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Abstract

We simulate scattering delays from the interstellar medium to examine the effectiveness of three estimators in
recovering these delays in pulsar timing data. Two of these estimators use the more traditional process of fitting
autocorrelation functions to pulsar dynamic spectra to extract scintillation bandwidths, while the third estimator
uses the newer technique of cyclic spectroscopy on baseband pulsar data to recover the interstellar medium’s
impulse response function. We find that either fitting a Lorentzian or Gaussian distribution to an autocorrelation
function or recovering the impulse response function from the cyclic spectrum are, on average, accurate in
recovering scattering delays, although autocorrelation function estimators have a large variance, even at high
signal-to-noise ratio (S/N). We find that, given sufficient S/N, cyclic spectroscopy is more accurate than both
Gaussian and Lorentzian fitting for recovering scattering delays at specific epochs, suggesting that cyclic
spectroscopy is a superior method for scattering estimation in high-quality data.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Pulsar timing method (1305); Radio pulsars
(1353); Interstellar scattering (854)

1. Introduction

High-accuracy pulsar timing has been a transformative
technique across a wide range of astrophysical fields, including
neutron star mass measurements, binary star evolution, exacting
tests of general relativity, pulsar astrometry, and studies of the
interstellar medium (ISM). Now, in the era of pulsar timing arrays
(PTAs), astronomers are poised to explore a gravitational wave
background due to supermassive black hole binaries located in
galaxies at cosmic distances. Hints at the existence of such a
background are already emerging in the data sets of PTAs through
the presence of a common red noise process in the times-of-arrival
(TOAs) of pulsars observed by the three major worldwide PTA
collaborations (Arzoumanian et al. 2020; Chen et al. 2021;
Goncharov et al. 2021; Antoniadis et al. 2022). Such studies
require attention to a myriad of details and careful understanding
and correction for systematic effects due to a wide variety of
sources: Earth rotation irregularities, solar system ephemeris
inaccuracies, and even atomic time wander relative to an ensemble
of highly accurate pulsar clocks (Alam et al. 2020). Propagation of
radio waves from pulsars to the Earth through the ionized,
inhomogeneous ISM is a substantial source of noise, if not
modeled properly, because the line of sight (LOS) from pulsar to
Earth moves with respect to the medium due to the motion of the
endpoints, and subdominantly, the motion of the medium itself
(Levin et al. 2016; Jones et al. 2017; Alam et al. 2020; Turner et al.
2021).

The major contributor to ISM-induced timing delays is due to
frequency-dependent (ν−2, where ν is the observing frequency)
cold plasma dispersion along the LOS. This phenomenon has
been studied in great detail since the early days of pulsar timing
and can largely be corrected for, although important subtleties
remain (e.g., Cordes et al. (2016)). However, multipath
propagation through the inhomogeneous ISM, or scattering,
results in time-variable perturbations to pulsar TOAs. The
resulting delays are expected to be proportional to ν−4.4 for a
homogeneous Kolmogorov medium (although power laws
ranging from around −2.5 to around −4.5 have been reported
(Bhat et al. 2004; Levin et al. 2016; Bansal et al. 2019; Turner
et al. 2021), and can be discerned via the delay of and structural
broadening in an observed pulse. Effects of scattering, although
understood theoretically and observed empirically in many high-
accuracy timing programs, are not generally mitigated in major
timing programs such as the NANOGrav (North American
Nanohertz Observatory for Gravitational Waves) PTA and other
global PTA efforts. As PTAs make their first detections and
begin characterizing the low-frequency gravitational wave sky, it
will be important to mitigate all possible delays. The goal of this
paper and subsequent work that we envision over the next
several years is to develop effective mitigation strategies for
time-variable scattering delays.
Cyclic spectroscopy (CS; Demorest 2011) is central to our

