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Abstract

Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec
separations, they are practically impossible to resolve, and the most promising technique is to search for quasars
with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the
stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals
from intrinsic damped random walk (DRW) variability in active galactic nuclei light curves. We simulated a wide
variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina
Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time
(LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian
model selection, we investigated the range of parameter space for which binary systems can be detected. We also
examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that
periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to
the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations,
while the false-detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations
provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for
future searches for SMBHBs.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Supermassive black holes (1663)

1. Introduction

Supermassive black hole binaries (SMBHBs) should form
frequently in the aftermath of galaxy mergers (Haehnelt &
Kauffmann 2002). However, the evolution from this initial
stage to the formation of a bound binary and the final
coalescence is complex. After the galaxy merger, the super-
massive black holes (SMBHs) hosted in the cores of their
parent galaxies sink to the center of the created galactic
remnant through dynamical friction. At scales of a few parsecs,
stellar scatterings and interactions with ambient gas continue
shrinking the binary orbit. If these processes remove sufficient
energy and angular momentum so that the binary efficiently
overcomes the “final-parsec problem,” then gravitational waves
(GWs) dominate the binary decay and drive the binary to the
final merger (Begelman et al. 1980; Colpi 2014; De Rosa et al.
2019).

The most massive binaries (total mass of 108–1010 Me) emit
GWs at low frequencies (few to hundreds of nanohertz). GWs
in this frequency band can be detected by pulsar timing arrays
(PTAs), and offer one of the only direct probes to SMBHBs at
close (roughly milliparsec) separations (Burke-Spolaor et al.
2019; Taylor et al. 2019). Electromagnetic observations can
also infer the existence of a SMBHB, and provide a unique
probe of the binary’s environment (Bogdanovic et al. 2022).
The detection of GWs along with associated electromagnetic

counterparts will mark the beginning of multimessenger
astrophysics in the low-frequency regime (Kelley et al.
2019a). In fact, multimessenger techniques are already being
developed. Incorporating information from SMBHB candidates
in GW searches allows us to place tighter constraints on the
SMBHB chirp mass (Arzoumanian et al. 2020a), and can boost
the detectability of the candidate in a typical “blind” search
(Liu & Vigeland 2021).
Closely separated SMBHBs in the GW regime may be

detected as active galactic nuclei (AGNs) or quasars with
periodic variability (Haiman et al. 2009). Previous studies have
demonstrated a link between AGNs and galaxy mergers; this
follows naturally from the idea that the mergers bring
significant amounts of gas to the central regions of the post-
merger galaxies, which may actively accrete onto the SMBHs,
triggering AGN activity (Goulding et al. 2018). Similarly,
binaries are expected to be surrounded by significant amounts
of gas, which can give rise to bright quasar-like electro-
magnetic emission (Armitage & Natarajan 2002; Tanaka et al.
2012; Bogdanovic et al. 2022).
Specific predictions for periodic variability in binary AGNs

has been demonstrated in multiple hydrodynamical simulations
of binaries embedded in gaseous disks (MacFadyen &
Milosavljević 2008; Roedig et al. 2012; D’Orazio et al. 2013;
Farris et al. 2014). The consensus of these simulations is that
the binary carves out a central cavity, i.e., a region of low-
density gas. As the binary orbit perturbs the edge of this cavity
(especially the secondary SMBH, which moves closer to the
edge), it pulls streams of gas inwards. Periodic accretion onto
the SMBHs from these streams may produce periodic
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brightness fluctuations. Another mechanism that produces
periodic variability is relativistic Doppler boosting (D’Orazio
et al. 2015; Tang et al. 2018). Some of the gas that penetrates
the cavity ends up bound to the SMBHs, forming mini-disks
which orbit with relativistic speeds. The emission from these
mini-disks may be periodically boosted (and dimmed), even if
the rest-frame luminosity is constant. This signature is
prominent for unequal-mass binaries orbiting close to edge-
on, where the emission of the faster moving secondary—which
is also typically brighter—dominates the variability.

In recent years, vast photometric databases of time-domain
surveys have provided light curves for large samples of AGNs,
which are ideal for searches of SMBHBs. Numerous candidates
have been identified from systematic searches in optical
surveys, such as the Catalina Real-time Transient Survey
(CRTS; Graham et al. 2015a), the Palomar Transient Factory
(Charisi et al. 2016), the Panoramic Survey Telescope and
Rapid Response System (Liu et al. 2019), and the Dark Energy
Survey (Chen et al. 2020). However, AGNs also have intrinsic
stochastic variability, which makes periodicity identification
quite difficult. AGN variability is successfully modeled by a
“damped random walk” (DRW) model, which takes the form of
a red-noise process at high frequencies but a white-noise
process at low frequencies (Kozłowski et al. 2010; MacLeod
et al. 2010). This intrinsic noise is impressively capable at
mimicking periodicity, particularly in sparsely sampled or
short-baseline time series (Vaughan et al. 2016). So far, studies
have focused on additional signatures for the binary nature of
candidates, such as multiwavelength Doppler boost (D’Orazio
et al. 2015; Charisi et al. 2018; Xin et al. 2020), periodicity
with multiple components (Charisi et al. 2015), X-ray spectral
excess (Saade et al. 2020) and distorted radio jets (Kun et al.
2015; Mohan et al. 2016).

However, multiwavelength follow-up monitoring of candi-
dates is demanding and such studies will be impractical (if not
impossible) in the upcoming generation of surveys like the
Legacy Survey of Space and Time (LSST) of the Vera C.
Rubin Observatory (LSST Science Collaboration et al. 2009).
LSST is expected to observe over 20 million of quasars,
delivering an unprecedented data set for quasar periodicity
searches both in terms of quality and quantity. If we extrapolate
the detection rate of SMBHB candidates in the current time-
domain surveys (∼1/1000) to LSST, we expect several
thousands of candidates. However, we know that these samples
likely contain many false detections (as demonstrated by their
tension with the GW background limits when extrapolated to a
full binary population; Sesana et al. 2018). On the other hand,
theoretical models predict that hundreds of genuine binaries
should be detectable in LSST (Kelley et al. 2019b; Xin &
Haiman 2021a; Kelley et al. 2021). Because of this, the time is
ripe to develop a careful model selection in order to reliably
identify binary candidates.

In this work, we explore the capabilities and limitations in
identifying quasars with periodic variability in the data sets of
the upcoming decade. We simulate idealized AGN light curves
that contain DRW noise with realistic parameters, while a
subset of those contains sinusoidal variations on top of the
DRW noise. We construct a pipeline that employs Bayesian
model selection and parameter estimation to identify periodic
signals (i.e., the binary candidates) in our sample, and constrain
their parameters. Finally, we quantify our ability to select

genuine binaries and the degree of contamination with false
detections.
This paper is laid out as follows. In Section 2, we describe

the methodology for creating simulated light curves, as well as
the Bayesian parameter-estimation and model-selection meth-
ods. In Section 3, we examine the efficacy of our Bayesian
pipeline, as well as present a statistical analysis of this efficacy
across the simulated SMBHB population. In Section 5 we
present the conclusions we can draw from our analysis. These
include the following key findings:

1. Our method can recover orbital periods extremely
accurately (even very long or short values), provided
the signal is of sufficient strength. The detectability of
periodicity also depends on the amplitude of the sinusoid
and the contribution of the DRW noise.

