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An approach for identifying resonances in vibrational perturbation theory calcula-

tions is introduced. This approach makes use of the corrections to the wave functions

that are obtained from non-degenerate perturbation theory calculations to identify

spaces of states that must be treated with degenerate perturbation theory. Pairs of

states are considered to be in resonance if the magnitude of expansion coefficients

in the corrections to the wave functions in the non-degenerate perturbation theory

calculation are greater than a specified threshold, �max. This approach is applied to

calculations of the vibrational spectra of CH4, H2CO, HNO3, and cc-HOONO. The

question of how the identified resonances depend on the value of �max and how the

choice of the resonance spaces affects the calculated vibrational spectrum is further

explored for H2CO. The approach is also compared to the Martin test [J. Chem.

Phys. 103, 2589-2602 (1995)] for calculations of the vibrational spectra of H2CO and

cc-HOONO.
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I. INTRODUCTION

The simulation of vibrational spectra is a key element in the process of making connec-

tions between experimentally observable quantities and the fundamental physics of molec-

ular systems.1–3 There are many highly-accurate approaches that have been taken to simu-

late such spectra. Methods like discrete variable representations4,5 (DVR) and local-mode

models6–8 (LMM) are used to provide accurate descriptions of individual coordinates. These

representations of single oscillators may then be combined via direct-product bases or similar

approaches to obtain a representation of the full-dimensional Hamiltonian.4,5,9–11 Unfortu-

nately, due to the so-called “curse of dimensionality,” these simple approaches works best

only for small systems or in reduced-dimensional models. In extending these types of tech-

niques to higher-dimensional problems, it is common to use approaches like the vibrational

self-consistent field/vibrational configuration interaction (VSCF/VCI) method12–14 and the

multiconfiguration time-dependent Hartree (MCTDH) method,14–16 which make use of DVRs

and LMMs to obtain full-dimensional solutions to the Schrödinger equation. These methods

provide high-quality spectral information, but can come at a considerable computational

cost. Moreover, these methods require a full potential energy surface that spans the entirety

of the relevant configuration space for the system of interest.

As a complement to these highly-accurate but expensive methods, more approximate

methods also exist, the best-known likely being the harmonic oscillator model. In the har-

monic approximation, the potential energy is approximated by a second-order Taylor series

about the minimum-energy geometry. The vibrational Hamiltonian for an N -atom system

can then be expressed as

H =
3N�6X

i=1

!i

2
(p2i + q

2
i ), (1)

where the qi are the 3N � 6 normal modes and the pi are the momenta conjugate to the

normal modes.

For systems where a quadratic approximation to the potential works well—a common

case for systems with small-amplitude motions—the harmonic approximation, potentially

with scaling factors,17 provides a good zero-order solution to the full vibrational Schrödinger

equation. However, for systems with significant anharmonicity, a better solution is obtained

through vibrational perturbation theory (VPT).18–25 The power of vibrational perturbation

theory is illustrated by the Morse potential,26 for which the energy levels can be expressed as
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a quadratic expansion in (n+ 1/2). When this model potential is expanded through fourth

order in the bond displacement and second-order vibrational perturbation theory (VPT2)

is used to evaluate the energies, the VPT2 calculation will provide the exact values for

these energies. On the other hand, a variational calculation that uses this quartic expansion

of the potential will show notable deviations from the expected energies. Comparing the

corrections to the energies from VPT2 to energies obtained from a variational calculation

that is based on a quartic expansion of a Morse potential that describes an OH oscillator,

with ! = 3869.47 cm�1 and !x = �84.11 cm�1,23 one finds that the variational calculation

overestimates the energies of the states with one and two quanta of excitation by 30 and

150 cm�1, respectively (an error of 1% and 4%). As the potential energy for stretching

vibrations is often well-approximated by a Morse potential, a VPT2 calculation that is based

on a quartic expansion of the potential is anticipated to provide more accurate energies for

the stretching vibrations than a variational calculation that utilizes the same truncated

expansion of the potential.