approach to this problem. CS is a powerful signal-processing
technique that is already well known and frequently used in the
engineering community (Gardner 1987; Roberts et al. 1991;
Brown & Loomis 1993; Antoni 2007) and applicable to periodic
signals such as those from pulsars. In the few studies since its
introduction to pulsar timing by Demorest (2011), CS has been
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successful at producing high-resolution pulsar secondary spectra
(Walker et al. 2013), scattering measurements using CS-enabled
fine channelization (Archibald et al. 2014), and simulated
recovery of the impulse response function (IRF) corresponding
to a pulsar signal’s passage through the ionized ISM (Palliyaguru
et al. 2015). As detailed in Dolch et al. (2021), using CS to fully
recover the IRF of the ISM, although a good long-term goal, has
requirements, particularly signal-to-noise ratio (S/N), that are
often not met with the current generation of radio telescopes.
Here, we present a CS-derived quantity, τCS, obtained from CS-
based recovery of the IRF, which is more highly correlated with
total scattering delay than other commonly utilized estimators.
This work serves as proof of concept for the recoverability of
scattering-based delays with CS, sometimes in conjunction with
an autocorrelation function (ACF) estimator, addressing concerns
about the accuracy of ACF-based estimators raised by authors
such as Coles et al. (2010).

The organization of this paper proceeds to a presentation of
the basic theoretical framework in Section 2. Following this,
we present the methodology and the results of a simulation in
which we compare the effectiveness of τCS to other estimators
of scattering delay, specifically the widely used estimators
based on the ACF of the scintillated spectrum in Section 3 and
Section 4, respectively. We conclude with a discussion of
future possibilities in Section 5.

2. Theoretical Basics

As is standard practice in pulsar studies, we adopt an
amplitude-modulated noise (AMN; Rickett 1975) model for the
pulsar signal. The electric field (single polarization) can then be
represented as

E t p t n t h t n t , 1sys= * +( ) [ ( ) ( )] ( ) ( ) ( )
where p(t) is the original pulse profile at time t mod P, with P
being the pulse period, n(t) is the intrinsic modulated pulsar
noise, h(t) is the IRF, nsys(t) is the noise from the sky and
receiver present in the system, uncorrelated across pulse
periods, and we have used the notation of Dolch et al.
(2021). We choose to represent the signal as complex valued,
hence N(t), h(t), and nsys(t) are complex. Additionally, we can
write this electric field as

E t E t h t n t , 20 sys= * +( ) ( ) ( ) ( ) ( )
where which E0(t)= p(t)n(t). The corresponding frequency
domain signal model is

E p N H N 3sysn n n n n= * +( ) [ ( ) ( )] ( ) ( ) ( )
E H N , 40 sysn n n= +( ) ( ) ( ) ( )

where we use E0(ν) instead of p(ν) ∗ N(ν) because the
convolution occurs upon emission at the pulsar. H(ν), which
is the Fourier transform of h(t), is the transfer function (TF) of
the ISM.

The resulting cyclic spectrum of E(t) is

S E E, 2 2 , 5E k k kn a n a n a= á + - ñ( ) ( ) ( ) ( )*

where ν is the bandpass frequency at which the signal is
measured and αk= k/P is the cyclic frequency, also known as
the modulation frequency, and the average is over an integer
number of pulses. The cyclic spectrum is a complex-valued
function with amplitude and phase for each (ν, αk) pair, and is

undefined for nonperiodic signals. It is important to keep in
mind that, in practice, Equation (5) is averaged over a period of
time over which the TF must remain unchanged, which must be
less than the diffractive timescale of the ISM along a
particular LOS.
If we make the assumption that a scattering delay can be

seen in a pulse profile as a translation in the time domain, then
as a consequence of the shift theorem of Fourier transforms this
results in a phase slope in the frequency domain. For this
reason, it can be useful to examine the CS phase slope, fcyc(ν,
αk), which is found via
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Under the assumption that the cyclic frequency αk is much
less than the diffractive bandwidth, Δνd, we can make the
approximation
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When the S/N is large enough, the transfer function phase
can be recovered by simply integrating the CS phase,
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At lower S/N ratios this is not possible and more sophisticated
recovery algorithms are required (Demorest 2011; Walker et al.
2013). The transfer function amplitude for a given αk can then
be approximated as the square root of the CS amplitude for that
αk. Finally, the reconstructed transfer function can then be
inverse Fourier transformed back into a reconstructed IRF, and
the recovered scattering delay can be found by calculating the
centroid of the intensity IRF,

t h t dt
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3. Simulation Methodology

