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A B S T R A C T 

A long-standing problem in galactic simulations is to resolve the dynamical friction (DF) force acting on massive black hole 
particles when their masses are comparable to or less than the background simulation particles. Many sub-grid models based on 

the traditional Chandrasekhar DF formula have been proposed, yet they suffer from fundamental ambiguities in the definition of 
some terms in Chandrasekhar’s formula when applied to real galaxies, as well as difficulty in e v aluating continuous quantities 
from (spatially) discrete simulation data. In this work, we present a new sub-grid DF estimator based on the discrete nature of 
N -body simulations, which also a v oids the ambiguously defined quantities in Chandrasekhar’s formula. We test our estimator 
in the GIZMO code and find that it agrees well with high-resolution simulations where DF is fully captured, with negligible 
additional computational cost. We also compare it with a Chandrasekhar estimator and discuss its applications in real galactic 
simulations. 

Key words: Galaxy: kinematics and dynamics – methods: numerical – black hole physics – quasars: supermassive black holes. 
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 I N T RO D U C T I O N  

n essential element in the study of galactic dynamics is the process
f dynamical friction (DF; Chandrasekhar 1943 ), a statistical effect 
f numerous two-body scatterings that causes a massive particle 
o lose its momentum when it travels through a medium of much
ighter background particles. DF is believed to be an important effect 
o dri ve massi ve black holes (BHs; from intermediate-mass BHs to
upermassive BHs) to galactic centres (see e.g. Ostriker 1999 ; Chen 
t al. 2022 ; Weller et al. 2022 ), and it plays an essential role in the
volution of globular clusters (see e.g. Portegies Zwart & McMillan 
002 ; G ̈urkan, Freitag & Rasio 2004 ; Alessandrini et al. 2014 ; Shi,
rudi ́c & Hopkins 2021 ). Hence, the e v aluation of DF is important

n studying the evolution of galaxies, globular clusters, and BHs in a
ide variety of contexts. 
In numerical N -body simulations with sufficient resolution (such 

s in the limit in which all bodies such as stars, BHs, or even
ark matter (DM) particles are represented by individual N -body 
articles), DF will be automatically captured. Ho we ver, as DF is an
ccumulated effect of many weak encounters in the regime where 
he ‘target’ mass is much larger than the mass of the ‘background’
articles ( M target particle � M background particle ), it is often not possible 
o fully resolve this background. This is especially true in large- 
cale simulations of e.g. galactic scales, where a typical ‘ N -body
article’ can easily have mass much larger than intermediate-mass 
nd supermassive BHs ( �10 4 M �), let alone the masses of individual
tars, DM particles, or hydrogen ions. Specifically, when the N -
ody particle mass becomes comparable to or larger than the ‘target’ 
ass, the explicit results of an N -body solver will not return the

orrect DF forces. For example, in the ‘high-resolution’ simulations 
 E-mail: lma3@caltech.edu 
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f high-redshift galaxies in Ma et al. ( 2018a , b , 2019 ), the baryonic
ass resolution ( � m i ) is ∼7000 m � and the DM mass resolution is
ve times larger, which makes it impossible to resolve DF effects
or BHs or other ‘sink’ particles (e.g. particles that might represent
nresolv ed massiv e, dense structures such as globular clusters, or
yper-dense exotic DM structures, etc.) less massive than ∼10 5 M �.
ence, in these types of simulations, an additional ‘sub-grid’ DF 

orce must be added to these ‘target’ particles to attempt to reco v er
heir real dynamics, to replace the lost information of individual two-
ody encounters in the smoothed-out gravity potential in simulations. 
Multiple sub-grid DF models have been proposed in the literature 

e.g. Colpi et al. 2007 ; Dotti et al. 2009 ; Tremmel et al. 2015 ; Pfister
t al. 2019 ) based on the classical Chandrasekhar’s DF formula
Chandrasekhar 1943 , hereafter C43 ) 

 

C43 
df = −4 πG 

2 Mm ln � 

∫ 
d 3 v m 

f ( v m 

) 
v M 

− v m 

| v M 

− v m 

| 3 , (1) 

here M and m are the masses of the moving ‘target’ particle and the
ackground or field particles, respectively. Here, v M 

and v m are their
elocities, and � is the Coulomb logarithm defined by � ≡ b max / b min ,
here b max and b min are the maximum and minimum impact factors
f scattered particles in weak encounters, respectively. f ( v m ) is the
elocity distribution of field particles, and, with the usual assumption 
f a Maxwellian velocity distribution with dispersion σ , the formula 
educes to (Binney & Tremaine 2008 ) 

 

C43 
df = − 4 π2 G 

2 Mρ ln � 

V 

3 
M 

[
erf 

(
v m √ 

2 σ

)
−
√ 

2 

πσ
e −v 2 m / 2 σ

2 
v m 

]
v M 

; (2) 

.e. the DF acceleration is proportional to the local field particle
ensity ρ and is in the opposite direction of the particle velocity v M 

,
f fecti vely acting as a ‘friction’ force. Despite its elegance and (often
urprising) accuracy in estimating the DF, Chandrasekhar’s formula 
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uffers from the following shortcomings when applied as a sub-grid
odel: 

(i) In deriving the formula, C43 assumes an isotropic and homo-
eneous medium of field particles. This is generally not true for
eal galaxies. For example, it has been pointed out that high-redshift
alaxies and low-redshift dwarf galaxies could be chaotic and clumpy
e.g. Weisz et al. 2014 ; Meng & Gnedin 2020 ; Flores Vel ́azquez et al.
021 ). The existence of such systems makes the physical assumptions
ehind C43 formula questionable. 
(ii) The Coulomb logarithm is ambiguously defined, and is often

elected ad hoc in practice, with a case-dependent selection of
he minimum and maximum impact parameters (see e.g. Tremmel
t al. 2015 ; Pfister et al. 2019 ), which introduces a large systematic
ncertainty in the sub-grid model. 
(iii) The formula has an explicit dependence on the local mass

ensity, which must be e v aluated from discrete N -body data for
ollisionless fluid (stars or DM, often ‘blended’ with gas for which
he density is continuously defined, depending on the numerical
ydrodynamic method). The choice of how to do so is arbitrary and
as no defined ‘preferred’ scale. Most commonly, it is done with a
ocal kernel density estimator at some multiple of the resolution scale
see e.g. Tremmel et al. 2015 ), but this is known to be quite noisy,
nd is not consistent with the unique local gas density available from
ydrodynamic calculations. 

(iv) The v elocity inte gral and f ( v m ) must be estimated with some
imilar ad hoc local estimator, which is also undefined, and different
hoices can lead to different directions for the DF acceleration.
sually, the choice of a local kernel sampling amplifies numerical
oise further here and means that f ( v m ) must be assumed to be
axwellian (since it cannot be fitted to an arbitrary function given

ust a few local points). 
(v) There is no self-consistent way to incorporate force soften-

ng, which is necessary in N -body simulations to a v oid spurious
ivergences in the forces, as an N -body particle does not physically
epresent a point-mass particle. Failure to incorporate softening can
roduce inconsistent results between the (often softened) gravita-
ional acceleration and the additional DF acceleration. 

