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An approach for identifying resonances in vibrational perturbation theory calcula-
tions is introduced. This approach makes use of the corrections to the wave functions
that are obtained from non-degenerate perturbation theory calculations to identify
spaces of states that must be treated with degenerate perturbation theory. Pairs of
states are considered to be in resonance if the magnitude of expansion coefficients
in the corrections to the wave functions in the non-degenerate perturbation theory
calculation are greater than a specified threshold, x™®*. This approach is applied to
calculations of the vibrational spectra of CHy, HoCO, HNO3, and cc-HOONO. The
question of how the identified resonances depend on the value of Y™ and how the
choice of the resonance spaces affects the calculated vibrational spectrum is further
explored for HoCO. The approach is also compared to the Martin test [J. Chem.
Phys. 103, 2589-2602 (1995)] for calculations of the vibrational spectra of HyCO and
cc-HOONO.
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I. INTRODUCTION

The simulation of vibrational spectra is a key element in the process of making connec-
tions between experimentally observable quantities and the fundamental physics of molec-
ular systems.! There are many highly-accurate approaches that have been taken to simu-
late such spectra. Methods like discrete variable representations® (DVR) and local-mode
models®® (LMM) are used to provide accurate descriptions of individual coordinates. These
representations of single oscillators may then be combined via direct-product bases or similar
approaches to obtain a representation of the full-dimensional Hamiltonian.*>° ! Unfortu-
nately, due to the so-called “curse of dimensionality,” these simple approaches works best
only for small systems or in reduced-dimensional models. In extending these types of tech-
niques to higher-dimensional problems, it is common to use approaches like the vibrational
self-consistent field/vibrational configuration interaction (VSCF/VCI) method'*** and the
multiconfiguration time-dependent Hartree (MCTDH) method,'* ¢ which make use of DVRs
and LMMs to obtain full-dimensional solutions to the Schrodinger equation. These methods
provide high-quality spectral information, but can come at a considerable computational
cost. Moreover, these methods require a full potential energy surface that spans the entirety
of the relevant configuration space for the system of interest.

As a complement to these highly-accurate but expensive methods, more approximate
methods also exist, the best-known likely being the harmonic oscillator model. In the har-
monic approximation, the potential energy is approximated by a second-order Taylor series
about the minimum-energy geometry. The vibrational Hamiltonian for an N-atom system

can then be expressed as
3N—6

H=Y S +q) 1
i=1
where the ¢; are the 3N — 6 normal modes and the p; are the momenta conjugate to the
normal modes.

For systems where a quadratic approximation to the potential works well—a common
case for systems with small-amplitude motions—the harmonic approximation, potentially
with scaling factors,!” provides a good zero-order solution to the full vibrational Schrodinger
equation. However, for systems with significant anharmonicity, a better solution is obtained
through vibrational perturbation theory (VPT).'¥25 The power of vibrational perturbation

theory is illustrated by the Morse potential,?® for which the energy levels can be expressed as



a quadratic expansion in (n + 1/2). When this model potential is expanded through fourth
order in the bond displacement and second-order vibrational perturbation theory (VPT2)
is used to evaluate the energies, the VPT2 calculation will provide the exact values for
these energies. On the other hand, a variational calculation that uses this quartic expansion
of the potential will show notable deviations from the expected energies. Comparing the
corrections to the energies from VPT2 to energies obtained from a variational calculation
that is based on a quartic expansion of a Morse potential that describes an OH oscillator,
with w = 3869.47 cm ™! and we = —84.11 cm™!,?3 one finds that the variational calculation
overestimates the energies of the states with one and two quanta of excitation by 30 and
150 cm™!, respectively (an error of 1% and 4%). As the potential energy for stretching
vibrations is often well-approximated by a Morse potential, a VPT2 calculation that is based
on a quartic expansion of the potential is anticipated to provide more accurate energies for
the stretching vibrations than a variational calculation that utilizes the same truncated

expansion of the potential.

On the other hand, in the presence of resonance interactions,’'®2" VPT is known to
display large errors in the corrections to the energies and other properties. In the context
of vibrational perturbation theory, resonances occur when the expansions of the energies
and wave functions used in the perturbation theory do not converge. Formally, resonances
can occur when the couplings between states become too large, but most commonly they
occur when the zero-order states are degenerate or nearly-degenerate. At second order,
the most problematic such resonances will be those that involve cubic terms in the expan-
sion of the Hamiltonian, a common example of which is the 2:1 Fermi resonance between
states with two quanta in a bending vibration and one in a stretching vibration. Such
resonances are handled via the deperturb-and-diagonalize method, where terms that cou-
ple resonant states are discarded when performing the perturbation theory calculation and

18,25,27-32 Following the previous discussions

reintroduced in the subsequent variational step.
of this approach,?*3133 we will refer to the approach where no resonances are handled—i.e.
where no terms are discarded—as non-degenerate or standard perturbation theory (SVPT),
the approach where the terms that couple resonant states are discarded as deperturbed
vibrational perturbation theory (DVPT), and the case where these terms are then reintro-

duced via a variational step, i.e. the deperturbed-and-diagonalized approach, as generalized

vibrational perturbation theory (GVPT). GVPT, while effective, requires resonances to be
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identified so that the effects of the resonances may be properly accounted for.