Our simulations began by creating real and imaginary
components of white noise, which we call n(t), and multiplying
them by a complex, one-sided decaying exponential to form
our IRF,

h t n t e n t ieRe Im , 11t t2 2= +t t- -( ) { ( )} { ( )} ( )
where the length t is the value in time at which the one-sided
exponential is sampled. The inclusion of this amplitude-
modulated white noise, which varies from realization to
realization, serves to mimic how the ISM changes over the
course of many observations by emulating the time-varying
effects of scintillation (Narayan & Goodman 1989). Each
realization corresponds to a pattern of scintles, meaning h(t)
can be considered constant on scales shorter than the
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scintillation time. The injected value of the scattering delay for
a given realization is given by the centroid of the resulting
pulsar signal, τcent, which can be found via

t h t dt

h t dt
. 12cent

2

2

ò
ò

t =
∣ ( ) ∣

∣ ( ) ∣
( )

It is worth noting that, in real observations, scattering variations
are in fact correlated with each other, since scintillation is often
dominated by compact structures at a fixed or close-to-fixed
angular position that moves between observations, primarily as
a consequence of a pulsar’s proper motion (Hill et al. 2005).

For simplicity, we treat the pulse profile p(t) as a delta
function of height unity. This model acts as a best-case scenario
pulse, removing all other factors that might interfere with our
aim of solely comparing the effectiveness of various estimators
at recovering a delay imparted by the ISM on radio signals of
varying strengths. We appreciate that this technique would not
be necessary for a true delta-like pulse, as if p(t) is truly delta-
like, then the IRF can also be obtained directly, as was shown
using narrow pulses from PSR B1957+20, where consistent
delay values have been obtained from fitting a recovered IRF
and from scintillation bandwidth measurements (Main et al.
2017).
We then follow Equations (1)–(5), deviating only in that our

noise is added only once we are in the frequency domain, to get
the cyclic spectrum, an example of which can be seen Figure 1.
Next, the cyclic spectrum phase is calculated using
Equation (6). An example cyclic phase plot can be seen in
Figure 2. We then calculate τCS by following the methodology
described after Equation (7) and up to Equation (10). An
example injected and recovered IRF intensity can be seen in
Figure 3. It is important to note that, in our simulations, p(t) and
h(t) are identical for each pulse, while n(t) and nsys(t) are
randomized. If there were significant variations of p(t) beyond
AMN, we suspect our method would still be accurate, although
CS in general becomes decreasingly effective as p(t) gets wider

and the S/N gets lower, which we believe are more significant
factors.
In real pulsar data, the Fourier coefficients, Ak, of a pulse

drop off at higher harmonics, with a non-scattered CS
effectively being the Fourier transform of the pulse shape and
more or less constant in radio frequency. For this reason, we
weight our transfer function at the kth cyclic frequency by the
corresponding kth Fourier coefficient of a pulse with a
reasonable period and width. In this simulation, we chose a
period of 2 ms and a width of 110 μs. This pulse width was
chosen simply because it is the pulse width of PSR J1713
+0747 (Manchester et al. 2013), which has a sharp pulse that

Figure 1. An example normalized cyclic spectrum as a function of the
normalized bandpass taken at the cyclic frequency α1 for a simulated scattering
delay of 2 μs using a spin period of 2 ms and a sampling interval of 100 ns.
Here νcent is the center frequency of the observation and B is the observing
bandwidth.

Figure 2. (Top) An example cyclic phase as a function of the normalized
bandpass taken at the cyclic frequency α1 (red) as well as using the weighted
average of the first 50 cyclic frequencies (dashed blue) for a simulated
scattering delay of 2 μs using a spin period of 2 ms and a sampling interval of
100 ns, corresponding to P = 2 ms. (Bottom) A zoomed-in version of the top
plot to better visualize the structure. The dashed black line indicates the average
cyclic spectrum phase, while the solid black line indicates a phase of zero. As
can be seen in the top figure, the phase only utilizing the first cyclic frequency
has much more extreme outliers. In fact, over many noise realizations at a S/N
of 10, weighted average cyclic phases using 50 cyclic frequencies typically
exhibit around 79% smaller standard deviations compared to just the phase at
the first cyclic frequency.
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can be well approximated as a Gaussian. Effectively, our
simulation is using the Fourier coefficients of a slightly faster
rotating PSR J1713+0747.

