PHYSICAL REVIEW D 105, 122003 (2022)

Fast Bayesian analysis of individual binaries in pulsar timing array data
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Searching for gravitational waves in pulsar timing array data is computationally intensive. The data is
unevenly sampled, and the noise is heteroscedastic, necessitating the use of a time-domain likelihood
function with attendant expensive matrix operations. The computational cost is exacerbated when
searching for individual supermassive black hole binaries, which have a large parameter space due to
the additional pulsar distance, phase offset and noise model parameters needed for each pulsar. We
introduce a new formulation of the likelihood function which can be used to make the Bayesian analysis
significantly faster. We divide the parameters into projection and shape parameters. We then accelerate the
exploration of the projection parameters by more than four orders of magnitude by precomputing the
expensive inner products for each set of shape parameters. The projection parameters include nuisance
parameters such as the gravitational wave phase offset at each pulsar. In the new scheme, these troublesome
nuisance parameters are efficiently marginalized over using multiple-try Markov chain Monte Carlo
sampling as part of a Metropolis-within-Gibbs scheme. The acceleration provided by our method will
become increasingly important as pulsar timing datasets rapidly grow. Our method also makes
sophisticated analyses more tractable, such as searches for multiple binaries, or binaries with non-

negligible eccentricities.

DOI: 10.1103/PhysRevD.105.122003

I. INTRODUCTION

Gravitational waves (GWs) with nHz frequencies can be
probed by monitoring the time-of-arrival (TOA) of radio
pulses emitted by millisecond pulsars. The primary targets
of these pulsar timing arrays (PTAs) are GWs from
supermassive black hole binaries (SMBHBs). These can
potentially be recovered from the data individually, or one
can detect a stochastic GW background (GWB) emerging
from the ensemble of all SMBHBs in the observable
Universe (for a review, see e.g., [1]).

All three major PTA experiments recently detected a
common red noise process: the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [2]; the
European Pulsar Timing Array (EPTA) [3]; and the Parkes
Pulsar Timing Array (PPTA) [4]. The International Pulsar
Timing Array (IPTA) also found strong support for such a
signal in the combined dataset from these regional PTAs
[5]. A common red noise process is expected to be the first
sign of the GWB [6,7]. There remain alternative explan-
ations, which can be ruled out if we observe the Hellings-
Downs correlations characteristic of a GWB. Assuming the
signal is due to the GWB, we expect to see a clear sign of
these correlations within the next few years [7].
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The detection of GWs from the brightest individual
SMBHB is expected to happen not long after the confident
detection of the GWB (see e.g., [8,9]). Searching for GWs
from individual SMBHBs is especially important since they
will provide direct evidence of SMBHBs emitting GWs,
unlike the GWB, which in principle could come from other
GW sources (e.g. cosmological phase transitions [10]). An
individually resolved SMBHB would also provide a unique
opportunity for joint electromagnetic and GW observations
(see e.g., [11]). Several searches for individual SMBHBs
have been carried out in the past, resulting in upper limits
on the amplitude of GWs from SMBHBs [12-14].

Numerous analysis techniques have been developed to
search for and characterize GWs from individual SMBHBs
(see e.g. [15-18]). Fully Bayesian methods tend to be
computationally intensive due to the large parameter space
that needs to be explored, and because the unevenly
sampled datasets and heteroscedastic (nonstationary) noise
rule out the fast Fourier domain methods used in the
analysis of ground-based GW detectors (see [19] and
references therein). This problem will further intensify as
our datasets get larger, and as we try to incorporate more
complicated signal models, like eccentric binaries [20,21]
or multiple binaries [22]. In this paper we present a method
that can significantly speed up such Bayesian analyses by
separating shape parameters, which determine the mor-
phology of the GW signal, from projection parameters,
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which only affect how the signal is projected onto the line
of sight of each pulsar. Our new technique enables
exploration of projection parameters (most of which are
nuisance parameters) at practically zero cost. Due to the
large number of projection parameters, this results in a
significant speedup of the overall analysis. This method is
implemented in the QuickCW software package [23]. Note
that this approach is similar to the F-statistic method
introduced in Ref. [24], but instead of analytically maxi-
mizing over certain parameters, we numerically marginal-
ize over them, thus keeping the analysis fully Bayesian.
There are also similarities with the techniques presented in
Ref. [18], where the likelihood function is either maxi-
mized or marginalized over the pulsar phase parameters.

The paper is organized as follows. In Sec. II we review
the traditional formulation of the individual source signal
model and introduce the alternative formulation allowing
for the rapid exploration of projection parameters. In
Sec. III we describe sampling methods that can be used
to maximize the advantage brought about by the new
likelihood. We validate these methods by analyzing various
simulated datasets (Sec. IV) and the NANOGrav 11-year
dataset [12,25] (Sec. V). We conclude and outline possible
future directions in Sec. VI. Throughout this paper we use
units where G = ¢ = 1.

II. FAST LIKELIHOOD

In this section we review the effect of GWs from a
circular SMBHB on PTA residuals, and we describe an
alternative formulation of the signal model allowing for the
separation of shape and projection parameters. The latter
shows several similarities with the F-statistic (see e.g.,
[24,26-29]). However, we keep all parameters of the signal
free, instead of maximizing over some of them as is done in
the F-statistic analysis.

