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ABSTRACT

A long-standing problem in galactic simulations is to resolve the dynamical friction (DF) force acting on massive black hole
particles when their masses are comparable to or less than the background simulation particles. Many sub-grid models based on
the traditional Chandrasekhar DF formula have been proposed, yet they suffer from fundamental ambiguities in the definition of
some terms in Chandrasekhar’s formula when applied to real galaxies, as well as difficulty in evaluating continuous quantities
from (spatially) discrete simulation data. In this work, we present a new sub-grid DF estimator based on the discrete nature of
N-body simulations, which also avoids the ambiguously defined quantities in Chandrasekhar’s formula. We test our estimator
in the GIZMO code and find that it agrees well with high-resolution simulations where DF is fully captured, with negligible
additional computational cost. We also compare it with a Chandrasekhar estimator and discuss its applications in real galactic

simulations.
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1 INTRODUCTION

An essential element in the study of galactic dynamics is the process
of dynamical friction (DF; Chandrasekhar 1943), a statistical effect
of numerous two-body scatterings that causes a massive particle
to lose its momentum when it travels through a medium of much
lighter background particles. DF is believed to be an important effect
to drive massive black holes (BHs; from intermediate-mass BHs to
supermassive BHs) to galactic centres (see e.g. Ostriker 1999; Chen
et al. 2022; Weller et al. 2022), and it plays an essential role in the
evolution of globular clusters (see e.g. Portegies Zwart & McMillan
2002; Giirkan, Freitag & Rasio 2004; Alessandrini et al. 2014; Shi,
Grudi¢ & Hopkins 2021). Hence, the evaluation of DF is important
in studying the evolution of galaxies, globular clusters, and BHs in a
wide variety of contexts.

In numerical N-body simulations with sufficient resolution (such
as in the limit in which all bodies such as stars, BHs, or even
dark matter (DM) particles are represented by individual N-body
particles), DF will be automatically captured. However, as DF is an
accumulated effect of many weak encounters in the regime where
the ‘target’ mass is much larger than the mass of the ‘background’
partides (Mtargelparlicle > Mbackgroundpanicle)s it is often not pOSSible
to fully resolve this background. This is especially true in large-
scale simulations of e.g. galactic scales, where a typical ‘N-body
particle’ can easily have mass much larger than intermediate-mass
and supermassive BHs (> 10* Mp), let alone the masses of individual
stars, DM particles, or hydrogen ions. Specifically, when the N-
body particle mass becomes comparable to or larger than the ‘target’
mass, the explicit results of an N-body solver will not return the
correct DF forces. For example, in the ‘high-resolution’ simulations

* E-mail: Ima3 @caltech.edu

© 2023 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

of high-redshift galaxies in Ma et al. (2018a, b, 2019), the baryonic
mass resolution (Am;) is ~7000mg and the DM mass resolution is
five times larger, which makes it impossible to resolve DF effects
for BHs or other ‘sink’ particles (e.g. particles that might represent
unresolved massive, dense structures such as globular clusters, or
hyper-dense exotic DM structures, etc.) less massive than ~10° M.
Hence, in these types of simulations, an additional ‘sub-grid’ DF
force must be added to these ‘target’ particles to attempt to recover
their real dynamics, to replace the lost information of individual two-
body encounters in the smoothed-out gravity potential in simulations.

Multiple sub-grid DF models have been proposed in the literature
(e.g. Colpi et al. 2007; Dotti et al. 2009; Tremmel et al. 2015; Pfister
et al. 2019) based on the classical Chandrasekhar’s DF formula
(Chandrasekhar 1943, hereafter C43)
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where M and m are the masses of the moving ‘target’ particle and the
background or field particles, respectively. Here, vy, and v,, are their
velocities, and A is the Coulomb logarithm defined by A = byax/buin,
where byx and b, are the maximum and minimum impact factors
of scattered particles in weak encounters, respectively. f{(v,,) is the
velocity distribution of field particles, and, with the usual assumption
of a Maxwellian velocity distribution with dispersion o, the formula
reduces to (Binney & Tremaine 2008)
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i.e. the DF acceleration is proportional to the local field particle
density p and is in the opposite direction of the particle velocity v,
effectively acting as a ‘friction’ force. Despite its elegance and (often
surprising) accuracy in estimating the DF, Chandrasekhar’s formula
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suffers from the following shortcomings when applied as a sub-grid
model:

(1) In deriving the formula, C43 assumes an isotropic and homo-
geneous medium of field particles. This is generally not true for
real galaxies. For example, it has been pointed out that high-redshift
galaxies and low-redshift dwarf galaxies could be chaotic and clumpy
(e.g. Weisz et al. 2014; Meng & Gnedin 2020; Flores Velazquez et al.
2021). The existence of such systems makes the physical assumptions
behind C43 formula questionable.

(ii) The Coulomb logarithm is ambiguously defined, and is often
selected ad hoc in practice, with a case-dependent selection of
the minimum and maximum impact parameters (see e.g. Tremmel
et al. 2015; Pfister et al. 2019), which introduces a large systematic
uncertainty in the sub-grid model.

(iii) The formula has an explicit dependence on the local mass
density, which must be evaluated from discrete N-body data for
collisionless fluid (stars or DM, often ‘blended’ with gas for which
the density is continuously defined, depending on the numerical
hydrodynamic method). The choice of how to do so is arbitrary and
has no defined ‘preferred’ scale. Most commonly, it is done with a
local kernel density estimator at some multiple of the resolution scale
(see e.g. Tremmel et al. 2015), but this is known to be quite noisy,
and is not consistent with the unique local gas density available from
hydrodynamic calculations.

(iv) The velocity integral and f(v,,) must be estimated with some
similar ad hoc local estimator, which is also undefined, and different
choices can lead to different directions for the DF acceleration.
Usually, the choice of a local kernel sampling amplifies numerical
noise further here and means that f{v,,) must be assumed to be
Maxwellian (since it cannot be fitted to an arbitrary function given
just a few local points).

(v) There is no self-consistent way to incorporate force soften-
ing, which is necessary in N-body simulations to avoid spurious
divergences in the forces, as an N-body particle does not physically
represent a point-mass particle. Failure to incorporate softening can
produce inconsistent results between the (often softened) gravita-
tional acceleration and the additional DF acceleration.

(vi) As C43 depends on local continuous field parameters but
represents long-range forces, there is no way to self-consistently
implement it in a way that conserves momentum, while in reality
DF should be exactly conservative since it is derived from an infinite
superposition of pair-wise N-body encounters.

