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Abstract

Hundreds of millions of supermassive black hole binaries are expected to contribute to the gravitational-wave
signal in the nanohertz frequency band. Their signal is often approximated either as an isotropic Gaussian
stochastic background with a power-law spectrum or as an individual source corresponding to the brightest binary.
In reality, the signal is best described as a combination of a stochastic background and a few of the brightest
binaries modeled individually. We present a method that uses this approach to efficiently create realistic pulsar
timing array data sets using synthetic catalogs of binaries based on the Illustris cosmological hydrodynamic
simulation. We explore three different properties of such realistic backgrounds that could help distinguish them
from those formed in the early universe: (i) their characteristic strain spectrum, (ii) their statistical isotropy, and (iii)
the variance of their spatial correlations. We also investigate how the presence of confusion noise from a stochastic
background affects detection prospects of individual binaries. We calculate signal-to-noise ratios of the brightest
binaries in different realizations for a simulated pulsar timing array based on the NANOGrav 12.5 yr data set
extended to a time span of 15 yr. We find that ~6% of the realizations produce systems with signal-to-noise ratios
larger than 5, suggesting that individual systems might soon be detected (the fraction increases to ~41% at 20 yr).
These can be taken as a pessimistic prediction for the upcoming NANOGrav 15 yr data set, since it does not

CrossMark

include the effect of potentially improved timing solutions and newly added pulsars.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675);
Gravitational wave sources (677); Supermassive black holes (1663); Millisecond pulsars (1062)

1. Introduction

Pulsar timing arrays (PTAs) probe gravitational waves (GWs)
with frequencies between a few and a few hundred nanohertz
(nHz) by continuously monitoring millisecond pulsars (for a
review see, e.g., Burke-Spolaor et al. 2019; Taylor 2021). The
NANOGrav Collaboration recently found evidence for a low-
frequency stochastic process common to all pulsars in their 12.5
yr data set (Arzoumanian et al. 2020). The three other PTAs also
all found evidence for such a common red-noise process
(International Pulsar Timing Array (IPTA), Antoniadis et al.
2022; EPTA, Chen et al. 2021; PPTA, Goncharov et al. 2021). It
is possible that these results are the first signs of a stochastic GW
background (GWB), but at this point none of the above analyses
found strong evidence for Hellings—Downs (HD; Hellings &
Downs 1983) spatial correlations, which are the telltale sign of a
GWB. However, this is not surprising given that the power in
cross-correlations is about an order of magnitude less than the
total power of a GWB. This means that we can expect to detect a
common process before we detect the HD correlations between
pulsars (see, e.g., Pol et al. 2021; Romano et al. 2021). Upcoming
PTA data sets will decide whether this red-noise process is the
GWB or not.

Once a firm detection of the GWB is established, the next task
will be to identify its origin. The theoretically most favored source
of a GWB at nHz frequencies is an ensemble of inspiraling
supermassive black hole binaries (SMBHBs; see, e.g.,
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Rajagopal & Romani 1995; Enoki et al. 2004; Sesana et al.
2004; Kelley et al. 2017b). However, there are several other
proposed processes that can form such a low-frequency GWB, like
cosmological phase transitions (Arzoumanian et al. 2021), cosmic
strings (van Haasteren et al. 2011; Blasi et al. 2021), primordial
black holes (De Luca et al. 2021), inflation (Vagnozzi 2021), etc.
These models all have different predictions for the spectral shape of
the common signal, which presents the possibility of distinguishing
these models (Kaiser et al. 2022). However, definitively identifying
the source of the GWB based solely on its spectrum will be
challenging given the large uncertainty in both measurement (Pol
et al. 2021) and model predictions. Thus, any additional predictions
of these models beyond their spectra could be useful in determining
the source of the GWB.

In this paper we explore various properties of realistic GWBs
from SMBHBs, some of which might help distinguish that
scenario from others. As we will see, most of these properties
rely on the fact that an SMBHB-based GWB is built from a
finite number of sources. The statistics of individual sources in
a realistic simulation were first investigated in Sesana et al.
(2009), while Rosado et al. (2015) calculated detection
probabilities of individual sources in the presence of a GWB.
The general question of when the signal from a finite collection
of individual sources becomes effectively stochastic was
investigated in Cornish & Romano (2015), while the effects
of the finite population on the detection prospects of the GWB
have been studied in Cornish & Sampson (2016). Here we are
instead focusing on how these effects can help us discern the
origin of the GWB. Our simulations are using synthetic
SMBHB catalogs based on the Illustris cosmological simula-
tion (Kelley et al. 2018). We introduce and validate a method
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that can rapidly produce simulated PTA data sets from millions
of SMBHBs by modeling the large majority of the sources as a
GWRB and directly simulating the few brightest binaries in each
frequency bin (see Section 2). We use this simulation method
to investigate how the central limit theorem breaks down for
such an SMBHB population (see Section 3.1), how the finite
number of sources can lead to anisotropic GWBs (see
Section 3.2), and how the variance of the HD correlations is
affected by the properties of the SMBHB population (see
Section 3.3). We also explore the detectability of individual
binaries in the presence of a GWB by calculating the
distribution of signal-to-noise ratios (S/Ns) of the brightest
binaries in multiple realizations (see Section 4). We summarize
and offer concluding remarks in Section 5.

2. Simulation Methods
2.1. SMBH Population Model

Our simulations are based on synthetic catalogs of the
SMBHB population representative of the entire observable
universe. These are derived from the Illustris cosmological
hydrodynamic simulations (see, e.g., Vogelsberger et al. 2014),
as implemented in the holodeck code (L. Z. Kelley 2022, in
preparation), by modeling small-scale astrophysical processes
in a post-processing step. This treatment accounts for
environmental effects relevant to binary hardening like
dynamical friction, stellar scattering, drag from a circumbinary
disk, and GW emission (for more details see Kelley et al.
2017a, 2017b, 2018). The collection of mergers observed in the
Mlustris simulation volume can be resampled multiple times to
create new realizations of a simulated catalog of SMBHBs for
the entire past light cone of the observer. The standard free
parameter in this implementation of SMBH binary populations
is the binary lifetime. Additionally, to produce a GWB
amplitude roughly consistent with the observed common
process in the NANOGrav 12.5 yr data set (Arzoumanian
et al. 2020), we have tuned the volume density of mergers and
the distribution of SMBH masses.