The precision of the recovered delay estimation improves as
we utilize more delays from higher cyclic frequencies, although
the number of cyclic frequencies that have usable information
depends on a number of factors, including the S/N of the
pulsar signal and the pulsar duty cycle. For these simulations,
we make use of the first 50 cyclic frequencies in the cyclic
spectra and, to calculate τCS for a given noise realization, take a
weighted average of the recovered delays from these cyclic
frequencies, with the weight at the kth cyclic frequency being
the kth Ak value of the pulsar signal mentioned above.

We then compared this estimator to the more traditional
methods of recovering scattering delays, which involve
calculating the ACF of a dynamic spectrum, or the intensity
of the pulsar signal in both frequency and time. The changes in
the intensity of the dynamic spectrum over frequency and time
can create patchy features known as scintles, and the
corresponding scattering delay associated with a given scintle
is inversely proportional to that scintle’s width in frequency.
An ACF is able to pick up on a dynamic spectrum’s
scintillation pattern, with the width of the ACF’s central peak
then being relatable to the typical scintle width in that dynamic
spectrum. The dynamic spectrum in the case of our delta-

function pulse with unity flux at all frequencies is simply
|E(ν)|2, and has the form of Equation (5) for α= 0. From there,
the ACF is found by normalizing the mean-subtracted filter
function cross correlated with itself,

E E

E E

E E
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where the horizontal bar indicates we are taking the average.
The ACFs were then fit with both a Gaussian and Lorentzian

distribution, and the scattering delay was found via

C2 , 14d 1p n tD = ( )
where Δνd is the scintillation bandwidth, defined as the half-
width at half-maximum of the ACF along the frequency axis,
and C1 is a dimensionless quantity ranging from 0.6–1.5
conditional on the geometry and spectrum of the electron
density fluctuations of the medium (Cordes & Rickett 1998). In
this analysis we assume C1= 1. Mathematically, using the
Lorentzian to fit the ACF makes more sense because the
Lorentzian distribution is the square of the Fourier transform of
the one-sided decaying exponential (Cordes et al. 1985),
although Gaussian distributions are close approximations that
have been used in a number of scintillation studies (Bhat et al.
1999; Wang et al. 2005; Levin et al. 2016; Turner et al. 2021).
An example ACF fit with both Lorentzian and Gaussian
distributions is shown in Figure 4.

Figure 3. (Top) An example injected IRF intensity prior to the inclusion of
additive noise and the corresponding recovered IRF intensities using
information from only the first cyclic frequency using S/Ns of 10 and 30.
(Bottom) Differences between the noiseless injected IRF intensity and
recovered IRF intensities at S/Ns of 10 and 30. Despite recovering the IRF
quite well at these S/Ns, small differences between the injected and recovered
IRF intensities can lead to noticeable differences in the recovered delay.

Figure 4. The frequency ACF (blue) of a dynamic spectrum for a scattering
delay of 2 μs. Green and red dotted lines correspond to fits to the ACF using
Lorentzian and Gaussian distributions, respectively. Delays in the title
correspond, from left to right, to injected τcent delay, the Gaussian ACF
estimator, and the Lorentzian ACF estimator.
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4. Simulation Results

Our main simulation consisted of 1000 random noise draws
for a τ of 2 μs using 20,000 time samples, nsamp, and a
sampling interval, sint, of 100 ns, corresponding to P= 2 ms.
Here, nsamp refers to phase bins rather than baseband voltage
samples. This framework assumes we are using baseband data
recording with a bandwidth of 10 MHz. For larger bandwidths
on the order of hundreds of megahertz, individual scintles get
progressively wider at higher frequencies, which other studies
have compensated for by stretching the entire dynamic
spectrum (Levin et al. 2016; Turner et al. 2021). In these
studies, the spectrum is scaled by ν− β, with β being the
scattering scaling index determined for a given pulsar’s LOS,
relative to the center frequency to give all scintles approxi-
mately equal width across the band. This small 10 MHz
bandwidth was chosen to avoid the scintle stretching that
would be required at larger bandwidths. Additionally, this
bandwidth and scattering delay combination results in a similar
number of scintles on average across the band as is seen for
many NANOGrav pulsars (Turner et al. 2021), meaning that
we have approximately the same amount of data informing our
ACFs, and consequently similar precision for a comparable S/
N. This series of 1000 random noise draws was repeated over
300 different values of S/N ranging from around 0.3–100, with
the S/N defined as the square of the inverse of the standard
deviation of Nsys(t), since our transfer functions are normalized
prior to noise being added.