(vii) Evaluating C43 numerically requires operations that are not
algorithmically identical to the gravity solver in N-body equations,
which introduces not only additional inconsistencies, but also sub-
stantial computational expense. This also means that numerical
convergence for C43 applied to N-body particles is undefined: there
is no formal guarantee of convergence even on idealized, smooth
problems.

To tackle these problems, we develop a new sub-grid DF estimator
that can be efficiently embedded into discrete N-body calculations
in this work. The new estimator is based on a discrete version of
the DF formula that can be applied to an arbitrary phase-space
distribution of field particles, and avoids the fundamental ambiguity
in the definitions of some terms in Chandrasekhar’s formula. It also
naturally embeds force softening and momentum conservation. It can
also easily be generalized to assumptions beyond those of C43 for
the nature of DF-like forces. We test our estimator in both on-the-fly
simulations and post-processing, and compare our results to those
from a Chandrasekhar DF estimator. The paper is written as follows:
In Section 2, we derived our discrete DF formula. In Section 3, we
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describe the methods we use to test the estimator. In Sections 4 and
5, we present and discuss the results.

2 DERIVATION OF OUR DF FORMULA

Here, we present the derivation of our discrete DF formula, and
general comments on its application in N-body methods.

2.1 Derivation

In C43, the classical DF formula is derived as follows: assume that
a test particle with mass M travels through an infinite, homogeneous
and isotropic medium (filled with background particles with mass m
<« M), and experiences a number of individual two-body encounters.
During each encounter, along the direction of relative motion, the test
particle velocity in the parallel direction to the initial relative velocity
is altered by (after integrating along the encounter path ds from s —
—00 to s = +00)

2mV b2v*
M+ m G2 (M + m)?
B 2mV

T M Am)(1+ae?)

where V = v,, — vy (i.e. the velocity of m in the rest frame of M),
b is the impact parameter, and o = b V?/G (M + m) parametrizes
the encounter strength. Note that the perpendicular deflection Av
will be cancelled by symmetry if the medium is homogeneous and
isotropic so we neglect it for now, but we will return to this below. To
account for the contributions of all encounters, C43 then integrates
equation (3), by noting that the encounter rate in a differential time
dr is the sum of encounters within a cylindrical slice, with surface
area dA in the plane perpendicular to the relative motion and height
V dt, over all relatively velocities and angles

Avy =

3

d
ag = % = /Av” VdAN(x,v)dy
20 Gm . 3
=/1+a2 - VN(x,v)dpdg dv, 4)

where N(x,v) = dN/d*x d®v is the phase-space distribution func-
tion (by number) of the background particles; V= V/V,andpandg
are the two spatial coordinates perpendicular to the path-length ds, i.e.
characterizing the surface dA (so ds dp dg = d*x). The integral can
be easily carried out for an isotropic and homogeneous distribution
with N'(x, v) = nfu(v), where nis the number density (constant) and
fum(v) is the Maxwellian velocity distribution, leading to the classical
formula.

To generalize the above formula to an arbitrary phase-space distri-
bution sampled by a discrete set of data points as in our simulations,
one might naively attempt to directly insert the usual N-body approx-
imation, replacing N'(x,v) — >_;(Am;/m)8(x —x;, v —v;). This
treats the distribution function as a sum of Dirac §-functions, i.e.
point particles, each with N-body particle mass Am;, so representing
N = Am;/m ‘background’ particles of mass m. However, the integral
in equation (4) only integrates over the two-dimensional surface
(dpdg) as a slice of the full phase space, which makes it impossible
to discretize directly. The missing integral parameter reflects the
fundamental conceptual difficulty in deriving the DF formula for
arbitrary phase-space distribution. In deriving equation (4), we
actually already performed the integral over the missing degree of
freedom when calculating Av, by integrating over path-length ds
in each encounter from —oo to oo, containing the full effect of one
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two-body encounter before we sum them up to get the final result.
This is only correct if the background distribution is isotropic and
homogeneous, since in principle, the DF process cannot be evaluated
in this manner for any given instant of time, without knowing all
the history and future of the full dynamics, unless the background
profile is static (i.e. isotropic and homogeneous). Nevertheless, it
is still suggestive to consider what an inhomogeneous background
particle distribution could bring (quantitatively) to this story; hence,
we offer an ad hoc derivation here.

The key conceptual requirement to replace equation (4) with one
that can be discretized for an arbitrary AV is to re-expand the integral
that gave rise to Av; (equation 3) to explicitly account for the
contributions of particles at different distances s along their two-body
encounter trajectory, i.e. taking Ay — f (dAV) /ds) gefieciea ds (see
camparison in Fig. 1). Recall that the entire point of our derivation is
to develop a formula that can be applied where the explicit N-body
evolution of the mass M was not followed. Since DF fundamentally
arises from the ‘back-reaction’ of the medium (i.e. the deflection of
mass m as it feels gravity from M creating a net ‘drag’), we need
to identify the difference between the contribution to dv,,/dz that m
would have at a distance r along its encounter trajectory with M
if it had indeed been deflected by M, relative to the acceleration
M would feel if it saw m on an ‘undeflected’ trajectory. The latter
is, of course, just the ‘normal’ gravitational acceleration on M.'
The full expressions for this are quite cumbersome and cannot be
analytically closed; however, they are still, in any case, approximate
(as we still ignore many effects such as other influences on the
orbit of m during each stage of its two-body encounter), so we can
safely approximate them to the same order of accuracy by noting that
asymptotically (dAv|/ds)geficced = AV b%/2 (s> 4 b*)*/? at large r
> b (noting r* = s + b?), and (for weak encounters, the only case
where our derivation is meaningful) near pericentre [r = b (1 + ¢€)
with € « 1] (dAvH/dv)deﬂemd — A (1/2b). Together with the
identity 1 = (b/2) f bds/(s® + b*)*?, we can replace Ay in
equation (4) with this expression, giving

20 G bd
ay = [ 2AOMNED 54, d3 .
(2

b(1l+ o) +h
//ZaGmN(x v)Vd dgdv? b bds
b(l+ 2 (52 + b2
abGm . 33
mVN(.X,V)dxd v, (5)

where we used ds dp dg = d*x, and in the ~ step, where we move
the integrand, we essentially make a much weaker version of the
original C43 approximation, assuming that quantities such as ' do
not vary strongly over the time-scale during which most of the Ay,
is imparted by each two-body encounter. Now, we can insert the