On the other hand, in the presence of resonance interactions,1,18,27 VPT is known to

display large errors in the corrections to the energies and other properties. In the context

of vibrational perturbation theory, resonances occur when the expansions of the energies

and wave functions used in the perturbation theory do not converge. Formally, resonances

can occur when the couplings between states become too large, but most commonly they

occur when the zero-order states are degenerate or nearly-degenerate. At second order,

the most problematic such resonances will be those that involve cubic terms in the expan-

sion of the Hamiltonian, a common example of which is the 2:1 Fermi resonance between

states with two quanta in a bending vibration and one in a stretching vibration. Such

resonances are handled via the deperturb-and-diagonalize method, where terms that cou-

ple resonant states are discarded when performing the perturbation theory calculation and

reintroduced in the subsequent variational step.18,25,27–32 Following the previous discussions

of this approach,24,31,33 we will refer to the approach where no resonances are handled—i.e.

where no terms are discarded—as non-degenerate or standard perturbation theory (SVPT),

the approach where the terms that couple resonant states are discarded as deperturbed

vibrational perturbation theory (DVPT), and the case where these terms are then reintro-

duced via a variational step, i.e. the deperturbed-and-diagonalized approach, as generalized

vibrational perturbation theory (GVPT). GVPT, while effective, requires resonances to be
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identified so that the effects of the resonances may be properly accounted for.

It is sometimes possible to identify resonances a priori. For example, what is now known

as Fermi resonance was first discussed by Fermi and subsequently applied to a study of CO
2

by Fermi and Dennison.34 In that work, it was noted that the frequency of the fundamental

in the symmetric CO stretching vibration was almost exactly twice the frequency of the

doubly-degenerate OCO bending modes. In later studies, collective quantum numbers have

also been used to account for more complicated polyads of resonances.30,35–37 Recasting the

prior discussion in terms of a collective quantum number, for CO
2

one can define

Nt = 2nCO + nOCO, (2)

where nCO is the number of quanta of excitation in the symmetric CO stretch and nOCO

provides the number of quanta in the doubly-degenerate OCO bend. All states with the

same value of Nt will be considered to be in resonance. For example, the state with one

quantum of excitation in the symmetric CO stretch is in resonance with the states with two

quanta of excitation in the OCO bends.

In the absence of prior knowledge of the important resonances in a system, more au-

tomated approaches are required. One approach, used by Handy and coworkers in the

development of the SPECTRO program,38 is to determine that a pair of states is in res-

onance if the difference between zero-order energies of these states is less than a supplied

threshold. Another approach, which is used in the implementation of vibrational perturba-

tion theory in the CFOUR39 package, uses the derivatives of the VPT2 energies with respect

to the harmonic frequencies of the states to determine if a pair of states is in resonance.40

Krasnoshchekov and coworkers have investigated criteria for the identification of resonances

based on the size of terms in the expansion of the transformation operator used in canonical

Van Vleck perturbation theory.41 However, the most widely-used approach for identifying

important resonance interactions is the Martin Test.42 The working equation for the Martin

test is obtained by considering the two-by-two coupling matrix involving states |ni and |mi,

with the energy of the deperturbed states, E⇤
n and E

⇤
m, on the diagonal and the coupling

between these two states, which is obtained from cubic terms in the Hamiltonian, on the

off-diagonal. The energies obtained by applying perturbation theory to this matrix are then

compared to those obtained from a Taylor series expansion of the eigenvalues of the matrix.

If the leading term in the differences between these two sets of calculated energies exceeds a
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specified threshold, �Martin, the states are determined to be in resonance. A common choice

for �
Martin is 1 cm�1, although values as large as 10 cm�1 and as small as 0.1 cm�1 have

been reported.24,25

The Martin test provides a reliable diagnostic. It is the approach that is implemented in

the Gaussian 16 software package, and has been recently discussed by Barone and coworkers

in the context of a recent study of astrochemical molecules.43,44 However, it is limited to pairs

of states that are coupled by cubic terms in the expansion of the Hamiltonian. Resonances

involving states with the same total number of quanta of excitation, also known as Darling-

Dennison resonances,45 must be identified by other approaches. This is commonly done by

comparing the difference between the energies of the proposed nearly degenerate states to a

threshold value,43 as described above and implemented in SPECTRO.

Automated approaches are, in general, very successful at accounting for resonances that

lead to divergent expansions in the perturbation theory calculation. It is worth noting, how-

ever, that many resonances have more subtle effects and the identification of such resonances

can lead to important changes in the calculated spectrum. For example, in a recent study

of isoprene,25 Stanton and coworkers found that the simulated spectrum that was obtained

from GVPT2 calculations was sensitive to the choice of resonances. In that study, the best

agreement with the experimental spectrum was obtained by including not only those res-

onances identified by the Martin test (for Fermi resonances) and an energy window (for

Darling-Dennison resonances), but by also including resonances between all of the CH scis-

soring modes. This mixture of an automated approach with a priori information provided

a high-fidelity reproduction of the experimental spectrum for isoprene.