The results of these simulations using the cyclic spectrum
and Lorentzian and Gaussian ACF estimators for the recovery
of τ are shown in Figures 5 and 6, respectively. The cyclic
spectrum estimator using 50 cyclic frequencies appears to
converge to a stably recovered value of τ at a S/N of around
100, while the two ACF estimators have already converged at
the lowest S/N in our simulation, which may imply that, given
sufficient frequency resolution, there appears to be a range of
lower S/N where these estimators are superior to the cyclic
spectrum estimator.

In fact, the lack of improvement in the ACF estimators
demonstrates that good frequency resolution, specifically the
ratio of the scintillation bandwidth to the overall observing
bandwidth, and consequently, the total number of scintles
across the observing band, is much more important than S/N
for accurate ACF estimator recovery. This effect, known as the
finite scintle error, can be determined via

N

T t B1 1 , 15
d scint

1 2

d t d d
1 2

t

t h h n

»

» + D + Dn

-

-[( )( )] ( )


where Nscint is the number of scintles in the dynamic spectrum,
T and B are total integration time and total bandwidth,
respectively, Δtd is the scintillation timescale, defined as the
half-width at e−1 of the dynamic spectrum’s ACF along the
time axis, and ηt and ην are filling factors ranging from 0.1–0.3
depending on the definitions of characteristic timescale and
scintillation bandwidth, and in our case both set to 0.2
(Cordes 1986). Since scattering delays only depend on the
scintillation bandwidth, the scintillation timescale is not
important for these simulations. As a result, for simplicity,
we can assume these simulated observations had observing
times much less than the scintillation timescale, and so
Equation (15) can be reduced to

B1 . 16d d
1 2t h n» + Dn

-( ) ( )

Taking the results of a typical 1000 sample run, we find that
the average Lorentzian delay spread is around 0.66 μs and the
average Gaussian delay spread is around 0.52 μs, while the
average Lorentzian finite scintle error is around 0.40 μs and the
average Gaussian finite scintle error is around 0.36 μs. Further,
we did a series of tests in which we varied the sampling
interval, hence the bandwidth, of the simulation. These tests
verified that the spread of ACF values follows the B−1/2

scaling of Equation (16) in the many-scintle regime.
This limitation on the effectiveness of estimation ACF-based

techniques also means that methods such as those demonstrated

Figure 5. Cyclic spectrum estimator simulation results for random noise draws for a τ of 2 μs for 300 values of S/N using a spin period of 2 ms and a sampling
interval of 100 ns using one (left) and 50 (right) cyclic frequencies. The dashed red lines represent the mean plus or minus one standard deviation of the injected τ at
each S/N, with the mean and standard deviation of the recovered values at each epoch shown in black and light blue, respectively.
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by Hemberger & Stinebring (2008), which estimate scattering
delays by integrating along the differential delay axis of the
secondary spectrum, will face the same constraints. Other non-
CS techniques do exist to reconstruct the IRF, such as
interstellar holography demonstrated by Walker et al. (2008),
although this particular technique requires a high S/N. Our
simulations have shown that an IRF recovery approach based
on CS, albeit one that uses a simple, non-iterative phase
reconstruction, is quite effective at moderate S/N. That being
said, future work will be required to fully evaluate the relative
merits of these different approaches.

Figures 5 and 6 also show that all three estimators converge
to roughly the correct value, although there are slight biases in
the mean values for the ACF estimators, whereas none is seen
for the cyclic spectrum estimator. Additionally, for an ideal
estimator, at sufficiently high S/N the standard deviation in the
recovered delays should end up matching the standard
deviation in the injected τcent delays, which we see only in
the cyclic spectrum estimator. For reasons that will be
discussed later, we do not believe that the biases in the ACF
estimators are simply an indicator that a different C1 should be
used for our choice of impulse response.