(vi) As C43 depends on local continuous field parameters but
epresents long-range forces, there is no way to self-consistently
mplement it in a way that conserves momentum, while in reality
F should be exactly conserv ati ve since it is derived from an infinite

uperposition of pair-wise N -body encounters. 
(vii) Evaluating C43 numerically requires operations that are not

lgorithmically identical to the gravity solver in N -body equations,
hich introduces not only additional inconsistencies, but also sub-

tantial computational expense. This also means that numerical
onvergence for C43 applied to N -body particles is undefined: there
s no formal guarantee of convergence even on idealized, smooth
roblems. 

To tackle these problems, we develop a new sub-grid DF estimator
hat can be efficiently embedded into discrete N -body calculations
n this work. The new estimator is based on a discrete version of
he DF formula that can be applied to an arbitrary phase-space
istribution of field particles, and a v oids the fundamental ambiguity
n the definitions of some terms in Chandrasekhar’s formula. It also
aturally embeds force softening and momentum conservation. It can
lso easily be generalized to assumptions beyond those of C43 for
he nature of DF-like forces. We test our estimator in both on-the-fly
imulations and post-processing, and compare our results to those
rom a Chandrasekhar DF estimator. The paper is written as follows:
n Section 2 , we derived our discrete DF formula. In Section 3 , we
NRAS 519, 5543–5553 (2023) 
escribe the methods we use to test the estimator. In Sections 4 and
 , we present and discuss the results. 

 D E R I VAT I O N  O F  O U R  D F  F O R M U L A  

ere, we present the deri v ation of our discrete DF formula, and
eneral comments on its application in N -body methods. 

.1 Deri v ation 

n C43 , the classical DF formula is derived as follows: assume that
 test particle with mass M travels through an infinite, homogeneous
nd isotropic medium (filled with background particles with mass m

M ), and experiences a number of individual two-body encounters.
uring each encounter, along the direction of relative motion, the test
article velocity in the parallel direction to the initial relative velocity
s altered by (after integrating along the encounter path d s from s →
∞ to s → +∞ ) 

 v ‖ = 

2 m V 

M + m 

[
1 + 

b 2 V 

4 

G 

2 ( M + m ) 2 

]−1 

= 

2 m V 

( M + m ) (1 + α2 ) 
, (3) 

here V ≡ v m − v M 

(i.e. the velocity of m in the rest frame of M ),
 is the impact parameter, and α ≡ b V 

2 /G ( M + m ) parametrizes
he encounter strength. Note that the perpendicular deflection � v ⊥ 

ill be cancelled by symmetry if the medium is homogeneous and
sotropic so we neglect it for now, but we will return to this below. To
ccount for the contributions of all encounters, C43 then integrates
quation ( 3 ), by noting that the encounter rate in a differential time
 t is the sum of encounters within a cylindrical slice, with surface
rea d A in the plane perpendicular to the relative motion and height
 d t , o v er all relativ ely v elocities and angles 

 df ≡ d v M 

d t 
= 

∫ 
� v ‖ V d A N ( x , v ) d 3 v 

= 

∫ 
2 α

1 + α2 

G m 

b 
ˆ V N ( x , v ) d p d q d 3 v , (4) 

here N ( x , v ) = d N/ d 3 x d 3 v is the phase-space distribution func-
ion (by number) of the background particles; ˆ V ≡ V /V , and p and q
re the two spatial coordinates perpendicular to the path-length d s , i.e.
haracterizing the surface d A (so d s d p d q = d 3 x ). The integral can
e easily carried out for an isotropic and homogeneous distribution
ith N ( x , v ) = nf M 

( v ), where n is the number density (constant) and
 M 

( v ) is the Maxwellian velocity distribution, leading to the classical
ormula. 

To generalize the abo v e formula to an arbitrary phase-space distri-
ution sampled by a discrete set of data points as in our simulations,
ne might naively attempt to directly insert the usual N -body approx-
mation, replacing N ( x , v ) → 

∑ 

i ( �m i /m ) δ( x − x i , v − v i ). This
reats the distribution function as a sum of Dirac δ-functions, i.e.
oint particles, each with N -body particle mass � m i , so representing
 = � m i / m ‘background’ particles of mass m . Ho we v er, the inte gral

n equation ( 4 ) only integrates over the two-dimensional surface
d p d q ) as a slice of the full phase space, which makes it impossible
o discretize directly. The missing integral parameter reflects the
undamental conceptual difficulty in deriving the DF formula for
rbitrary phase-space distribution. In deriving equation ( 4 ), we
ctually already performed the integral over the missing degree of
reedom when calculating � v ‖ , by integrating over path-length d s
n each encounter from −∞ to ∞ , containing the full effect of one
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wo-body encounter before we sum them up to get the final result.
his is only correct if the background distribution is isotropic and 
omogeneous, since in principle, the DF process cannot be e v aluated
n this manner for any given instant of time, without knowing all
he history and future of the full dynamics, unless the background 
rofile is static (i.e. isotropic and homogeneous). Nevertheless, it 
s still suggestive to consider what an inhomogeneous background 
article distribution could bring (quantitatively) to this story; hence, 
e offer an ad hoc derivation here. 
The key conceptual requirement to replace equation ( 4 ) with one

hat can be discretized for an arbitrary N is to re-expand the integral
hat gave rise to � v ‖ (equation 3 ) to explicitly account for the
ontributions of particles at different distances s along their two-body 
ncounter trajectory, i.e. taking � v ‖ → 

∫ 〈 d � v ‖ / d s〉 deflected d s (see
amparison in Fig. 1 ). Recall that the entire point of our deri v ation is
o develop a formula that can be applied where the explicit N -body
volution of the mass M was not followed. Since DF fundamentally 
rises from the ‘back-reaction’ of the medium (i.e. the deflection of
ass m as it feels gravity from M creating a net ‘drag’), we need

o identify the difference between the contribution to d v M 

/d t that m
ould have at a distance r along its encounter trajectory with M

f it had indeed been deflected by M , relative to the acceleration
 would feel if it saw m on an ‘undeflected’ trajectory. The latter

s, of course, just the ‘normal’ gravitational acceleration on M . 1 

he full expressions for this are quite cumbersome and cannot be 
nalytically closed; ho we v er, the y are still, in an y case, approximate
as we still ignore many effects such as other influences on the
rbit of m during each stage of its two-body encounter), so we can
afely approximate them to the same order of accuracy by noting that
symptotically 〈 d � v ‖ / d s 〉 deflected → � v ‖ b 2 / 2 ( s 2 + b 2 ) 3 / 2 at large r

b (noting r 2 ≡ s 2 + b 2 ), and (for weak encounters, the only case
here our deri v ation is meaningful) near pericentre [ r = b (1 + ε)
ith ε � 1] 〈 d � v ‖ / d s〉 deflected → � v ‖ (1 / 2 b). Together with the

dentity 1 = ( b/ 2) 
∫ +∞ 

−∞ 

b d s / ( s 2 + b 2 ) 3 / 2 , we can replace � v ‖ in
quation ( 4 ) with this expression, giving 

 df = 

∫ 
2 α G m N ( x , v ) 

b (1 + α2 ) 
ˆ V d p d q d 3 v 

b 

2 

∫ 
s 

b d s 

( s 2 + b 2 ) 3 / 2 

≈
∫ ∫ 

s 

2 α G m N ( x , v ) 
b (1 + α2 ) 