Most automated approaches to resonance identification (energy windows, harmonic

derivatives, and the Martin test) discussed above, are all focused on the VPT correc-

tions to the energies. This focus on energies is not ideal, as Stanton and coworkers have

noted that VPT corrections to the transition moments can be more sensitive to resonances

than the corrections to the energies.46

On the other hand, the focus on the energies in the identification of resonances is entirely

logical. For efficiency reasons, most implementations of vibrational perturbation theory

build off of work by Nielsen and coworkers and use analytic expressions for the corrections

to the energies and transition moments, with the deperturbed corrections to the energies

and transition moments obtained by modifying these expressions.24,46–49 This means that
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corrections to the wave functions are rarely evaluated. By contrast, in a recent paper50

(hereafter referred to as Paper I) we described an implementation of VPT that builds off

of work by Kato51 and Sakurai.33 This approach utilizes sparse linear algebra approaches

to solve the equations in perturbation theory numerically. This allows us to keep track of

corrections to the wave functions as well as the energies. We have used the approach to

perform GVPT calculations as part of studies of the CH
2
(CH

3
)
2
COOH radical,52 complexes

of halide ions with HOCl,53 and the Cl– ·HOI complex.54 In performing these studies, we

utilized prior knowledge and chemical intuition to determine which resonances needed to be

accounted for in the GVPT calculations. In the present study, we explore an automated

approach to the identification of resonances that exploits the ability to obtain corrections to

the wave functions. This approach for identifying resonances provides the beneficial features

of the Martin test and energy window approaches while also allowing for the identification

of more subtle resonances that manifest more strongly in the corrections to the intensities

than the energies.

II. THEORY

In vibrational perturbation theory, the Hamiltonian is expanded as a Taylor series in the

normal mode coordinates as

H = �
0
H

(0) + �
1
H

(1) + �
2
H

(2) + · · · . (3)

Here H
(0) is the separable harmonic Hamiltonian, including the terms that are quadratic in

the normal mode coordinates, q, and the conjugate momenta, p. The cubic terms in p and

q are included in H
(1), the quartic terms are in H

(2), and so forth. The wave functions and

energies are also expanded as a formal power series in � as

|ni = �
0 |n(0)i+ �

1 |n(1)i+ �
2 |n(2)i+ · · · (4)

En = �
0
E

(0)
n + �

1
E

(1)
n + �

2
E

(2)
n + · · · , (5)

where |n(0)i is an eigenstate of the harmonic Hamiltonian in Eq. (1) and E
(0)
n is the cor-

responding energy. In Paper I, we provided expressions for obtaining corrections to the

zero-order energy for any order in the perturbation theory expansion k, E(k)
n , and the corre-

sponding corrections to the wave function, |n(k)i, using sparse linear algebra. In that work,
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we also discussed the forms of H(1), H(2), and higher-order perturbations, and the reader is

referred to Paper I for further discussion of the approach.

The effect of resonances on the results of VPT calculations is to cause the expansions in

Eqs. (4) and (5) to either diverge or simply not to converge. Mechanistically, a resonance

occurs between states |n(0)i and |m(0)i when a term term of the form hn(0)|H(k) |m(0)i /(E(0)
n �

E
(0)
m ) becomes too large.

This term enters into the corrections to the wave functions for the first time at kth order

as

hm(0)|n(k)i = hn(0)|H(k) |m(0)i
E

(0)
n � E

(0)
m

+ · · · (6)

As the perturbation theory is taken to higher order, higher powers of the ratio in Eq. (6)

will enter into the expressions for the corrections to the wave functions. When the ratio

in Eq. (6) is large, the expansions in Eq. (4) and Eq. (5) may not converge. Therefore, it

should be possible to use the size of the corrections to the wave functions to identify pairs

of states that need to be treated by the deperturb and diagonalize approach.

More concretely, we know that at kth order the correction to the wave function for state

n can be expressed as

|n(k)i =
X

m

hm(0)|n(k)i |m(0)i (7)

where the expansion coefficients, hm(0)|n(k)i, are obtained through the approach detailed in

Paper I. The terms that will become problematic are those for which hm(0)|n(k)i become

large. Based on this, the states |n(0)i and |m(0)i are determined to be in resonance if

�
max

<
��hm(0)|n(k)i

�� or
��hn(0)|m(k)i

�� . (8)

This analysis leads to a series of pair-wise resonances, of the form |n(0)i resonant with |m(0)i

and |i(0)i resonant with |j(0)i. From these pairs of resonances, a graph of resonances can be

built. This graph then provides the resonant spaces used in subsequent GVPT calculations.

We call this method for the identification of resonances the wave function correction (WFC)

approach.

