PSR J1824 −2452A was both resolved and faint 
(3.3 mJy, see Table 1 ), leading to noisy solutions, especially on the 
longest baselines. This is likely responsible for the parallax non- 
detection (see Table 5 ), and indicates that higher sensitivity to enable 
impro v ed calibration solutions would be advantageous in any future 
VLBI campaign. 

The proper motion of M28 is estimated to be μM28 
α = −0 . 28 ±

0 . 03 mas yr −1 and μM28 
δ = −8 . 92 ± 0 . 03 mas yr −1 (Vasiliev & 

Baumgardt 2021 ) with Gaia Early Data Release 3 (EDR3). Hence, 
the relative proper motion of PSR J1824 −2452A with respect to 

M28 is �μα = 0.03 ± 0.05 mas yr −1 and �μδ = 1.1 ± 0.8 mas yr −1 . 
Combining the M28 distance D = 5.4 ± 0.1 kpc estimated by 
Baumgardt & Vasiliev ( 2021 ), we obtained the transverse space 
velocity v ⊥ 

= 28 ± 20 km s −1 for PSR J1824 −2452A, which is 
smaller than the typical escape velocity ( ≈50 km s −1 ) of a globular 
cluster. Therefore, the pulsar is probably (as expected) bound to M28. 

9  SUMMARY  A N D  FUTURE  PROSPECTS  

In this MSPSR π release paper, we have presented VLBI astrometric 
results for 18 MSPs, including a re-analysis of three previously 
published sources. From the 18 sources, we detect significant 
parallaxes for all but three. For each MSPSR π pulsar, at least one self- 
calibratable in-beam calibrator was identified to serve as the reference 
source of relative astrometry. In three cases, 1D interpolation, a 
more complex observing and data reduction strategy, is adopted 
to further suppress propagation-related systematic errors. Among 
the three pulsars, PSR J1939 + 2134 is the brightest MSP in the 
northern hemisphere. Hence, we took one step further to perform 

inverse-referenced 1D interpolation using PSR J1939 + 2134 as the 
in-beam calibrator. Compared to the pioneering Multi-View study 
of Rioja et al. ( 2017 ) at 1.6 GHz, the larger number of observa- 
tions and targets here provides more opportunities to characterize 
the interpolation performance, which is crucial for ultra-precise 
astrometric calibration schemes proposed for future VLBI arrays 
incorporating the Square Kilometre Array (SKA). Based on a small 
sample of three, we found that ηEFAC has consistently inflated after 
applying 1D interpolation (see Section 4.1.3 ). This inflation implies 
that the higher-order terms of in the phase screen approximation 
may not be negligible, and could become the limiting factor of the 
ultra-precise SKA-based astrometry using the Multi-View strategy. 
Further investigations of the same nature, especially using temporally 
simultaneous (in-beam) calibrators, at low-observing frequencies are 
merited and encouraged. 

In this paper, we present two sets of astrometric results – the quasi- 
VLBI-only results (see Section 4 ) and the VLBI + timing results 
(see Section 5 ). Both sets of astrometric results are inferred with the 
astrometry inference package sterne 7 . The former set of results is 
largely independent of any input based on pulsar timing, making use 
only of orbital parameters as priors in the inference of orbital reflex 
motion, which affects only four pulsars from our sample and is near- 
ne gligible in an y case. The latter, ho we ver, additionally adopts the lat- 
est available timing parallaxes and proper motions as priors of infer- 
ence where ver possible, af fecting all pulsars in our sample. While the 
latter approach typically gives more precise results, we note that this 
is dependent on the accuracy of the timing priors, and identify seven 
pulsars (PSR J0610 −2100, PSR J1643 −1224, PSR J1730 −2304, 
PSR J1738 + 0333, PSR J1824 −2452A, PSR J1853 + 1303, and 
PSR J1910 + 1256) for which disagreement between the quasi-VLBI- 
only and the timing priors mean that the VLBI + timing results 
should be treated with caution. From the VLBI perspective, we 
looked into possible causes of additional astrometric uncertainties, 
including non-optimal calibrator quality (see Sections 8.6 and 8.9 ) 
and calibrator structure evolution (see Section 5 ). In future, proper 
motion uncertainties (including any unaccounted systematic error 
due to calibrator structure evolution) can be greatly reduced with 
only � 2 extra observations per pulsar. F or e xample, a 10-yr time 
baseline can impro v e the current VLBI-only proper motion precision 
by roughly a factor of 8. 