It is sometimes possible to identify resonances a priori. For example, what is now known
as Fermi resonance was first discussed by Fermi and subsequently applied to a study of CO,
by Fermi and Dennison.?* In that work, it was noted that the frequency of the fundamental
in the symmetric CO stretching vibration was almost exactly twice the frequency of the
doubly-degenerate OCO bending modes. In later studies, collective quantum numbers have
also been used to account for more complicated polyads of resonances.?3°37 Recasting the

prior discussion in terms of a collective quantum number, for CO, one can define
Ny = 2nco + noco, (2)

where ngo is the number of quanta of excitation in the symmetric CO stretch and noco
provides the number of quanta in the doubly-degenerate OCO bend. All states with the
same value of IV; will be considered to be in resonance. For example, the state with one
quantum of excitation in the symmetric CO stretch is in resonance with the states with two
quanta of excitation in the OCO bends.

In the absence of prior knowledge of the important resonances in a system, more au-
tomated approaches are required. One approach, used by Handy and coworkers in the
development of the SPECTRO program,® is to determine that a pair of states is in res-
onance if the difference between zero-order energies of these states is less than a supplied
threshold. Another approach, which is used in the implementation of vibrational perturba-
tion theory in the CFOUR® package, uses the derivatives of the VPT2 energies with respect
to the harmonic frequencies of the states to determine if a pair of states is in resonance.’
Krasnoshchekov and coworkers have investigated criteria for the identification of resonances
based on the size of terms in the expansion of the transformation operator used in canonical
Van Vleck perturbation theory.*! However, the most widely-used approach for identifying
important resonance interactions is the Martin Test.*? The working equation for the Martin
test is obtained by considering the two-by-two coupling matrix involving states |n) and |m),
with the energy of the deperturbed states, £ and E,, on the diagonal and the coupling
between these two states, which is obtained from cubic terms in the Hamiltonian, on the
off-diagonal. The energies obtained by applying perturbation theory to this matrix are then
compared to those obtained from a Taylor series expansion of the eigenvalues of the matrix.

If the leading term in the differences between these two sets of calculated energies exceeds a
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specified threshold, yMa" the states are determined to be in resonance. A common choice

Martin 1 1

for x is 1 cm™!, although values as large as 10 cm™! and as small as 0.1 cm™! have
been reported.?*2

The Martin test provides a reliable diagnostic. It is the approach that is implemented in
the Gaussian 16 software package, and has been recently discussed by Barone and coworkers
in the context of a recent study of astrochemical molecules.**** However, it is limited to pairs
of states that are coupled by cubic terms in the expansion of the Hamiltonian. Resonances
involving states with the same total number of quanta of excitation, also known as Darling-

45 must be identified by other approaches. This is commonly done by

Dennison resonances,
comparing the difference between the energies of the proposed nearly degenerate states to a
threshold value,® as described above and implemented in SPECTRO.

Automated approaches are, in general, very successful at accounting for resonances that
lead to divergent expansions in the perturbation theory calculation. It is worth noting, how-
ever, that many resonances have more subtle effects and the identification of such resonances
can lead to important changes in the calculated spectrum. For example, in a recent study
of isoprene,?® Stanton and coworkers found that the simulated spectrum that was obtained
from GVPT2 calculations was sensitive to the choice of resonances. In that study, the best
agreement with the experimental spectrum was obtained by including not only those res-
onances identified by the Martin test (for Fermi resonances) and an energy window (for
Darling-Dennison resonances), but by also including resonances between all of the CH scis-
soring modes. This mixture of an automated approach with a prior: information provided
a high-fidelity reproduction of the experimental spectrum for isoprene.

Most automated approaches to resonance identification (energy windows, harmonic
derivatives, and the Martin test) discussed above, are all focused on the VPT correc-
tions to the energies. This focus on energies is not ideal, as Stanton and coworkers have
noted that VPT corrections to the transition moments can be more sensitive to resonances
than the corrections to the energies.*