A significant difference is also noticeable in the mean and
standard deviation at low S/N between using only one cyclic
frequency and using 50 cyclic frequencies. While the single
cyclic frequency estimator appears to converge at a similar, if
not slightly higher, S/N, its standard deviation is still
significantly larger than the 50 cyclic frequency estimator at
lower S/N. Overall, this presents a strong argument that using
many cyclic frequencies is superior.

The extreme variability seen at low S/N in the one cyclic
frequency cyclic spectrum estimator, and the trend toward
average recovered delays around zero μs in both cyclic
spectrum estimators, is the result of the white noise over-
whelming an IRF that has both positive and negative
components, resulting in a signal that is on average centered
around zero on the time axis. As the IRF becomes more
discernible from the additive white noise at higher S/N, a

signal that is increasingly centered in a positive region on the
time axis is recovered, resulting in positive recovered delay
values.
On a related note, if our ACF estimators did not have

sufficient frequency resolution at lower S/N, the excess noise
would have resulted in scintles appearing narrower and
therefore yielding higher measured scattering delays, leading
to the ACF estimators being biased high in addition to having
large variability. This high bias is also a consequence of ACF
fitting always producing a positive definite value, whereas the
cyclic spectrum estimator’s ability to return both positive and
negative values results in more manageable behavior at low
S/N.
Supplemental simulations also show that, after reaching a

sufficient S/N, additional gains in precision for all estimators
are also partially limited by the ratio of the delay to the
sampling interval, regardless of the number of time samples in
use. This is under the assumption that we are already using a
sufficient number of time samples such that accurate scattering
estimations are possible. As shown in Figure 7, when we run
our simulation at a S/N of 10 at various values of delay with a
constant sampling interval of 100 ns, we find a significant
improvement in our fractional error (or in this case, the
standard deviation of the recovered values divided by delay) as
the delay-to-sampling interval ratio increases, following an
inverse square root power law for all estimators. This quantity
is also equivalent to the inverse square root of the number of
scintles across the observing band for a typical observation.
Since both the number of scintles across the observing band
and the sampling interval are inherently tied to the maximum
possible bandwidth we can utilize, i.e., the inverse of the
sampling interval, these results provide strong support for the
introduction of ultra-wideband observation programs.
In addition to examining the precision and accuracy over

many realizations, we also looked at how this behavior tracked
over individual realizations. A typical example of this at a S/N
of 10 can be seen in Figure 8, where we show every 20th
realization of the simulation for visual ease. While all three

Figure 6. Lorentzian (left) and Gaussian (right) ACF estimator simulation results for random noise draws for a τ of 2 μs for 300 values of S/N using a spin period of 2
ms and a sampling interval of 100 ns. The dashed red lines represent the mean plus or minus one standard deviation of the injected τ at each S/N, with the mean and
standard deviation of the recovered values at each epoch shown in black and light blue, respectively.
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estimators generally follow the injected delays, the cyclic
spectrum estimator clearly tracks these injected values much
better than the ACF estimators.

These discrepancies become even clearer when we examine
how well individual draws correlate between the injected delay
and the various estimators for a given S/N. As shown in
Figure 9, while there is nearly a one-to-one correspondence
between the injected delay and the cyclic spectrum estimator,

epoch-to-epoch variations for the ACF estimators are both
significantly larger. In these plots ρ represents the correlation
coefficient between the two variables, σx is the standard
deviation of the data in the x direction, σy is the spread of the
data in the y direction, and σz is the standard deviation of
z= y− x. Additionally, the σy and σz values for the ACF
estimators are much more similar to each other than to the
cyclic spectrum estimator. Larger σz indicates a larger typical
difference between the injected delay and the estimator for a
given noise realization.
The lack of correlation seen in the ACF estimator plots in