Figure 1 shows the distribution of the source-frame chirp
mass (M), the luminosity distance (d;), and the observer-frame
GW frequency (fyps) of such a simulated data set of SMBHBs.
Here we applied a lower-frequency cutoff at (15 yr) ',
corresponding to the observational time span we consider in
this paper and the observational time span of the upcoming
NANOGrav 15 yr data set (M. F. Alam et al. 2022, in
preparation). This particular realization has about 115 million
binaries. Note that the number density is dominated by low-
frequency, low-mass, faraway systems.

2.2. Isotropic GWB plus Bright Binaries

The timing residuals in a PTA data set at observing epochs ¢;
can be written as

r(t) = r,(4) + row (), (1

where r,, describes residuals due to every noise source, while
rgw 1s the contribution of GWs. In the case of a population of
N SMBHBs producing GWs in the observable universe, one
can write

N
row (t) = Z s5i(t;; 0)), 2)

Jj=1
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Figure 1. Distribution of binary parameters in the simulated SMBHB catalog
we use. The distribution was artificially cut off below observer-frame GW
frequencies of (15 yr)~', which would not be observable with the 15 yr
observing time span considered here. Vertical dashed lines indicate the median
value of each parameter.

where s; is the timing residual response to the GW signal from
the jth binary, which is described by the parameters

0] = {M3 dL’ﬁ)bS’ 03 (b’ L, ws
Do, D1y Ppsgs L sees Livpsp ) » 3)

where 6 and ¢ parameterize the location of the source on the
sky, ¢ is the inclination of the binary’s orbit, v is the
polarization angle, @ (®;) is the initial phase of the GW signal
at Earth (at the ith pulsar), L; is the distance to the ith pulsar,
and Npgp is the number of pulsars (for an explicit expression of
si(t;; 0)) see, e.g., Equation (10) in Aggarwal et al. 2019). While
Equation (2) is a valid description of the total GW signal, it is
impractical both for data analysis and for simulating signals. In
terms of data analysis, this model has (8 + Npsg)N + Npsr
parameters,” which are practically impossible to explore in the
realistic case, where N ~ ((105-10%). In terms of simulating
PTA data sets, individually calculating the response of millions
of binaries becomes a computationally expensive task.

We will show that both of these problems can be averted by
expressing the total contribution to the residuals as

M’rsq M
row (&) = rows(t, hEV®) + SN S}k)(fi; 0)), 4

k=1j=1

where rgwp is an isotropic Gaussian stochastic background
with the characteristic strain spectrum hCGWB, Nireq is the
number of frequency bins considered, and s](-k) is the binary with
the jth-largest characteristic strain in the kth frequency bin. The
second term in Equation (4) loops over all Ny, frequency bins

5 The pulsar distance parameters are the same for each GW source, but the
pulsar phase parameters introduced to help convergence will be different for
each binary.
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and directly adds the contribution of the M brightest sources in
each bin. We set 1™ in each frequency bin based on the
remaining SMBHBs as

Ne
W) = | S )PP, ©)
j=M+1

where N, is the total number of binaries in the kth frequency
bin, f; is the central frequency of that bin,

(h )(k) h(k) (f(k)Tb (6)

is the characteristic strain of the jth-brightest source in the kth
frequency bin, T, is the total observation time, f ®) s the

observer-frame GW frequency of that source, and h(k) is the
sky- and polarization-averaged GW amplitude (Sesana et al.
2004),

o _ 8 (GMgps)3 3 (mfy )3
! m C4dL

where Myps = (1 4+ z) M is the observer-frame chirp mass.
Note that Equation (5) determines hCGWB by summing up the
square of the characteristic strain for all binaries except the
ones directly modeled in Equation (4). This is justified by the
fact that when summing up sine waves of a given frequency
with random phase offsets, the expectation value of the total
amplitude squared is given by the sum of the squares of
individual amplitudes. This approximately still holds in this
scenario, where the frequencies of sources in the same
frequency bin are approximately the same.

This method of describing a realistic background by an
idealized isotropic Gaussian GWB and a sum of the few
brightest sources can be used for both data analysis and
simulation. The BayesHopper® algorithm uses this approach
to search for multiple individual SMBHBs in the presence of a
GWB (Bécsy & Cornish 2020), while in this paper we use this
approach to efficiently create realistic simulated data sets. Note
that for data analysis purposes the ideal number of SMBHBs to
model individually is dictated by Bayesian parsimony.
However, for simulating signals we want to make sure that
all the relevant details are captured, so we add more binaries
directly than strictly necessary and than what can be picked up
by data analysis. To validate the use of this description for
rapidly simulating realistic GWBs, we simulated 200 realiza-
tions of a GWB by directly simulating all binaries (as in
Equation (2)) and also by simulating a GWB and 1000 outlier
SMBHBs in each frequency bin (as in Equation (4)). Figure 2
shows the median power spectral density (PSD) of post-fit
residuals in a given simulated pulsar for both methods. The
90% credible intervals are shown as shaded bands. Here we
used a simulated noise-free data set with a single pulsar and
evenly spaced observations to enable the use of fast Fourier
transforms. We applied a Tukey window on the residuals
before calculating the PSD to avoid spectral leakage. Both
methods produce spectra with a significant variance over
realizations, but both their median values and 90% credible
intervals show good agreement. Note that the two peaks
correspond to frequencies of 1 and 2yr ', where the timing
model fit introduces extra power. The agreement between the

) )

6 Publicly available at https://github.com/bencebecsy /BayesHopper.

Bécsy, Cornish, & Kelley

10~
—_ 107N !
m *» .
IN \
= R ;
107°+ "
@) I\
E \ f/’ l':
0 10-10] N Y
o N\ LR
0 GWB + Outlier i \ f
o 10—12_ Full :
~== 1/year
------ 2/year '
10-14 .
1078
fobs [Hz]

Figure 2. PSD of post-fit residuals for data sets where we individually
simulated all binaries (red) and where we simulated a stochastic background
and 1000 SMBHBs in each frequency bin (green). We show the median and
90% credible intervals over 200 realizations as solid lines and shaded regions,
respectively. The more efficient outlier method correctly reproduces both the
median and the variance of the PSD from the full simulations.

PSDs produced by the two methods shows that they result in
statistically equivalent frequency content. In Sections 3.1 and
3.2 we show that after removing the brightest binaries the
remaining signal satisfies the assumption of Gaussianity and
statistical isotropy as well.

3. Properties of a Realistic GW Background

In this section we explore how various characteristics of the
background are affected by the fact that there are a finite
number of sources contributing to it. We investigate the
spectrum of the GWB in Section 3.1, we test for statistical
isotropy in Section 3.2, and we quantify the variance of the HD
correlations in Section 3.3.