ˆ V d p d q d 3 v 
b 

2 

b d s 

( s 2 + b 2 ) 3 / 2 

= 

∫ 
α b G m 

(1 + α2 ) r 3 
ˆ V N ( x , v ) d 3 x d 3 v , (5) 

here we used d s d p d q ≡ d 3 x , and in the ≈ step, where we mo v e
he integrand, we essentially make a much weaker version of the 
riginal C43 approximation, assuming that quantities such as N do 
ot vary strongly o v er the time-scale during which most of the � v ‖ 
s imparted by each two-body encounter. Now, we can insert the 
 This contribution will differ depending on the sign of s at a given 
 , i.e. depending on whether m is ‘approaching’ or ‘receding’ from M ; 
o we ver, in our application to N -body simulations, the sign of V for 
istant m will change frequently, so there is no way to unique identify 
approaching’ or ‘receding’ elements without actually performing the full 
ime integral of every encounter (i.e. doing the full ‘live’ N -body cal- 
ulation with M , exactly what we wish to a v oid). We therefore simply 
verage between the two, giving 〈 d � v ‖ / d s 〉 deflected ≡ (1 / 2 | d s | ) [ ∫ −s 

−s−d s ( a 
′ −

 

0 ) d t + 

∫ s+ d s 
s 

( a ′ − a 0 ) d t ], where a ′ ≡ a Mm [ x deflected 
M 

( t ) , x deflected 
m ( t )] and 

 

0 ≡ a Mm [ x 
m −undeflected 
M 

( t ) , x undeflected 
m ( t )] are the two-body accelerations 

ssuming m follows the deflected and undeflected trajectories, respectively 
note that M still ‘sees’ m in its undeflected trajectory, but m does not ‘see’ 
 in that case). 

w  

t  

t  

d

2

d
e
c
s
N

 M
arch 2023
iscrete N -body form of N as a sum of δ functions to trivially obtain 

 df → 

∑ 

i 

αi b i G �m i 

(1 + α2 
i ) r 

3 
i 

ˆ V i 

= 

∑ 

i 

(
αi 

1 + α2 
i 

) (
b i 

r i 

) (
G �m i 

r 2 i 

)
ˆ V i . (6) 

e have of course made a number of assumptions to derive equa-
ion ( 6 ), and our final expression is not necessarily unique. Ho we ver,
t has many useful properties. (1) In a spatially homogeneous medium 

i.e. anywhere we can write N = n f ( v )], it is trivial to verify by
nserting this into equation ( 5 ) that equation ( 6 ) reproduces exactly
he expressions from C43 for any f ( v ). (2) equation ( 6 ), as intended,
an be easily applied to an arbitrary N -body simulation collection
f particles of arbitrary types [summing different components such 
s DM, gas, or stars simply involves carrying out the sum in
quation ( 6 ) with the appropriate � m i and m for each ‘species’].
3) equation ( 6 ) remo v es a number of ambiguities: the Coulomb
ogarithm is remo v ed (it only ‘reappears’ if indeed the medium
s infinite and homogeneous), and V that appears is unambiguous 
discussed further below). (4) equation ( 6 ) abo v e can be trivially
eneralized for softened gravity (below). (5) equation ( 6 ) at least
symptotically captures the relative contributions of near versus far 
articles m to the DF force, i.e. the dimensional scaling with r , e.g.
orrectly capturing the fact that most of the effect comes from when
articles are near pericentre. 

.2 Force softening 

o apply equation ( 6 ) to numerical simulations, we must account
or force softening as in the simulations (since an N -body particle
f mass � m i represents many individual stars, collocating them at a
pecific x i , v i would lead to spurious divergences in the forces). In
quation ( 6 ), note that all but one term are well behaved: 0 < αi / (1 +
2 
i ) < 1 / 2, 0 < b i / r i < 1, and | ̂  V | = 1, so numerical divergence
ntirely arises from the term G �m i /r 

2 
i . Ho we ver, this is just the

ewtonian gravity from a point N -body particle – i.e. exactly the same 
erm that is force softened in the simulations. Hence, we insert the
ame softening kernel S i ( r i ) as used in the actual N -body simulation
taking G �m i /r 

2 
i → S i ( r i ) G �m i /r 

2 
i ]. 

For the specific simulations here, this follows from the adaptive 
ravitational softening scheme described in Hopkins ( 2015 ), corre- 
ponding to a cubic spline mass distribution: 

 i ( r i ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

32 
3 q 

3 
i − 192 

5 q 
5 
i + 32 q 6 i 0 ≤ q i < 

1 
2 

− 1 
15 + 

64 
3 q 

3 
i − 48 q 4 i 

+ 

192 
5 q 

5 
i − 32 

3 q 
6 
i 

1 
2 ≤ q i < 1 

1 q i ≥ 1 

, (7) 

here q i ≡ r i / H i , with H i ≈ 2 . 8 εi the radius of compact support of
he kernel and εi the equi v alent Plummer softening. This remo v es
he numerical divergence and gives the correct result for a uniform
ensity distribution sampled by N -body particles. 2 
MNRAS 519, 5543–5553 (2023) 

 Note that in principle this softening is not exactly self-consistent with our 
eri v ation, since if � m i represents an extended spatial distribution of particles, 
ach would be deflected slightly differently in equation ( 5 ). However, this is 
onsistent with the simulations: N -body softening for collisionless fluids 
imply features this ambiguity at a fundamental level, because an individual 
 -body particle cannot actually deform in a fully Lagrangian manner. 



5546 L. Ma et al. 

M

2

I  

t  

t  

o  

n  

g

a

T  

c  

u  

s  

b  

t  

g
1  

i  

|
 

n  

i  

e  

2

I  

m  

a  

S  

s  

s  

T

a

w

2

I  

m  

a  

i  

g  

I  

i  

i  

t  

s
 

a

a

�

�

w  

a  

g  

o  

m  

w  

t  

n  

d  

e
 

n  

n  

a  

c  

t  

b  

e
 

e  

−  

e  

b  

i

3

T  

d  

C  

s  

H  

t  

i  

b  

s

3

3

W  

i  

s  

i  

i  

3 In PM and related methods, where long-range forces are e v aluated via 
computing the potential from a particle-mesh Fourier method, implementing 
equation ( 9 ) is less trivial: the issue is that the direction ˆ V i differs from ̂

 r i , 
so one cannot simply treat a sf as a scalar correction to the regular external 
gra vitational potential, b ut must compute a separate potential/field. Ho we ver, 
in hybrid tree-PM methods, such as (optionally) implemented in GIZMO , the 
less accurate PM forces are only used at large distances; given this, we find 
(consistent with Fig. 7 ) that the errors from simply truncating the sum for 
a df by including only the contributions from the tree-walk (ignoring the PM 

terms in a df ) are entirely negligible (below normal integration-error level). 
4 That behaviour is not guaranteed if one attempts to conserve momentum by 
simply applying a C43 -style formula to M and then ad hoc ‘redistribute’ the 
equal-and-opposite momentum change to the neighbouring i around M . 
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.3 Perpendicular force 

n the abo v e, we only included the parallel DF term ( ∝ ̂

 V i ). Ho we ver,
wo-body encounters also produce a perpendicular deflection a df, ⊥ 

;
his only vanishes in the C43 derivation because of the assumption
f a homogeneous N (giving exact cancellation). Because we do
ot assume homogeneous N , we can (if desired) retain these terms,
iving 

 df, ⊥ 

= −
∑ 

i 

(
1 

1 + α2 
i 

) (
b i 

r i 

) (
S i ( r i ) 

G �m i 

r 2 i 

)
ˆ b i 

b i ≡ r i − ( r i · ˆ V i ) ˆ V i , (8) 

his differs from the parallel a df, ‖ only by one power of αi and, of
ourse, the direction. The power of αi means that the perpendic-
lar deflection can be stronger (compared to the parallel term) in
trong encounters [although 0 < 1 / (1 + α2 

i ) < 1, so this term is still
ounded and cannot produce spurious divergences or forces larger
han the re gular/e xternal acceleration]. Ho we ver, because the inte-
rated force is al w ays dominated by weak deflections (where αi �
), then even ignoring cancellations (which further reduce a df, ⊥ 

even
n inhomogeneous N ), this term is generally smaller than the parallel
 a df, ‖ | by one power of ∼G M /r V 

2 ∼ M /M total , galaxy ( < r ) � 1. 
We show in an additional set of tests that this term is completely

egligible for most galaxy simulation contexts; hence, we do not
nclude them in our final expression and tests belo w. Ho we ver, we
mphasize that it is trivial to include and imposes no additional cost.