2. While a DRW process can mask some sinusoids in
current surveys, the false-positive rate is very low for
LSST, and thus it is expected to deliver reliable
candidates.

3. Particular combinations of DRW and sinusoidal para-
meters are more likely to mask a signal than others. This
will help inform future analyses as we attempt to confront
the massive data volume that will be produced by LSST.

Finally, in Section 4, we discuss caveats of our method, future
improvements, and the prospects of multimessenger observa-
tions of binaries. This work presents a necessary first step in
preparation for the flood of SMBHB candidates in the
upcoming Rubin era.

2. Methods

As mentioned above, identifying periodicity in quasars is
challenging because of the intrinsic stochastic variability of
quasars, the relatively short observation baselines compared to
the potential binary periods, and the noisy, irregular data. Our
goal is to explore the variety of binary signals (e.g., range of
periods, amplitudes) that can be detected in current and
upcoming time-domain surveys. We also aim to assess the
expected false-positive rate in systematic searches for quasar
periodicity. For this, we simulate typical quasar light curves
with realistic DRW noise properties as well as SMBHB light
curves which include sinusoidal signals with a variety of
periods and amplitudes on top of DRW noise. We chose to
model the binary signal with a pure sinusoid both for simplicity
and because previous searches for quasars with periodic
variability have focused on quasi-sinusoidal signals. We
construct a periodicity-detection pipeline that employs a
Bayesian model parameter estimation and selection between a
DRW and DRW+sine model, and apply it in a wide range of
simulated light curves. Below we describe the light-curve
simulations and the periodicity-detection method.

2.1. Simulated Data

To ensure that our analysis was realistic, we constructed our
simulated light curves with properties that reflect the observa-
tional capabilities of ongoing and planned time-domain
surveys. In particular, we assessed the detectability of
SMBHBs in current surveys, using CRTS-like light curves,
whereas for future surveys we used idealized LSST-like light
curves. Each survey has a distinct observing strategy (depend-
ing on their primary scientific objectives), which defines the
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average cadence (frequency of observations) and observation
baseline (length of light curve). Additionally, each survey has a
limiting depth, which depends on the size of the telescope used
and the exposure time of the typical observation. This defines
the photometric uncertainty, which is typically a function of
apparent magnitude; dimmer sources have larger photometric
errors and vice versa. For CRTS, we used observed light curves
as the basis for our simulations, whereas for LSST we
simulated light curves based on expectations for the cadence,
as described below. However, a future study should address
this and other limitations, as discussed in Section 4.

In order to construct the CRTS-like light curves, we
extracted 10,000 AGN light curves spread across the sky from
the online database.5 We examined the sampling pattern in this
set, which turns out to be similar for most light curves. In
particular, for each night the source was observed, the light
curves contain clusters of four successive data points, then the
next set of observations is taken about one week to 1 month
later for as long as the source is observable (for about 6
months). Subsequently, there is a significant gap of no data for
about 6 months, e.g., when the source is obstructed by the Sun
or below the horizon of the specific telescope, and then the
pattern roughly repeats. For the sampling of the simulated light
curves, we selected a random subset from that sample and used
them as templates for our simulations. These light curves have
an average span of ∼20 days between successive nights of
observations, gaps of ∼200 days, and a total observation
baseline of between 7–11 yr. This gives an effective cadence
(observation baseline divided by the number of data points) of
46 days. Since very short term variations are not relevant for
our study, this calculation did not include multiple observations
within the same night. The simulated light curves have a range
of mean magnitudes and mean photometric uncertainties. We
also calculated the mean magnitude and mean magnitude error
for the ensemble of simulations, for comparison with LSST
below, which we found to be, on average, ∼18 and 0.1,
respectively.

For LSST, the nominal duration is set to 10 yr, but the
observing strategy is not finalized yet (LSST Science
Collaborations et al. 2017). The majority of time will be spent
on the deep-wide-fast survey mode, which will cover a 18,000
deg2 footprint with a regular cadence. We set our simulation
cadence at a conservative value of 7 days, while actual
observations may repeat every five or even three nights. We
note, however, that LSST will rotate between six filters, and
successive observations will provide data in different photo-
metric bands. We do not take this into account in our
simulations, but we discuss this caveat further in Section 4.
Since the observations will not repeat in exactly 7 day
increments, we create a linear grid of time stamps separated
by 7 days and add Gaussian noise with a standard deviation of
1 day. We then introduce gaps with a duration of approxi-
mately 6 months. Even though gaps are inevitable for ground-
based observations, our choice here is rather conservative,
since it is highly likely that LSST will have longer epochs
compared to previous time-domain surveys, with 8 months of
uninterrupted observations followed by gaps of 4 months.
Finally, we distribute the average photometric error about a
value of 0.01 mag, which corresponds to a mean r-band
magnitude of ∼21, as we expect a sizeable sample of AGNs

with magnitudes of 21 and higher (Ivezić et al. 2019). See
Table 1 for a summary of the parameters of the simulated light
curves for each survey.
With the observed properties of the time series, we

proceeded to simulate DRW and DRW+sine light curves
following the steps from Charisi et al. (2016). The power
spectral density (PSD) function of DRW is

P f
f

4
1 2
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( )

( )
( )s t

pt
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+

where σ2 is the variance of the light-curve data points, τ is a
characteristic DRW timescale, and f is the Fourier-space
frequency. With an inverse Fourier transform of the PSD, we
generate evenly sampled light curves (with Δt= 1 day) using
the prescription from Timmer & Koenig (1995), included in the
python package astroML (Vanderplas et al. 2012; Ivezić et al.
2014). We downsample the data to match the desired sampling
pattern of the survey setup described above and in Table 1.
Next, we add Gaussian errors with zero mean and standard
deviation equal to the average photometric uncertainty of the
respective survey (Table 1).
For the set of simulations that also include SMBHB signals,

we inject a sinusoid on top of the DRW light curve. This signal
has the form

s t A
P

t tsin
2

, 20⎛⎝ ⎞⎠( ) ( ) ( )p
= -

where A is the amplitude in magnitudes, P is the period of the
sinusoid, and t0 is a reference time. Both the period and the
amplitude of the sinusoid can be linked to the parameters of the
binary; the observed period is typically the redshifted orbital
period of the binary, and if the periodicity is produced by
relativistic Doppler boost, the amplitude A depends on the line-
of-sight velocity of the secondary SMBH. Example time series
with a simulated DRW-only process, and DRW+sine, can be
seen in Figure 1, where with blue (and red) data points we
show the LSST-like (and CRTS-like) light curves.
We generated DRW and DRW+sine light curves for a wide

variety of these five input parameters (P, A, t0, σ, and τ). First,
in order to test the Bayesian pipeline’s ability to recover the
model parameters, we choose values across an extreme range
of τ corresponding to those used in Kozłowski (2017). Injected
values are randomly selected from the range τ= [10−3T, 15T],
where T= 10 yr is the nominal LSST observation baseline.
This wide range of τ values is intended to ensure that our
model-selection method will be capable of analyzing data
across a variety of future surveys, which may expand our
knowledge of the inherent AGN distribution. However, for the
model-selection analysis we restrict the values of τ to a realistic
distribution derived from those presented in MacLeod et al.
(2010). For σ, we draw values from a log-uniform distribution
ranging from [−1.6, −0.25], corresponding to a range of