3.1. GW Spectrum

In the canonical description of a GWB arising from an
infinite number of circular SMBHBs evolving purely through
GW emission, the characteristic strain spectrum can be
described as a power law with a spectral index of —2/3, i.e.,
hSVB ~ f bz/ 3 (Phinney 2001). The spectrum arising from a
populatlon of SMBHBs differs from this simple spectrum (see
purple circles and dashed line in Figure 3). The difference is
most striking at high frequencies, where the population-based
spectrum has a lower amplitude than the power-law model.
This is due to the fact that the power-law model counts
nonphysical contributions from fractional sources (Sesana
et al. 2008). The population-based spectrum also exhibits
significant fluctuations at high frequencies. Figure 3 also shows
the spectrum when we exclude the brightest 1/10,/100/1000
binaries in each frequency bin.” We can see that as we exclude
more binaries, the scatter in the spectrum decreases. This
suggests that by setting M 2 100, the resulting spectrum is not
dominated by a few bright binaries anymore. Note that as we
remove more binaries, the spectra in Figure 3 terminate at

7 This corresponds to setting M = 1/10/100/1000 in Equation (5).
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Figure 3. Characteristic strain spectrum for all binaries (purple) and for various

numbers of the brightest binaries removed (different shades of green). We also
show a power-law spectrum for reference (dashed gray line).

lower frequencies, because at higher frequencies we removed
all the binaries.

To quantify how much is dominated by a few sources
at a given frequency, we look at the minimum number of
binaries contributing at least 90% of hSWVE at a given frequency
(Nog). Figure 4 shows the median Ny, value over 20
realizations. We show this for the total population and also
for populations where we removed the top M=1/10/100/
1000 binaries. The total number of binaries in each frequency
bin is also indicated. While the bulk of the GWB signal is built
up from O(10%) binaries at the lowest frequency bins, it is
dominated by less than 10 binaries above about 100 nHz. This
is expected from our qualitative assessment of the spectra in
Figure 3, where we have seen an increased scatter at high
frequencies. We can also see that as we remove the brightest
binaries from the population, the effective number of binaries
contributing to the GWB increases. Note that as we remove
more and more binaries, we can reach a limit where we are
removing a significant fraction of the total number of binaries,
and thus removing more binaries actually decreases Nog. (see,
e.g., “-1000” and “-100” lines around 40 nHz in Figure 4). We
also show the frequencies where the total numbers of binaries
reach 100 and 1000 (vertical dashed lines). Note that the
“-1000” and “-100” lines approach these horizontal lines,
indicating the point where we remove all the binaries in the
given bin.

Figure 4 illustrates why modeling a realistic background as a
GWRB and a few individual sources is well motivated. Modeling
all the binaries as a GWB is not justified, since the background
level for the full population is dominated by a few sources at
high frequencies, so the central limit theorem breaks down.
However, if we only consider the population with hundreds of
the brightest binaries removed, the background level is
determined by a large (=100-1000) number of binaries, so
treating it as a Gaussian background is a good approximation.
In this case the non-Gaussian nature of the background is
modeled by adding the brightest binaries as individual sources
to the full signal (see Equation (4)).

GWB
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Figure 4. Number of binaries contributing 90% of the total strain in each
frequency bin (Ngg). We show this for the whole data set (purple) and for data
sets with the top 1/10/100/1000 binaries removed (different shades of green).
We also show the total number of binaries in each bin (N gray histogram).
Vertical dashed lines indicate frequencies where the total numbers of binaries
reach 1000 and 100. Note that the lines for the data sets without the top 1000/
100 asymptote to the corresponding vertical lines, indicating frequency bins
where we remove a large fraction of the binaries.

3.2. Statistical Isotropy

In the simplest description, it is also usually assumed that the
GWB exhibits statistical isotropy. However, this is not
expected to be true for realistic backgrounds. SMBHBs are
hosted by galaxies, which cluster into galaxy clusters, so
nearby galaxy clusters can result in an overabundance of nHz
GW sources in a particular sky location. In addition, SMBHBs
can produce anisotropy even when they are uniformly
distributed in volume, if a small number of them dominate
the nHz GW sky. This is in stark contrast with a GWB of
primordial cosmological origin, which would be perfectly
statistically isotropic, so the origin of the GWB can be firmly
established by detecting anisotropy (Mingarelli et al. 2013).
Indeed, there are numerous methods to search for signatures of
anisotropy in the GWB (Mingarelli et al. 2013; Taylor &
Gair 2013; Cornish & van Haasteren 2014; Hotinli et al. 2019;
Ali-Haimoud et al. 2020; Taylor et al. 2020), and by some
estimates PTAs might be able to detect anisotropy just a few
years after detecting the isotropic component of the GWB (Pol
et al. 2022).

In our modeling we assume a uniform-in-volume distribution
of sources. This means that the following results on anisotropy
can be taken as a lower limit, since the effect of local
inhomogeneities would further increase the level of anisotropy.
To model the angular distribution of GW power, we pixelate
the sky using the HEALPix framework (Gorski et al. 2005).
Since this produces equal-area pixels, randomly assigning each
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SMBHB to a pixel is equivalent to distributing them uniformly
on the sky. We carry out our analysis independently for each
frequency bin. For each pixel, we sum up h2 values of all the
binaries assigned to that pixel, resulting in a discretized
function of sky location h2(Q).

Figure 5 shows that distribution for a particular realization at
the frequency bin between 66.5 and 68.7 nHz. This frequency
bin has a total number of 9801 binaries. The different rows
show maps with different numbers of the brightest binaries
removed. For each of these we show both the raw map of 4.(€2)
(left) and a reconstructed map with angular scales restricted to
those used for the anisotropy test described below (right). Note
that the mean amplitude has been subtracted to better show the
fluctuations. We allow the color scales to be different for each
sky map, but we force it to be symmetric around 0. This
particular example shows a highly anisotropic distribution due
to a few brightest binaries dominating the sky, but as more and
more of the binaries are excised, the remaining GWB gets more
and more isotropic. By the time we remove the top 10 binaries,
the GWB sky map restricted to large angular scales is visibly
indistinguishable from an isotropic distribution. This is similar
to the findings of previous studies reported in Taylor & Gair
(2013) and Mingarelli et al. (2017), where authors found that
small angular scale power can be reduced (and thus the map
can be made more isotropic) by removing the brightest source
(see Figure 2 in both references).