On the other hand, the focus on the energies in the identification of resonances is entirely
logical. For efficiency reasons, most implementations of vibrational perturbation theory
build off of work by Nielsen and coworkers and use analytic expressions for the corrections

to the energies and transition moments, with the deperturbed corrections to the energies

and transition moments obtained by modifying these expressions.?**% 4% This means that



corrections to the wave functions are rarely evaluated. By contrast, in a recent paper™
(hereafter referred to as Paper I) we described an implementation of VPT that builds off
of work by Kato®! and Sakurai.®® This approach utilizes sparse linear algebra approaches
to solve the equations in perturbation theory numerically. This allows us to keep track of
corrections to the wave functions as well as the energies. We have used the approach to
perform GVPT calculations as part of studies of the CH,(CH;),COOH radical,’® complexes
of halide ions with HOCL,?® and the C1 -HOI complex.>* In performing these studies, we
utilized prior knowledge and chemical intuition to determine which resonances needed to be
accounted for in the GVPT calculations. In the present study, we explore an automated
approach to the identification of resonances that exploits the ability to obtain corrections to
the wave functions. This approach for identifying resonances provides the beneficial features
of the Martin test and energy window approaches while also allowing for the identification
of more subtle resonances that manifest more strongly in the corrections to the intensities

than the energies.

II. THEORY

In vibrational perturbation theory, the Hamiltonian is expanded as a Taylor series in the

normal mode coordinates as
H=XNHO  \1g® L \2g@) 4 ... (3)

Here H is the separable harmonic Hamiltonian, including the terms that are quadratic in
the normal mode coordinates, ¢, and the conjugate momenta, p. The cubic terms in p and
q are included in HW, the quartic terms are in H®, and so forth. The wave functions and

energies are also expanded as a formal power series in A as

In) = X0 |n@) + AL [nMYy 4 N2 n®) 4 ... (4)
E,=XEY + MEY + XEP + .. | ()

where |[n(®) is an eigenstate of the harmonic Hamiltonian in Eq. (1) and EY is the cor-
responding energy. In Paper I, we provided expressions for obtaining corrections to the

)

zero-order energy for any order in the perturbation theory expansion k, By , and the corre-

sponding corrections to the wave function, [n*)), using sparse linear algebra. In that work,
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we also discussed the forms of HM, H® and higher-order perturbations, and the reader is
referred to Paper I for further discussion of the approach.

The effect of resonances on the results of VPT calculations is to cause the expansions in
Egs. (4) and (5) to either diverge or simply not to converge. Mechanistically, a resonance
occurs between states [n(?)) and |m(®) when a term term of the form (n©| H® [m©) /(EL —
Ef,?)) becomes too large.

This term enters into the corrections to the wave functions for the first time at kth order

as

(O] H®) | ©)
Eﬁf)) _ Er(;g) (6)

As the perturbation theory is taken to higher order, higher powers of the ratio in Eq. (6)

<m(0) ‘n(k)> —

will enter into the expressions for the corrections to the wave functions. When the ratio
in Eq. (6) is large, the expansions in Eq. (4) and Eq. (5) may not converge. Therefore, it
should be possible to use the size of the corrections to the wave functions to identify pairs
of states that need to be treated by the deperturb and diagonalize approach.

More concretely, we know that at kth order the correction to the wave function for state

n can be expressed as

1) = 37 (m ) [m®) (™

m

where the expansion coefficients, (m(®|n(*)) are obtained through the approach detailed in
Paper 1. The terms that will become problematic are those for which (m®[n®) become

large. Based on this, the states |n(?) and |m(?) are determined to be in resonance if
X< ’(m(0)|n(k)>’ or ’(n(0)|m(k)>’. (8)

This analysis leads to a series of pair-wise resonances, of the form |n(?)) resonant with |m(®)
and i) resonant with |j(?)). From these pairs of resonances, a graph of resonances can be
built. This graph then provides the resonant spaces used in subsequent GVPT calculations.
We call this method for the identification of resonances the wave function correction (WFC)
approach.

In some cases, the WFC approach identifies resonances that are problematic. One such
example occurs when there are low-frequency vibrations, and one obtains a non-terminating
set of resonances between the state with one quantum of excitation in a high-frequency vi-

bration and a series of states with one quantum in the same high-frequency vibration and
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an increasing number of quanta in a low-frequency vibration. This has been described in a
recent study by Stanton and co-workers.?> Another problematic situation occurs for anhar-
monic oscillators, where the contributions from states with two or more quanta of excitation
in a particular vibration contribute significantly to the description of the wave function for
the state with one quantum of excitation in the same vibration. Most commonly, this occurs
when a state with one quantum of excitation in a vibration that is well-described by a Morse
oscillator is determined to be in resonance with the state with one additional quantum of
excitation in that vibration. As noted above and illustrated in Tab. S2, a variational calcu-
lation based on a truncated quartic expansion of the Morse potential provides less accurate
results than perturbation theory taken to second or higher order. Based on these observa-
tions, these sets of states should not be handled via deperturbation and diagonalization and
should therefore not be considered to be in resonance. Given that these are frequently high-
frequency motions, we follow the approach described in other works that use the Martin test

and introduce an energy window to restrict which states are allowed to be in resonance.??3