The emitted GW signal can be written as [30]

A

hap(1,9) = €3, (@) (1.Q) + €, (D (1.€Q), (1)

where Q is a unit vector from the GW source to the Solar
System barycenter (SSB), &, , are the polarization ampli-
tudes, and e,;* are the polarization tensors. The polariza-
tion tensors can be written in the SSB frame as

el (Q) = Ay, — fghy, (2)
e:h(ﬁ) = ﬁlaﬁb + ﬁaﬁlh’ (3)

where Q, 71, and # are orthonormal vectors defined as
Q = —sinfcos P& — sin Osin 9 — cos 62, (4)

/i1 = sin X — cos ¢, (5)

it = —cos O cos px — cos O sin P + sin O2. (6)

The response of a pulsar to the source is described by the
antenna pattern functions F* and F*,

M- p)2— (A p)
Pr@) -5 )
Py - 2D, 0

where p is a unit vector pointing from the SSB to the pulsar.
The effect of a GW on a pulsar’s TOAs can be written as

s(1,Q) = FH(Q)As, (1) + F*(Q)As, (1), 9)

where As . is the difference between the signal induced at
the pulsar and at the Earth (the so-called “pulsar term” and
“Earth term”),

Asy (1) = s+,><(lp) =5y x(1), (10)

where 7 is the time measured at the SSB and 7, is the
corresponding time at pulsar p. From geometry, we can
relate 7 and 7, by

t,=t—L,(1+Q-p), (11)

where L, is the distance to the pulsar.
For a circular binary, at zeroth post-Newtonian (0-PN)
order, s, , is given by
5/3
N dLO)(l) 1/3
+2 cos 2®(t) cos 1 sin 2y, (12)

s.(1) [sin 2®(7)(1 + cos® 1) cos 2y

M5/3
" do()
+2 cos 2d(1) cos 1 cos 2y], (13)

[—sin2®(#)(1 + cos? 1) sin 2y

5x (1)

where 1 is the inclination angle of the SMBHB, y is the GW
polarization angle, d; is the luminosity distance to the source,
and M = (mym,)3/>/(my + m,)'/3 is a combination of the
black hole masses m; and m, called the “chirp mass”.

The evolution of the frequency in the ®(7) phase terms
can be kept fully general, or Taylor expanded to leading
order in the first time derivative of the orbital angular
frequency, @. The signal in pulsar p; can be rewritten as
[cf. Eq. (9)]
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4
)= iy At D @IS0, (1)

where the filter functions, S*/=1+/(¢), are defined as

V(1) = [wo/eo(1)]' cos 200(1),

V(1) = [wo/w(1)]"/3 sin 20(1),

(1) = [w;/o(t,,)]"/3 cos 20(1, ).
(1) = [wi/o(1,)]3 sin 20(1), ), (15)

where the prefactors in front of the trigonometric functions
take into account the slight change in amplitude due to the
frequency changing within the observational time span.
The reference frequency of the Earth term is denoted as
wy = o(ty), while o, =w(ty—L,(1+Q-p,)) is the
reference frequency of the pulsar term in pulsar p,. The
time-dependent angular frequency is given by

|

O4(i-1)+1

= —A.wy"'[cos 2@ (1 + cos® 1) (cos 2y F} — sin 2y F})

The phases in Eq. (15) are given by

(1) = Dy + 35 A4ﬂ%'“3 (1)),

D(1y) = @+ 35 Mo

1

—o(t,)? B (17)

Note that while the initial phases ®; and @, are not
independent parameters, we treat them as independent
since the current uncertainties in the pulsar distances are
so large that it is practically impossible to phase connect the
Earth and pulsar terms. The first two filters are for the Earth
term, and are the same for all pulsars (but they are sampled
at different discrete times due to the different observing
schedules for each pulsar). The coefficients o are given by

— 28in 2@ cos 1(sin 2y F + cos 2y FY)],

O4(i—1)12 = —Aew " [sin 2@ (1 + cos? 1) (cos 2w F; — sin 2y F) + 2 cos 2@ cos 1(sin 2y F; + cos 2y F7 )],

O4(i-1)+3

= A;wy'[cos 2®;(1 + cos? 1)(cos 2w F; — sin 2y F)

— 25in 2®; cosi(sin 2y F; + cos 2w FY)],

O4(i—1)13 = Ay [sin 20;(1 4 cos? 1) (cos 2y F, — sin 2y F}) 4 2 cos 2®; cos 1(sin 2y F; 4 cos 2y F )], (18)

where A, = M5/3d21a)§/3 and A; = M5/3dzla)iz/3. Note
that A; are not independent parameters, since they are
uniquely determined by A., @y, and ;. The log-likelihood
can be written as

1 1
logL = —5(51,‘ — 5|6t —s) —zlogdet(ZﬂC), (19)

where
(a|lb) = a’C'b. (20)

Here C = N + TBTT, where N is the white noise
covariance matrix, 7" is the design matrix for the timing
model, red noise, and jitter noise, and B is the prior matrix for
the hyperparameters of those (see e.g., [1]). Using the
Woodbury matrix identity, we can express the inverse
of C as

C'=(N+TBT")"' =N = N'TZ'T'N",  (21)

where ™! = B~! — TTN~!T. Using the four filters we have

I
1 1
logL = —f(6t|5t) — Elog det(27C)

4N 4N,

+ Z o NF — = Z Z oo MM, (22)

where N* = (5¢|S¥), M¥ = (8¥|S"), and N, is the number of
pulsars in the array. Computing these inner products is the
expensive step. The inner products have to be recomputed
each time the noise model or the shape parameters of the
signal (see Table I) are updated. Note that while the vast
majority of the off-diagonal terms in M* are zero, the per-
pulsar quadratures and pulsar-Earth cross terms will not
vanish since the data is unevenly sampled and the orbital
periods are generally not integer submultiples of the obser-
vation time. The band-diagonal structure of the M*' means
that it can be computed and stored in an array of size 10N,

TABLE 1. List of shape and projection parameters and their
numbers as a function of the number of pulsars (Np).