This contribution will differ depending on the sign of s at a given
r, i.e. depending on whether m is ‘approaching’ or ‘receding’ from M;
however, in our application to N-body simulations, the sign of V for
distant m will change frequently, so there is no way to unique identify
‘approaching’ or ‘receding’ elements without actually performing the full
time integral of every encounter (i.e. doing the full ‘live’ N-body cal-
culation with M, exactly what we wish to avoid). We therefore simply
average between the two, giving (dAv| /ds) defiected = (1/2]ds]) [f o—ds (a' —
a®)dr + f”dJ " —a®)dt], where @' = @y, [x§1eced(r), xdeflected ()] and
a° =aymlxy ““deﬂemd(t), yundeflected(£)] are the two-body accelerations
assuming m follows the deflected and undeflected trajectories, respectively
(note that M still ‘sees’ m in its undeflected trajectory, but m does not ‘see’
M in that case).
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discrete N-body form of A" as a sum of § functions to trivially obtain

T e

We have of course made a number of assumptions to derive equa-
tion (6), and our final expression is not necessarily unique. However,
it has many useful properties. (1) In a spatially homogeneous medium
[i.e. anywhere we can write N' = n f(v)], it is trivial to verify by
inserting this into equation (5) that equation (6) reproduces exactly
the expressions from C43 for any f(v). (2) equation (6), as intended,
can be easily applied to an arbitrary N-body simulation collection
of particles of arbitrary types [summing different components such
as DM, gas, or stars simply involves carrying out the sum in
equation (6) with the appropriate Am; and m for each ‘species’].
(3) equation (6) removes a number of ambiguities: the Coulomb
logarithm is removed (it only ‘reappears’ if indeed the medium
is infinite and homogeneous), and V that appears is unambiguous
(discussed further below). (4) equation (6) above can be trivially
generalized for softened gravity (below). (5) equation (6) at least
asymptotically captures the relative contributions of near versus far
particles m to the DF force, i.e. the dimensional scaling with r, e.g.
correctly capturing the fact that most of the effect comes from when
particles are near pericentre.

2.2 Force softening

To apply equation (6) to numerical simulations, we must account
for force softening as in the simulations (since an N-body particle
of mass Am; represents many individual stars, collocating them at a
specific x;, v; would lead to spurious divergences in the forces). In
equation (6), note that all but one term are well behaved: 0 < «; /(1 +
aiz) <1/2,0 < bi/r; < 1, and |f/| = 1, so numerical divergence
entirely arises from the term G Am; /r,-z. However, this is just the
Newtonian gravity from a point N-body particle —i.e. exactly the same
term that is force softened in the simulations. Hence, we insert the
same softening kernel S;(r;) as used in the actual N-body simulation
[taking G Am,l/ri2 — S;(ri)G Am,-/riz].

For the specific simulations here, this follows from the adaptive
gravitational softening scheme described in Hopkins (2015), corre-
sponding to a cubic spline mass distribution:

12q? 6?2 qti + 32q16 0 = qi < %
— L+ &g} — 484}
Si(ri) = s ! 7
+2¢ - %q¢® j<a<V
1 q, >1

where ¢; = r;/H;, with H; =~ 2.8 ¢; the radius of compact support of
the kernel and ¢; the equivalent Plummer softening. This removes
the numerical divergence and gives the correct result for a uniform
density distribution sampled by N-body particles.?

2Note that in principle this softening is not exactly self-consistent with our
derivation, since if Am; represents an extended spatial distribution of particles,
each would be deflected slightly differently in equation (5). However, this is
consistent with the simulations: N-body softening for collisionless fluids
simply features this ambiguity at a fundamental level, because an individual
N-body particle cannot actually deform in a fully Lagrangian manner.
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2.3 Perpendicular force

In the above, we only included the parallel DF term (odA/i). However,
two-body encounters also produce a perpendicular deflection agy, | ;
this only vanishes in the C43 derivation because of the assumption
of a homogeneous N (giving exact cancellation). Because we do
not assume homogeneous A/, we can (if desired) retain these terms,
giving

1 bi GAm, ~
ag,) = —Z (1 +a2) (Z) (Si(ri) 2 ) b;

biEri_(ri‘f/i)f/iy (8)

This differs from the parallel a4, only by one power of «; and, of
course, the direction. The power of «; means that the perpendic-
ular deflection can be stronger (compared to the parallel term) in
strong encounters [although 0 < 1/(1 + &?) < 1, so this term is still
bounded and cannot produce spurious divergences or forces larger
than the regular/external acceleration]. However, because the inte-
grated force is always dominated by weak deflections (where «; >
1), then even ignoring cancellations (which further reduce ag4¢, | even
in inhomogeneous ), this term is generally smaller than the parallel
lags, ;| by one power of ~G M /r V2 ~ M [ Mioal gataxy (< 1) < 1.
We show in an additional set of tests that this term is completely
negligible for most galaxy simulation contexts; hence, we do not
include them in our final expression and tests below. However, we
emphasize that it is trivial to include and imposes no additional cost.

2.4 Final expression

It is straightforward to generalize the above for a spectrum of masses
m, i.e. integrating over the stellar initial mass function. However, for
any M 2 10Mg, this makes a negligible difference to our results.
Since we do not know the ‘true’ DM particle mass, it is more
straightforward to simply assume the limit M >> m, in which case the
species masses m completely factor out of the salient expressions.
This gives the expression we will use throughout:

ag = E Aay
i

. Ol,'b,' GAm,- A
Ady = ——— Si(ri) —— | Vi, 9
ar ((Ha%)r,») ( "= ) ©

with o; =~ b; VIZ/G M.

2.5 Numerical implementation

In the form of equation (9), it is particularly straightforward to imple-
ment our estimator. First, noting that o; and b; = r; |F; — (F; - V) f/il
are a function only of r; and V;, we see that the only piece of additional
information needed to compute equation (9), alongside the usual
gravity force, in an N-body solver is the velocity V (already known).
In other words, we do not need to construct some estimator for values
in the C43 formula, like p, A, and (V) that are not actually computed
in standard N-body simulations. Secondly, we also immediately see
that it is completely trivial to carry out this sum over any arbitrary
set of species (e.g. stars + gas + DM + other BHs).