More specifically, for all of the results in this work we have introduced an energy window
of E¥indow — 500 cm™!. Only sets of states that span an energy range that is no larger
than £V will be considered to be in resonance. This is achieved by first identifying the
value of y™** for which the range of energies spanned by the identified resonance space is
smaller than EY®4°V  The value of y™® is then reduced to the desired value, and states are
reintroduced one by one so long as the range of energies spanned by the resonance space
remains smaller than EV"4°%  Every time a state is reintroduced the graph of resonances
is reconstructed. If the originally identified resonance space has been divided into two or
more sub-spaces, the energies spanned by pairs of subspaces are compared to E¥ndow  In
situations where the range is smaller then E¥"4°% the subspaces are combined to make a

larger space of nearly degenerate states.

The WFC approach resolves many of the challenges with identifying resonance spaces,
discussed above. For one, it is general and can account for contributions to the expansion of
the Hamiltonian from H® and higher-order perturbations as well as those from H". This
allows us to treat both Darling-Dennison and Fermi resonances in an equivalent manner.
Secondly, this approach will be sensitive to resonances that affect the intensities as well as

max

the energies. Finally, y™* is a dimensionless quantity and therefore treats high- and low-

frequency modes equivalently. This is in contrast to the Martin threshold, Y™ which has



units of energy. As vibrational frequencies commonly range over several orders of magnitude,
a value for yMarn that works well in the higher frequency range may be too large when lower
frequency vibrations are considered.

It is worth noting that similar conditions may be derived starting from canonical Van
Vleck perturbation theory, but considering contributions to the Van Vleck transformation
operators instead of the corrections to the wave functions.*!

Moreover, the WFC threshold has an easy-to-understand meaning. A threshold value of
1.0 will only identify resonances involving states where the contributions as corrections to the
wave function of interest are as larger or larger than the size of the zeroth order contribution.
As perturbation theory assumes the corrections to the wave functions are small, a situation
where the correction to the wave function is larger than the zero-order contribution is a
clear indication of a breakdown in the method. By contrast, a threshold value of 0.5 will
find corrections that have coefficients that are at least half the size of the coefficient of the
zero-order state. Such large corrections are expected to affect the calculated spectrum, but
are unlikely to lead to a breakdown of the perturbation theory.

Finally, there is a subtlety in the application of the Martin test that is of note. As
outlined in Section S1 of the Supplemental Materials, the Martin test, for a given value of

yMartin g expressed as

4
<n(0)| H(l) |m(0)> artin

where E' and E7, are the deperturbed energies, that is, the energies obtained from VPT2

where the coupling between |n(?) and |m(®) has been removed. This is obtained by com-

paring the eigenvalues of the matrix

E; o (o[ H[m)
(0’ H|m*)  E;

m

(10)

to the energies obtained by applying first-order perturbation theory to the states used to
construct this matrix represntation of the Hamiltonian. Commonly, however, the approx-
imation (Ef — E') ~ (E,(LO) - Ef,?)) is made.?>*? This is justified in the case that states
n(®) and |m(®) have similar anharmonicities. As will be discussed below for cc-HOONO,
this approximation does not always hold and can affect which resonances are identified in
significant ways.

There is another type of significant resonance which will not be identified by the WFC



approach as presented here. In the construction of the matrix coupling the deperturbed
states, it is possible for two states with significantly different harmonic frequencies to have
similar deperturbed energies. When this is the case, even a small coupling matrix element
can lead to a large amount of state mixing. Such situations can be identified by analysis
of the anharmonic frequencies and re-running the VPT calculation that incorporates any

possible resonances that have been identified by this analysis.

III. RESULTS AND DISCUSSION

Having detailed the WFC approach for identifying resonances, we turn now to assessing its
performance. We start by an application of the method to a series of molecules, which were
chosen because they illustrate several common ways in which the treatment of resonances
can affect the calculated vibrational spectra. Next, we will investigate how the performance

X

of the WFC method depends on the value of its adjustable parameter, y™**. Finally, we
will compare resonances identified by the WFC approach to those found when the Martin

test is used.

A. Applications of the WFC Method

In Fig. 1, the results of performing second-order vibrational perturbation theory (VPT2)
calculations of the spectra of CHy, HoCO, HNO3, and cc-HOONO are provided, with the
corresponding structures shown in the insets. In panels (a), (c), (e), and (g) the calculated
spectra obtained from standard, non-degenerate perturbation theory calculations (SVPT,
red) are compared to those obtained from GVPT calculations (blue), while in in panels
(b), (d), (f), and (h) the spectra from SVPT calculations are compared to those obtained
from deperturbed VPT calculations (DVPT, green). The frequencies and intensities used to
generate these spectra are provided in Tabs. S3-S6. All of these systems have been studied