Shape parameters Projection parameters

4+3xN,)
67 ¢’ fGW’ M’ Ll’i’ Yp:is ARN.p;

4+ N,)
I, Ae, q)o, lP, Qi
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rather than the naive (4N,)?. Note that in the presence of
correlated noise between different pulsars (e.g., a stochastic
GW background), inner products will include cross terms
between pulsars. Appendix A describes how the cross terms
can be avoided, thereby maintaining the factorized form of
the likelihood and the band-diagonal structure of the M*
matrix.

For a fixed set of noise parameters and shape parameters,
we can compute the likelihood for any set of projection
parameters (see Table I) in essentially zero time. See details
of how we can take full advantage of the speedup by an
implementation relying on Numba in Appendix B. This
increased speed allows us to fully marginalize over these
projection parameters by performing a large number of
MCMC updates of just these parameters.

If we are only interested in the Earth term, the sky
location could also be marginalized over without needing to
recompute the inner products. The pulsar terms ruin this
separation of variables since the pulsar time ¢z, from
Eq. (11) depends on the sky location.

We can see from Eq. (16) that the initial angular
frequency at each pulsar is given by

256 A -3/8
o= (1422 M L, 040p0) 03

Note that the Earth term and pulsar term can be quite
different since
256 M\
S MBayPL, =10.16( —5——
5 @0 Er 10° Mg

wy \*3( L,
() ()

On the other hand, the Earth term frequency only changes
by a small amount during an O(10) year observing span so
long as the systems are not very heavy or the current
frequency is not too high since

256 o M \3/3
M =0.031
s Mo 10° M,

()5 @

III. METROPOLIS-WITHIN-GIBBS SAMPLING

With the new formulation of the likelihood in Eq. (22)
the computational burden is highly dependent on which
parameters we try to update. Since calculating the like-
lihood at new projection parameter values is significantly
faster than calculating it for a new set of shape parameters,
we propose more updates in projection parameters.

We achieve that by employing a Metropolis-within-
Gibbs sampler (see [31] and references therein), where
the sampler completes a block of projection parameter
updates [in this case typically O(10?)] before attempting
a shape parameter update. The Metropolis-within-Gibbs
sampler allows us to sample projection parameters
extremely well with practically no additional cost.

In order to optimize the mixing in shape parameters,
we also use a technique called multiple-try MCMC
(MTMCMC) [32,33]. The idea of MTMCMC is that one
can propose N different points, select one of them based on
some importance weights, and accept or reject the new
sample based on an acceptance probability which depends
on the likelihood at all N proposed points. With N = 1,
one recovers the Metropolis-Hastings algorithm, while as
N — oo, we draw independent samples from the posterior.
Variants of MTMCMC where the trials can be drawn from
different distributions or can be correlated were introduced
in [34,35].

We apply MTMCMC for the shape parameter updates in
our Metropolis-within-Gibbs sampler as follows. Let us
denote the parameters of the MCMC chain at the ith
iteration as

6:=1{0,".0". (26)
where 0,(»5) are the shape parameters and 6?,(»p> are the
projection parameters at the ith iteration. We determine
the next sample, @, |, using the following algorithm:

(1) Draw a set of new shape parameters 8 from the
proposal ¢*)(6) |0§s)).
(2) Draw N different sets of projection parameters,

(p) (p) (p)
0(1), ...,H(k), ...,0<N),

a” (016,
(3) Randomly select 0( j) = {0(5) , 08.’)) }, according to the
probability mass function,

L(O;
p(0) = _Zgy]( £J(>43(k)) ' @7

(4) Form N auxiliary samples,

from  the  proposals

0(_5)’0(13) if k .
0; if k=j.
(5) Set 0, = 6; with probability,
N L(6
min (1,72151 ( ”‘))>, (29)
> i1 L(Oy)

otherwise, set 6,,; = 0,.

122003-4



FAST BAYESIAN ANALYSIS OF INDIVIDUAL BINARIES IN ...

PHYS. REV. D 105, 122003 (2022)

Note that Egs. (27) and (29) only depend on the likelihood
values and not on the proposal densities, because we
only employ symmetric proposal distributions. We can
see that if N = 1, Eq. (29) reduces to the usual Metropolis-
Hastings acceptance probability. Also note that since we are
i
ing to Eq. (27), as N - oo we are drawing independent

samples from the conditional likelihood at the new shape

selecting the proposed projection parameters, 8", accord-

parameters, L(BE[;)) |0%)). At this large N limit, we can also

interpret the acceptance probability in Eq. (29) as compar-
ing the likelihood at the new and old shape parameters
marginalized over the projection parameters.

To ensure the new set of shape parameters is not rejected
due to the lack of an appropriate set of projection para-
meters, we use a fairly large number of trials (typically
N =10, 000). A large number of projection parameter trials
increases acceptance of shape parameter proposals with little
additional cost due to the comparatively cheap evaluation of
the likelihood at different projection parameters. For the
shape parameter proposals, we use a mix of Fisher propos-
als, differential evolution proposals, and prior draws. At a
given step we only update a specific set of parameters: (i) the
four common parameters (sky location, chirp mass, fre-
quency); (ii) pulsar distances; (iii) red noise parameters. For
the projection parameter proposals, we always have one trial
keep its original projection parameters. This gives a good
chance of accepting the new shape parameters even if for
some reason the large number of trials with perturbed
projection parameters would land on low-likelihood places.
For the rest, we draw each projection parameter independ-
ently using an optimal jump scale determined by the second
derivative of the likelihood in that direction. If the optimal
scale is larger than a threshold, we do a draw from the prior
instead. Switching to prior draws ensures that when a
parameter’s value is not well determined we do a prior
draw resulting in good exploration. Details about the
implementation of the new likelihood function and the
sampler can be found in Appendix B.