In some cases, the WFC approach identifies resonances that are problematic. One such

example occurs when there are low-frequency vibrations, and one obtains a non-terminating

set of resonances between the state with one quantum of excitation in a high-frequency vi-

bration and a series of states with one quantum in the same high-frequency vibration and
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an increasing number of quanta in a low-frequency vibration. This has been described in a

recent study by Stanton and co-workers.25 Another problematic situation occurs for anhar-

monic oscillators, where the contributions from states with two or more quanta of excitation

in a particular vibration contribute significantly to the description of the wave function for

the state with one quantum of excitation in the same vibration. Most commonly, this occurs

when a state with one quantum of excitation in a vibration that is well-described by a Morse

oscillator is determined to be in resonance with the state with one additional quantum of

excitation in that vibration. As noted above and illustrated in Tab. S2, a variational calcu-

lation based on a truncated quartic expansion of the Morse potential provides less accurate

results than perturbation theory taken to second or higher order. Based on these observa-

tions, these sets of states should not be handled via deperturbation and diagonalization and

should therefore not be considered to be in resonance. Given that these are frequently high-

frequency motions, we follow the approach described in other works that use the Martin test

and introduce an energy window to restrict which states are allowed to be in resonance.25,43

More specifically, for all of the results in this work we have introduced an energy window

of E
window = 500 cm�1. Only sets of states that span an energy range that is no larger

than E
window will be considered to be in resonance. This is achieved by first identifying the

value of �max for which the range of energies spanned by the identified resonance space is

smaller than E
window. The value of �max is then reduced to the desired value, and states are

reintroduced one by one so long as the range of energies spanned by the resonance space

remains smaller than E
window. Every time a state is reintroduced the graph of resonances

is reconstructed. If the originally identified resonance space has been divided into two or

more sub-spaces, the energies spanned by pairs of subspaces are compared to E
window. In

situations where the range is smaller then E
window, the subspaces are combined to make a

larger space of nearly degenerate states.

The WFC approach resolves many of the challenges with identifying resonance spaces,

discussed above. For one, it is general and can account for contributions to the expansion of

the Hamiltonian from H
(2), and higher-order perturbations as well as those from H

(1). This

allows us to treat both Darling-Dennison and Fermi resonances in an equivalent manner.

Secondly, this approach will be sensitive to resonances that affect the intensities as well as

the energies. Finally, �max is a dimensionless quantity and therefore treats high- and low-

frequency modes equivalently. This is in contrast to the Martin threshold, �Martin, which has
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units of energy. As vibrational frequencies commonly range over several orders of magnitude,

a value for �Martin that works well in the higher frequency range may be too large when lower

frequency vibrations are considered.

It is worth noting that similar conditions may be derived starting from canonical Van

Vleck perturbation theory, but considering contributions to the Van Vleck transformation

operators instead of the corrections to the wave functions.41

Moreover, the WFC threshold has an easy-to-understand meaning. A threshold value of

1.0 will only identify resonances involving states where the contributions as corrections to the

wave function of interest are as larger or larger than the size of the zeroth order contribution.

As perturbation theory assumes the corrections to the wave functions are small, a situation

where the correction to the wave function is larger than the zero-order contribution is a

clear indication of a breakdown in the method. By contrast, a threshold value of 0.5 will

find corrections that have coefficients that are at least half the size of the coefficient of the

zero-order state. Such large corrections are expected to affect the calculated spectrum, but

are unlikely to lead to a breakdown of the perturbation theory.

Finally, there is a subtlety in the application of the Martin test that is of note. As

outlined in Section S1 of the Supplemental Materials, the Martin test, for a given value of

�
Martin, is expressed as

hn(0)|H(1) |m(0)i4

|E⇤
n � E⇤

m|
3 � �

Martin (9)

where E
⇤
n and E

⇤
m are the deperturbed energies, that is, the energies obtained from VPT2

where the coupling between |n(0)i and |m(0)i has been removed. This is obtained by com-

paring the eigenvalues of the matrix
0

@ E
⇤
n hn⇤|H |m⇤i

hn⇤|H |m⇤i E
⇤
m

1

A (10)

to the energies obtained by applying first-order perturbation theory to the states used to

construct this matrix represntation of the Hamiltonian. Commonly, however, the approx-

imation (E⇤
n � E

⇤
m) ⇡ (E(0)

n � E
(0)
m ) is made.25,42 This is justified in the case that states

|n(0)i and |m(0)i have similar anharmonicities. As will be discussed below for cc-HOONO,

this approximation does not always hold and can affect which resonances are identified in

significant ways.