T 35375559 and were chosen for this study as they broadly

previously, including with VP
demonstrate the types of resonance effects common in vibrational problems. All results
were evaluated using a partial quartic force field obtained using the Gaussian 16 software
package at the MP2/aug-cc-pVTZ level of theory and basis.**% All VPT2 calculations were

performed using the PyVibPTn implementation of internal coordinate vibrational pertur-
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FIG. 1. Vibrational spectra from GVPT (blue, left), DVPT (green, right), and SVPT (red) calcula-
tions for CHy (a and b), HNO3 (c and d), HoCO (e and f), and cccHOONO (g and h). Resonances
are identified by the WFC approach with x™2* = 0.3 and the corresponding transitions and inten-

sities are provided in Tabs. S3-S6.

bation theory described in Paper I based on normal modes comprised of linear combinations

53,61

of internal coordinates. The corresponding z-matrices and equilibrium geometries are

provided in Tab. S2.

In CH, (panels (a) and (b) in Fig. 1), three of the CH stretches are degenerate, but
they are decoupled as they have different symmetries. However, the use of polyspherical (z-
matrix) coordinates to define the normal modes leads to an inequivalence in the treatment
of the six HCH angles. This results in the calculation being performed under C,, symmetry
rather than the full T; symmetry of the molecule. As a result, small errors from the numerical
evaluation of the coefficients of the cubic and quartic terms in the potential can lead to a loss

of the expected symmetry. This type of numerical artifact and the corresponding effects are
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discussed in a recent work.%® This numerical symmetry breaking is evident in the coupling
matrix used in the GVPT calculations that is obtained by applying DVPT to the three
states with one quantum of excitation in any of the degenerate CH stretching vibrations.
By symmetry, the coupling matrix element between any pair of these states should be zero.
In practice, these matrix elements are ~ 0.001 cm ™!, which while very small and consistent
with errors from numerical differentiation they are large enough to break the symmetry
of degenerate vibrations. This in turn will significantly affect the corrections to the wave
functions. The degenerate states are coupled through H®. This will affect the second
order correction to the wave function, but not the second order correction to the energy.
This is reflected in the nearly identical values of the energies obtained from SVPT and
GVPT calculations. On the other hand, the second order correction to the wave function
will contribute to the calculated intensities of transitions to states with one quantum of
excitation. When these degeneracies are not accounted for, some of the intensities are
calculated to be larger than 60 000 km mol™! (red). It is possible to avoid this type of issue
by only allowing states with the same symmetry to couple. However it is desirable to have

a method that handles these types of numerical artifacts automatically.

When we compare the spectra evaluated from GVPT and SVPT calculations of HNOs,
shown in Fig. 1(c) and (d), we find only small differences in the calculated transition fre-
quencies. In contrast to CHy, due to the lack of exact degeneracies, when resonances are
introduced the spectra of HNOj also display only small changes in the transition intensities.
The primary differences between the two spectra shown in panel (c) of Fig. 1 occur near
1300 cm ™!, where there is a decrease in intensity in the peak at 1290 cm~! and an increase

Lin the spectrum obtained from the GVPT calcu-

in the intensity of the peak at 1315 cm™
lation (blue) compared to that obtained from the SVPT calculation (red). These changes
in intensity reflect the effects of two distinct resonances on the spectra obtained from VPT2
calculations.

1

The small decrease in the intensity of the peak at 1290 ecm™" results from a coupling

between the state with one quantum of excitation in mode 4 and the state with two quanta

L respectively,

of excitation in mode 7. These states have energies of 1292 and 1295 cm™
based on the DVPT2 calculation (See Fig. S2 for illustrations of these normal modes). The
coupling of this pair of states provides an example of a Fermi resonance. Here the transition

to the state with one quantum of excitation in mode 4 has a large intensity based on the
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harmonic and DVPT calculations, while the transition to the state with two quanta in mode
7 has little intensity. On the other hand, the energy difference between these two states
is only 15 cm™! based on the harmonic calculations. This leads the SVPT calculation to
provide a poor description of the intensities of these two transitions, as well as the shoulder
that develops on this peak when GVPT is used to calculate the spectrum that is not seen

in the results of the SVPT calculation.