Table 1
Average Parameters for Each Survey Used to Create Simulated Data Sets

Survey Baseline Cadence Mean Mean Phot.
(years) (days) Magnitude Error (mag)

CRTS 7–11 46 18 0.1
LSST 10 7 21 0.01

5 http://nesssi.cacr.caltech.edu/DataRelease/
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greater than an order of magnitude in σ, to encompass a wide
range of DRW variability amplitudes similar to the range
presented in MacLeod et al. (2010). We note that MacLeod
et al. (2010) reported a weak correlation between σ and τ,
recently updated by Suberlak et al. (2021). Our simulations
randomly drawing from uniform priors do not incorporate this
correlation, which may contain biases due to the limited sample
size (Graham et al. 2017). However, we plan to address this
limitation in a future study.

The periods of the injected sinusoids range from 30 days to
10 yr. The maximum value is set by the LSST baseline, so that
at least one full orbital cycle is observed. This wide range of
periods covers all the potential SMBHBs that have GW
frequencies detectable by PTAs. However, it does not include
very-high-frequency SMBHBs possibly detectable by the Laser
Interferometer Space Antenna (LISA; Xin & Haiman 2021a),
which are expected to have periods of only a few days
(P< 1–2 days). In Section 4, we explore whether such short-
period binaries need a distinct strategy for detection, such as
accounting for filter alternation and combining the multiband
data in a single light curve. Previous studies have required that
at least 1.5 cycles (or more) of the periodicity be observed
within the available baselines. We relax this requirement to
assess the ability to recover binaries in this regime and the
resulting contamination with false positives. This is significant,
since binaries evolve slower at large separations, and long-
period binaries are expected to be more common. The reference
time is set to any time between 0 and the maximum allowed
sinusoid period, which can also be described by a phase in the
range [0, 2π]. The amplitude is set to a value in the range

[0.05, 0.5] mag. These distributions of simulated values are
summarized in Table 2.

2.2. Likelihood and Sampling Methods

For the DRW process defined in Equation (1), the covariance
matrix S that determines the correlation between two data
points at times ti and tj is given by

S
t t

exp , 3ij
i j2 ⎜ ⎟⎛⎝ ⎞⎠∣ ∣ ( )s
t

= -
-

where σ2 and τ are the same values defined above. The full
covariance matrix is C= S+N, where N diag err

2( )s= is the
noise covariance matrix, with σerr the survey’s photometric
error. The DRW likelihood function marginalized over the
mean of the light curve is given by

y p

y y

P C L C L

C
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2
, 4

T

T

1 2 1 1 2

1

⎜ ⎟⎛⎝ ⎞⎠
( ∣ ) ∣ ∣ ∣ ∣

( )

µ

´ -

- - -

^
-

with y the vector of the data (observed magnitudes) and L a
vector of ones with a length equal to the number of data points,
and

C C C L L C L L C . 5T T1 1 1 1 1 1( ) ( )= -^
- - - - - -

For a detailed derivation we refer the reader to Kozłowski et al.
(2010). The likelihood function for the DRW+sine model is

Figure 1. An example of simulated light curves containing a DRW process (top panel) and a DRW process plus a sinusoid (bottom panel). The sinusoid is shown in
the solid black curve, while the simulated data for a CRTS-like and LSST-like survey are shown as red ×’s and blue points, respectively. Depending on the DRW and
sinusoid parameters, it is possible for these two models to produce deceptively similar results.

Table 2
Simulation Ranges for Each of Our Five Parameters, and Prior Shapes and Ranges for Our Analysis

Parameter Simulation Distribution Prior

log10s Log-Uniform[−1.6, −0.25] Log-Uniform[−1.6, −0.25]
log10 t (Wide range) Log-Uniform[0.56, 4.73] Log-Uniform[0.56, 4.73]
log10 t (Realistic distribution) SkewNorm(3.0, 0.5, −1.4) Log-Uniform[0.56, 4.73]

Plog10 Log-Uniform[1.5, 3.5] Log-Uniform[1.5, 3.5]
A Uniform[0.05, 0.5] Uniform[0.05, 0.5]
t0 Uniform[0, 3650] Uniform[0.05, 0.5]

Note. Note that for model-selection analyses, we simulate the realistic distribution of τ values derived from MacLeod et al. (2010).
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given by

y p

y s y s
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with s a vector of the sinusoid s t A P t tsin 2 0( ) ( ( ))p= -
sampled at the observed times.

We utilize Bayesian methods for both parameter estimation
and model selection. In particular, we sample the likelihood
using a nested-sampling Monte Carlo algorithm, MLFriends
(Buchner 2014, 2017), using the Ultranest6 package
(Buchner 2021). This nested sampler efficiently explores the
entire parameter space and avoids effects induced by the
unevenly sampled time series.

In general, we use relatively uninformative priors for our
Bayesian analyses (either uniform or log-uniform), as summar-
ized in Table 2. The priors typically span the entire range of the
distributions of simulated parameters described in Section 2.1.
We chose flat priors to avoid introducing potential biases and to
emulate an uninformed systematic search. More informative
priors could be imposed for the DRW parameters; for example,
MacLeod et al. (2010) found that σ and τ are correlated with
the properties of the AGN (e.g., the SMBHB mass, the
luminosity, etc). Since in our simulated light curves we did not
vary luminosity-related parameters (e.g., the observed magni-
tude) a fairly unrestricted search is more appropriate.

For each simulated light curve, we performed the analysis
for two models (DRW and DRW+sine): the first uses the DRW
likelihood from Equation (4) to search over only the two DRW
parameters, σ and τ, and the second uses Equation (6), which
also searches over the sinusoid parameters. From the resulting
posterior distributions, we estimated the values of the two (or
five) parameters that are most likely given each simulated light
curve. The posterior distributions provided both median values
and uncertainties for the parameters. From the posteriors we
also determined the value for the set of parameters that
maximized the likelihood. For each simulation, we also
calculated a signal-to-noise ratio (S/N), where

s sCS N . 7T2 1· · ( )/ = -

Here, s is the vector containing the input signal and sampled at
the simulated time stamps, and C−1 is the inverse of the DRW
covariance matrix (Equation (3)).