Comparing the form of equation (9) and the ‘regular’ gravitational
acceleration @y

Ay = Qo+ g =Y, Aaéxt +> Aafif (10

Aay, = (S,-(n) G,Avm) Fi (11)
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Adjy; = ( v ) (Si("i) GrAl_zm') Vi (12)

(I+a?)r;

we immediately see that the operation needed to compute ay is
algorithmically identical to that needed to compute the normal
gravitational forces. In tree-gravity, tree-PM, direct N-body, or many
other methods, implementing exact evaluation of equation (9) in a
manifestly conservative manner is especially trivial.’ In e.g. a tree-
walk, as one sums up to compute a.y;, we simply sum the additional
term Aa'y, which scales exactly with |Aal | multiplied by the
numerical pre-factor o; b; /(1 + aiz) ri, and oriented in the different
direction V;. The gravitational force softening is also naturally
embedded in equation (9).

Moreover, our equation (9) is well behaved when applied to tree
nodes/leaves, not just individual particles: one simply treats each
node as a ‘superparticle’ with the appropriate total Am; and mass-
averaged V, r;, in the same manner as done for the usual gravity
calculation. It is trivial to verify from the form of equation (9) that
the order of the errors from this approach will always be equal to or
better than the order of errors in a.y in the tree (i.e. convergence is
equal or faster).

To ensure manifest momentum conservation, we simply enforce
equal and opposite forces, i.e. apply an acceleration Aays . ; =
—(M/Am;) Ad; to each particle i. The scaling of the pre-factor in
equation (9) is such that it guarantees this ‘back-reaction’ term is well
behaved and does not produce any spurious numerical divergences
in the accelerations of the particles i.*

3 NUMERICAL VALIDATION: METHODOLOGY

To study the accuracy of our DF formula, we compare it to both
direct high-resolution simulations and calibrated versions of the local
Chandrasekhar’s DF formula, using both ‘on-the-fly” applications in
simulations (Section 3.1) and post-processing methods (Section 3.2).
Here, we provide details of those methods. In what follows, we refer
to the ‘target’ or ‘sinking’ particle as a BH of mass Mgy, since this
is a particularly relevant motivating case for our sub-grid model,
but of course the ‘target’ particle could in principle represent any
sufficiently compact bound massive object.

3.1 On-the-fly simulations
3.1.1 Numerical methods

We have implemented the ‘discrete DF estimator’ equation (9)
in the GIzZMO multiphysics code (Hopkins 2015), which uses a
standard Barnes—Hut tree algorithm to solve the gravity equations (an
improved version of that in Springel 2005). GIzMO is well tested
in numerous applications of N-body dynamics problems involving

3In PM and related methods, where long-range forces are evaluated via
computing the potential from a particle-mesh Fourier method, implementing
equation (9) is less trivial: the issue is that the direction V; differs from #;,
so one cannot simply treat ags as a scalar correction to the regular external
gravitational potential, but must compute a separate potential/field. However,
in hybrid tree-PM methods, such as (optionally) implemented in GIZMO, the
less accurate PM forces are only used at large distances; given this, we find
(consistent with Fig. 7) that the errors from simply truncating the sum for
agr by including only the contributions from the tree-walk (ignoring the PM
terms in agr) are entirely negligible (below normal integration-error level).
4That behaviour is nor guaranteed if one attempts to conserve momentum by
simply applying a C43-style formula to M and then ad hoc ‘redistribute’ the
equal-and-opposite momentum change to the neighbouring i around M.
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DF, N-body resonances, and wake problems (see e.g. Lokas 2019;
Bonetti et al. 2020, 2021; Collier 2020; Grudi¢ & Hopkins 2020;
Morton, Khochfar & Oifiorbe 2021; Bortolas et al. 2022), to which
we refer for more detailed descriptions of numerical methods and
demonstrations of convergence, test problems, etc. As described
earlier, we simply evaluate the DF force a4 alongside the ‘normal’
gravitational force (using the identical softening, etc.) in the tree-
walk operation, imposing negligible CPU cost.

3.1.2 Initial conditions

To test the estimator, we have run a series of test problems. In each,
we initialize a steady-state ‘halo’ of collisionless particles (e.g. ‘DM’
or ‘stars’) using the GALIC code (Yurin & Springel 2014), with a
target/BH particle on an initial orbit expected to decay owing to
DF. We have experimented with several different choices for the
initial halo density profile, whether the halo velocity distribution is
anisotropic or isotropic, and other parameters of the halo and orbit
(e.g. eccentric versus circular, and initial position/energy/angular
momentum). Our qualitative conclusions and comparison of methods
are identical in each case (and of course, this being a pure N-body
problem it is scale free), so we focus on and show plots from one
example with typical cosmological units for the sake of clarity.

In our fiducial example, we adopt a Hernquist (1990)-profile halo
with a total mass of 2 x 10'' Mg with the Yurin & Springel (2014)
concentration parameter of 4 and spin parameter 0.04 [consistent with
typical DM halo parameters (Bullock et al. 2001), and sufficient to
make the halo mildly anisotropic because of rotation], so that the
Hernquist (1990) scale length a = 30.2 kpc. The target/BH is placed
Skpc away from the halo centre and has a tangential velocity of
59kms~!, which is the circular velocity of the halo at that radius.
The BH mass is 108 Mg, much less than the enclosed DM mass inside
5kpc (~4 x 10° Mg,), to avoid disrupting the dynamical equilibrium
of the galaxy.

3.1.3 Sub-grid versus resolved simulations

As DF should be fully resolved when the target/BH mass Mgy is
much more than the background (‘dark matter’ or DM) particle mass
Mpy, one would expect that only in a low-resolution simulation (i.e.
Mgy < Mpy) a sub-grid treatment of DF is necessary.5 However,
if the resolution is too low, the orbital semimajor axis of the BH
particle will be smaller than the inter-particle spacing of the N-body
simulation and the BH will have essentially ‘sunk to the centre’
already — trivially, if it were just one background/DM particle inside
of the initial 5kpc, then there is no definable smaller scale centre
towards which even a ‘perfect’ sub-grid model could migrate the
target/BH. We hence choose Mpy; = 107 M, in the tests with sub-grid
DF, so ~400 DM particles are enclosed inside the initial 5 kpc. We
further run a set of 50 simulations with the same background halo, but
with the BH particles placed randomly on a 5 kpc-radius sphere with
a random direction of velocity in the tangent plane. By choosing the
median between these runs, we can smooth out the chaotic motions
intrinsic in the problem, as well as the effects of anisotropy (both real,
from the halo rotation, and numerical, from N-body noise) generating

SWhen the resolution lies in between and DF is partially resolved, a sub-
grid treatment may cause ‘double counting” when calculating DF. While
this remains an open question in general, we find that it can be avoided by
multiplying a field-mass-dependent function on the DF formula in our tests.
See discussions in Section 4.3.
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eccentric orbits that produce larger oscillations in the instantaneous
BH speed (making the results more difficult to read).