.4 Final expression 

t is straightforward to generalize the abo v e for a spectrum of masses
 , i.e. inte grating o v er the stellar initial mass function. Ho we ver, for

ny M � 10 M �, this makes a negligible difference to our results.
ince we do not know the ‘true’ DM particle mass, it is more
traightforward to simply assume the limit M � m , in which case the
pecies masses m completely factor out of the salient expressions.
his gives the expression we will use throughout: 

 df = 

∑ 

i 

� a i df 

� a i df ≡
(

αi b i 

(1 + α2 
i ) r i 

) (
S i ( r i ) 

G �m i 

r 2 i 

)
ˆ V i , (9) 

ith αi ≈ b i V 

2 
i /G M . 

.5 Numerical implementation 

n the form of equation ( 9 ), it is particularly straightforward to imple-
ent our estimator. First, noting that αi and b i ≡ r i | ̂ r i − ( ̂ r i · ˆ V i ) ˆ V i |

re a function only of r i and V i , we see that the only piece of additional
nformation needed to compute equation ( 9 ), alongside the usual
ravity force, in an N -body solver is the velocity V (already known).
n other words, we do not need to construct some estimator for values
n the C43 formula, like ρ, � , and 〈 V 〉 that are not actually computed
n standard N -body simulations. Secondly, we also immediately see
hat it is completely trivial to carry out this sum o v er an y arbitrary
et of species (e.g. stars + gas + DM + other BHs). 

Comparing the form of equation ( 9 ) and the ‘regular’ gravitational
cceleration a ext : 

 M 

= a ext + a df = 

∑ 

i � a i ext + 

∑ 

i � a i df (10) 

 a i ext ≡
(
S i ( r i ) 

G �m i 

r 2 
i 

)
ˆ r i (11) 
NRAS 519, 5543–5553 (2023) 
 a i df ≡
(

αi b i 
(1 + α2 

i 
) r i 

) (
S i ( r i ) 

G �m i 

r 2 
i 

)
ˆ V i , (12) 

e immediately see that the operation needed to compute a df is
lgorithmically identical to that needed to compute the normal
ravitational forces. In tree-gravity, tree-PM, direct N -body, or many
ther methods, implementing exact e v aluation of equation ( 9 ) in a
anifestly conserv ati ve manner is especially trivial. 3 In e.g. a tree-
alk, as one sums up to compute a ext , we simply sum the additional

erm � a i df , which scales exactly with | � a i ext | multiplied by the
umerical pre-factor αi b i / (1 + α2 

i ) r i , and oriented in the different
irection ˆ V i . The gravitational force softening is also naturally
mbedded in equation ( 9 ). 

Moreo v er, our equation ( 9 ) is well behaved when applied to tree
odes/leaves, not just individual particles: one simply treats each
ode as a ‘superparticle’ with the appropriate total � m i and mass-
veraged V i , r i , in the same manner as done for the usual gravity
alculation. It is trivial to verify from the form of equation ( 9 ) that
he order of the errors from this approach will al w ays be equal to or
etter than the order of errors in a ext in the tree (i.e. convergence is
qual or faster). 

To ensure manifest momentum conservation, we simply enforce
qual and opposite forces, i.e. apply an acceleration � a M -to- i =
( M/�m i ) � a i df to each particle i . The scaling of the pre-factor in

quation ( 9 ) is such that it guarantees this ‘back-reaction’ term is well
ehaved and does not produce any spurious numerical divergences
n the accelerations of the particles i . 4 

 N U M E R I C A L  VA L I DAT I O N :  M E T H O D O L O G Y  

o study the accuracy of our DF formula, we compare it to both
irect high-resolution simulations and calibrated versions of the local
handrasekhar’s DF formula, using both ‘on-the-fly’ applications in

imulations (Section 3.1 ) and post-processing methods (Section 3.2 ).
ere, we provide details of those methods. In what follows, we refer

o the ‘target’ or ‘sinking’ particle as a BH of mass M BH , since this
s a particularly rele v ant moti v ating case for our sub-grid model,
ut of course the ‘target’ particle could in principle represent any
ufficiently compact bound massive object. 

.1 On-the-fly simulations 

.1.1 Numerical methods 

e have implemented the ‘discrete DF estimator’ equation ( 9 )
n the GIZMO multiphysics code (Hopkins 2015 ), which uses a
tandard Barnes–Hut tree algorithm to solve the gravity equations (an
mpro v ed v ersion of that in Springel 2005 ). GIZMO is well tested
n numerous applications of N -body dynamics problems involving
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F, N -body resonances, and w ak e problems (see e.g. Łokas 2019 ;
onetti et al. 2020 , 2021 ; Collier 2020 ; Grudi ́c & Hopkins 2020 ;
orton, Khochfar & O ̃ norbe 2021 ; Bortolas et al. 2022 ), to which
e refer for more detailed descriptions of numerical methods and 
emonstrations of convergence, test problems, etc. As described 
arlier, we simply e v aluate the DF force a df alongside the ‘normal’
ravitational force (using the identical softening, etc.) in the tree- 
alk operation, imposing negligible CPU cost. 

.1.2 Initial conditions 

o test the estimator, we have run a series of test problems. In each,
e initialize a steady-state ‘halo’ of collisionless particles (e.g. ‘DM’ 
r ‘stars’) using the GALIC code (Yurin & Springel 2014 ), with a
arget/BH particle on an initial orbit expected to decay owing to 
F . W e hav e e xperimented with sev eral different choices for the

nitial halo density profile, whether the halo velocity distribution is 
nisotropic or isotropic, and other parameters of the halo and orbit
e.g. eccentric versus circular, and initial position/energy/angular 
omentum). Our qualitative conclusions and comparison of methods 

re identical in each case (and of course, this being a pure N -body
roblem it is scale free), so we focus on and show plots from one
xample with typical cosmological units for the sake of clarity. 

In our fiducial example, we adopt a Hernquist ( 1990 )-profile halo
ith a total mass of 2 × 10 11 M � with the Yurin & Springel ( 2014 )

oncentration parameter of 4 and spin parameter 0.04 [consistent with 
ypical DM halo parameters (Bullock et al. 2001 ), and sufficient to

ake the halo mildly anisotropic because of rotation], so that the 
ernquist ( 1990 ) scale length a = 30 . 2 kpc . The target/BH is placed
 kpc away from the halo centre and has a tangential velocity of
9 km s −1 , which is the circular velocity of the halo at that radius.
he BH mass is 10 8 M �, much less than the enclosed DM mass inside
 kpc ( ∼4 × 10 9 M �), to a v oid disrupting the dynamical equilibrium
f the galaxy. 