We used the outcome of the two searches (DRW and DRW
+sine) to perform Bayesian model selection using the Bayesian
information criterion (BIC):

k n LBIC ln 2 ln , 8( ) ( ) ( )= -

where k is equal to the number of free parameters, n is equal to
the number of data points in the light curve, and L is the
maximum-likelihood value (Liddle 2007). The BIC provides a
simple metric through which to compare our two models, and
avoids overfitting the data by accounting for the number of
parameters in the model. When selecting among multiple
models, the one with the smallest BIC is usually preferred.
Here we selected the preferred model by comparing the BIC
values for the DRW-only search to that of the DRW+sine

search by introducing

BIC BIC BIC . 9DRW DRW sine ( )D = - +

A lower value of ΔBIC indicates more support for the DRW
+sine model. In general, evidence for the DRW+sine model
can be considered positive for −2>ΔBIC>−6, and strong
for ΔBIC<−6 (Kass & Raftery 1995). The ΔBIC can also be
used to estimate a Bayes factor, 10 , for the model comparison,
where

e . 1010
BIC1

2 ( ) ( )= - D

Here, we defined our threshold to claim a detection of a
sinuosidal signal as ΔBIC=−2. Using this threshold, we
sorted each result into one of four categories:

1. True positive: a sinusoid was injected and the DRW+sine
model was preferred.

2. False negative: a sinusoid was injected, yet the DRW-
only model was preferred.

3. False positive: no sinusoid was injected, yet the DRW
+sine model was preferred

4. True negative: no sinusoid was injected, and the DRW-
only model was preferred.

In an idealized search we would have only true positives/
negatives and no false positives/negatives, but typically one
needs to compromise and balance the rate of detection of true
signals with the contamination of a few false positives. One of
the main goals of this analysis is to constrain these rates for
current and future survey capabilities. We note, however, that
these rates refer to our specific method of Bayesian model
selection and cannot be extended to existing samples of
SMBHB candidates, since these candidates were selected with
completely different methods, as we explain in Section 4.

3. Results

We assessed our ability to identify periodicity in AGN light
curves by simulating DRW and DRW+sine light curves and
performing a Bayesian model selection. First, we tested how
our algorithm performs in constraining the parameters of each
model independently. Subsequently, we determine the perfor-
mance of the model-selection method by calculating the true-
and false-positive rates, and characterizing their dependence on
the signal and noise parameters.

3.1. Parameter Estimation

3.1.1. Damped Random Walk Model

For both our CRTS-like and LSST-like simulations, we
simulated 1500 DRW light curves with properties as described
in Section 2.1 and conducted the nested-sampling analysis for
the DRW likelihood (Equation (4)). In Figure 1 we show the
median values of σ and τ as a function of the respective input
values for the LSST light curves. We note that the parameter
estimation for the DRW model shows very similar trends for
the CRTS-like light curves.
We saw that low values of τ are recovered accurately, while

high values were poorly constrained. This is a known limitation
in DRW studies. For instance, Kozłowski (2017) found that for
τ to be well recovered, the baseline of the light curve must be at
least 10 times greater than τ (τ� 10T). In that study, the
authors demonstrated this effect with simulated light curves for6 https://johannesbuchner.github.io/UltraNest/
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a fixed parameter σ. Here, by varying the values of σ for each
simulation, we demonstrate that this limitation affects the
recovery of σ, as well. In Figure 2 we colorized the data points
by the input value of τ. We observed that for light curves with
large values of τ, where τ is not constrained (orange-yellow
points), the algorithm fails to recover the input value of σ. On
the other hand, for light curves with small values of τ (purple
points), the recovery of both σ and τ is very accurate.

3.1.2. DRW+Sine Model

Once we confirmed that the DRW parameters can be
recovered by our methodology (within already known limita-
tions), we expanded our search to also include the sinusoidal
signal representing an SMBHB. We repeated the 1500
simulations of both CRTS- and LSST-like DRW light curves,
and added a randomly generated sinusoid to the data. This was
then searched with a five-parameter model using the DRW
+sine likelihood from Equation (6).

Figure 3 summarizes the recovery capability of the DRW
+sine model in LSST-like simulations, color-coded by the S/N
of the input signal. We note that even though it is preferable to
sample the likelihood in terms of a reference time t0, we present
results converted to an initial phase f0= 2πt0/P to avoid

potential biases or correlations with the period. In general, for
LSST-like simulations, we recovered sinusoids with S/N > 5
extremely accurately. In particular, for 96% of these signals, we
recovered the injected periods and amplitudes, i.e., the injected
value was within the 90% credible region (5th to 95th
percentile of the posterior distribution), 84% of these signals
had all parameters recovered, whereas the DRW parameters
were recovered for 87% of signals. It is important to note that
for τ, as discussed above, large input values are often
underestimated. This is a likely cause for the lower recovery
rate, when we consider sets of parameters that include the
DRW parameters. The recovery capabilities are quite similar
for our CRTS-like simulations, but due to the lower
photometric accuracy there are fewer simulations with S/N
> 5. In this setup, 93% of signals with S/N > 5 are recovered
with the input values of both their amplitudes and periods
recovered accurately (within the credible region), 74% of these
had all parameters recovered accurately, and 80% had the
DRW parameters recovered accurately. This method is
successful at recovering sinusoids with a wide range of
injected parameters. It is important to note that the algorithm
accurately recovered periods from 30 days to 10 yr, and it was
not required for all light curves to cover more than two cycles
of the sinusoid for their parameters to be recoverable, as may
be expected based on analyses by Vaughan et al. (2016). We
further explore the longer-period regime in Section 3.2.
The DRW parameters σ and τ were recovered with the same

accuracy as in the DRW-only search, even in the presence of
the sinusoid. We also saw the same limitations in recovering
long τ and resulting limitations in recovering σ for this subset
of light curves. However, our inability to constrain the DRW
parameters in certain light curves was not propagated to the
recovery of the parameters of the periodic signal. Additionally,
the highest σ values are near the maximum of the observed
quasar population, and will be fairly rare in reality (MacLeod
et al. 2010).

3.1.3. Covariance of Timescales

We found that the stochastic DRW noise hinders the
detection of the deterministic signal of a SMBHB. One
potential reason is the covariance between the parameters of
the signal and the noise. For instance, both the amplitude of the
sinusoid and the DRW σ determine the overall S/N of the light
curves. Unsurprisingly, we saw that our ability to detect
sinusoidal variability increases when σ is small and A is large,
and vice versa. The covariance of the characteristic timescales
P and τ is less obvious, so we explore this issue in more detail
below.
First, we examined our results for potential correlations

when we fit for the incorrect model (i.e., injected DRW+sine
using the DRW likelihood from Equation (4)). Searching a
light curve that has a sinusoid injected with a DRW-only model
will result in a biased recovery of τ, as can be seen in Figure 4,
where the recovered τ value is related to the injected period.
For LSST-like simulations, this was best fit with a linear
function where

Plog 1.75 log 1.68. 1110 10( ) ( )t = -

However, for CRTS-like simulations, this covariance is best fit
with a linear function:

Plog 1.30 log 1.25. 1210 10( ) ( )t = -

Figure 2. Parameter estimation capability of our methods for LSST-like light
curves with a DRW process, colorized by the simulated value of τ. For low
values of τ, both parameters are recoverable as expected. However, for very
high values of τ, both are unlikely to be constrained accurately.
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Kozłowski et al. (2010) found a similar effect when they
applied the DRW formalism to periodic stellar light curves
(e.g., their Figure 12 and the related discussion). We also
confirm their finding that these correlations are sensitive to the
light-curve properties, since we find a different correlation in
our CRTS-like and LSST-like light curves. When τ is fit in

conjuction with the periodicity (i.e., in the DRW+sine model),
this bias is resolved.