To test our results, we compare a set of reference simulations at
varying resolution that do not adopt any sub-grid DF, but with the
same set-ups of BH initial conditions. At sufficiently high resolution,
these simulations satisfy Mgy >> Mpy and so should directly capture
the salient effects of DF on the target.

3.1.4 Simulations with a ‘fitted’ C43 sub-grid model

Finally, we consider a third set of simulations where we again adopt a
sub-grid DF estimator, but instead adopt the local Chandrasekhar DF
estimator of equation (2) as previously introduced in GADGET in e.g.
Cox etal. (2006) updated to be essentially identical to that in Tremmel
et al. (2015). Here, we assume a Maxwellian velocity distribution,
estimate the mean velocity and dispersion as a kernel-and-cell-
mass-weighted mean, and use the BH kernel density estimator from
Wellons et al. (2022) to estimate p.

We previously noted intrinsic difficulties this method faces:
however, for this particular test problem, the background halo is
(by construction) smooth and nearly isotropic and single-component
and nearly Maxwellian, so this provides a ‘best-case scenario’ for a
C43-like estimator. However, this still leaves unresolved the question
of how to estimate the Coulomb logarithm. We find that common
choices (e.g. the ratio of virial radius to ‘true’ inter-particle spacing)
are not only impossible to predict a priori in a completely general
simulation (they must be put in ‘by hand’), but also appear to give
DF forces that differ systematically from the resolved solutions by
tens of per cent or up to a factor of 2. Therefore, to give this model
the best possible chance, we explicitly fir the Coulomb logarithm,
varying it until we find a model that best matches the BH orbital
decay seen in the explicit high-resolution N-body calculation. We
use this, essentially as a way of detecting how our method compares
to a ‘best-case’ C43 estimator calibrated ahead of time to the specific
problem being simulated.

The simulation set-ups are summarized in Table 1.

3.2 Post-processing in multiphysics galaxy simulations

While comparing our discrete estimator with the Chandrasekhar
estimator in the above idealized test problem can help to test its
accuracy, it is of course also important to apply it to some more
‘realistic’ (or at least more complicated) galaxy simulations that
involve multicomponent (gas + star + DM) anisotropic, highly
inhomogeneous backgrounds. Full applications to such simulations
on the fly can be used to make predictions for e.g. demographics
of free-floating BHs, IMBHSs, and rates of BH-BH coalescence in
galaxy nuclei (e.g. predictions for the Laser Interferometer Space
Antenna (LISA)). However, this is clearly beyond the scope of
this work. Instead, here we will select some snapshots of N-body
information from high-redshift galaxies in the Feedback In Realistic
Environments (Hopkins et al. 2014, 2018) project, and use these to
make some simple post-processing comparisons in order to see how
the full on-the-fly application of the estimator used here might differ
(or not) from other approaches to including or ignoring DF in these
kinds of systems.

4 RESULTS AND DISCUSSIONS

4.1 Validation in on-the-fly simulations

Figs 2-3 show some representative results of our numerical validation
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Chandrasekhar’s formula

calculate Avy, for one full scattering with m;

integrate all field particles (assuming a continuum) over dA

Our discrete formula

- - M -
(@0 =
-

dav,

estimate dAv| /ds at a given s

discrete sum all field particles

Figure 1. A comparison between the derivation of Chandrasekhar’s DF formula (C43) and ours: in C43, Chandrasekhar calculates the change of velocity
Av)| for one full scattering, and integrates over the remaining two dimensions dA (perpendicular to the direction of motion) for all field particles, assuming a
homogeneous and isotropic continuum such that the overall contribution is characterized by the Coulomb logarithm; in our derivation, we estimate the change
of velocity dv)|/ds over the line of motion (coordinated by s) at a given point in the scattering process, which allows us to integrate all field particles over the full
configuration space (as the dimension along the line of motion is now recovered), such that a discrete numerical sum is possible.

Table 1. Representative simulation summary for our idealized tests. Differ-
ent sets share the same set-up of initial conditions: a 108 Mg BH particle
placed randomly at a 5kpc radius with a velocity of 59 kms~! in a random
tangent direction. The background particles form a Hernquist halo with
Mialo = 2 x 101! Mg. The BH speeds from these tests are shown in Fig. 3
(when multiple runs are present, only the median value is shown).

Sub-grid DF
Set Mpm/Mpy model € Criterion No. of runs
1 107! This paper €~ Ax; 50
2 107! Fitted C43 € ~ Ax; 50
3 10° None € < bmin 50
4 107! None € < bmin 50
5 1072 None € < bmin 50
6 1073 None € < bmin 1
7 1074 None € < bmin 1
8 100 None € ~ Ax; 50
9 107! None €~ Ax; 50
10 1072 None € ~ Ax; 50
11 103 None €~ Ax; 1
12 1074 None € ~ Ax; 1
13 1073 None € ~ Ax; 1

tests in on-the-fly simulations, specifically focusing on an illustrative
trajectory of the BHs as well as the BH velocity as a function of time.

First, we examine the behaviour of pure N-body calculations
(without sub-grid DF) as a function of resolution. Not surprisingly,
when the target mass is similar to the N-body particles (e.g. mpm
2 Mgp), no DF is captured. Most previous studies arguing for
different ‘sufficient’ resolutions to capture DF refer to this regime
(see e.g. van den Bosch et al. 1999; Colpi et al. 2007; Boylan-
Kolchin, Ma & Quataert 2008; Hopkins et al. 2018; Pfister et al.
2019; Barausse et al. 2020; Boldrini, Mohayaee & Silk 2020; Ma
et al. 2021), depending on the specific problems they are choosing.
In our case, at better resolution (mpy << Mgy) we see DF but with an
important dependence on how we treat the spatial force softening €.