The second intensity difference between the three VPT calculations is seen near 1315
cm~t. These changes reflect a decrease in the intensity of the transition to the state with
one quantum of excitation in mode 3, when this state is allowed to couple to the state with
one quantum of excitation in both modes 6 and 9 in a GVPT calculation. Interestingly, both
the GVPT and SVPT calculations give an intensity of the transition to the state with one
quantum of excitation in modes 6 and 9 of ~12 km mol™!. At the same time the intensity of
the transition to the state with one quantum of excitation in mode 3 increases from a value
of 120 km mol~! based on a SVPT calculation to 163 km mol~! from a GVPT calculation.
Moreover when a DVPT calculation is used to evaluate the spectrum, the intensities of
the transitions to these two states become 0.5 km mol™! and 174 km mol~!, respectively.
The fact that when SVPT to GVPT are used to calculate the spectrum, the intensity of
transition to the state with one quantum of excitation in mode 3 increases so significantly
while the intensity of the transition to the state with one quantum of excitation in modes 6
and 9 remains the same is a manifestation of the fact that the leading contribution to the
corrections to the intensity for transitions to these two states arises from different orders in
the correction to the wave function. In particular, the leading contribution to the ~50 km
mol™! change in the intensity of the transition to the state with one quantum in mode 3
when it is calculated using DVPT and SVPT comes from the treatment of the second order
correction to the wave function, which includes contributions that are quadratic in the ratio
of matrix elements of H® and the difference between the harmonic energies. This correction
will be more sensitive to possible near degeneracies than the first order correction to the
wave function, which provides the leading contribution to the difference in the intensity of
the transition to the state with one quantum of excitation in modes 6 and 9 when it is

calculated using SVPT and DVPT.

As has been noted in prior studies,?>% there are important resonances that must be

handled in HyCO. These resonances lead to a modulation of both the frequencies and
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intensities in the spectrum of HoCO (panels (e) and (f) of Fig. 1).There is a well-known
triad of near-degeneracies between the state with one quantum of excitation in mode 5, the
state with one quantum of excitation both modes 2 and 6, and the state with one quantum
of excitation both modes 3 and 6 (see Fig. S3 for illustrations of these vibrations). In the
absence of resonance handling, these near degeneracies lead to a large shift in the frequency
of mode 5, going from 3009 cm~! when applying SVPT to 2875 cm~! when using GVPT.
The near degeneracies also lead to a more than an order of magnitude change in the intensity
of the transition to the state with one quantum in both modes 2 and 6, decreasing from 344
km mol™! (SVPT) to 24 km mol™' (GVPT).

For cc-HOONO (panels (g) and (h) in Fig. 1), the effects of resonances are most dramatic
and there are also significant differences between the spectra obtained with and without res-
onance handling. In the spectrum obtained from a SVPT calculation, there are multiple
peaks with intensities exceeding 5000 km mol~!. In the spectrum obtained from the GVPT
calculation, the largest transition intensity in this spectral region is around 120 km mol~?.
There are also a large number of smaller peaks that are found in the spectrum that was
obtained with GVPT that do not appear in the spectrum obtained from the SVPT calcula-
tion.

For the four systems discussed here, there are many benefits to the use of an automated
approach that accounts for the effects of resonances on the wave functions as well as the
energies, like the WFC method. In the case of the CH stretches in CHy, it provides a safe-
guard against unexpected symmetry breaking, which results from small numerical artifacts.
For HNOQg, it identifies resonances with subtle but important effects on the spectrum. For
H,CO and cc-HOONO, the WFC approach identifies the resonance interactions that lead

to the divergence of the intensities when SVPT is used to calculate the spectrum.

B. Analysis of Performance of the WFC Method

The question naturally arises as to how the resonances identified by the WFC approach
depend on the value of x™**. For the calculations discussed above xy™** = 0.3, which we have
found to be a good choice in most situations. To interrogate the effect of changing the value
of x™**, we will use HoCO as a test system, as there are multiple important resonances that

affection the VPT2 calculation of its vibrational spectrum. When labeling states, we will
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1.55 >(0)

and use |i,)" to indicate the zero-order state

>(0)

borrow notation from Romanowski et a
with n quanta of excitation in mode i and |i,j, to indicate the state with n quanta in
mode 7 and m in mode j. In HyCO, mode 1 is the symmetric CH stretch, mode 2 is the CO
stretch, mode 3 is the HCH bend, mode 4 is the out-of-plane motion of the hydrogen atoms,
mode 5 is the anti-symmetric CH stretch, and mode 6 is the in-plane rocking motion of the
CH bonds. These motions are illustrated in Fig. S3. Comparing the harmonic frequencies
of these vibrations, one finds that the frequencies of the CH stretching vibrations, modes 1
and 5, are each roughly twice the frequencies of each of the other four vibrations. This leads

to an approximate good quantum number based on the number of quanta of excitation in

each individual vibration
Ny = 2(ny + ns) + na + n3 + ng + ng, (11)

which is proportional to the energy.

In Fig. 2, the calculated vibrational spectra for HoCO, which are obtained from GVPT
calculations with x™** (blue) ranging from 0.1 to 1.0 are compared to the vibrational spectra
obtained when considering the resonances derived from the polyad quantum number that is
defined in Eq. (11) (red). This polyad represents the most complete set of resonances that
make sense to incorporate in a GVPT calculation for HyCO.