To quantitatively assess the statistical isotropy of maps like
those shown in Figure 5, we follow the formalism introduced in
Hajian & Souradeep (2003) and Hajian & Souradeep (2004).
This method was used to test the statistical isotropy of the
cosmic microwave background using data from the Wilkinson
Microwave Anisotropy Probe (Hajian et al. 2005). We start by
decomposing our maps in terms of Y, spherical harmonics:

Zmax [
he () = he(0, p) = Z Z agmYeom (0, ®). (8)
{=0m=—¢
The ay,, spherical harmonic coefficients can be used to compute
the bipolar spherical harmonic coefficients:

M M
All’ = Z almal’m/etlml’m” ®
mm/

where Q%/m/ are Clebsch—Gordan coefficients. The bipolar
power spectrum is defined as

re= Yo lAp P (10)
im

Note that for statistically isotropic maps the usual angular power
spectrum C; = 1/(21 + 1)3,,|a;,|* contains all information about
the map, and we have A/ = (—1)!G 21 + 1 8y 806y0 and
Ke = Kolgo. After correcting for the estimation bias (Equation (14)
of Hajian & Souradeep 2003), ~, has an expectation value of 0 for
all £>1 under statistical isotropy. The variance can also be
analytically computed (Equation (17) of Hajian & Soura-
deep 2003), so one can test for statistical isotropy by checking
whether x, are consistent with zero within their theoretical

variance.
We calculate , for 1 < ¢ < 6, which corresponds to probing
angular scales larger than 30°. The cutoff at £ = 6 is motivated
by the angular resolution sensitivity forecasts from Pol et al.

(2022). We apply a Gaussian low-pass filter on the a;" values
as defined in Equation (5) of Hajian et al. (2005) with [ = 20.
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This ensures that there is no spectral leakage affecting the
analysis. A key difference between our analysis and the one
presented in Hajian et al. (2005) is that we do not use the
theoretical variance of «, to decide whether a map is isotropic
or not. Instead, we compare the measured ~, values to «, values
calculated from Ny, realizations of a simulated isotropic map
with the same angular power spectrum. We call a map
statistically isotropic if the measured k, values are within the
maximum and minimum &, from the truly isotropic maps for all
¢. This procedure allows us to set the false positive and false
negative probabilities of our test by choosing the value of Njg,.
As discussed below, we perform multiple trials of this test, so
we want to make sure that anisotropic maps rarely pass the test
by chance. We choose N, =35, which results in the false
positive and false negative rates reported in Table 1. Note that
increasing N, would further decrease the probability of
anisotropic maps passing the test at the cost of fewer truly
isotropic maps passing it.

We performed x,-tests on all four maps shown in the right
column of Figure 5. The maps with all binaries and with the
single brightest binaries removed failed the test and are thus not
consistent with being statistically isotropic. The maps with 10
and 100 binaries removed passed the test. It is instructive to
compare the maps in the left and right columns. Based on the
raw maps, we might say that even the map with 10 binaries
removed is not isotropic. However, the maps on the right
correspond to what the x,-test actually sees. It is evident even
in those large angular scale features that the first two maps are
dominated by a few sources. Note in particular that these maps
are highly asymmetric around their mean values, resulting in
the lack of dark-blue colors. However, once we remove the 10
brightest binaries, the map is consistent with statistical isotropy
up to £{=06. This example reinforces our previous qualitative
assessment that removing the few brightest binaries makes the
GWB more isotropic.

We can ask how many binaries one needs to remove to get a
background consistent with statistical isotropy. To answer that, we
start with a k-test on a map with all binaries and remove binaries
one at a time until we reach a statistically isotropic map. We call
the number of binaries removed to achieve this N, We repeat
this procedure over all frequency bins and multiple realizations
(see Figure 6). We can see that there is a trend of needing to
remove more binaries as we move to higher frequencies. Figure 6
also shows the number of binaries with an amplitude within a
factor of three of the brightest binary, N,,,(33.3%), after removing
the N, brightest binaries. We can see that we typically reach
isotropy when there are more than ~10 binaries with comparable
amplitudes. This is consistent with the fact that at / = 6 there are
13 different spherical harmonics, so once there are =10
comparable sources randomly placed on the sky, we cannot
distinguish that from an isotropic sky. Note that at the highest
frequencies Ny, ~ Nyo, Where Ny, is the total number of binaries
in each frequency bin. This is because in our procedure we set
Nrem = Nyot if We cannot achieve statistical isotropy with any value
Of Niem. This is a similar feature to the one in Figure 4, where
removing more binaries does not get us closer to a true stochastic
background when N, is small to start with. We also show the
expected value of N, assuming that all maps are isotropic,
E [Neem lisoropy = /(1 — @) = 0.75, which is based on N
following a negative binomial distribution with the success
probability of a=0.43 corresponding to the false negative
probability of the r,-test reported in Table 1. We can see that at
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All binaries Ky-test with 1 = £ =< 6: FAILED

-9.1le-17 he(Q) 9.1e-17 -2.9e-19 helQ) 2.9e-19

1 removed Kp-test with 1 =/ = 6: FAILED

-4.3e-17 he(Q) 4.3e-17 -1.4e-19 helQ) 1l.4e-19

10 removed k;-test with 1 =/ = 6: PASSED

-7.6e-18 he(Q) 7.6e-18 -5.8e-20 hel2) 5.8e-20

100 removed Ky-test with 1 =/ = 6: PASSED

|
-1.8e-18 he(Q) 1.8e-18

-2.9e-20 he(Q) 2.9e-20

Figure 5. Angular distribution of the characteristic amplitude in the frequency bin with 66.5 nHz < f,ps < 68.7 nHz. We show sky maps for all binaries (first row) and
with 1/10/100 brightest binaries removed (second/third/fourth rows). The left column shows the raw maps, while the right column shows the maps reconstructed
with the same range of angular scales as was used for the anisotropy test (1 < £ < 6). Only the maps with 10 and 100 binaries removed passed the isotropy test in this
example. The monopole term was subtracted from each map. Note the changing scale of the color maps, which we forced to be symmetric around O.
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Figure 6. Minimum number of sources removed to achieve statistical isotropy
based on the r test with ¢ between 1 and 6, Ny, (1 < < 6). We show the
median and 68% credible interval of N, over 30 GWB realizations. We also
show the number of binaries with an %, within a factor of 3 of the brightest
binary in the frequency bin, Ni,p(33.3%). Note how statistical isotropy is
reached when N,,(33.3%) ~ 10. The black line shows the total number of
sources in each frequency bin. The dashed (dotted) horizontal line shows the
expected value of N, due to the false negative (positive) probability of our
test (see Table 1) if all maps are isotropic (anisotropic).