In general, MTMCMC algorithms provide better
mixing at the cost of additional likelihood evaluations
needed in Egs. (27) and (29). MTMCMC methods are
particularly well suited to our new method, because the
extremely cheap evaluations of the likelihood for different

TABLE II.

projection parameters give us the benefits at little addi-
tional cost.

IV. RESULTS WITH SIMULATED DATA

To test and illustrate the performance of the new methods
described above, we analyzed several simulated datasets.
To gauge expected runtimes realistically, all our datasets are
made to resemble the latest publicly available dataset of the
NANOGrav collaboration, the NANOGrav 12.5-year data-
set [36]. They all contain the same 45 pulsars with the same
timing solution and same observation properties (epochs,
observing frequencies, TOA errors) as the real dataset. We
simulated white and red noise in all pulsars according to the
best-fit parameters found for the real observations. The
typical runtime on a dataset of this size and complexity was
a few days on an AMD Ryzen Threadripper 3970X 32-core
processor.

In addition to white and red noise, we added three
different signals to our dataset to test our analysis in
different interesting scenarios: a slowly evolving signal
which has comparable frequencies in the Earth term and the
pulsar terms (see Dataset 1 in Table II and Sec. IVA 1); a
rapidly evolving signal where the Earth and pulsar terms
have significantly different frequencies (see Dataset 2 in
Table II and Sec. IVA2); and a low-SNR marginally
detectable signal at the most sensitive sky location and
frequency, which is meant to represent the kind of signal we
are most likely to detect first (see Dataset 3 in Table II
and Sec. IVA 3). We also analyzed a dataset without
any signals to test how the new pipeline can produce
upper limits if no significant GW sources are found (see
Sec. IV B).

A. Detection analyses

1. Slowly evolving signal

We first analyzed a signal with a relatively low chirp
mass and frequency (see Dataset 1 in Table II) resulting in
only slightly different Earth term and pulsar term frequen-
cies [cf. Eq. (24)]. We chose the amplitude of the signal to
achieve a moderate SNR of 10.4. Fig. 1 shows how the
square of the SNR (a good proxy for detectability) is
distributed among the 45 pulsars in the array. The highly

List of parameter values for simulated datasets. Red noise parameters and pulsar distances were set to

the official values from the NANOGrav 12.5-year dataset [36]. The GW phase at each pulsar was determined from

@, the light travel time to each pulsar, and fgw.

0 l b fow (nHz) A, M (M) o) ks d;, (Mpe)*
Dataset 1 z/3 1.0 4.5 8 5x 1071 5x 108 1.0 1.0 7.5
Dataset 2 /3 1.0 4.5 20 I x1071 5% 10° 1.0 1.0 320
Dataset 3 27/3 0.5 4.5 8 2x 1075 1 x10° 2.0 1.5 60

*Note that d; is not an independent paramter we fit for. It is completely determined by A., fgw, and M.
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Total SNR = 10.4
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FIG. 1. SNR? values in datastreams of each simulated pulsar
for slowly a evolving signal (Dataset 1 in Table II). Horizontal
dashed lines indicate the minimum number of pulsars needed to
reach 50%/90%/99% of the total SNR?.

heterogeneous distribution means that only 3/10/23 pul-
sars are responsible for 50%/90%/99% of the total SNR?.
There are two reasons for this: (i) the pulsars in the array
have a wide range of observation timespans and timing
precisions, since they correspond to the real pulsars in the
NANOGrayv 12.5-year dataset; (ii) pulsars in favorable sky
locations can incur significantly higher SNRs compared to
pulsars in “bad” sky locations. This imbalance in SNR
might suggest that one can arrive at similar results by only
using a small subset of the pulsars. However, even pulsars
with negligible SNRs can contribute to parameter estima-
tion, since they can rule out some parts of the parameter
space where they would be able to reach a higher SNR.
Also, one cannot know a priori which pulsars could be
neglected, since even a less-precisely timed pulsar can have
a relatively high SNR if it happens to be in a favorable sky
location for a particular source.

Fig. 2 shows the one-dimensional and two-dimensional
marginal distributions of the eight signal parameters
common to all pulsars. Blue lines and dots indicate the

true values of parameters, while green horizontal lines show
the prior distribution for each parameter. The true values of
parameters lie within the bulk of the posterior for all
parameters. As expected given the slow frequency evolu-
tion of the signal, the chirp mass distribution is largely
unconstrained, with only the largest values being ruled out
as they would have resulted in a detectable frequency
evolution. The amplitude is highly correlated with a
number of nuisance parameters, most notably the inclina-
tion angle (1), emphasizing the importance of effectively
sampling these. Some parameters show a highly complex,
multimodal posterior, which makes the sampling of those
parameters particularly challenging. Some of the intricate
structure (especially in sky location) is due to the uneven
distribution of pulsars on the sky, which results in highly
variable sensitivity over the sky.