3.2. Model Selection

Next, we used a Bayesian model selection, described in
detail in Section 2, to select quasars with periodic variability.
With simulated DRW and DRW+sine light curves, we traced
the algorithm’s effectiveness. We considered two distinct
surveys (CRTS and LSST, reflecting current and future
capabilities of time-domain surveys) to explore how the light-
curve quality and properties affect the detection rates of this
method.
First, we simulated 1500 DRW light curves, added a

randomly generated sinusoid, and then applied our model-
selection scheme. In Figure 5 we show the true-positive rate of
periodic signals in the presence of DRW noise, as a function of
the input parameters P, A, σ, τ, and f0. Here, we define the
true-positive rate as the number of detected periodic signals
(true positives), divided by the total number of simulated DRW
+sine signals (condition positives). In each bin, the associated
uncertainty of the rate is calculated with a binomial proportion
confidence interval (Newcombe 1998), where the rate can be
considered as

n
n

z
n n

n n , 13S
S F ( )

Figure 3. Recovery capabilities for the three sinusoid parameters (P, A, and f0) and two DRW parameters (σ and τ), as demonstrated by our LSST-like light-curve
simulations. The color axis represents the S/N of the input signal, with red points being strong signals (S/N > 5). The sinusoids in these simulations were able to be
recovered extremely accurately, and the DRW parameters were recovered to the extent we expect from noise-only simulations.

Figure 4. If a light curve is simulated to contain both a sinusoid and a DRW
process, but is modeled with only noise, significant confusion can occur. The
periods of recoverable sinusoids (red) can be confused for the DRW timescale
τ if only noise is modeled.
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where n is the number of trials with nS successes and nF
failures, and z is the 1− α/2 quantile of a normal distribution
(for a 95% confidence interval, α= 1− 0.95).

We observed that our ability to detect periodicity depends
both on the parameters of the sinusoid and the intrinsic DRW
variability. As expected, the true-positive rate increased for
high sinusoidal amplitudes and was independent of the initial
phase. The true-positive rate was highest for short sinusoid
periods; however, it was nonzero even for periods equal to the
observation baseline, which is an unexpected improvement
from Vaughan et al. (2016), which showed a requirement of >2
cycles for a sinusoid to be differentiated from a stochastic
process. The true-positive rate decreased for increasing input σ;
therefore, when the noise contribution became more significant,
it hindered the periodicity detection, as expected. We also saw
in Section 3.1 that high values of σ (or, equivalently, low S/N)
resulted in an inaccurate estimation of the parameters. On the
other hand, τ did not seem to have a significant effect on the
detection rate, despite the inability to constrain large values of
τ, with the true-positive rate slightly increasing for longer τ.
Surprisingly, the overall true-positive rate varied only slightly
between the two surveys.

Next, we explored how the periodicity-detection rate varies
as a function of the periodic parameters normalized by the
noise parameters for a simulated population of quasars with a
realistic distribution of τ values (MacLeod et al. 2010). In
Figure 6 we present the input ratios of A/σ against P/τ,
colorized by the resulting ΔBIC. In the side panels, we track
the fraction of recovered sinusoids (true-positive rate) as a

function of either A/σ (for the vertical panel) or P/τ (for the
horizontal panel), again with the associated binomial uncer-
tainty marked in each bin.
As can be expected, the fraction of binaries recovered was

highly correlated with A/σ. This value can be considered
similar to a S/N; we saw that even though it was not absolutely
necessary that A> σ for a periodic signal to be detected, the

Figure 5. True-positive rates (red) and false-positive rates (blue) for LSST-like (solid lines) and CRTS-like (dashed lines) simulations, shown as a function of the input
values of each parameter in the simulations. Note that false-positive rates are only shown as a function of the two DRW parameters, as there are no input sinusoids
present in the false positives. The rates in each parameter bin are shown with associated uncertainties.

Figure 6. True-positive (red) and false-negative (blue) signals tend to lie in
particular areas of parameter space in idealized LSST-like searches, when
quantified by the ratios of A/σ and P/τ. The net true-positive rates integrated
over A/σ and P/τ are shown in the upper and right panels, respectively, with
associated uncertainties.
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detection rate dropped to ∼50% when the amplitude of the
sinusoid was comparable to the standard deviation of the DRW
noise. The recovery fraction also clearly depends on the value
of P/τ, albeit less strongly than with A/σ; that is, even without
considering A/σ, the periodic signal is more likely to be
detected (i.e., ΔBIC is lower) for smaller ratios of P/τ. In
terms of detectability, we see that all binary signals were
identified for small values of P/τ, whereas the true-positive
rate is ∼75% when P and τ are comparable and is further
reduced to 50% for larger values. This is consistent with our
findings in Figure 5, where we see that detectability increases
for small periods and for larger values of τ, although the latter
correlation is weaker. The correlation of the true-positive rate
with the period seen in Figure 5 is fairly intuitive; a relatively
weak signal can be confidently detected if the period is short
and enough cycles are repeated within the data. However, it is
somewhat less obvious what drives the correlation with P/τ.
One potential explanation is that it may be easier to detect a
periodic signal if the two characteristic timescales (P and τ) of
the light curve are fairly distinct. Otherwise, if the values are
similar, they may be misidentified by the model-selection
process (e.g., see Section 3.1.3).

As a counterpoint to the previous analysis, we subsequently
simulated 1500 DRW-only signals, ran our model-selection
pipeline, and calculated the false-positive rate for our same
detection method. This represents a scenario in which only
DRW processes are occurring, and either an SMBHB is not
present in the target, or it is not influencing the AGN light
curve. Here, the false-positive rate is defined as the number of
DRW-only signals identified as periodic (false positives),
divided by the total number of DRW simulations (condition
negatives). In Figure 5, we show the false-positive rate for both
surveys as a function of input σ and τ with blue curves, and
again using the associated uncertainties calculated with
Equation (13). We see that the false-positive rate is
significantly higher in CRTS-like simulations, reflecting the
lower measurement precision and sampling rate of the light
curves, whereas in LSST the false positives are almost
negligible. The overall false-positive rate for CRTS-like
simulations is 12%, while for LSST-like simulations it is
3.8%, an improvement of approximately an order of magni-
tude. The false-positive rate does not show any significant trend
with τ, but for CRTS-like simulations it does increase slightly
for larger values of σ. This indicates that any combination of
the DRW parameters is equally likely to produce a signal that
can be misidentified as a sinusoid, but noisy, sparsely sampled
light curves are more likely to return false positives. We also
observed that the false-positive rate did not increase for large
recovered sinusoid periods, as was suggested by Vaughan et al.
(2016); this is likely due to the use of a DRW+sine model, as
opposed to a pure sinusoid.