.1.3 Sub-grid versus resolved simulations 

s DF should be fully resolved when the target/BH mass M BH is
uch more than the background (‘dark matter’ or DM) particle mass
 DM 

, one would expect that only in a low-resolution simulation (i.e.
 BH � M DM 

) a sub-grid treatment of DF is necessary. 5 Ho we ver,
f the resolution is too low, the orbital semimajor axis of the BH
article will be smaller than the inter-particle spacing of the N -body
imulation and the BH will have essentially ‘sunk to the centre’ 
lready – trivially, if it were just one background/DM particle inside 
f the initial 5 kpc , then there is no definable smaller scale centre
owards which even a ‘perfect’ sub-grid model could migrate the 
arget/BH. We hence choose M DM 

= 10 7 M � in the tests with sub-grid
F, so ∼400 DM particles are enclosed inside the initial 5 kpc . We

urther run a set of 50 simulations with the same background halo, but
ith the BH particles placed randomly on a 5 kpc -radius sphere with
 random direction of velocity in the tangent plane. By choosing the
edian between these runs, we can smooth out the chaotic motions 

ntrinsic in the problem, as well as the effects of anisotropy (both real,
rom the halo rotation, and numerical, from N -body noise) generating 
 When the resolution lies in between and DF is partially resolved, a sub- 
rid treatment may cause ‘double counting’ when calculating DF. While 
his remains an open question in general, we find that it can be a v oided by 

ultiplying a field-mass-dependent function on the DF formula in our tests. 
ee discussions in Section 4.3 . 

k

4

4

F  
ccentric orbits that produce larger oscillations in the instantaneous 
H speed (making the results more difficult to read). 
To test our results, we compare a set of reference simulations at

arying resolution that do not adopt any sub-grid DF, but with the
ame set-ups of BH initial conditions. At sufficiently high resolution, 
hese simulations satisfy M BH � M DM 

and so should directly capture 
he salient effects of DF on the target. 

.1.4 Simulations with a ‘fitted’ C43 sub-grid model 

inally, we consider a third set of simulations where we again adopt a
ub-grid DF estimator, but instead adopt the local Chandrasekhar DF 

stimator of equation ( 2 ) as previously introduced in GADGET in e.g.
ox et al. ( 2006 ) updated to be essentially identical to that in Tremmel
t al. ( 2015 ). Here, we assume a Maxwellian velocity distribution,
stimate the mean velocity and dispersion as a kernel-and-cell- 
ass-weighted mean, and use the BH kernel density estimator from 

ellons et al. ( 2022 ) to estimate ρ. 
We previously noted intrinsic difficulties this method faces: 

o we ver, for this particular test problem, the background halo is
by construction) smooth and nearly isotropic and single-component 
nd nearly Maxwellian, so this provides a ‘best-case scenario’ for a
43 -like estimator. Ho we v er, this still leav es unresolv ed the question
f how to estimate the Coulomb logarithm. We find that common
hoices (e.g. the ratio of virial radius to ‘true’ inter-particle spacing)
re not only impossible to predict a priori in a completely general
imulation (they must be put in ‘by hand’), but also appear to give
F forces that differ systematically from the resolved solutions by 

ens of per cent or up to a factor of 2. Therefore, to give this model
he best possible chance, we explicitly fit the Coulomb logarithm, 
arying it until we find a model that best matches the BH orbital
ecay seen in the explicit high-resolution N -body calculation. We 
se this, essentially as a way of detecting how our method compares
o a ‘best-case’ C43 estimator calibrated ahead of time to the specific
roblem being simulated. 
The simulation set-ups are summarized in Table 1 . 

.2 Post-processing in multiphysics galaxy simulations 

hile comparing our discrete estimator with the Chandrasekhar 
stimator in the abo v e idealized test problem can help to test its
ccuracy, it is of course also important to apply it to some more
realistic’ (or at least more complicated) galaxy simulations that 
nvolve multicomponent (gas + star + DM) anisotropic, highly 
nhomogeneous backgrounds. Full applications to such simulations 
n the fly can be used to make predictions for e.g. demographics
f free-floating BHs, IMBHs, and rates of BH–BH coalescence in 
alaxy nuclei (e.g. predictions for the Laser Interferometer Space 
ntenna (LISA)). Ho we ver, this is clearly beyond the scope of

his work. Instead, here we will select some snapshots of N -body
nformation from high-redshift galaxies in the Feedback In Realistic 
nvironments (Hopkins et al. 2014 , 2018 ) project, and use these to
ake some simple post-processing comparisons in order to see how 

he full on-the-fly application of the estimator used here might differ
or not) from other approaches to including or ignoring DF in these
inds of systems. 

 RESULTS  A N D  DI SCUSSI ONS  

.1 Validation in on-the-fly simulations 

igs 2 –3 show some representative results of our numerical validation
MNRAS 519, 5543–5553 (2023) 
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Figure 1. A comparison between the deri v ation of Chandrasekhar’s DF formula ( C43 ) and ours: in C43 , Chandrasekhar calculates the change of velocity 
� v || for one full scattering, and integrates over the remaining two dimensions d A (perpendicular to the direction of motion) for all field particles, assuming a 
homogeneous and isotropic continuum such that the o v erall contribution is characterized by the Coulomb logarithm; in our deri v ation, we estimate the change 
of velocity d v || /d s over the line of motion (coordinated by s ) at a given point in the scattering process, which allows us to integrate all field particles o v er the full 
configuration space (as the dimension along the line of motion is now reco v ered), such that a discrete numerical sum is possible. 

Table 1. Representative simulation summary for our idealized tests. Differ- 
ent sets share the same set-up of initial conditions: a 10 8 M � BH particle 
placed randomly at a 5 kpc radius with a velocity of 59 km s −1 in a random 

tangent direction. The background particles form a Hernquist halo with 
M halo = 2 × 10 11 M �. The BH speeds from these tests are shown in Fig. 3 
(when multiple runs are present, only the median value is shown). 

Set M DM 

/ M BH 

Sub-grid DF 
model ε Criterion No. of runs 

1 10 −1 This paper ε ∼ � x i 50 
2 10 −1 Fitted C43 ε ∼ � x i 50 
3 10 0 None ε < b min 50 
4 10 −1 None ε < b min 50 
5 10 −2 None ε < b min 50 
6 10 −3 None ε < b min 1 
7 10 −4 None ε < b min 1 
8 10 0 None ε ∼ � x i 50 
9 10 −1 None ε ∼ � x i 50 
10 10 −2 None ε ∼ � x i 50 
11 10 −3 None ε ∼ � x i 1 
12 10 −4 None ε ∼ � x i 1 
13 10 −5 None ε ∼ � x i 1 
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6 We find that the results of our sub-grid DF runs are robust and nearly inde- 
pendent of resolution so long as the dynamical mass of the target/BH particle 
is at least slightly larger (a factor of � 2–3) than the mass-weighted median of 
the ‘background’ N -body particles. If the BH particle has mass lighter than 
the background, then either sub-grid DF model ( C43 or equation 9 ) requires 
additional care or else spurious N -body heating effects can become larger than 
the true DF forces. So for practical applications where one wishes to evolve 
the dynamics of targets with very small masses, it is useful to follow standard 
practice (Di Matteo et al. 2003 ; Springel & Hernquist 2003 ; Hopkins et al. 
2005 ) and assign a separate ‘true target/BH mass’ used for the DF calculation 
and other physics to the N -body particle ‘carrying’ the target/BH. 
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ests in on-the-fly simulations, specifically focusing on an illustrative
rajectory of the BHs as well as the BH velocity as a function of time.