Table 1
False Negative and False Positive Probabilities of the Anisotropy Test with
Nigo =5
Isotropy Test Result Pass Fail
Truly isotropic map 57% 43%
Truly anisotropic map® 12% 88%

Note.
? Based on randomly selected map dominated by a single source.

the lowest frequencies the median value of Ny, is only slightly
above this expectation value, suggesting that a fraction of these
maps are isotropic even without removing any bright binaries. We
also show the expected value of N, assuming that every map is
anisotropic, E [Niem lanisotropy = 7.33, which is higher than the
median Ny, at any frequency and thus not expected to
significantly affect the results.

3.3. Variance of the Hellings—Downs Curve

It can be shown that an isotropic, unpolarized, time-
stationary, Gaussian GWB produces residuals that are
correlated between pulsar pairs, and the amount of correlation
between pulsar i and pulsar Jj is described by the HD curve
(Hellings & Downs 1983):8

8 Note that we follow the normalization convention where Ti=1.
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1 1 3 1
E" = — — —Xj + —x,"ln Xij + —(5,", 11
e R A A (an
where the term with 6;; encodes correlations due to the pulsar
terms and vanishes when looking at different pulsars, and x;; is
defined as
I — cosv;

Xjj = — (12)

where +;; is the angular separation between pulsars i and j. It
has been shown in Cornish & Sesana (2013) that Equation (11)
holds not only for GWBs but also for a so-called continuous-
wave (CW) signal with a quasi-constant frequency and
amplitude from an individual SMBHB.

While Equation (11) predicts the expectation value of the
correlations as a function of v, individual correlations can have
a significant variance (see Allen 2022 and references therein). It
has been suggested that the way the variance varies with angle
might be used to distinguish between primordial and
astrophysical sources of the GWB (Allen 2022).

There are two sources of that variance that are present even
in idealized noise-free observations, which we can call pulsar
variance and cosmic variance, following the nomenclature of
Allen (2022). Pulsar variance arises from the fact that
individual correlations can depend not only on ~ but also on
three other angles describing the position of the two pulsars on
the sky. Having a large number of pulsar pairs, one can in
principle average out the pulsar variance. Cosmic variance
refers to statistical deviations from Equation (11) in a given
realization of the GWB. Unlike pulsar variance, we cannot
average out cosmic variance, since we only have one universe
to make observations of.

To quantify the variance of the HD correlations, we
performed three different simulations, each with 100 fully
independent realizations:

(1) GWB: an isotropic stationary Gaussian stochastic back-
ground with a characterlstlc strain amplitude of 1 x 10~ "3
measured at f,,, = 1 yr ' and spectral index of —2/3.

(i) CW: GW signal of an individual SMBHB with fixed
amplitude, M = 10° Mg, fips = 10 nHz, and nuisance
parameters drawn randomly from uniform distributions.

(iii) Population: realistic GWB simulated as in Equation (4).

For these simulations we use the sky location of the 67 pulsars
in the NANOGrav 15 yr data set (M. F. Alam et al. 2022, in
preparation) and simulate evenly sampled observations over 15
yr with a 30-day cadence and with no noise. From the resulting
ri(t;) residuals at times #; in pulsar k we calculate the zero-lag
correlation between each pulsar pair as

Nobs

> @), (13)

obs =1

Cu=

where N, is the number of observations per pulsar. We also
introduce

Npsr -1
> Ckk) , (14)

PSR —]

Cu = Cu (

which normalizes Cy; with the autocorrelation terms, so that it
follows the same convention as Equation (11).
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Figure 7. Mean and variance of interpulsar correlations. We show results for an
idealized GWB, a single CW source, and a realistic population-based GWB.
We also show the theoretically expected mean and variance of the correlations
under different assumptions. The small discrepancy between the theoretical and
simulated CW curves is due to the anisotropic distribution of pulsars used for
the simulation (see the Appendix). Note that we show the results in 20 angular
bins, and the results were averaged over 100 realizations to reduce the scatter of
these curves.

Figure 7 shows the mean and 1o region of Cu as a function
of 7. The means follow the expected HD curve for all three
simulations.” We also show the theoretical variance for a purely
stochastic background from Allen (2022) and for a single CW
with pulsar terms from the Appendix based on results from
Allen (2022). We can see that our results are in good agreement
with these predictions. In particular, the GWB curve follows
the prediction for an isotropic Gaussian background perfectly.
The Population simulation also follows the shape of the same
theoretical curve, but with a slightly lower variance at all
angles. This constant shift is most likely due to its different
spectral properties, which influence the normalization between
the mean and the variance of the correlations (i.e., Equations
(C30) and (C32) of Allen 2022). This also seems to suggest
that our realistic GWB behaves more like an idealized GWB
than a single CW in this regard. The CW simulations also show
some agreement with the corresponding theoretical predictions.
In particular, these correctly predict that a single source has less
variance than a GWB at large angles but more at small angles.
The deviation can be explained by the anisotropic distribution
of pulsars on the sky, since they agree very well for a
simulation with isotropically distributed pulsars (see the
Appendix).

The 1o bounds we see in Figure 7 include both pulsar and
cosmic variance. To reduce the pulsar variance, one can take
the mean correlation in a set of angular separation bins. In the
limit of a large number of pulsars, such an averaging should

° This is expected since we are showing the mean over many realizations,
which removes the cosmic variance from the mean curves. For a given
realization, we expect the mean to be different from the HD curve by an
amount predicted by the cosmic variance.
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Figure 8. Variance of the mean correlations over 100 realizations. We show

results for an idealized GWB, a single CW source, and a realistic population-

based GWB. Besides the same theoretical curves as in Figure 7, we also show

the theoretical variance from cosmic variance only (Allen 2022). Note the

different vertical scale compared to Figure 7.

remove the pulsar variance, so the only source of variance is
the cosmic variance (assuming noiseless observations). To test
this scenario, we analyzed the same simulations as above, but
instead of calculating the variance of individual correlations,
we first took the mean of the correlations in each realization
and then calculated the variance of those means over all
realizations. The results are shown in Figure 8, where we used
20 equal-sized angular bins for the averaging. We also show
the same theoretically expected variances as in Figure 7. In
addition, solid gray lines indicate the cosmic variance
(Equation (G11) in Allen 2022). As expected, the variance of
the correlations is drastically reduced by the binning and
averaging procedure. However, the variance is still larger than
the cosmic variance at some angular separations. This is due to
the finite number of pulsar pairs available for averaging in our
simulations. Increasing the bin sizes used for the averaging
brings these lines closer to the theoretical curves at the cost of
losing angular resolution. Also note that the results from our
three simulations are all consistent with each other within their
statistical uncertainty in this averaged representation. In this
exercise we weighted all pulsar pairs equally in the averaging.
Allen & Romano (2022) derived the optimal way of reducing
the pulsar variance, which does not use equal weights for
different pulsar pairs.