In the above we examined the true-positive and false-
positive rates as a function of the input parameters of the noise
and the signal, considering a quasar to be periodic if
ΔBIC�−2. However, as is obvious from Figure 6, these
rates would be different had we chosen a different detection
threshold. This is typically quantified by a receiver operating
characteristic (ROC) curve, which we construct in Figure 7.
More specifically, we show the true-positive rate against the
false-positive rate color-coded with the threshold value for
periodicity detection (i.e., the maximum ΔBIC required for
detection of a sinusoid within the light curve). We remind the

reader that a smaller ΔBIC means stronger support for the
binary model.
In Figure 7, we indicate the current threshold of

ΔBIC�−2 with a star. The corresponding true-positive rate
is ∼64% for both our LSST-like survey and ∼60% the CRTS-
like survey, whereas the false-positive rate is ∼3.8% for
LSST-like simulations and ∼11% for CRTS-like simulations.
We note that, even though we chose this particular threshold
following standard practices for model selection based on
BIC, it turns out to be a reasonable threshold for both surveys.
In fact, for a survey such as CRTS, it is sensible to set the
threshold at a level that maximizes true positives, even if this
allows some false positives. High-quality light curves are
available for ∼105 quasars, and, given that SMBHBs are
relatively rare, it is manageable to pursue follow-up observa-
tions to distinguish genuine binaries from interlopers for all
candidates. For LSST, on the other hand, it is critical to
minimize false positives. LSST will observe millions of
quasars, and follow-up of candidates needs to be significantly
more selective. The colorization of Figure 7 also illustrates the
much larger range of ΔBIC values in an LSST-like survey, as
compared to CRTS. This results in a much larger number of
strongly preferred signals, which will allow for a dramatically
more effective ranking system for the follow-up of binary
candidates.
We also show the respective ROC curves, for both CRTS-

like and LSST-like simulations, for the case of periodicity on
top of white noise. This allowed us to test the hypothesis that
the classifier performs suboptimally due to the covariance
between the sinusoid and DRW. We repeated our simulations
with 1500 simulations containing white noise and a sinusoid
and another 1500 with only white noise, and performed an
identical model-selection procedure. Nearly all of the sinusoids
were identified with accurately estimated parameters across the
entire parameter space. The ROC curve for LSST-like
simulations is excellent, with close to 100% recovery for true
periodic signals and almost 0% false detections. The ROC
curve is slightly worse for CRTS due to the lower data quality.
This indicates that, without the red DRW noise process
included, there was no confusion, allowing the sinusoids to be

Figure 7. ROC curves for CRTS-like (orange-lined diamonds) and LSST-like
(blue-lined circles) light curves. Overall, LSST can be seen to perform better
than CRTS at selecting the correct model. For comparison, with our standard
ΔBIC = −2, the true-positive rate is 64% and the false-positive rate is 3.8%.
Stars in the curves represent the point where ΔBIC = −2. Additionally, the
model selection is significantly improved when white noise (small points) is
present instead of a DRW process (large points), indicating that red processes
are indeed a significant hindrance.
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identified accurately. The white-noise realization of the
population, albeit unrealistic, demonstrates that the limiting
factor in detecting quasar periodicity is primarily the stochastic
DRW variability.

Finally, we quantitatively evaluated the performance of our
method in each survey by computing the area under the ROC
curve, also known as the AUC value. In general, a larger AUC
value indicates a better-performing classifier, as this metric
equals the probability that the classifier will rank a positive
simulation better than a negative one (i.e., the probability that
we will calculate a lower ΔBIC if a sinusoid is present;
Fawcett 2006). In Table 3, we summarize the AUC values for
CRTS-like and LSST-like simulations both for idealized white-
noise simulations and for the more realistic case that includes
DRW variability. The white-noise-only ROC curve for LSST
has a near-perfect AUC value of 0.99, indicating that the DRW
process can mask a sinusoid from the model-selection process,
while white noise cannot.

So far we have presented our results with respect to the
input signals. However, in real observations we will not know
the true parameters of the signals, and thus will be required to
base our model-selection conclusions on the output para-
meters of the nested-sampling method. In Figure 8, we
present the recovered parameters A/σ versus P/τ in order to
map the parts of parameter space where simulations with and
without a sinusoid in addition to DRW noise are more likely
to lie. For instance, if the DRW+sine model returns A/σ> 1
for an LSST-like light curve, it is highly likely to be a true
detection regardless of P/τ. In the weak-signal regime A/
σ� 1, the two populations overlap, although, given the low
number of false positives, a detected signal is more likely to
be genuine periodicity. In a CRTS-like survey, it is more
challenging to derive a conclusion about the validity of the
detection based on the inferred parameters of the light curve,
due to the higher rate of false positives. Overall, identifying
periodicity in the signals with A/σ> 2 can boost our
confidence that the detection is real, since no true negatives
lie in this area.

One way to quantify the distinction between the popula-
tions with and without a simulated sinusoid is with the
Mahalanobis distance (Mahalanobis 1936). This metric
measures the distance between a point and a distribution,
measured in standard deviations of the distribution, while
accounting for correlations between the data points. For the
CRTS-like observations, the median Mahalanobis distance
between the two populations is 0.97, while for the LSST-like
survey, this median distance increases to 1.15. This indicates
that, in next-generation surveys, the populations of AGN with
and without sinusoidal variations will become even more
clearly resolved.