When x™** = 1.0, corresponding to a wave function correction equal to the contribution
from the zero-order state itself, we identify only one resonance: the one that involves the
state with one quantum of excitation in the anti-symmetric CH stretch [5,)'”), and the state
with one quantum of excitation in both the CH in-plane rocking motion and the CO stretch,
|6121>(0). This resonance reflects the near-degeneracy of these states at the harmonic level.

1

These two states have harmonic frequencies of 3047 and 3020 cm™", respectively, and the

coupling matrix element between these states is 57 cm™*

16:21)@ and |5,)® of 2.1.

, resulting in an overlap between

When x™** is reduced to 0.5 no additional resonances are identified, while for 0.2 <

max ()4 we identify a second resonance, which involves [6,2,)” and [6,3,)”. This is

X
illustrated in Fig. 2 and Tab. 1. The additional resonance that is identified when y™* < 0.4
comes from coupling between 6;2;)” and [6,3,)” through H®. Importantly, despite its
small coupling to the bright |51>(0) state and despite the relatively small concomitant shift

in the transition energy (8 cm™!) the intensity of the transition to the |6,3;)'”) state nearly
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FIG. 2. Vibrational spectra for HoCO with x™** = 1.0 (a), 0.5 (b), 0.3 (c), and 0.1 (d) (blue)
compared to the spectrum obtained using the polyad defined by Eq. (11) (red). The corresponding

resonant spaces for degeneracy handling are provided in Tab. I.

quadruples when this resonance is introduced.

Finally, at a x™** value of 0.1 (panel (d) in Fig. 2) the algorithm identifies an additional
set of resonances that includes the [11)”, |3, and [3,2,)” states. Such resonances are
anticipated by the ubiquity of strong Fermi resonances between CH stretching vibrations and
the associated HCH bends,?%? although in the case of HoCO the resonance is admittedly

(0)

weak. The origin of the resonance interaction between the stretch fundamental |1;)"” and

bend overtone ]32>(0) is the small but significant coupling matrix element of 25 cm™! with
a modest sized difference in the harmonic frequencies, being separated by around 90 cm™!.

Looking at the displacement vectors provided in Fig. S3, mode 2 also has contributions
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TABLE I. Resonant spaces for HoCO that are identified by the WFC approach for specified values

max

of x as well as the transition frequencies and intensities obtained from the resulting GVPT

calculation. Resonance spaces are grouped by symmetry. The corresponding spectra are plotted in

Fig. 2.
By® Ag®
X State Frequency Intensity State Frequency Intensity
(cm™")  (km mol™") (cm™")  (km mol™')

1.0
151)© 2866 74.87 11,)@b 2897 65.48
16:21)@ 2990 23.50

0.5
151)© 2866 74.87 1) @b 2897 65.48
16:21)@ 2990 23.50

0.3
151)© 2875 68.36 11,)@b 2897 65.48
16,31) @ 2730 9.14
16:21)@ 2989 23.62

0.1
151)© 2875 68.36 11,)© 2829 67.02
16:31) @ 2730 9.14 135)© 3015 4.68
16:21)@ 2989 23.62 3:21)@ 3221 0.49

& B, corresponds to the space of resonant states with By symmetry while A; corresponds to the states

with Ay symmetry.

b No resonances with this state are identified at this threshold.

from the HCH bending vibration. Thus the couplings among these three states can be
interpreted to be a classic stretch-bend Fermi resonance, where the HCH bend contribution

is distributed over two normal modes.

As noted above, we have found that a value for ™ of around 0.3 is effective. At this

value, we recover both the resonances that cause the perturbation theory to break down
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as well as the weaker resonances that still have a notable effect on the spectrum. It is
possible that going to a smaller value of y™** would lead to the inclusion of more relevant
resonances, however the effect of these resonances will be small. As can be seen in Fig.
2(d), where the spectra obtained using x™** = 0.1 and when N; in Eq. (11) is used to define
the set of resonances, it is difficult to detect any significant differences between the spectra
calculated by these two approaches. Moreover, by increasing the size of the resonant space,
we come closer to the limit of performing a variational calculation with a quartic force-field.
Not only will such a variational calculation be more computationally intensive than a VPT
calculation, it can be expected to yield poorer results than VPT since the Hamiltonian is

expressed as a quartic expansion.

C. Comparison to the Martin Test

80 a) X" 0 cm-?
o
0 40
e
= |
- A
_4?80 2750 2875 ~ 3000
2 b) x"°'20.3 cm?
3
c
— 40

2750 2875 3000

Frequency (cm™1)

FIG. 3. Vibrational spectra for HyCO with resonances identified by the Martin test with yMartin —
1.0 cm~! (a) and YMatin = 0.3 ecm~! (b) (blue) compared to the spectrum obtained using the
polyad defined by Eq. (11) (red). The corresponding resonant spaces for degeneracy handling are

Martin

provided in Tab. S7 and spectra obtained when other values of x are used can be found in

Fig. S5.