It is also interesting to examine the posterior distribution
of some of the pulsar-specific parameters, and their
correlations with some of the common parameters.
Figure 3 shows the pulsar distance and pulsar phase
distributions for four selected pulsars, and their correlations
with the four common shape parameters. We selected PSR
J1713 4+ 0747 and PSR J1909 — 3744, as these are two of
the most precise pulsars in the array and they exhibit high
SNRs for this signal (4.45 and 3.25, respectively). We also
show posteriors for PSR J1918 — 0642, which is a good
example of a pulsar with a moderate SNR of 2.72, and
for PSR J2234 + 0944 which has a negligible SNR of 0.03.
We can see that accordingly, the posterior of the GW
phase at PSR J1713 4+ 0747 and PSR J1909 — 3744 are
highly peaked, while they are less informative for PSR
J1918 — 0642 and PSR J2234 + 0944. Note that some of
the pulsar term phases are correlated with the sky location
parameters (0 and ¢»). We can also see that at high values of
M, that also shows a correlation with the pulsar phases.
These are due to the fact that we parametrize the initial
phase at each pulsar as the sum of the Earth term phase,
the phase collected during propagation from Earth to the
pulsar, and the corresponding @; parameter. Since the
projected distance to the pulsar changes with sky location,
the pulsar phases must be corrected as we change the sky
location. Similarly, changing the chirp mass changes the
phase accumulated between the Earth and the pulsar, so ®;
needs to be adjusted.

2. Fast evolving signal

The next signal we analyzed has higher frequency and
chirp mass than the previous one (see Dataset 2 in Table II),
and thus shows a significant frequency evolution between
the Earth and pulsars, and it even starts to show a non-
negligible evolution within the 12.5-year observing time-
span [see Eq. (25)]. The total SNR is 13, with a highly
heterogeneous distribution within pulsars. 50%/90%/99%
of the total SNR? comes from just 2/13/28 pulsars. We
show the distribution of the eight parameters common to all
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FIG. 2. Corner plot of parameters common to all pulsars for the slowly evolving signal (SNR = 10.4, Dataset 1 in Table II). We show
the posterior with black, the prior with green and the true values of parameters with blue. Contour lines represent the 1-6/2-6/3-c levels

in two dimensions, which correspond to 39.3%/67.5%/86.5% credible regions.

pulsars in Fig. 4. Unlike in the slowly-evolving case, the
observed frequency evolution results in an informative
chirp mass posterior. This moderate-SNR source results in
a chirp mass measurement with a 1-¢ error of ~10%. Given
the high correlations between M and cos 6, the chirp mass
measurement precision can be further improved if the sky
location of the source can be fixed. This can be done e.g. if
the host galaxy can be identified through electromagnetic
observations (see e.g., [37-39]). The intricate multimodal

structure we have seen for the slowly evolving signal in
Fig. 2 is much less prominent for this quickly evolving
signal. Many of the one-dimensional marginal distributions
we see in Fig. 4 are close to being Gaussian, and only @,
and ¥ show a multimodal structure. This reduction in the
complexity of the posterior distributions is due to the fact
that the frequency evolution breaks some of the degener-
acies present in the signal model when the evolution is

negligible.
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FIG. 3. Corner plot of four common shape parameters and selected pulsar distances and phases for the slowly evolving signal

(SNR = 10.4, 1 in Table II). We show the posterior with black, the prior with green and the true values of parameters with blue. Contour
lines represent the 1-6/2-06/3-0 levels in two dimensions, which correspond to 39.3%/67.5%/86.5% credible regions.

We show the posterior distributions of phases and
distances for four selected pulsars, and their correlations
with the four common shape parameters in Fig. 5. We show
these for the same four pulsars as in Fig. 3. For this signal,
they have the following SNRs: 8.3 for PSR J1713 4 0747,
5.42 for PSR J1909 — 3744, 2.17 for PSR J1918 — 0642,
and 0.41 for PSR J2234 + 0944. In this example, the GW
phase at PSR J2234 + 0944 perfectly recovers its prior.
Similarly to Fig. 3, we also see correlations between the

pulsar phases and sky location or chirp mass. In addition,
we see that pulsar phases can also be correlated with the
GW frequency and pulsar distances. These have similar
explanations as discussed above.

3. Marginally detectable signal

We also analyzed a marginally detectable signal with a
total SNR of 4.3, with 50%/90%/99% of the total SNR?
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FIG. 4. Corner plot of parameters common to all pulsars for the fast evolving signal (SNR = 13, Dataset 2 in Table II). We show the
posterior with black, the prior with green and the true values of parameters with blue. Contour lines represent the 1-6/2-6/3-c levels in
two dimensions, which correspond to 39.3%/67.5%/86.5% credible regions.

coming from 3/12/22 pulsars (see Dataset 3 in Table II).
The sky location and frequency (fgw = 8 nHz) of the
signal were chosen so that it roughly corresponds to the
most sensitive part of the parameter space (see Sec. IV B)
and thus represents a typical signal we might expect to
detect first. We have also chosen a moderate chirp mass
(M =1x10° Mg), which is heuristically what we are
most likely to detect, since systems with higher chirp mass

have higher GW amplitudes, but are also more rare. This
combination of fgw and M results in a signal with a
relatively low amount of frequency evolution.

Figure 6 shows the one-dimensional and two-dimen-
sional marginal posterior distributions of the common
parameters for this signal. For most of the parameters,
the posterior distributions are not significantly different
from their respective priors. The main exceptions are fgw
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Corner plot of four common shape parameters and selected pulsar distances and phases for the fast evolving signal (SNR = 13,

Dataset 2 in Table II). We show the posterior with black, the prior with green and the true values of parameters with blue. Contour lines
represent the 1-6/2-6/3-0 levels in two dimensions, which correspond to 39.3%/67.5%/86.5% credible regions.

and A., both of which have a posterior peaked at the true
location of the parameter. The posterior for fgw also has
non-negligible support over the entire prior range. A,
values significantly higher than the true parameter are
ruled out, however, the posterior has support extending to
the lower prior boundary, indicating the low significance of
the signal. Note that the posteriors for the sky location and
inclination parameters also show some deviation from the

priors, but they are not particularly peaked around the true
parameter values.