4. Discussion

4.1. Previous Work

In this paper, we simulated CRTS-like and LSST-like light
curves and used a Bayesian model selection to assess our
capability to detect SMBHBs in time-domain surveys. This is
the first study that explores the parameter space of sinusoidal
binary signals in the presence of a DRW process, employing an
array of idealized simulated data. This allowed us to examine
both the detectability/completeness of binary signals and the
contamination of a sample of candidates with false detections.
We found that the sample of periodic quasars is expected to

be fairly incomplete for longer-period binaries and for binaries
that cause weak periodic modulations in the brightness of the
AGN compared to the DRW variability. This limitation is
caused by the stochastic variability of quasars, since in the
presence of only white noise almost all the periodic signals
would be detectable with nearly zero contamination. These
results are independent of the time-domain survey setup. On
the other hand, the false-positive rate is higher in the CRTS-
like light curves compared to LSST-like ones. This suggests
that the contamination of the samples of SMBHB candidates
depends on the quality of the data. The reduced false-positive
rate in LSST is extremely encouraging for future searches for
candidate signatures of SMBHBs. This is particularly impor-
tant, since LSST will observe at least 20 million quasars, and a
high false-positive rate would render follow-up studies of
SMBHB candidates nearly impossible.
We emphasize that even though our results provide an

excellent qualitative picture of limitations and detectability
trends as a function of the signal and noise parameters, they
cannot be directly applied to determine the number of false
positives in existing samples of SMBHB candidates (Graham
et al. 2015a; Charisi et al. 2016; Liu et al. 2019). These
candidates were chosen with a different methodology, and
likely suffer from distinct biases that cannot be captured by our
analysis. We have already observed that, with our algorithm,
changing the detection threshold would change the true- and
false-positive rate. This demonstrates that it will be enlighten-
ing for future systematic searches for quasar periodicity to use
simulated light curves to carefully construct an ROC curve, as
in our study, to highlight the effectiveness of the selection
criteria of the search, given the specific survey properties.
We also note that, to date, a Bayesian model-selection

method has not been applied in an extensive search for binaries.
This is unsurprising, as this method is computationally
demanding, and thus for a large sample of quasars (of order
105 for CRTS and 107 for LSST) it is practically impossible.
Our idealized data sets require a few hours of CPU time per
light curve to complete the model-selection analysis, and
realistic data, with a larger number of associated parameters,
will expand this requirement. Therefore, this method may be
applied in combination with some other classifier which will
make an initial preselection, and therefore significantly reduce
the size of the sample. Such a complementary method will filter
out most nonperiodic quasars, and thus the main requirements
for it are speed and a high true-positive rate, rather than a
perfect false-positive rate.
However, several Bayesian model-selection algorithms have

been used in multiple studies to validate (or invalidate) the
periodicity for one of the most prominent candidates, quasar
PG1302-102 (D’Orazio et al. 2015; Graham et al. 2015b;

Table 3
Area Under Curve (AUC) Values for Each of the ROC Curves Shown in

Figure 9, Including Those With or Without a DRW Process

CRTS LSST

DRW 0.802 0.853
White noise 0.929 0.999

Note. LSST-like surveys are expected to be a much more sensitive and reliable
survey for the identification of periodicities induced by SMBHBs.
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Vaughan et al. 2016; Liu et al. 2018; Zhu & Thrane 2020). It is
intriguing that the results of these studies are not in complete
agreement, neither for the best-fit parameters nor for the
preferred model. This is potentially due to choices made in
these analyses; for example, Vaughan et al. (2016) introduced
an extra parameter to account for poorly estimated photometric
errors, Liu et al. (2018) binned the light curves in wide bins of
150 days, and D’Orazio et al. (2015) fixed the parameters of the
DRW model. This clearly illustrates the complexities of
observed data sets that may not be reflected in idealized
simulations, such as the ones we present in this study.

4.2. LSST Observing Strategy and Future Improvements

To assess the prospects of detecting SMBHBs in LSST, we
simulated light curves with semi-regular sampling (evenly
sampled but also adding a Gaussian error to the time stamps).
As a conservative scenario for the wide-fast-deep survey, we
chose a cadence of 7 days, but, in reality, observations of the
same source may repeat more often. We explore two additional
optimistic scenarios. First, we increase the cadence to 3 days,
and, second, we extend the observation baseline to 15 yr while
keeping the cadence at 7 days. We simulate both DRW and
DRW+sine light curves and repeat the Bayesian model
selection.

In Figure 9, we present the ROC curve for these two
scenarios, compared with the initial LSST-like setup as
reported in Table 1. The AUC values for these two scenarios
are 0.869 (3 day cadence, 10 yr baseline) and 0.898 (7 day
cadence, 15 yr baseline) compared to 0.854 for our typical
LSST-like simulations with a 7 day cadence and 10 yr baseline.
We see both from the figure and the AUC values that
increasing the baseline has a positive impact in our periodicity
search, allowing us to better constrain longer τ and detect
longer periods at higher rates. This confirms that in preparation
for LSST it is advantageous to prepare strategies that will allow
us to extend the LSST light curves with already existing data
by combining data from multiple surveys, such as in Liu et al.
(2018). On the other hand, increased cadence does not improve

our results. This is expected given that the minimum searched
period is set to 30 days. We note that the higher cadence will
likely significantly affect the search for short-period binaries,
which are potential LISA sources (Xin & Haiman 2021b). In
this work, we did not examine the shortest end of the period
distribution, because for very short periodicities a different
method may be necessary; for example, the deep coverage and
more frequent sampling planned for LSST Deep Drilling Fields
will certainly be beneficial for this type of source.
Moreover, even though the finalized survey strategy has not

yet been decided, we recognize that our simulations are
idealized for several reasons. First, in our LSST-like simula-
tions, we used an average photometric uncertainty for all of the
simulated light curves, even though the photometric errors are
in reality magnitude dependent. In addition, we assume
homoscedastic photometric errors, which is not entirely
realistic; observing conditions and variability will result in
heteroscedastic photometric errors, which may affect the true-/
false-positive rates. Lastly, even though the observations in the

Figure 8. Simulations of DRW light curves, with (red) and without (blue) a sinusoid, lie in regular regions of parameter space when parametrized by the ratio of A/σ
and P/τ. This makes apparent the cause of the location of false negatives in Figure 6. It is also clear that more signals will become detectable in future surveys as
cadences and baselines improve.

Figure 9. ROC curves for variations on our nominal LSST simulations (solid
curve), including increased observation baseline (dashed curve) and increased
observation cadence (dotted curve).
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deep-wide-fast survey will repeat semi-regularly, they will
rotate among six narrowband photometric filters from visit to
visit. Therefore, if we consider light curves in only one
photometric band, they will be significantly more sparse with
∼10 observations per year. The preferred route would be to
combine the data in a single multiband light curve. In fact, a
multiband periodogram has been developed for this purpose
(VanderPlas & Ivezić 2015). However, for quasars, this process
is more complicated, due to their color-dependent variability,
which must be taken into account.

In future work, we intend to address several of the
limitations of this current idealized study. In the near future,
LSST’s observing strategy (such as cadence, epoch/gap length,
order of filter alternation, and frequency of observations in each
photometric band, etc.) will be finalized. Projections of the final
survey have begun to be released (LSST Dark Energy Science
Collaboration 2021), and as more accurate data previews, such
as LSST Data Preview 0,7 become available over the next year,
we will modify our simulations to include all the above
decisions to more accurately reflect the full capabilities of the
survey. To do so, we must also incorporate the magnitude
dependence of the photometric errors. For this, we will
simulate a more realistic quasar population, based on the
quasar luminosity function, and incorporate correlations of the
DRW parameters with the AGN properties (MacLeod et al.
2010; but see also Kozłowski 2016 and Graham et al. 2017).