First, we examine the behaviour of pure N -body calculations
 without sub-grid DF) as a function of resolution. Not surprisingly,
hen the target mass is similar to the N -body particles (e.g. m DM 

 M BH ), no DF is captured. Most previous studies arguing for
if ferent ‘suf ficient’ resolutions to capture DF refer to this regime
see e.g. van den Bosch et al. 1999 ; Colpi et al. 2007 ; Boylan-
olchin, Ma & Quataert 2008 ; Hopkins et al. 2018 ; Pfister et al.
019 ; Barausse et al. 2020 ; Boldrini, Mohayaee & Silk 2020 ; Ma
t al. 2021 ), depending on the specific problems they are choosing.
n our case, at better resolution ( m DM 

� M BH ) we see DF but with an
mportant dependence on how we treat the spatial force softening ε.
NRAS 519, 5543–5553 (2023) 
f we adopt a fixed Plummer-equi v alent ε comparable to or smaller
han the canonical minimum impact parameter for strong encounters
 min ∼ G M BH / (2 σ 2 + V 

2 
bh ) (here ∼60 pc at the initial BH position),

e see excellent convergence once m DM 

� 0 . 1 M BH (Fig. 3 , left-
and panel). Ho we ver, this is not ho w force softenings are typically
et in N -body simulations that do not resolve the individual point
asses: instead, to prevent spurious noise in other properties, the

optimal’ softening is usually chosen to roughly match the inter-
article separation ε ∼ � x i ∼ ( � m i / ρ i ) 1/3 (Fig. 3 , right-hand panel;
erritt 1996 ; Romeo 1998 ; Athanassoula et al. 2000 ; Dehnen 2001 ;
odionov & Sotnikova 2005 ). When we do this, we see notably worse
onvergence: in fact, the convergence is logarithmic in m DM 

, because
e have ε > b min , and the ef fecti ve Coulomb logarithm is artificially

runcated (i.e. we artificially suppress close encounters). This is a
nown challenge for DF in softened gravity (see e.g. Karl et al. 2015 ,
or more details and extended discussion), and it further emphasizes
he importance of a sub-grid model like ours: achieving � x i � b min 

equires m DM 

� 10 −5 M BH , i.e. billions of N -body particles even for
 simple, idealized halo like that here. 

We then compare our ‘sub-grid’ DF model (equation 9 ) calculated
n the fly to an extremely low-resolution initial condtion with m DM 

=
 . 1 M BH , 6 using ε ∼ � x i as would be applied in typical cosmological
imulations. For this low-resolution case, there is significant variation
 wing to dif ferent eccentric orbits and discreteness noise, so we

art/stad036_f1.eps
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Figure 2. Example trajectories of a BH particle in our simulations. The BH is initially placed 5 kpc away from the halo centre (the coordinate origin) on the 
x -axis and has a circular velocity of 59 km s −1 in the ˆ y direction. We see that in the high-resolution run (green dashed) the BH sinks to the halo centre in circular 
orbits as time evolves, which is partially resolved by the low-resolution runs with sub-grid DF (red and black lines, with the discrete DF and the ‘calibrated 
Chandrasekhar’ estimator, respectively), but not by the run without it (blue dashed; the BH departs significantly from the halo centre in the z direction). The 
low-resolution runs (with or without sub-grid DF) suffer from dynamical heating that significantly perturbs the circular orbit. In addition, our discrete estimator 
matches well with the calibrated Chandrasekhar estimator – but we have not calibrated our discrete DF estimator in any way [we are simply using equation ( 9 ) 
directly, without any input parameter other than the smoothing length ε]. 

Figure 3. The speed of BH particles upon time of e volution in our test problem. The thick red, thick black, and dotted lines sho w the (median of) results from 

low-resolution runs with our discrete estimator, with Chandrasekhar’s DF estimator (with a fitted ln � = 4) and from multiresolution runs without sub-grid DF, 
respectively (see Table 1 ). The red shaded area shows the ±σ range for all runs with the discrete estimator. We see that the speed of BH particles decreases 
significantly as the BHs sink to the halo centre. The results from our discrete estimator match well with the fitted Chandrasekhar estimator, and match the 
converged results of the no sub-grid DF runs at higher resolution. The convergence is better for no sub-grid DF runs with smoothing length less than the minimum 

impact parameter ( ε < b min , left-hand panel) than those with (the usually chosen) length comparable to the inter-particle separation ( ε ∼ � x i , right-hand panel), 
as in the latter case the ef fecti ve Coulomb logarithm is artificially truncated, causing a logarithmic convergence behaviour (see discussions in Section 4.1 ). 
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how the median and ±1 σ range of BH velocities. The median 
grees remarkably well with the converged solution. We stress that 
quation ( 9 ) contains no other adjustable par ameter be yond the
hysically moti v ated ε: this is an actual prediction. 
Next, we compare the ‘fitted’ C43 model equation ( 2 ): as described
arlier, in addition to the arbitrary choice of kernel estimator size and
hape (which we set to the smallest size that reduces noise accept-
bly), we freely vary the numerical pre-factor (‘ef fecti ve Coulomb
MNRAS 519, 5543–5553 (2023) 
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M

Figure 4. The galaxy snapshot we chose for post-processing analysis. The 
colour scales with the projected total mass density (DM + stars + gas). 
It is the ‘ z5m12b ’ galaxy at redshift 7.0 described in Ma et al. ( 2021 ), 
which is clumpy and dynamically unstable. The post-processing tests are 
also shown: (a) a test particle of 10 5 M � placed on the x -axis with a velocity 
( V M 

) of 200 km s −1 ˆ y ; (b) the same particle but with different velocities (100, 
200, 600, and 1000 km s −1 ) in the ˆ y direction; and (c) a fixed particle at (1, 
0, 0) with V M 

= 200 km s −1 ˆ y . The implications of these tests are described 
in the main text. 

l  

o  

i  

g  

t  

d  

h  

t  

2  

A  

c  

o  

c  

M  

i  

e
 

t  

o  

o  

t  

m  

o  

c  

a  

i  

o  

e
 

c  

Figure 5. Comparison of the DF amplitude calculated from different DF 
formulas. The test particle is a 10 5 M � particle with a 200 km s −1 velocity 
in the y direction, put at different positions on the x -axis (Fig. 4 , red dashed 
line and arrow). The black, cyan, and red lines show the results from Chan- 
drasekhar’s formula [equation 1 , with a (fitted) constant Coulomb logarithm 

ln � = 5], our formula without smoothing (equation 6 ), and our formula 
with smoothing (equation 9 ), respectively. Our discrete formula remains very 
close to Chandrasekhar’s approximation. The smoothing remo v es most of the 
peaks, which could be caused by numerical divergence. 
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og’) ln � in equation ( 2 ) until we find a value that best matches
ur high-resolution simulations. For the best-fitting value, the result
s strikingly similar to our equation ( 9 ) (perhaps not surprising,
iven that we start from the same assumptions) – but we stress
hat even small, ∼10 per cent , differences in ln � produce significant
isagreement with the high-resolution simulations. Moreo v er, we
ave considered a dozen ‘standard’ estimates of ln � widely used in
he literature (see references abo v e and Hashimoto, Funato & Makino
003 ; Just et al. 2011 ; Antonini & Merritt 2012 ; Dosopoulou &
ntonini 2017 ), e.g. � ∼ | ρ/ ∇ρ| / b min , and find that none of them

orrectly predicts the best-fitting � (usually discrepant by factors
f ∼1.3–2). This probably owes at least in part to the fact that the
entral Hernquist ( 1990 ) distribution function is appreciably non-
axwellian, as discussed in Karl et al. ( 2015 ), so the fitted ln �

s essentially compensating for this error [the ‘erf(...)-...’ term in
quation 2 ]. 