It is also important to note how the WFC method compares to commonly used ap-

proaches, specifically the Martin test. The Martin test and its derivation are outlined in
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the Supplemental Materials. In comparing the WFC approach and the Martin test, we will
again consider HyCO. The results of applying the Martin test with values of y™*" rang-
ing from 0.1 cm™! to 1.0 cm™! are plotted in Fig. 3 and Fig. S5 and the corresponding
frequencies and intensities are provided in Tab. S7.

A commonly used value for the threshold energy for the Martin test, y™*4" is 1.0 cm™.
When this value is used the only resonance in HyCO identified is between |5,)” and [6,2,)®.
This is the same resonance that is identified when y™& > 0.4. When xyM#*n is lowered to 0.3
cm ™!, the |6131>(0) state is added to the resonace space. This generates the same resonance
space that was identified by the WFC approach when y™® < 0.4. For yM*%" = 1.0 ecm™!, no
resonances are identified that involve symmetric CH stretch. This is similar to the results
of the WFC approach with y™>* > 0.2. Once YM#*" is decreased a value of 0.3 cm™

Y

the resonance between the |1;)” and |3,)© states is identified, the [3;2;)) state, remains

unidentified even when yMat® = (.1 em ™!
200 Ve Deperturbed

0 - Harmonic
[
©
£ 150
£
=
> 100 ‘
e
0
c
8 s0 m
£

olLiia A L/\j\_ A I\

400 800 1200 1600
Frequency (cm™1)

FIG. 4. Simulated spectrum for cc-HOONO using the Martin test with a threshold value of 1 cm ™!
with the denominator in Eq. (9) determined by either the harmonic frequency difference (blue) or the
deperturbed energy difference (red). When using the deperturbed energy difference the resonance
between the ON stretch (mode 6, top inset) and the overtone in the out-of-phase combination of
the out-of-plane hydrogen and nitrogen motions (mode 9, bottom inset) is not identified. This leads
to the state with one quantum of excitation in mode 6 and the state with two quanta of excitation

in mode 9 having unphysically large intensities.
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In cc-HOONO, there is a near-degeneracy between the state with two quanta of excitation
in mode 9 and the state with one quantum of excitation in mode 6. The displacement vectors
for these motions are illustrated in the insets in Fig. 4. If this resonance is not included
in the VPT treatment, the intensity of the transition to the state with one quantum of
excitation in mode 6 exceeds 5000 km mol~!. Interestingly, the ability of the Martin test to
identify this resonance depends on the form of the denominator in Eq. (9). As noted in the
discussion of the Martin test in the Supplemental Materials, the working equations rely on
the assumption that the energy difference between the two coupled states is the same when
these energies are evaluated at the harmonic level or based on the deperturbed energies.
The choice of which energy difference to use is unclear and often the difference between the
deperturbed energies is used. As seen in Fig. 4, if the difference between the harmonic
frequencies is used the resonance is identified when Y™ = 1.0 cm~!. The same threshold
will not capture this resonance if the deperturbed energies are used, as is seen by the large
intensities of two of the transitions in the specrum shown in red. This reflects the large
differences between the anharmonicities of the out-of-plane motions (mode 9) and the ON
stretch (mode 6). This subtlety is obviated in the WFC approach as there is no ambiguity

since the energy difference is accounted for directly in the corrections to the wave functions.

IV. CONCLUSION

The choice of resonance interactions considered in vibrational perturbation theory calcula-
tions can have a significant effect on the simulated spectrum. By focusing on the corrections
to the wave functions, as provided by the approach described in Paper I, it is possible to
develop a method for the identifying resonances that is straightforward and effective and
which does not have the ambiguity of the Martin test with respect to the energies used
to evaluate the denominator in Eq. (9). This approach, which we call the wave function
correction approach (WFC), identifies the same important resonances as existing method-
ologies, while allowing for the identification of both Fermi and Darling-Dennison resonances
with a single test. It has been shown to be effective in identifying important resonances
in both HyCO and cc-HOONO, and the algorithm as presented generalizes cleanly to ar-
bitrary order in perturbation theory. It has also been shown by Stanton and coworkers

that a mixed approach to the identification of resonances where polyads are combined with
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automatic identification can provide a powerful method for the identification of all impor-
tant resonances.?®> The WFC approach, and its implementation in the PyVibPTn®! package
for vibrational perturbation theory is well-suited to this type of extension, and can inform

approaches using polyad quantum numbers and other approaches.
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SUPPLEMENTARY MATERIAL

See the supplementary material for a description of the Martin test; table containing the
z—matrix and equlibrium geometries of the molecules considered in this study; tables of
frequencies and intensities for the spectra provided in this study; visualizations of relevant
normal modes for CH4, HoCO, HNO3, and cc-HOONO; spectra and tables of frequencies
and intensities for HyCO with resonances identified using different threshold values for the
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