Figures 7 and 8 only show the first and second moments of
the distributions of correlations. However, one advantage of
our direct simulation approach over analytical calculations is
that we can easily produce the full distribution of correlations.
To that end, we show the distribution of the deviation from the
HD curve both with and without binning in Figure 9. We can
see that the binned correlations show a consistent distribution
for all three of our simulations. This is not surprising given that
their means and variances are indistinguishable, as we have
seen in Figure 8. As expected, the individual correlations show
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Figure 9. Histogram of deviations from the HD curve for all three simulations
we performed. The bottom panel shows the mean and 90% credible interval for
the distribution of all individual correlation values. The top panel shows the
distribution of mean correlation values calculated in each angular bin and each
realization.

a significantly wider distribution. We can also see that while
the population-based and idealized GWB simulations show
almost identical distributions, the histogram is significantly
different for the simulations with an individual CW signal. As
was previously pointed out in Cornish & Sesana (2013), the
overall distribution of correlation deviations has a heavier tail
for a stochastic background than for a single CW source. Also
note that the distribution of individual correlations shows
significant non-Gaussian features, as is expected based on
analytical calculations (see footnote 40 in Allen 2022).

4. Prospects for Distinguishing Individual Binaries

Our method of modeling realistic backgrounds is also
uniquely suitable to study detection prospects of individual
binaries in the presence of a stochastic background. By setting
M =1 in Equations (4) and (5), we can separate the single
brightest binary and the rest of the GWB in each bin. Thus, we
can take into account the confusion noise coming from the
GWRB itself, along with the white and red noise in each pulsar.
Then, we can calculate the expected S/Ns for those outlier
sources as (see, e.g., Equation (219) of Di Matteo et al. 2019)

S/N = (s(t; 0)|s(1; 0))'/2, s)

where s(#; 0) is the CW signal in question, and we define the
inner product on residuals as

(alb) = aTC b, (16)

where C is the noise covariance matrix that takes into account
white and red noise in each pulsar and a stochastic background
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Figure 10. GWB spectrum in a particular realization (blue histogram) and the
brightest binary in each bin (blue circles). The binary we focus our attention on
is indicated by the orange circle.

based on Equation (5) with M = 1. We calculate inner products
using the ENTERPRISE software package (Ellis et al. 2020).

4.1. Variance of S/N over Extrinsic Parameters

The S/N can have a significant variance even when we fix the
intrinsic parameters of the source. These are due to effects of
extrinsic parameters: inclination angle, polarization angle, initial
phase, and two angles describing the sky location of the source. To
explore the effect of these on S/N, we focus on a particular binary
with fixed amplitude /distance, chirp mass, and GW frequency and
calculate the distribution of S/Ns over extrinsic parameters.
Figure 10 shows this binary on the h—f.ps plane (orange circle).
We also show the GWB spectrum for this particular realization
(blue histogram) and the single brightest binary in each frequency
bin (blue circles). Note that we chose our binary to be the one that
produces the highest S/Ns in this realization. We use a simulated
data set based on the properties of pulsars in the NANOGrav 12.5
yr data set (Alam et al. 2021), and we extend the observation time
to 15 yr, as was done in Pol et al. (2021).

Figure 11 shows the distribution of the median S/N over the sky
for this particular source. We also show the location of the pulsars
in our simulated array as red stars. The sizes of the stars are scaled
by a rough estimate of the sensitivity of the pulsars defined as

Nobs 1 1 /2
Sensitivity o< —_— s 17
y (?;(Anﬁ) (17

where At; is the nominal time of arrival (TOA) error of the ith
observation. Note that this simple expression reproduces the
expected scaling both with the number of observations (N\/m )
and with the TOA errors (~1/At;). We can see in Figure 11 that
the sensitivity on the sky shows a dipolar structure, where one gets
S/Ns almost a factor of four higher in one direction than the
antipodal direction. This is in agreement with the highly
anisotropic upper limits found by the search for individual
binaries in the NANOGrav 11 yr data set (Aggarwal et al. 2019).
The reason for this is the highly anisotropic distribution of
NANOGrav pulsars, which tend to be concentrated around the
galactic center.
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Figure 11. Distribution of the median S/N over the sky for a particular source.
Red stars indicate the locations of pulsars in our array (based on the
NANOGrav 12.5 yr data set; see Alam et al. 2021), with their sizes
corresponding to their sensitivity as defined in Equation (17). The black cross
indicates the sky pixel with the highest median S/N.
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Figure 12. Distribution of S/Ns for a particular source. The top panel shows
the overall distribution (gray), along with histograms restricted to the half of the
sky centered on the most sensitive sky location (red) and the antipodal point
(blue). The bottom panel shows how S/N correlates with the orbital inclination
(¢). The coloring indicates each source’s angular distance from the most
sensitive sky location (see black cross in Figure 11).

The top panel of Figure 12 shows the distribution of S/Ns for
this particular source, marginalized over all external parameters.
There is a significant variance in the S/N, with the 95% credible
interval ranging from 0.8 to 5.1. We also show the distribution
restricted to the more and less sensitive hemisphere, which we
define relative to the most sensitive sky pixel marked with a black
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Figure 13. Location of the loudest sources on the h—f,,s plane over 500
realizations of the binary population with 100 random extrinsic parameters
each (50,000 in total). The color of each circle indicates the S/N of the loudest
source in the particular realization. Note that the color scale was capped at S/
N =5 for better visibility. We also show the GWB spectra for each realization
in blue. Sources can have significant S/Ns even if they are below the
characteristic strain spectrum for the GWB if they have favorable extrinsic
parameters (e.g., sky locations and inclinations).

cross in Figure 11. This shows that the sky location significantly
contributes to the variance of the overall distribution. While most
other extrinsic parameters do not show a clear correlation with S/
N, the well-known effect of the inclination angle (¢) appears here
as well. This is evident from the strong dependence of the GW
amplitude on ¢ (see, e.g., Equation (13)-(14) of Aggarwal et al.
2019). The bottom panel of Figure 12 shows the two-dimensional
distribution of cos¢ and S/N. Sources with face-on orientation
(cos ¢ = +1) produce significantly higher S/N values compared
to edge-on systems (cos ¢ = 0). We also color-code the points on
this panel with the source’s angular distance from the most
sensitive sky location marked in Figure 11. We can see that orbital
inclination and sky location represent the majority of the S/N
variance. This means that PTAs are more likely to first see an
individual SMBHB with approximately face-on orientation,
located in the part of the sky toward which our PTA is most
sensitive.