MNRAS 519, 5543-5553 (2023)

If we adopt a fixed Plummer-equivalent € comparable to or smaller
than the canonical minimum impact parameter for strong encounters
buin ~ G Mpu/(20* + V;3) (here ~60 pc at the initial BH position),
we see excellent convergence once mpy < 0.1 Mgy (Fig. 3, left-
hand panel). However, this is not how force softenings are typically
set in N-body simulations that do not resolve the individual point
masses: instead, to prevent spurious noise in other properties, the
‘optimal’ softening is usually chosen to roughly match the inter-
particle separation € ~ Ax; ~ (Am;/p;)" (Fig. 3, right-hand panel;
Merritt 1996; Romeo 1998; Athanassoula et al. 2000; Dehnen 2001,
Rodionov & Sotnikova 2005). When we do this, we see notably worse
convergence: in fact, the convergence is logarithmic in mpy, because
we have € > by,, and the effective Coulomb logarithm is artificially
truncated (i.e. we artificially suppress close encounters). This is a
known challenge for DF in softened gravity (see e.g. Karl et al. 2015,
for more details and extended discussion), and it further emphasizes
the importance of a sub-grid model like ours: achieving Ax; < byn
requires mpy K 107 Mgy, i.e. billions of N-body particles even for
a simple, idealized halo like that here.

‘We then compare our ‘sub-grid’ DF model (equation 9) calculated
on the fly to an extremely low-resolution initial condtion with mpy =
0.1 Mpy.® using € ~ Ax; as would be applied in typical cosmological
simulations. For this low-resolution case, there is significant variation
owing to different eccentric orbits and discreteness noise, so we

%We find that the results of our sub-grid DF runs are robust and nearly inde-
pendent of resolution so long as the dynamical mass of the target/BH particle
is at least slightly larger (a factor of >2-3) than the mass-weighted median of
the ‘background’ N-body particles. If the BH particle has mass lighter than
the background, then either sub-grid DF model (C43 or equation 9) requires
additional care or else spurious N-body heating effects can become larger than
the true DF forces. So for practical applications where one wishes to evolve
the dynamics of targets with very small masses, it is useful to follow standard
practice (Di Matteo et al. 2003; Springel & Hernquist 2003; Hopkins et al.
2005) and assign a separate ‘true target/BH mass’ used for the DF calculation
and other physics to the N-body particle ‘carrying’ the target/BH.
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Figure 2. Example trajectories of a BH particle in our simulations. The BH is initially placed 5 kpc away from the halo centre (the coordinate origin) on the
x-axis and has a circular velocity of 59 km s~ in the § direction. We see that in the high-resolution run (green dashed) the BH sinks to the halo centre in circular
orbits as time evolves, which is partially resolved by the low-resolution runs with sub-grid DF (red and black lines, with the discrete DF and the ‘calibrated
Chandrasekhar’ estimator, respectively), but not by the run without it (blue dashed; the BH departs significantly from the halo centre in the z direction). The
low-resolution runs (with or without sub-grid DF) suffer from dynamical heating that significantly perturbs the circular orbit. In addition, our discrete estimator
matches well with the calibrated Chandrasekhar estimator — but we have not calibrated our discrete DF estimator in any way [we are simply using equation (9)
directly, without any input parameter other than the smoothing length €].
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Figure 3. The speed of BH particles upon time of evolution in our test problem. The thick red, thick black, and dotted lines show the (median of) results from
low-resolution runs with our discrete estimator, with Chandrasekhar’s DF estimator (with a fitted In A = 4) and from multiresolution runs without sub-grid DF,
respectively (see Table 1). The red shaded area shows the o range for all runs with the discrete estimator. We see that the speed of BH particles decreases
significantly as the BHs sink to the halo centre. The results from our discrete estimator match well with the fitted Chandrasekhar estimator, and match the
converged results of the no sub-grid DF runs at higher resolution. The convergence is better for no sub-grid DF runs with smoothing length less than the minimum
impact parameter (€ < b, left-hand panel) than those with (the usually chosen) length comparable to the inter-particle separation (¢ ~ Ax;, right-hand panel),
as in the latter case the effective Coulomb logarithm is artificially truncated, causing a logarithmic convergence behaviour (see discussions in Section 4.1).

show the median and +1o range of BH velocities. The median
agrees remarkably well with the converged solution. We stress that
equation (9) contains no other adjustable parameter beyond the
physically motivated e: this is an actual prediction.

Next, we compare the ‘fitted’ C43 model equation (2): as described
earlier, in addition to the arbitrary choice of kernel estimator size and
shape (which we set to the smallest size that reduces noise accept-
ably), we freely vary the numerical pre-factor (‘effective Coulomb
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Figure 4. The galaxy snapshot we chose for post-processing analysis. The
colour scales with the projected total mass density (DM + stars + gas).
It is the ‘z5m12b’ galaxy at redshift 7.0 described in Ma et al. (2021),
which is clumpy and dynamically unstable. The post-processing tests are
also shown: (a) a test particle of 10° Mg, placed on the x-axis with a velocity
(Var) of 200km s~ §; (b) the same particle but with different velocities (100,
200, 600, and 1000 km sfl) in the ¥ direction; and (c) a fixed particle at (1,
0, 0) with Vj; = 200kms™! ¥. The implications of these tests are described
in the main text.

log’) In A in equation (2) until we find a value that best matches
our high-resolution simulations. For the best-fitting value, the result
is strikingly similar to our equation (9) (perhaps not surprising,
given that we start from the same assumptions) — but we stress
that even small, ~10 per cent, differences in In A produce significant
disagreement with the high-resolution simulations. Moreover, we
have considered a dozen ‘standard’ estimates of In A widely used in
the literature (see references above and Hashimoto, Funato & Makino
2003; Just et al. 2011; Antonini & Merritt 2012; Dosopoulou &
Antonini 2017), e.g. A ~ |p/V p|/byin, and find that none of them
correctly predicts the best-fitting A (usually discrepant by factors
of ~1.3-2). This probably owes at least in part to the fact that the
central Hernquist (1990) distribution function is appreciably non-
Maxwellian, as discussed in Karl et al. (2015), so the fitted In A
is essentially compensating for this error [the ‘erf(...)-..." term in
equation 2].

As noted earlier, these conclusions are robust to the parameters of
the initial halo and orbit, mass profile of the halo assumed, amount
of angular momentum (anisotropy in the distribution function), and
other choices of the problem set-up: however, we find as expected
that the C43 ‘effective Coulomb logarithm’ must be re-calibrated in
many cases to fit high-resolution simulations. We have also tested
other numerical aspects of the method, including the tree opening
criteria (Power et al. 2003; Springel 2005), time-step size/integration
accuracy (Hopkins et al. 2018; Grudi¢ & Hopkins 2020), and
inclusion/exclusion of the perpendicular force (equation 8): none
of these has a significant effect (consistent with previous studies; see
e.g. Just et al. 2011; Karl et al. 2015; Mukherjee et al. 2021).