Figure 9 also present a strong argument against the ACF
estimator biases seen in Figure 6 simply being an indication
that a different C1 should be used for our choice of impulse
response, as just choosing a C1 that removes the bias in
Figure 6 would not alter the lack of correlation seen in Figure 9.
The C1 would also have to be different for each ACF approach,
since the biases are in opposite directions relative to the
injected delay. Additionally, attempting to retroactively find C1

by comparing the ratios of the injected delays and ACF-
recovered delays in Figure 9 shows significant variation among
individual realizations in a recovered purported C1.
We can also compare how these correlation coefficients

change as a function of S/N. For each S/N value, we
calculated the correlation coefficients for each estimator over
the 1000 random draws. The results are shown in Figures 10
and 11. As with Figures 5 and 6, we see the cyclic spectrum
estimator eventually converge whereas the ACF estimators
have already converged. The convergence in the ACF plots,
like in Figure 6, are the result of already having sufficient
frequency resolution and a sufficient number of scintles over
our S/N range, as once the scintle structure in the dynamic
spectrum has been resolved, further improvements in S/N will
not affect an ACF estimator’s ability to recover scattering
delays. For the cyclic spectrum estimator, the S/N where it
plateaus corresponds well with what is seen in Figure 5.
Significantly, the cyclic spectrum correlation plateaus at a
much higher value than the ACF estimators (around 1.0
compared to around 0.25−0.45). This behavior further
indicates the improvement the cyclic spectrum estimator
provides over the ACF estimators. Additionally, our 50 cyclic
frequency estimator converges at a S/N around an order of
magnitude earlier than the single cyclic frequency estimator,
further emphasizing the benefits of utilizing multiple cyclic
frequencies.
We also examined how much these estimators deviate from

τcent as we vary the injected scattering delay. To do this, we
repeated the simulation described at the beginning of this
section for 45 scattering delays ranging from 0.1–2 μs spaced
apart evenly in log space at a S/N of 10. The delay range was
chosen based on the breadth of delays we might expect to see
from observing many PTA-quality pulsars. We then compared |
z|, the differences between the estimators and τcent, over each
delay in that range. The results are shown in Figure 12. While
at the lowest delays for this sampling interval, the Gaussian
estimator has greater accuracy than the Lorentzian estimator, at
higher delays both the Lorentzian and cyclic spectrum
estimators are noticeably more accurate than the Gaussian
estimator, which is shown to deviate from τcent more
significantly as the injected delay increases.

Figure 7. The fractional error of the recovered delay for 100 values of τ with a
sampling interval sint of 100 ns using a spin period of 2 ms with 50 cyclic
frequencies at a S/N of 10. The fractional error scales as the inverse square root
of the number of scintles across the observing band for a typical observation,
or, equivalently, the inverse square root of the delay divided by the sampling
interval. Throughout much of the abscissa range, the cyclic spectrum estimator
has a fractional error approximately 64% smaller than that of the ACF
estimators. ACF estimators can be seen to flatten out in the smaller delay-to-
sampling interval ratio regime as they are no longer able to detect a signal
above the noise. The improvement in precision as the delay gets larger while
maintaining this sampling interval demonstrates the benefits of proposed wider
bandwidth observing programs.

Figure 8. A sample of realizations for a S/N of 10 for the simulation described
above. The accuracy of the different estimators compared to the injected value
found by τcent follows the behavior seen in Figures 5 and 6.
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5. Conclusions and Future Developments

We simulated scattering delays from the ISM to test the
effectiveness of three delay estimators: fitting Lorentzian and
Gaussian distributions to frequency ACFs calculated from
pulsar dynamic spectra to recover the scintillation bandwidth
and the cyclic spectrum-derived quantity τCS. We find that, at
sufficient S/N, in terms of both precision and accuracy, the
cyclic spectrum estimator is superior to both ACF estimators,
which are accurate over many realizations, but not as reliable as
the cyclic spectrum estimator on an epoch-to-epoch basis.
Importantly, for actual pulsar timing with additional sources of
timing noise, ACF and CS estimators are necessary to

discriminate between ISM-based propagation delays and other
sources of delay. We believe the results described in this paper
provide significant motivation for further pursuing CS
implementation in general, especially through the lens of
deconvolution-based IRF recovery.
As PTAs close in on sensitivities sufficient for detecting

gravitational waves, understanding and mitigating all non-
gravitational wave delays will be critical for accurate gravita-
tional wave characterization. Many pulsars in the NANOGrav
PTA are already known to have scattering delays of tens of
nanoseconds, which is a non-negligible fraction of the
microsecond to sub-microsecond residuals we see in many
pulsars (Alam et al. 2020). Many of these estimations, and