4.2. Expected Properties of the Highest-S/N SMBHB

We are interested in the expected properties of the CW signal
that will first be detectable. To find those, we create 50,000
realizations of a realistic GWB made up from 500 realizations of
the SMBHB population with 100 different random extrinsic
parameters each. We use a simulated PTA based on the
NANOGrav 12.5 yr data set extended to a 15 yr time span (Pol
et al. 2021). Thus, the following results can be treated as
pessimistic predictions for the upcoming NANOGrav 15 yr data
set (M. F. Alam et al. 2022, in preparation), since we do not take
into account the improved timing precision and the addition of new
pulsars. For each realization we find the individual binary with the
highest S/N looking through all the frequency bins. Figure 13
shows the location of these loudest sources on the h—f,,s plane,



THE ASTROPHYSICAL JOURNAL, 941:119 (14pp), 2022 December 20

1091 (fobs/Hz) = —8.3133
i

10910 (Mobs/Mo) = 9.6133
1 1

10910 (Mobs/Mo)

Bécsy, Cornish, & Kelley

logio (d/Gpc) = 0.0453

log10 (d./Gpc)

[cost| = 0.7%33

1
I
1
i
= ; i
8 | t
(&) 4 1 1
o 1 1
1 1
1
] i |
e e — . . — | SNR = 1.813%
\9' E 4 -
o .
B A
m - - - -
%' i ;
27| “ ' 1 _‘
D 0¥ oD A9 LY ol ol 08 8 0 BB P8 ¥ PP LS
27 % 2T AT 7 %7 97 97 07 AT 9707 07 47 07 07 o7 o7 &
10910 (fobs/HZ) 10910 (Mobs/Mo) log1o (d./Gpc) |cos | SNR

Figure 14. Distribution of the detector-frame GW frequency and chirp mass, luminosity distance, inclination angle, and S/N of the loudest source over 500 binary
population realizations with 100 realizations each (50,000 in total). Dashed lines and quoted values correspond to the 5th/50th/95th percentiles. Gray histograms
show all realizations, while red histograms show only those where the S/N is larger than 5 (~8% of all realizations).

color-coded with their corresponding S/N. We also show the
spectrum of the GWB for all realizations. We can see that the
loudest sources are concentrated at moderate frequencies. The lack
of high-S/N sources at higher frequencies is due to the white noise
in the data set, which has A, ~ fj’bé 2. Note that a large fraction of
the loudest sources lie below the characteristic strain spectrum of
the GWB, which acts as a noise source here. This is possible
owing to the fact that the S/N depends not only on /. but also on
extrinsic parameters as we have seen in Section 4.1. Selecting the
loudest source over all frequencies preferentially selects sources
with the most favorable sky locations, inclinations, etc., thus
resulting in significant S/Ns even if the source has A, < hSVB,
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Figure 14 shows the one- and two-dimensional marginal
distributions of the detector-frame GW frequency and chirp
mass, luminosity distance, inclination angle, and S/N for the
loudest sources over 50,000 realizations. The median f is
~6 nHz, the median chirp mass is ~5 X 10° M, 5, and the
median luminosity distance is ~1.5 Gpc. This suggests that we
will most likely first see a CW source at moderate frequencies
with a very high chirp mass at a considerable distance. This is
in agreement with the findings of Rosado et al. (2015) and
Kelley et al. (2017b). The distribution of cos ¢ is significantly
different from the flat distribution corresponding to isotropic
inclination distribution. This is a well-known selection effect
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due to the increased S/N for face-on systems (see Figure 12).
The probability of the loudest source being within 30° of face-
on is ~26% for the whole population and ~38% for the S/
N > 5 subpopulation (compare with ~13% for the isotropic
distribution).

We can also see in Figure 14 that the median S/N is 1.8,
which is not expected to be detectable. However, there is about
a 6% chance to get a source with S/N > 5. Depending on the
details of the detection algorithm used, those might be
detectable, which is an interesting prospect for the search for
individual binaries in the upcoming NANOGrav 15 yr data set
(M. F. Alam et al. 2022, in preparation). We also show
histograms for these high-S/N sources in red. We can see that
they largely follow the same distribution for f,s, M, and d; as
all realizations. The same analysis extended to a 20 yr time
span yields similar f,,, M, and d; values; a median S/N of
4.5; and S/N > 5 in about 41% of the realizations.

Note that another reason why these predictions are
pessimistic is that we only check the binary with the highest
h. in each bin. In principle, binaries with lower /. can end up
producing the highest S/N signals. This means that by not
taking those into account, our S/N distributions are biased low.
On the other hand, these results do not marginalize over the
uncertainty in the astrophysical models used for the SMBHB
populations, which could have a large effect on these results.
We will incorporate these additional details in a future study to
provide more robust predictions for future PTA detection
prospects.

5. Conclusion and Future Work

In this paper we presented a new approach to efficiently
simulating realistic PTA data sets by modeling the signal as a
combination of an isotropic Gaussian GWB and a few of the
brightest binaries modeled individually. This produces data sets
consistent with the naive method of directly modeling all
binaries in a fraction of the time. We used this simulation
technique to explore various properties of realistic PTA data
sets. We show that the data sets are dominated by a small
number of binaries at high frequencies, resulting in the well-
known lack of GW power compared to a simple power-law
model (see, e.g., Sesana et al. 2008). We test these data sets for
statistical isotropy and find that they can be made isotropic by
removing the few brightest binaries at all except the highest
frequencies. We calculate the mean and the variance of the
spatial correlations in our simulated data sets and find good
agreement with analytical results presented in Allen (2022).

Our methodology also allows for calculating S/Ns of any
binary in our data sets. We use that to calculate the distribution
of the S/N of the brightest source over realizations for a
simulated PTA based on the NANOGrav 12.5 yr pulsars with
time spans extended to 15 yr. These calculations account for
both pulsar noise and the confusion noise from the GWB. We
find that the brightest binary tends to have moderate GW
frequency (few times the inverse of the observational time
span), high chirp mass, large distance, and nearly face-on
orientation. The median S/N of the brightest source is 1.8, and
about 6% of the realizations produce a source with S/N higher
than 5. These S/N values are pessimistic estimates for the
upcoming NANOGrav 15 yr data set (M. F. Alam et al. 2022,
in preparation), since they do not take into account any
potential improvements of the timing model solutions or the
addition of new pulsars relative to the 12.5 yr data set.
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However, they rely on a particular model of the SMBHB
population, which might introduce biases. If we further
increase the observing time span to 20 yr, the fraction of
realizations producing a binary with S/N greater than 5
increases to about 41%, and the median S/N increases to 4.5.
We also calculate the S/N distribution for a given binary over
different values of their extrinsic parameters (sky location,
inclination and polarization angle, initial phase). We find that
these parameters can have a significant effect on the S/N. The
sky location and the inclination angle are particularly impactful
parameters, as they can change the S/N by a factor of 2—4.