As noted earlier, these conclusions are robust to the parameters of
he initial halo and orbit, mass profile of the halo assumed, amount
f angular momentum (anisotropy in the distribution function), and
ther choices of the problem set-up: ho we ver, we find as expected
hat the C43 ‘ef fecti ve Coulomb logarithm’ must be re-calibrated in

any cases to fit high-resolution simulations. We have also tested
ther numerical aspects of the method, including the tree opening
riteria (Power et al. 2003 ; Springel 2005 ), time-step size/integration
ccuracy (Hopkins et al. 2018 ; Grudi ́c & Hopkins 2020 ), and
nclusion/exclusion of the perpendicular force (equation 8 ): none
f these has a significant effect (consistent with previous studies; see
.g. Just et al. 2011 ; Karl et al. 2015 ; Mukherjee et al. 2021 ). 

Given the close agreement between the discrete DF and explicitly
alibrated Chandrasekhar DF models, it is likely that more detailed
NRAS 519, 5543–5553 (2023) 
ifferences in orbit shape we see comparing either of these models
nd the true, high-resolution simulation owes not to anything we can
imply ‘further calibrate’ (like a Coulomb logarithm), but rather to
undamental resolution effects (e.g. more accurately reco v ering the
hape of the background potential itself, hence the ‘correct’ elliptical
rbit structure, or the treatment of subparsec-scale physics around
upermassive BHs, a known issue as discussed in e.g. Rantala et al.
017 ; Mannerkoski et al. 2021 , 2022 ), as well as assumptions of the
handrasekhar-like deri v ation that our DF deri v ation also implicitly
ssumes, e.g., the assumption of linearity (that the net effect on
he BH can be approximated via the sum of many independent two-
ody encounters) or forw ard/backw ard asymmetry in the distribution
unction (implicit in a stronger assumption like homogeneity but
resent in a weaker form in our deri v ation as well). 

.2 Post-processing in multiphysics galaxy simulations 

hile the idealized experiments given above are important for
alidation, their simplicity means that it is difficult to gain insight
nto possible differences between our equation ( 9 ) and the fitted C43
odel. We therefore briefly consider this in post-processing of a
ultiph ysics g alaxy formation simulation. The specific (arbitrary)

imulation and time we select is the ‘ z5m12b ’ galaxy at redshift 7.0
escribed in Ma et al. ( 2021 ), illustrated in Fig. 4 . The simulation
s multicomponent, containing DM, stars, multiphase gas, and BHs,
ith complicated cooling, star formation, and ‘feedback’ physics all

ncluded on the fly. This particular snapshot is chosen because it is
ynamically unstable, asymmetric, gas rich, and star forming, and
ontains several giant star clusters and molecular cloud comple x es,
ll of which complicate the dynamics. We compare the results from
he discrete estimator with the Chandrasekhar estimator and discuss
heir differences and implications. 

In Fig. 5 , we compare the acceleration amplitude a df ≡ | a df |
alculated from different formulae for a test particle of mass
0 5 M � in the representative snapshot. The test particle is placed

art/stad036_f4.eps
art/stad036_f5.eps


Discrete dynamical friction 5551 

Figure 6. The unit direction vectors calculated from Chandrasekhar’s pro- 
jected on those from our DF formulas. The test particle is the same as in 
Fig. 5 but with different velocities (still along the y -axis). The difference of 
this value from 1 shows how misaligned the directions are. At most positions, 
the directions are perfectly aligned for relative high velocities, yet at low 

velocities huge error could occur due to contributions from particles far 
apart. 
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Figure 7. The contributions and cumulative results on DF from slices with 
different radii around a test particle. The test particle is a 10 5 M � particle at 
(0, 1, 0) with a 200 km s −1 velocity in the y direction. The particle’s distance 
to the virial radius where we cut off the sum is labelled with a black dashed 
line. We see that contributions are mostly from slices near the particle, while 
those from slices outside the virial radius are � 1000 times lower, suggesting 
that our cut-off makes little difference. 
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long an arbitrary x -axis passing through the galaxy centre with a
imulation-frame velocity of V M 

= 200 km s −1 ˆ y (Fig. 4 , red dashed 
ine and arrow). We compare the results from our ‘full’ expression 
equation 9 ), our expression ignoring force softening (equation 6 ),
nd the classical C43 expression (equation 1 ). Equations ( 9 ) and ( 6 )
an be directly applied to the simulations without any processing. 
o apply equation ( 1 ), we estimate the continuous ρ at each position
 M 

using a kernel density estimator by averaging through the 0 . 4 kpc
ubic box around x M 

; we calculate the local velocity integral by
onverting it into the usual discrete sum in this box, and we take
n � = 5 to be constant, once again fitting it so that the median/mean
cceleration is essentially identical. 

The agreement between equations ( 9 ) and ( 1 ) is reasonable, but
gain this requires choosing � specific for the problem and snapshot
we note, for example, that the ef fecti ve � here differs by almost a
actor of 2 from the value fitted to the idealized Hernquist ( 1990 )
rofile sphere tests in the previous section). Equation ( 6 ), which
gnores force softening, is also quite similar, except for occasional 
spikes’ arising from close proximity to N -body particles producing 
 spurious large force that is not actually present in the simulations
accounted for correctly in our equation 9 ). 

Fig. 6 similarly compares the direction ˆ a df . Because C43 assume 
omogeneity, and their a C43 

df has equal contributions from all scales, a 
ajor ambiguity in equation ( 1 ) – even after we fit out the Coulomb

ogarithm – is where/how to e v aluate V = V M 

− V m . Should we
nterpolate to the local value at x M 

, weight by contribution to � , or
eight by mass (dominated by distant particles)? If we follow the 

ame procedure abo v e to obtain a ‘local’ V , then we see that usually
he direction of ̂  a df from equation ( 9 ) and that from equation ( 1 ) agree,
specially if we assume a test particle M with large lab-frame | V M 

|
since then V ≈ V M 

, independent of the background v m ). Ho we ver,
hen V M 

is small (the case of interest for sinking), equation ( 1 )
an occasionally ‘flip’ to point in an unphysical direction in a noisy
elocity field. 

Our equation ( 9 ) allows us to easily quantify the contributions
o the total a df from all the mass in radial shells. Fig. 7 shows this
specifically d a df /dln r , integrating the contributions from all particles 
n logarithmically spaced shells of distance r from M ) again for a
epresentativ e e xample (with M at | x M 

| = 1 kpc from the origin on
he x -axis) in the same snapshot. At small scales ( r � 1 kpc) around
 , where the density field is statistically homogeneous (there are

ocal fluctuations, but there is not a strong systematic dependence 
f density on distance r from M ), we see the expected Coulomb log
ehaviour (d a df /dln r ∼ constant). At larger radii, the contribution
alls rapidly. We can, for example, truncate the sum in equation ( 9 )
t the virial radius (labelled) with negligible loss of accuracy. This
s expected if the galaxy follows a realistic density profile, as in e.g.
n isothermal sphere, the density is not constant, but at r � | x M 

|
alls rapidly ( ∝ r −2 , giving rapid convergence). As expected, the
ehaviour at larger r does moti v ate the value of ln � we fit: if we
ake � = b max / b min , with b min ∼ max [( m/ρ) 1 / 3 , G M/V 

2 ] ∼ 1 pc,
nd b max ∼ 1 kpc, we obtain ln � ∼ 7, similar to our fitted value. 