Given the close agreement between the discrete DF and explicitly
calibrated Chandrasekhar DF models, it is likely that more detailed
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—-—- fitted C43 (Eq. 1)
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Figure 5. Comparison of the DF amplitude calculated from different DF
formulas. The test particle is a 103 Mg, particle with a 200kms~! velocity
in the y direction, put at different positions on the x-axis (Fig. 4, red dashed
line and arrow). The black, cyan, and red lines show the results from Chan-
drasekhar’s formula [equation 1, with a (fitted) constant Coulomb logarithm
InA = 5], our formula without smoothing (equation 6), and our formula
with smoothing (equation 9), respectively. Our discrete formula remains very
close to Chandrasekhar’s approximation. The smoothing removes most of the
peaks, which could be caused by numerical divergence.

differences in orbit shape we see comparing either of these models
and the true, high-resolution simulation owes not to anything we can
simply ‘further calibrate’ (like a Coulomb logarithm), but rather to
fundamental resolution effects (e.g. more accurately recovering the
shape of the background potential itself, hence the ‘correct’ elliptical
orbit structure, or the treatment of subparsec-scale physics around
supermassive BHs, a known issue as discussed in e.g. Rantala et al.
2017; Mannerkoski et al. 2021, 2022), as well as assumptions of the
Chandrasekhar-like derivation that our DF derivation also implicitly
assumes, e.g., the assumption of linearity (that the net effect on
the BH can be approximated via the sum of many independent two-
body encounters) or forward/backward asymmetry in the distribution
function (implicit in a stronger assumption like homogeneity but
present in a weaker form in our derivation as well).

4.2 Post-processing in multiphysics galaxy simulations

While the idealized experiments given above are important for
validation, their simplicity means that it is difficult to gain insight
into possible differences between our equation (9) and the fitted C43
model. We therefore briefly consider this in post-processing of a
multiphysics galaxy formation simulation. The specific (arbitrary)
simulation and time we select is the ‘zZSm12b’ galaxy at redshift 7.0
described in Ma et al. (2021), illustrated in Fig. 4. The simulation
is multicomponent, containing DM, stars, multiphase gas, and BHs,
with complicated cooling, star formation, and ‘feedback’ physics all
included on the fly. This particular snapshot is chosen because it is
dynamically unstable, asymmetric, gas rich, and star forming, and
contains several giant star clusters and molecular cloud complexes,
all of which complicate the dynamics. We compare the results from
the discrete estimator with the Chandrasekhar estimator and discuss
their differences and implications.

In Fig. 5, we compare the acceleration amplitude ags = |ags]
calculated from different formulae for a test particle of mass
10° Mg, in the representative snapshot. The test particle is placed
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Figure 6. The unit direction vectors calculated from Chandrasekhar’s pro-
jected on those from our DF formulas. The test particle is the same as in
Fig. 5 but with different velocities (still along the y-axis). The difference of
this value from 1 shows how misaligned the directions are. At most positions,
the directions are perfectly aligned for relative high velocities, yet at low
velocities huge error could occur due to contributions from particles far
apart.

along an arbitrary x-axis passing through the galaxy centre with a
simulation-frame velocity of Vj; = 200kms~' § (Fig. 4, red dashed
line and arrow). We compare the results from our ‘full” expression
(equation 9), our expression ignoring force softening (equation 6),
and the classical C43 expression (equation 1). Equations (9) and (6)
can be directly applied to the simulations without any processing.
To apply equation (1), we estimate the continuous p at each position
X using a kernel density estimator by averaging through the 0.4 kpc
cubic box around x,,; we calculate the local velocity integral by
converting it into the usual discrete sum in this box, and we take
In A =5 to be constant, once again fitting it so that the median/mean
acceleration is essentially identical.

The agreement between equations (9) and (1) is reasonable, but
again this requires choosing A specific for the problem and snapshot
(we note, for example, that the effective A here differs by almost a
factor of 2 from the value fitted to the idealized Hernquist (1990)
profile sphere tests in the previous section). Equation (6), which
ignores force softening, is also quite similar, except for occasional
‘spikes’ arising from close proximity to N-body particles producing
a spurious large force that is not actually present in the simulations
(accounted for correctly in our equation 9).

Fig. 6 similarly compares the direction @4¢. Because C43 assume
homogeneity, and their a${* has equal contributions from all scales, a
major ambiguity in equation (1) — even after we fit out the Coulomb
logarithm — is where/how to evaluate V = V), — V,,. Should we
interpolate to the local value at x;,, weight by contribution to A, or
weight by mass (dominated by distant particles)? If we follow the
same procedure above to obtain a ‘local’ V, then we see that usually
the direction of @y; from equation (9) and that from equation (1) agree,
especially if we assume a test particle M with large lab-frame |V),|
(since then V &~ V), independent of the background v,,). However,
when V), is small (the case of interest for sinking), equation (1)
can occasionally ‘flip’ to point in an unphysical direction in a noisy
velocity field.

Our equation (9) allows us to easily quantify the contributions
to the total ayr from all the mass in radial shells. Fig. 7 shows this
(specifically daqgs/dIn r, integrating the contributions from all particles
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Figure 7. The contributions and cumulative results on DF from slices with
different radii around a test particle. The test particle is a 10° M, particle at
(0, 1, 0) with a 200 km g1 velocity in the y direction. The particle’s distance
to the virial radius where we cut off the sum is labelled with a black dashed
line. We see that contributions are mostly from slices near the particle, while
those from slices outside the virial radius are 21000 times lower, suggesting
that our cut-off makes little difference.

in logarithmically spaced shells of distance r from M) again for a
representative example (with M at |x,,| = 1 kpc from the origin on
the x-axis) in the same snapshot. At small scales (» < 1 kpc) around
M, where the density field is statistically homogeneous (there are
local fluctuations, but there is not a strong systematic dependence
of density on distance r from M), we see the expected Coulomb log
behaviour (dag¢/dInr ~ constant). At larger radii, the contribution
falls rapidly. We can, for example, truncate the sum in equation (9)
at the virial radius (labelled) with negligible loss of accuracy. This
is expected if the galaxy follows a realistic density profile, as in e.g.
an isothermal sphere, the density is not constant, but at r > |x|
falls rapidly (o< 72, giving rapid convergence). As expected, the
behaviour at larger r does motivate the value of In A we fit: if we
take A = bpax/bmin, With bpin ~ max[(m/p)'/3, G M/V?] ~ 1pc,
and byax ~ 1kpc, we obtain In A ~ 7, similar to our fitted value.