The methods presented in this paper will continue to be
useful tools to understand the interplay between the stochastic
background and individual sources. In the future, we plan to
incorporate different models of the SMBHB population,
allowing us to produce simulated data sets using different
assumptions about SMBHB formation and evolution. The
software used for this paper was made to be compatible with
the holodeck'® software package (L. Z. Kelley 2022, in
preparation), allowing us to use any SMBHB population model
developed there. That will also allow us to make our detection
prospect predictions marginalized over astrophysical uncer-
tainties. In addition, we also plan to run PTA detection
pipelines on realistic data sets produced by the methods
presented here. In particular, analyzing such data sets with the
QuickCw'' pipeline (Bécsy et al. 2022) would allow us to
make more accurate predictions than the simple S/N calcula-
tions presented in this paper. We also plan to analyze such data
sets with BayesHopper to investigate how PTAs will be able
to detect multiple individual sources in the future (Bécsy &
Cornish 2020).
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(Foreman-Mackey 2016), Numba (Lam et al. 2015, 2022).

Appendix
Variance of Spatial Correlations with Different
Normalizations

In this appendix we explore how the variance of the HD
correlations from a single binary depends on the way we
normalize the correlation values. We reproduce some results of
Allen (2022) and derive formulae for the case with a different
normalization used in Section 3.3. We compare these results with
simulations for a CW signal in a simulated PTA with an isotropic
distribution of pulsars. Note that we follow the convention that the
HD curve at zero separation is 1/2, while Allen (2022) normalizes
to 1/3. Thus, our results need to be multiplied by 2/3 when
comparing with results in Allen (2022).

10 publicly available at htps: //github.com/nanograv/holodeck.
1 Publicly available at https://github.com/bencebecsy /QuickCW.
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A.1. Without Pulsar Terms

From Equation (A31) of Allen (2022) the mean HD
correlation for a binary with a given inclination (¢) and GW
amplitude (A) is

AZ

w= —[1 + 6cos? ¢ + cos* I, (), (A1)

where ,(7y) is the mean HD curve (see Equation (D29) in
Allen 2022). Neglecting pulsar terms, the variance is
4
o2 = i[l

556 + 6c0s21 4 cos? L2 o2 (7)

+ iz[sin8 002 (), (A2)

where o, and o, are defined in Equations (D37) and (F2) in
Allen (2022), respectively.

We can average these over cost € [—
Equation (A32) of Allen 2022)

1, 1] to get (see

2
Hayerage = ?uu(v) (A3)
and
2 l.A A
average — Ou + Ad
Taverage = o o2 (7) 260°°¢ HG (A4)

We normalize these so that fiayerage =
A% =5 and

Ly, Which implies

Oaverage = \/355 2(7) + ia (M- (AS5)

252 252

This is appropriate if we normalize the correlation values
globally over all realizations. However, if we normalize the
correlations realization by realization, then we need to
normalize Equation (Al) before averaging. We thus require
A2/16[1 4 6cos?t + cos*t] = 1, which implies

o2 = o(y) + sin’ 2. (A6)
w7 2[1 + 6¢cos?t + cos* P ¢ R
If we average this over cos¢ € [—1, 1], we get
_ 2 | )
Oaverage = 40y ) + ZOéUC(V) > (A7)

where & = 4 + 7 — 37//2.

Figure 15 shows the comparison of simulation results with
Equations (AS) and (A7). The simulation normalized per
realization seems to match Equation (A7) really well. The one
normalized globally generally follows Equation (AS) but
deviates at small and large angles.

A.2. With Pulsar Terms

If we include pulsar terms, the mean -correlation is
unchanged, but the variance becomes (see Equation (B10) of
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—-=- CW 1-0 - normalize per realization

—— CW 1-0 - global normalization

-=- 1-0 CW w/o PSR term - normalize per realization, Eq. (A7)
—— 1-0 CW w/fo PSR term - global normalization, Eq. (A5)

Correlation

135 180

Pulsar separation angle

Figure 15. Variance of HD correlations from a CW simulation without pulsar
terms and a simulated PTA with isotropically distributed pulsars. We also show
the theoretical variance with two different averaging procedures described in
Section A.1.

Allen 2022)

2 _ A 2
1 + 6¢cos?t + cos*e
o 256[ Poi(y)
3A4% . 5

- 57[31“8 L]Up(’Y)

+ A“(i[l + 6¢cos? s + cos*1]? + [sin® L])
512 1024

x (7).

(A8)

where o), is defined in Equation (E8) of Allen (2022).
Averaging this over coste [—1, 1] gives (see Equation
(B11) of Allen 2022)

3A 109.A4*

=T i - 2+ 1O o)
1260 " 7 126077 1260 <
Plugging in A* = 25 gives

355 545
Ouverage = \/252 on(y) — —or(m) + 55, 7¢ 2. (A10)

This is the average standard deviation if we normalize
correlations globally, over many realizations. Alternatively, we
can express .A from Equation (A1) and plug into Equation (A8)
before averaging. This gives

3sin®e

o2 =02(y) — o2
@) 2[1 + 6¢cos? ¢ + cos*L]? i
3 5sin®. )
w2+ 2(y).  (All
(2 4[1 + 6¢os? ¢ + cos? L]2) - (1D

Averaging over cost € [—1, 1] gives

3 3 5
Oaverage = \/afm - Zaai(v) - (5 + ga)a%m. (A12)

Figure 16 shows simulation results (both with global
normalization and per realization normalization) and
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—=- CW 1-o0 - normalize per realization

—— CW 1-0 - global normalization

=== 1-0 CW w/ PSR term - normalize per realization, Eq. (A12)
—— 1-0 CW w/ PSR term - global normalization, Eq. (A10)

Correlation

135 180

Pulsar separation angle

Figure 16. Variance of HD correlations from a CW simulation with pulsar
terms and a simulated PTA with isotropically distributed pulsars. We also show
the theoretical variance with two different averaging procedures described in
Section A.2.

Equations (A10) and (A12). We can see that both match well
with the appropriate simulation.
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