The abo v e discussions are closely related to cases where the
ackground field particles have a non-negligible physical bulk 
otion, like a wandering BH in a rotating disc-galaxy set-up. While

tudying such simulations in detail is beyond the scope of this work,
e comment that the rotation of star particles in the disc could

argely affect the strength and direction of DF, since their phase-space 
istribution departs significantly from homogeneity and isotropy. In 
n extremely dense galactic environment, we may expect that the 
ocal disc particles with similar circular velocities contribute most to 
he BH’s DF, such that the BH is boosted by the field particles around
t, which is similar to the case we already studied. For a less dense set-
p, non-local (halo) particles with different circular velocities could 
e important, and their combined contribution to DF with local disc
articles could make the BH dynamics more complicated. Our DF 

stimator, which applies to an arbitrary phase-space distribution and 
ounts the DF contribution from each individual field particle, would 
e ideal for studying such problems. Such topics will be studied in
uture work. 

Briefly, one might wonder whether on sufficiently large scales, 
here the universe becomes homogeneous and isotropic, a df might 
egin to grow log arithmically ag ain. Ho we ver, e ven if we ignore finite
peed-of-gravity effects (i.e. consider pure Newtonian gravity), on 
hese scales the velocity must include the Hubble flow, so v physical =
 peculiar + H ( z) r . In an isotropic pure Hubble-flow medium, the DF is
MNRAS 519, 5543–5553 (2023) 
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dentically zero, as there is al w ays equal-and-opposite contributions
o a df from the fact that V ∝ r (i.e. because 〈 V 〉 = 0 on all
cales). If we consider a Hubble flow plus peculiar velocities,
hen expanding equation ( 9 ) appropriate for large r where 〈 ρ( r ) 〉

constant and H r � 〈| v peculiar ( r) | 2 〉 1 / 2 , the contributions to the sum
ake the form 

∑ 

G 

2 M 〈| v peculiar ( r ) | 2 〉 1 / 2 �m i /H 

3 r 6 ∝ 

∫ 
ρ r −6 d 3 x ,

hich converges rapidly as r → ∞ . 

.3 Interpolating the sub-grid model in simulations with 

ariable masses 

inally, one can easily imagine situations such as cosmological
imulations with a range of BH masses where the DF forces
re well resolved for some targets (e.g. supermassive BHs with
 BH ∼ 10 10 M �) but not others (e.g. lower mass BHs). In these

ases, applying equation ( 9 ) to all BHs would ‘double count’ for
ome. A simple (albeit ad hoc) approach to a v oid double counting is
o multiply � a i df by a sigmoid or ‘switch’-like function g ( � m i / M j ,
..) that has the property g ( x , ...) → 0 for x → 0 and g ( x , ...) → 1
or x → ∞ . It is beyond the scope of our paper here to develop and
est such models, and from Fig. 3 we see one complication is that
his should depend on how one treats the force softening (not just
article masses � m i ), but a quick examination of the idealized tests
n Section 4.1 with different M BH suggests that (if we assume ε ∼
 x , as usually adopted in such simulations) a simple function such

s g = min (1 . 0 , max (0 , (3 / log ( M BH , j /�m i ) − 1) / 1 . 6)) works rea-
onably well. Another advantage of our equation ( 9 ) is that because
t operates in pairwise fashion, it can naturally deal with simulations
ith a wide range of � m i (a common situation), while attempting

o apply such a correction factor ‘locally’ to equation ( 1 ) leaves it
ll-defined which value of � m i to use. 

 C O N C L U S I O N S  

n numerical simulations, especially of star and galaxy formation, it
s common to encounter the limit where DF should be experienced
 M � m ) by some explicitly evolved objects M (e.g. BHs and massive
tars), but it cannot be numerically resolved ( � m i � M ). As a result,
here have been several attempts to develop and apply ‘on-the-fly’
ub-grid DF models. Almost all of these amount to some attempt to
alculate and apply the traditional C43 formula (equation 1 ) to the
asses M at each time (see e.g. Colpi et al. 2007 ; Dotti et al. 2009 ;
remmel et al. 2015 ; Pfister et al. 2019 ). Ho we ver, this can introduce
 number of problems in practice, namely the ambiguity of kernel-
ependent locally defined quantities, inconsistency in applying force
oftening and momentum conservation, the semi-arbitrary choice of
oulomb logarithm, the necessity of assuming Maxwellian velocity
istribution functions, and additional computational expenses for
ernel estimates. 

In this paper, we derive a new discrete expression for the DF force,
 df , given in equation ( 9 ). This formula is specifically designed for
pplication to numerical simulations, either in post-processing or
on the fly’ when the DF forces cannot be resolved (e.g. when
 -body particle masses are comparable to the BH mass M , as a

sub-grid’ DF model). While still approximate, this has a large
umber of advantages compared to the traditional C43 analytical
xpression, including (1) it allows for an arbitrary distribution
unction, without requiring an infinite homogeneous time-invariant
edium with constant density, Maxwellian velocity distribution,

tc. (but it does reduce identically to a discrete form of the C43
xpression, when these assumptions are actually satisfied); (2) it is
esigned specifically for simulations, so it is represented only as a
NRAS 519, 5543–5553 (2023) 
um o v er quantities that are al w ays well defined in the simulation for
ll N -body particles (e.g. positions, velocities, and masses), and does
ot require the e xpensiv e and fundamentally ill-defined evaluation
f quantities such as a ‘smoothed’ density, background mean ve-
ocity/dispersion/distribution function, Coulomb logarithm, etc.; (3)
t trivially incorporates force softening exactly consistent with how
t is treated in code, and generalizes to arbitrary multicomponent
 -body simulations with different species and an arbitrary range
f particle masses; (4) it manifestly conserves total momentum,
nlike N -body implementations of C43 ; and (5) it can be e v aluated
irectly alongside the normal gravitational forces with negligible
ost, and automatically inherits all of the desired convergence and
ccuracy properties of the N -body solver. We have implemented
his ‘li ve’ e v aluation of equation ( 9 ) in GIZMO , and verified that all
f the properties abo v e apply, that it agrees well with our N -body
imulations, and that the computational o v erhead of e v aluating it
longside gravity in the tree is immeasurably small. 

There are still uncertainties in our work. In our deri v ation of
he discrete formula, we inserted an approximate integral kernel,
hich is not necessarily unique or best behaved. We found that

ven if our discrete estimator closely agrees with the calibrated
handrasekhar DF estimator in our test problems, it still differs

rom the high-resolution simulation results in terms of the detailed
article trajectories, which might be related to the fundamental
handrasekhar-like assumptions we have made in our formula. We
lso note that it remains an open question how to accurately a v oid
double counting’ when some of the DF may be captured self-
onsistently by the N -body code, while additional DF is modelled
sing our sub-grid model. This is especially the case when the system
volves (such as when supermassive BHs grow) and the fraction of
resolved’ DF changes with time. Future work will be needed to
ake impro v ements on these points. 
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