From the VLBI + timing parallaxes � 

′ , we derived distances D 

using equation ( 9 ). Incorporating the PDFs of D and proper motions 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/4/4982/6948353 by O
regon State U

niversity user on 23 M
arch 2023



The MSPSR π results and implications 5005 

MNRAS 519, 4982–5007 (2023) 

{ μ′ 
α , μ′ 

δ} , we estimated the transverse space velocities v ⊥ 

for 16 
pulsars with significant distance determination, and found their v ⊥ 

to be generally on the smaller side of the previous estimates (Hobbs 
et al. 2005 ; Gonzalez et al. 2011 ). Boodram & Heinke ( 2022 ) propose 
that MSPs must have near-zero space velocities in order to explain the 
Fermi Galactic Centre excess. Our relatively small space velocities 
inferred for 16 MSPs suggest that MSPs may not be ruled out as the 
source of the Galactic γ -ray Centre excess. If the multimodal feature 
of the v ⊥ 

is confirmed with a sample of ∼50 MSPs, it may serve 
as a kinematic evidence for alternative formation channels of MSPs 
(Bailyn & Grindlay 1990 ; Gautam et al. 2022 , also see Ding et al. 
2022 as an analogy). 

In addition, we estimated the radial accelerations of pulsars with 
their distances and proper motions (see Section 7 ), which allows us 
to constrain the intrinsic spin period deri v ati ve Ṗ 

int 
s and the intrinsic 

orbital decay Ṗ 

int 
b (see Table 8 ). We used the impro v ed Ṗ 

int 
s of 

PSR J1730 −2304 to place a refined upper limit to the death line 
of γ -ray pulsars (see Section 8.7 ), and the Ṗ 

int 
b (of PSR J1012 + 5307 

and PSR J1738 + 0333) to constrain alternative theories of gravity 
(see Section 7.3 ). As already noted by Ding et al. ( 2020b ), the 
orbital decay tests (of gravitational theories) with the three viable 
MSPSR π systems (i.e. PSR J1012 + 5307, PSR J1537 + 1155, and 
PSR J1738 + 0333) will be limited by the distance uncertainties, as 
parallax precision impro v es much slower than the Ṗ 

obs 
b precision 

(Bell & Bailes 1996 ). 
Moreo v er, we detected significant angular broadening of 

PSR J1643 −1224, which we used to (1) provide an independent 
check of the postulated connection between the HII region Sh 2-27 
and the main scattering screen of PSR J1643 −1224, and (2) test 
the scintillation models proposed by Mall et al. ( 2022 ). In future 
scintillation model inferences, angular broadening and temporal 
broadening measurements, where available, are suggested to be used 
as priors using equation ( 20 ), in order to achieve more reliable (and 
potentially more precise) scintillation model parameters. Such an 
inference would also complete the geometric information of the 
deflection routes (using equation ( 19 ), for example, in the two-screen 
case). 

DATA  A N D  C O D E  AVAILABILITY  

(i) The VLBA data can be downloaded from the NRAO Archive 
Interface at https://data.nrao.edu with the project codes in Table 1 . 

(ii) Image models of phase calibrators are provided at https://gith 
ub.com/dingswin/calibrator models for astrometry . 

(iii) Supplementary materials supporting this paper can be found 
at https:// github.com/dingswin/ publication related materials . 

(iv) The data reduction pipeline psrvlbireduce is available 
at https:// github.com/dingswin/ psrvlbireduce (version ID: b8ddafd). 

(v) The astrometry inference package sterne can be accessed 
at https:// github.com/dingswin/ sterne . 
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