The above discussions are closely related to cases where the
background field particles have a non-negligible physical bulk
motion, like a wandering BH in a rotating disc-galaxy set-up. While
studying such simulations in detail is beyond the scope of this work,
we comment that the rotation of star particles in the disc could
largely affect the strength and direction of DF, since their phase-space
distribution departs significantly from homogeneity and isotropy. In
an extremely dense galactic environment, we may expect that the
local disc particles with similar circular velocities contribute most to
the BH’s DF, such that the BH is boosted by the field particles around
it, which is similar to the case we already studied. For a less dense set-
up, non-local (halo) particles with different circular velocities could
be important, and their combined contribution to DF with local disc
particles could make the BH dynamics more complicated. Our DF
estimator, which applies to an arbitrary phase-space distribution and
counts the DF contribution from each individual field particle, would
be ideal for studying such problems. Such topics will be studied in
future work.

Briefly, one might wonder whether on sufficiently large scales,
where the universe becomes homogeneous and isotropic, aqr might
begin to grow logarithmically again. However, even if we ignore finite
speed-of-gravity effects (i.e. consider pure Newtonian gravity), on
these scales the velocity must include the Hubble flow, $0 vppygicar =
Vpeeuliar + H (2) r. In anisotropic pure Hubble-flow medium, the DFis
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identically zero, as there is always equal-and-opposite contributions
to agr from the fact that V oc r (i.e. because (V) = 0 on all
scales). If we consider a Hubble flow plus peculiar velocities,
then expanding equation (9) appropriate for large » where (po(r))
~ constantand H r 3> (|[Vpecutiar(r)|*) '/, the contributions to the sum
take the form > G2 M (|Vpecutiar (")) /> Am; JH? r® o [ pr=° dx,
which converges rapidly as r — oo.

4.3 Interpolating the sub-grid model in simulations with
variable masses

Finally, one can easily imagine situations such as cosmological
simulations with a range of BH masses where the DF forces
are well resolved for some targets (e.g. supermassive BHs with
Mgy ~ 10 M) but not others (e.g. lower mass BHs). In these
cases, applying equation (9) to all BHs would ‘double count’ for
some. A simple (albeit ad hoc) approach to avoid double counting is
to multiply Aa; by a sigmoid or ‘switch’-like function g(Am,/M;,
...) that has the property g(x, ...) - 0 forx — 0 and g(x, ...) —> 1
for x — oo. It is beyond the scope of our paper here to develop and
test such models, and from Fig. 3 we see one complication is that
this should depend on how one treats the force softening (not just
particle masses Am;), but a quick examination of the idealized tests
in Section 4.1 with different Mgy suggests that (if we assume € ~
Ax, as usually adopted in such simulations) a simple function such
as g = min(1.0, max(0, (3/log (Mgy, j/Am;) — 1)/1.6)) works rea-
sonably well. Another advantage of our equation (9) is that because
it operates in pairwise fashion, it can naturally deal with simulations
with a wide range of Am; (a common situation), while attempting
to apply such a correction factor ‘locally’ to equation (1) leaves it
ill-defined which value of Am; to use.

5 CONCLUSIONS

In numerical simulations, especially of star and galaxy formation, it
is common to encounter the limit where DF should be experienced
(M = m) by some explicitly evolved objects M (e.g. BHs and massive
stars), but it cannot be numerically resolved (Am; 2 M). As a result,
there have been several attempts to develop and apply ‘on-the-fly’
sub-grid DF models. Almost all of these amount to some attempt to
calculate and apply the traditional C43 formula (equation 1) to the
masses M at each time (see e.g. Colpi et al. 2007; Dotti et al. 2009;
Tremmel et al. 2015; Pfister et al. 2019). However, this can introduce
a number of problems in practice, namely the ambiguity of kernel-
dependent locally defined quantities, inconsistency in applying force
softening and momentum conservation, the semi-arbitrary choice of
Coulomb logarithm, the necessity of assuming Maxwellian velocity
distribution functions, and additional computational expenses for
kernel estimates.

In this paper, we derive a new discrete expression for the DF force,
age, given in equation (9). This formula is specifically designed for
application to numerical simulations, either in post-processing or
‘on the fly’ when the DF forces cannot be resolved (e.g. when
N-body particle masses are comparable to the BH mass M, as a
‘sub-grid” DF model). While still approximate, this has a large
number of advantages compared to the traditional C43 analytical
expression, including (1) it allows for an arbitrary distribution
function, without requiring an infinite homogeneous time-invariant
medium with constant density, Maxwellian velocity distribution,
etc. (but it does reduce identically to a discrete form of the C43
expression, when these assumptions are actually satisfied); (2) it is
designed specifically for simulations, so it is represented only as a
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sum over quantities that are always well defined in the simulation for
all N-body particles (e.g. positions, velocities, and masses), and does
not require the expensive and fundamentally ill-defined evaluation
of quantities such as a ‘smoothed’ density, background mean ve-
locity/dispersion/distribution function, Coulomb logarithm, etc.; (3)
it trivially incorporates force softening exactly consistent with how
it is treated in code, and generalizes to arbitrary multicomponent
N-body simulations with different species and an arbitrary range
of particle masses; (4) it manifestly conserves total momentum,
unlike N-body implementations of C43; and (5) it can be evaluated
directly alongside the normal gravitational forces with negligible
cost, and automatically inherits all of the desired convergence and
accuracy properties of the N-body solver. We have implemented
this ‘live’ evaluation of equation (9) in GIZMO, and verified that all
of the properties above apply, that it agrees well with our N-body
simulations, and that the computational overhead of evaluating it
alongside gravity in the tree is immeasurably small.

There are still uncertainties in our work. In our derivation of
the discrete formula, we inserted an approximate integral kernel,
which is not necessarily unique or best behaved. We found that
even if our discrete estimator closely agrees with the calibrated
Chandrasekhar DF estimator in our test problems, it still differs
from the high-resolution simulation results in terms of the detailed
particle trajectories, which might be related to the fundamental
Chandrasekhar-like assumptions we have made in our formula. We
also note that it remains an open question how to accurately avoid
‘double counting” when some of the DF may be captured self-
consistently by the N-body code, while additional DF is modelled
using our sub-grid model. This is especially the case when the system
evolves (such as when supermassive BHs grow) and the fraction of
‘resolved’ DF changes with time. Future work will be needed to
make improvements on these points.
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