These analyses illustrate the expected progression of a
GW detection from an individual SMBHB as we gather
SNR over time. We expect to first see a peak emerging in
the posteriors of fgw and A, while basically recovering the
priors of other parameters. These other parameters will start
to have more informative posteriors as we gather more SNR
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FIG. 6. Corner plot of parameters common to all pulsars for marginally detectable signal (SNR = 4.3, Dataset 3 in Table II). We show

the posterior with black, the prior with green and the true values

(as we have seen on Figs. 2 and 4). The expected sequence
of parameter constraint improvement will be important to
keep in mind as we transition from placing upper limits to
claiming detections. In Sec. IV B, we also investigate how
the upper limit can be affected by a marginally detectable
signal.

B. Upper limit analysis

If no significant GW candidates are found, we can place
upper limits on the amplitude of GWs from individual

of parameters with blue.

SMBHBs. Such an analysis poses slightly different
challenges, because one needs to effectively explore the
whole prior range in many parameters. Exploration of the
full parameter space is required to ensure we gather a
sufficient number of independent samples to get an
accurate estimate of the upper limit as a function of
different parameters. To test the performance of our
pipeline in such a scenario, we analyzed a dataset
similar to those discussed above, but with no GW signal
added.
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FIG. 7. GW amplitude upper limit as a function of GW

frequency (red line). We also show the number of independent
samples on the log;, fgw—1og;o A. plane. The vertical dashed
line indicates the frequency of 1/yr, where we expect a signifi-
cantly reduced sensitivity.

Figure 7 shows the upper limit on log;, A, as a function
of logg fgw for this simulated dataset. We also show the
number of independent samples in each bin on the
logo fow—1og o A. plane. The upper limit is calculated
by binning the samples in log;o fgw and finding the 95th
percentile of the amplitude in each bin. As expected, the
dataset is most sensitive around 8 nHz (log;y fgw =~ —8.1).
At lower frequencies, we lose sensitivity due to the red
noise present in the pulsars. At higher frequencies, we are
progressively less sensitive due to the fact that we measure
the integral of the GW signal. We also have particularly low
sensitivity at fgw = l/yr due to the degeneracy with
Earth’s orbital period introduced when we convert the
observed TOAs to the SSB. Note that there is a peak in
the posterior at (log;y fgw, logioAe) = (—7.9,—14.7). The
peak corresponds to a noise fluctuation being fitted with the
GW model in this particular realization.

Even a pure noise dataset can exhibit features akin to
marginal GWs. To investigate this feature, we analyzed a
dataset with the same properties but a different random seed
used for the noise realizations. Figure 8 shows the upper
limit as a function of frequency for this dataset. We can see
that while that peak does not show up in the alternate
realization, other similar features appear at different parts of
the parameter space. Candidate detections would need to be
vetted with a full suite of cross-checks beyond the scope of
this paper before a detection could officially be claimed.
One possible approach is to reanalyze the dataset many
times, while setting the sky location of the pulsars to
random positions on the sky. This sky scrambling would be
the same as currently used for the GWB [40,41], and since
it destroys the coherence of the signal, it could be used the

-8.25 -8.00 -7.75 -7.50

log10(few [Hz])

-7.25 -7.00

FIG. 8. Same as Fig. 7, but with a different noise realization.
Note that bumps in the upper limit due to noise fluctuations
appear at different random frequencies.

build a null distribution. Comparing the nonscrambled
result with the null distribution gives a false alarm
probability of the candidate. The dramatic speedup pro-
vided by our method significantly reduces the expense of
conducting such reanalyses, which will help improve the
robustness of future candidate vetting.

We also investigated how the upper limit changes in the
presence of a marginal GW signal. Figure 9 shows the
amplitude upper limit as a function of log,, fgw for Dataset
3 from Table II. As a comparison, we also show the upper

1/yr
—— New 95% UL
Original 95% UL

log10Ae

-8.25 -8.00 -7.75 -7.50

log10(few [HZ])

-7.25 -7.00

FIG. 9. Same as Fig. 7 but in the presence of a marginally
detectable signal at log;q fgw =~ —8.1. The red solid line shows
the upper limit we get from analyzing this dataset, which is
elevated around the signal compared to the original upper limit
shown by the pink dotted line. The white cross indicates the true
parameters of the signal.
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FIG. 10. Upper limit on log;, A, as a function of sky location.
Red stars indicate locations of the pulsars in the array.

limit we get from the dataset with no signal. We can see that
the upper limit around the true frequency of the signal is
elevated by almost an order of magnitude, even though the
true amplitude is right at the level of the original upper
limit. Note also that even this low-significance signal is
much more prominent than the peak we have seen on Fig. 7
due to the noise fluctuation.

Figure 10 shows the frequency-marginalized upper limit
we can place on log;yA. as a function of sky location.
There is more than an order of magnitude difference
between the upper limit we can place towards the most
and least sensitive sky location. The variable sky sensitivity
is due to the fact that the pulsars in the NANOGrav
12.5-year dataset have a highly anisotropic distribution
on the sky. That is expected for any pulsar timing array,
because there are more pulsars towards the galactic center
than in the antipodal direction.