Figure 9. Estimators vs. injected delay for 1000 random noise draws for a τ of 2 μs using a spin period of 2 ms and a sampling interval of 100 ns at a S/N of 10. σx is
the standard deviation of the data in the x direction, σy is the spread of the data in the y direction, and σz is the standard deviation of z = y − x. Dashed red lines
represent lines of equality between the two axes.
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indeed many estimations of scattering delays in millisecond
pulsars, have been performed by fitting Gaussian functions to
ACFs, indicating the true effects of scattering delays in PTAs
may currently be improperly estimated by a few percent,
although additional efforts within NANOGrav are currently in
place to estimate scattering delays by fitting ν−4 delays to
output TOAs. Additionally, these effects are not currently
accounted for in NANOGrav’s timing pipeline, or the pipelines
of other PTAs such as the European Pulsar Timing Array
(EPTA), Parkes Pulsar Timing Array (PPTA), or, conse-
quently, the global pulsar timing array effort, the International
Pulsar Timing Array (IPTA), furthering the need for more
accurate techniques such as cyclic spectroscopy to be both
developed and implemented into future pulsar timing efforts.
Efforts are currently ongoing to implement a real-time cyclic
spectroscopy backend into existing timing pipelines with the
goal of removing scattering effects before any further timing
analysis has taken place. This work is currently being done on
pipelines operating at the Green Bank Telescope, currently the
primary observing site for NANOGrav, but may be imple-
mented in the future at other NANOGrav telescopes such as
CHIME and Very Large Array or next-generation telescopes
such as DSA-2000 should this endeavor prove successful.

This material is based upon work supported by the Green
Bank Observatory which is a major facility funded by the
National Science Foundation operated by Associated Univer-
sities, Inc. We gratefully acknowledge the support of this effort
from the NSF Physics Frontiers Center grants 1430284 and
2020265 to NANOGrav. D.R.S. acknowledges support from
NSF grant 2009759. T.D. is supported by an NSF Astronomy
and Astrophysics Grant (AAG) award number 2009468. Some
of the simulations in this work utilized the resources of the
Bowser & Link computing clusters at West Virginia University.

Software: SCIPY Virtanen et al. (2020), NUMPY van der
Walt et al. (2011), and MATPLOTLIB Hunter (2007).

Appendix
Derivation of Fractional Error and Uncertainty as Related

To Observable Quantities

The following work uses Equations (A9) and (A10)in the
appendix in Dolch et al. (2021). The first part of A9 defines
cyclic merit as

m
b
b

, A1cyc
d

= ( )

where b= 2πτCS/P and δb= 2πδτCS/P, while Equation (A10)
defines it as

m
W

P
2

S N k a , A2e
kcyc

CS
2

k

2åpt
= ( ) ( )

Figure 10. Cyclic spectrum estimator correlation coefficients for random noise
draws for a τ of 2 μs for 300 values of S/N using a spin period of 2 ms and a
sampling interval of 100 ns.

Figure 11. Lorentzian (top) and Gaussian (bottom) ACF estimator correlation
coefficients for random noise draws for a τ of 2 μs for 300 values of S/N using
a spin period of 2 ms and a sampling interval of 100 ns.
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where We is the effective pulse width and ak= Ak/A0, the ratio
of the kth coefficient and the 0th coefficient of the intensity
pulse profile’s Fourier transform. For a sharp pulse, Fourier
coefficients should stay substantial out to some high number
kmax before falling off rapidly, with the number of cyclic
frequencies we go up to being roughly the inverse of the duty
cycle. This means that kmax should be roughly P/We. If we
assume that ak stays constant out to kmax, the radical becomes

k
k k k
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1 2 1
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From here we can say that
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We can then express this inverse fractional error as
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meaning the uncertainty in τCS can be expressed as
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