In addition to improvements to the simulated observation
strategies, in future work it will be critical to include a more
realistic binary population and an advanced model for quasar
variability (Zhu & Thrane 2020; Hu & Tak 2020). More
specifically, our analysis (and most searches for periodicity)
assume that quasar variability is described by a DRW model.
This model, albeit successful, comes with its own limitations.
A future study will include advanced noise modeling and
employ a continuous-time autoregressive moving-average
model, which also includes quasiperiodic oscillations. For the
population of SMBHBs, we randomly drew the periods and
amplitudes from (log)-uniform distributions. However, binary
evolution models suggest that binaries spend more time at
larger separations (and longer periods) and should be more
common than short-period binaries, while the amplitudes can
be linked to the orbital properties of the binary (e.g., mass-ratio,
and inclination for relativistic Doppler boost). We also modeled
binary signals with pure sinusoids, which, while a decent
approximation for a circular binary dominated by Doppler
boost variability, real binaries can produce more complicated
signatures. For instance, if the periodicity arises from periodic
accretion or if the binary has an eccentric orbit, the light curves
will significantly deviate from sinusoidal.

4.3. Prospects for Multimessenger Observations

Subparsec SMBHBs have remained a missing piece in the
puzzle of hierarchical structure formation despite decades-long
observational efforts seeking their detection. The upcoming
decade is expected to bring tremendous improvements both in
electromagnetic observations and in GW searches. More
specifically, PTAs may be on the verge of detecting the GW
background from a population of unresolvable SMBHBs
(Arzoumanian et al. 2020b). The detection of individually
resolvable SMBHBs, with periods between 1 month and

∼10 yr (a nearly identical period range as is probed in this
study) is expected to follow soon after (Rosado et al. 2015;
Kelley et al. 2018).
On the electromagnetic side, LSST will provide a revolu-

tionary data set for searches targeting SMBHBs. In this
analysis, we have demonstrated that the unprecedented quality
of the light curves will minimize the false-detection rate. The
expected number of quasars with periodic variability that
should be detectable in LSST ranges from a few hundreds to
tens of thousands. More specifically, models based on the
cosmological simulation Illustris predict the detection of a few
dozens candidates with Doppler boost variability and a few
hundreds of candidates identified from self-lensing flares
(Kelley et al. 2019b, 2021). Xin & Haiman (2021a) focused
on short-period binaries (and potential synergy with LISA) and
concluded that over 1000 binaries with periods <200 days
should exist in the LSST database (e.g., see their Figure 7).
This population is particularly important, since it can provide
insights on the expected merger rate for LISA. As we have
demonstrated in this work, such binaries will be identified very
reliably (see Panel A of Figure 5); the true-positive rate is the
highest (∼90%) for short-period systems.
The above developments open the possibility for combined

multimessenger observations of SMBHBs (Kelley et al.
2019a), especially since time-domain and GW experiments
(like PTAs and LISA) trace overlapping populations of
SMBHBs. Currently, joint observations are possible only for
very-high-mass binaries (with masses exceeding 109 Me;
Aggarwal et al. 2019; Charisi et al. 2022; Arzoumanian et al.
2020a), limited by the sensitivity of PTAs; but, as PTA
sensitivity improves, the common parameter space for GW and
electromagnetic observations will significantly expand (e.g.,
see Figure 6 in Charisi et al. 2022). Incorporating priors from
electromagnetic observations in the GW analysis boosts the
detectability of binaries and improves parameter estimation of
continuous GW searches (Liu & Vigeland 2021), while
Arzoumanian et al. (2020a) showed that having a candidate
to target significantly improves GW-derived upper limits on the
binary chirp mass. Therefore, it is logical for GW searches to
specifically target SMBHB candidates identified in time-
domain surveys. This paper quantifies how LSST can produce
a large number of high-quality electromagnetic SMBHB
candidates, which in turn will provide a wealth of targets to
search for in PTA data.
Inversely, GW data can also provide targets for electro-

magnetic observations. In fact, multimessenger observations of
this kind can significantly enhance the potential for discovery
of long-period binaries. These systems are expected to be
common, but as we demonstrated here they are also more
challenging to detect based on time-domain data alone. For
instance, in this paper, we have simulated sinusoids with
periods of 10 yr, equal to the baseline of LSST, and we have
shown that at least of half of them would be missed in our
search. A systematic search based on electromagnetic data
alone would probably require multiple cycles within the LSST
baseline to avoid potential confusion with the quasar noise and
would exclude long-period binaries. However, we specifically
decided to explore the entire parameter space, because it is
possible that PTAs will detect such a binary. In that case, we
can follow-up the GW detection in the LSST database and
search for a binary with the identified period located within the
localization volume of PTAs. We note that the PTA7 https://rtn-001.lsst.io/
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localization capabilities are relatively poor (several hundreds or
even thousands of deg2; Taylor et al. 2016; Goldstein et al.
2019), and a large number of AGNs will be included in that
volume. However, searching for a fixed period in combination
with constraints on the total mass and the distance of the binary
from the GW analysis will allow us to further filter out a
significant number of candidates.

5. Conclusions

Using extensive simulations of time-domain observations of
AGNs, coupled with a Bayesian model-selection and para-
meter-estimation framework, we have explored the capabilities
of current and future surveys for SMBHB identification. In
particular, we simulated quasar light curves with DRW
variability with a realistic distribution of σ and τ, as well as
binary light curves with sinusoidal variability on top of a DRW
process including a wide range of periods and amplitudes. We
explored the likelihoods of the respective models with a
Bayesian nested-sampling analysis, and determined the pre-
ferred model using the BIC. Our findings are summarized as
follows:

1. Our ability to detect periodicity on top of DRW
variability depends on the parameters both of the sinusoid
and of the noise. Short periods and high amplitudes are
found at higher rates, whereas light curves with
significant noise contribution (high σ) are recovered at
lower rates. The input phase and τ do not appear to affect
the detection rate.

2. While our ability to discover long-period signals is
decreased, about 50% are recoverable. This is significant,
because longer-period SMBHBs are expected to be more
common.

3. The true-positive rate is similar in both surveys.
4. The incompleteness of the detectable binary signals is

intrinsic due to the stochastic variability of quasars. In the
presence of white noise, all periodic signals would be
detectable almost independently of the data quality.

5. The false-positive rate is higher for CRTS-like light
curves and almost minimal for LSST-like data. This
indicates that the high quality of LSST light curves will
allow for the detection of very reliable SMBHB
candidates.

6. The false-positive rate does not depend on the input
parameter of a simulated DRW signal, i.e., all DRW light
curves are equally likely to produce false detections.

7. There are parts of the parameters space where there is no
significant overlap between true signals and false
detections. If the recovered parameters of a light curve
fall in that region (e.g., A/σ> 1 for LSST-like data) it can
significantly increase our confidence in the periodicity
detection.

8. If periodicity is present in a light curve, and only a DRW
model is fit, the recovery of the parameters is biased.

9. Future work will include more realistic LSST-like light
curves, a wider range of binary signal models, and a
physically motivated binary population.
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