V. RESULTS WITH REAL DATA

To validate our new methods with real data, we analyzed
the NANOGrav 11-year dataset. Figure 11 shows the GW
amplitude upper limit we get with QuickCW as a function
of the GW frequency in red. We also show the official
NANOGrav result in green [12]. Overall, there is good
agreement between the two over the whole frequency
range. Note that the official results show the amplitude
upper limit at a set of fixed fgw values, while our results
show the upper limit at frequency bins with non-negligible
width. Thus we do not expect perfect agreement between
the two results, especially where the upper limit is quickly
changing with frequency. To illustrate this, we also plot our
results using narrow frequency bins around the fixed
frequencies used in the official NANOGrav analysis (pink
markers). We can see that at several frequencies, these are
in better agreement with the official results (e.g., around
fow = 1/yr). However, even these narrow frequency bin
results show some discrepancy at the lowest frequency bin.
We think this is due to a bug that was recently found in the
so-called empirical distribution proposals, which were used

' 95% UL - QuickCW +
(1-sigma errors) i
95% UL - official
1071 (1-sigma errors)

t

e

10—13_

10—14_

10~7

fow [Hz]

FIG. 11. GW amplitude upper limit as a function of GW
frequency for the NANOGrav 11-year dataset analyzed by
QuickCW (red), and as reported in Ref. [12] (green). We also
show our results using narrow frequency bins centered at the
fixed frequencies used in the official NANOGrav analysis (pink).

in the official analysis [12,42]. The bug resulted in a small
overestimation of the red noise in some pulsars, which in
turn meant that the upper limit on A, was underestimated
at low frequencies, where there is a strong correlation
between the red noise and the individual binary models.

Allowing the GW frequency to explore the entire prior
range has several advantages over running at a set of fixed
frequencies. Especially at frequencies where the upper limit
changes quickly, a fixed frequency analysis cannot fully
explore parameter space and artificially underestimates the
uncertainty in the upper limits. Varying the frequency also
streamlines the analysis, since we only need a single run
instead of dozens. A potential issue is that we do not get the
same number of samples at all frequencies. Excessive focus
on a particular set of frequencies is suboptimal, since if we
require a fixed level of convergence in each frequency bin,
the overall runtime is determined by the frequency bin with
the least number of samples. To optimize the sampling, we
could apply a pseudoprior on fgw, which down-weights
regions with many samples based on a pilot run. The
pseudoprior would then ensure a more uniform number of
samples at all frequencies while preserving good mixing.
The undesired bias from the pseudoprior can be canceled in
postprocessing by reweighting the posterior samples. This
technique is similar to umbrella sampling [43], and the
pseudoprior used when calculating Bayes factors with the
product space method [44].

VI. CONCLUSION

In this paper we presented a new formulation of the
likelihood function [see Eq. (22)], which results in a
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significant speedup of a Bayesian search for individual
SMBHBs in PTA data. Our formulation does not apply any
new approximations, and recovers the canonical likelihood
within numerical errors. This is achieved by separating the
parameter space to shape parameters and projection param-
eters. Precalculating inner products for a given set of shape
parameters allows cheap exploration of the projection
parameters, thus speeding up the entire analysis. We
demonstrated the performance using a new analysis pipe-
line employing the new likelihood in a Metropolis-within-
Gibbs sampler with multiple-try MCMC.

These methods will drastically reduce the computational
cost of searches for individual sources in upcoming PTA
datasets, and improve the tractability of achieving a well-
converged analysis as the size of datasets increases. Since
all the latest PTA datasets show evidence for the presence
of a common red noise process [2-5], we plan to incor-
porate that in our model as well. This would appear as an
additional red noise term in the 7 and B matrices defined
below Eq. (20), and would introduce two additional
parameters to sample over, which describe the amplitude
and spectral slope of the common red noise. This addition
would not significantly change how the fast likelihood
methods presented in this paper work. If the upcoming PTA
datasets will show evidence for this common process being
correlated between pulsars, we would ultimately want to
include those correlations in our model as well. In
Appendix A we outline how such correlations could be
incorporated into the fast-likelihood framework we pre-
sented in this paper. The implementation of that addition
will be presented in future work.

These methods will also make more sophisticated
analyses computationally feasible. In particular, we plan
to extend these methods to work with BayesHopper
[22], a pipeline proposed to search for multiple individual
sources simultaneously. We also plan to work on imple-
menting similar methods for a search for eccentric
SMBHBs and a search for non-Einsteinian polarization
modes from SMBHBs [45]. It might also be worthwhile to
extend these methods to sine-Gaussian wavelets in an effort
to speedup BayesHopperBurst [46], a pipeline to
search for generic GW bursts in PTA data.
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APPENDIX A: FAST LIKELIHOOD IN THE
PRESENCE OF CORRELATED RED NOISE

A red noise process can be modeled using a pseudo-
Fourier basis F, made up of a collection of sines and
cosines at a discrete set of frequencies with amplitudes
a [50]. The log likelihood then becomes

logL = —%(5t—s—F.a|5t—s—F-a). (A1)
The usual approach is to marginalize over the a’s analyti-
cally. If we assume the signal is not correlated between
pulsars, Eq. (A1) can still be evaluated pulsar-by-pulsar
[51]. However, the per-pulsar factorization breaks down if
we intend to model a GWB with Hellings-Downs corre-
lations between the pulsars [52]. This would significantly
increase the cost of the CW analysis since the M*' matrix
would become dense.

Another approach is to use a method similar to what we
are proposing for individual SMBHBs and to the methods
presented in Ref. [53]. For simplicity let us ignore the
individual sources for now and focus on the GWB.
Expanding the log likelihood we have

log L = -%[(m&) —2a-P+a-Q-a., (A2

where P = (6¢|F) and Q = (F|F). Note that the vector P is
much smaller than the vector F. The vector F is a vector of
vectors, made up of the time samples for the sines and
cosines at each frequency and for each pulsar. After the
inner products have been done, the P is a collection of
numbers, one each for the sine and cosine at each frequency
in each pulsar. The matrix Q has rows and columns that
follow the pattern of the vector P. To simplify the
discussion, consider a single frequency f, and label the
a such that a(;_;) are the cosine terms in pulsar i and a,;
are the sine terms. Our hyperprior for the a is such that each
ay is drawn from a Gaussian distribution with variance S(f)
and correlations given by

Elapi_yapj-n] = Hi;jS(f),
Elagi-nag;] =0,

E[a(Zi)a(Qj)] = HijS(f)’ (A3)

where H;; is the Hellings-Downs correlation between
pulsars i, and j. More schematically we can write E[a,a;] =
@y where the entries of ¢;; are given by (A3). The posterior
probability distribution for a can then be written as

e_%(‘m&)
\/det(2zC) det(2ze)

X eakPk—%akalQ“—%akal(flfl ) . (A4)

p(alor, S) =
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The next step is to marginalize the p(al|éz,S) over a to
produce the marginal likelihood p(5¢|S). This marginaliza-
tion can be done analytically since the expression for
p(alét, S) is a multivariate Gaussian. The end product is
the new likelihood for the power at frequency f. Notice that
all the inner products were done pulsar by pulsar. We have a
factorized likelihood. Unlike in the usual analysis where the
marginalization is done before computing the inner prod-
ucts, by performing the marginalization after the per-pulsar
inner products have been done we avoid any cross terms.
The analysis still “knows” about the correlations, without
actually having to cross-correlate the data between pulsars.

Note that the inner products P and Q have to be
recomputed every time the noise model is updated. The
red noise can be treated like the GWB, but just with a
diagonal correlation matrix, so P and Q only have to be
recalculated for white noise updates. The white noise inner
products could be computed for some discrete set of values
for each pulsar, then a joint marginalization across the
white noise in all the pulsars could be done using a
lookup table.

APPENDIX B: IMPLEMENTATION
IN pyTHON USING Numba

The new formulation of the likelihood and the associated
sampler is implemented in the QuickCW package.
QuickCW relies on the ENTERPRISE software [54],
which uses PYTHON, so it was a natural choice to implement
QuickCW in PYTHON as well. To overcome the inherent
speed limitations of PYTHON, we use the Numba software
package [55,56], which is a just-in-time compiler capable
of generating fast machine code from PYTHON syntax. This
is particularly important, as in the new formulation of the
likelihood, the computational cost after the inner products
have been precomputed consists of a small number of
simple multiplicative and additive operations. As a result,
run times are dominated by PYTHON-specific overheads if
we do not use Numba.

Table III shows representative runtimes of the old and
new likelihood for different scenarios. We carried out these
tests on an AMD Ryzen Threadripper 3970X 32-core
processor. We tested on three different simulated datasets:

TABLE III.

one made to resemble the NANOGrav 12.5-year dataset
(same as used for all other results in this paper); one with
double the number of pulsars and TOAs as the NANOGrav
12.5-year dataset; and one with five times as many pulsars
and TOAs as the NANOGrav 12.5-year dataset. The latter
two were used to show how performance will change in the
future as the PTA datasets grow in size.

For each of these datasets we timed the execution of the
old likelihood for randomly drawn GW parameters and
randomly drawn red noise parameters. We can see in
Table III that these take a different amount of time. The
variation is due to the fact that ENTERPRISE caches some
of its internal function calls, so when the red noise is
changed, some parts of the likelihood can be reused from
before, which results in different execution times. We also
tested the new likelihood formulation in a scenario when
only projection parameters are changed. We can see that for
the dataset resembling the NANOGrav 12.5-year, this is
~20,000 times faster than the old likelihood. We also timed
the recalculation of the inner products, which is necessary
when the shape parameters are updated. We can see that
recalculating the filters for a new set of shape parameters is
still about a factor of three faster than the old likelihood.
The speedup is due to a combination of algorithmic
optimization and the speedup we get with Numba. If
GW parameters are updated, the N* and M*' needs to be
recomputed using the updated S¥, but one can use C~! from
memory. However, when the red noise parameters are
updated, S¥ remains the same, but an updated C! needs to
be used. As we can see in Table III, this results in the red
noise updates being more expensive.

The results for larger datasets show that runtimes for the
old likelihood roughly scale linearly with the number of
pulsars and TOAs. Evaluating the new likelihood at given
shape parameters scales slower than linear, resulting in less
than twice as long runtimes for the 5 times larger dataset.
On the other hand, shape parameter updates scale faster
than linear, resulting in about a factor of 8 slower evaluation
for the 5 times larger dataset. Note, however, that we
optimized the pipeline for a dataset like the NANOGrav
12.5-year, so the performance for larger datasets might be
suboptimal.

Runtimes of old likelihood and different components of the new likelihood for various representative datasets.

NANOGrav 12.5-year

2 x NANOGrav 12.5-year 5 x NANOGrav 12.5-year

Number of pulsars 45

Number of TOAs 410,064
Old likelihood GW update 300 ms
Old likelihood red noise update 120 ms
New likelihood" 0.016 ms
GW shape parameter update” 90 ms

Pulsar red noise update 180 ms

90 225
820,128 2,050,320
610 ms 1500 ms
210 ms 630 ms

0.020 ms 0.029 ms
220 ms 770 ms
400 ms 1300 ms

*With fixed shape parameters.
®Common parameters or pulsars distances.
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