There is another type of significant resonance which will not be identified by the WFC
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approach as presented here. In the construction of the matrix coupling the deperturbed

states, it is possible for two states with significantly different harmonic frequencies to have

similar deperturbed energies. When this is the case, even a small coupling matrix element

can lead to a large amount of state mixing. Such situations can be identified by analysis

of the anharmonic frequencies and re-running the VPT calculation that incorporates any

possible resonances that have been identified by this analysis.

III. RESULTS AND DISCUSSION

Having detailed the WFC approach for identifying resonances, we turn now to assessing its

performance. We start by an application of the method to a series of molecules, which were

chosen because they illustrate several common ways in which the treatment of resonances

can affect the calculated vibrational spectra. Next, we will investigate how the performance

of the WFC method depends on the value of its adjustable parameter, �max. Finally, we

will compare resonances identified by the WFC approach to those found when the Martin

test is used.

A. Applications of the WFC Method

In Fig. 1, the results of performing second-order vibrational perturbation theory (VPT2)

calculations of the spectra of CH4, H2CO, HNO3, and cc-HOONO are provided, with the

corresponding structures shown in the insets. In panels (a), (c), (e), and (g) the calculated

spectra obtained from standard, non-degenerate perturbation theory calculations (SVPT,

red) are compared to those obtained from GVPT calculations (blue), while in in panels

(b), (d), (f), and (h) the spectra from SVPT calculations are compared to those obtained

from deperturbed VPT calculations (DVPT, green). The frequencies and intensities used to

generate these spectra are provided in Tabs. S3-S6. All of these systems have been studied

previously, including with VPT,35,37,55–59 and were chosen for this study as they broadly

demonstrate the types of resonance effects common in vibrational problems. All results

were evaluated using a partial quartic force field obtained using the Gaussian 16 software

package at the MP2/aug-cc-pVTZ level of theory and basis.44,60 All VPT2 calculations were

performed using the PyVibPTn implementation of internal coordinate vibrational pertur-
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FIG. 1. Vibrational spectra from GVPT (blue, left), DVPT (green, right), and SVPT (red) calcula-

tions for CH4 (a and b), HNO3 (c and d), H2CO (e and f), and cc-HOONO (g and h). Resonances

are identified by the WFC approach with �max = 0.3 and the corresponding transitions and inten-

sities are provided in Tabs. S3–S6.

bation theory described in Paper I based on normal modes comprised of linear combinations

of internal coordinates.53,61 The corresponding z-matrices and equilibrium geometries are

provided in Tab. S2.

In CH4 (panels (a) and (b) in Fig. 1), three of the CH stretches are degenerate, but

they are decoupled as they have different symmetries. However, the use of polyspherical (z-

matrix) coordinates to define the normal modes leads to an inequivalence in the treatment

of the six HCH angles. This results in the calculation being performed under C2v symmetry

rather than the full Td symmetry of the molecule. As a result, small errors from the numerical

evaluation of the coefficients of the cubic and quartic terms in the potential can lead to a loss

of the expected symmetry. This type of numerical artifact and the corresponding effects are
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discussed in a recent work.60 This numerical symmetry breaking is evident in the coupling

matrix used in the GVPT calculations that is obtained by applying DVPT to the three

states with one quantum of excitation in any of the degenerate CH stretching vibrations.

By symmetry, the coupling matrix element between any pair of these states should be zero.

In practice, these matrix elements are ⇠ 0.001 cm�1, which while very small and consistent

with errors from numerical differentiation they are large enough to break the symmetry

of degenerate vibrations. This in turn will significantly affect the corrections to the wave

functions. The degenerate states are coupled through H
(2). This will affect the second

order correction to the wave function, but not the second order correction to the energy.

This is reflected in the nearly identical values of the energies obtained from SVPT and

GVPT calculations. On the other hand, the second order correction to the wave function

will contribute to the calculated intensities of transitions to states with one quantum of

excitation. When these degeneracies are not accounted for, some of the intensities are

calculated to be larger than 60 000 km mol�1 (red). It is possible to avoid this type of issue

by only allowing states with the same symmetry to couple. However it is desirable to have

a method that handles these types of numerical artifacts automatically.

When we compare the spectra evaluated from GVPT and SVPT calculations of HNO3,

shown in Fig. 1(c) and (d), we find only small differences in the calculated transition fre-

quencies. In contrast to CH4, due to the lack of exact degeneracies, when resonances are

introduced the spectra of HNO3 also display only small changes in the transition intensities.

The primary differences between the two spectra shown in panel (c) of Fig. 1 occur near

1300 cm�1, where there is a decrease in intensity in the peak at 1290 cm�1 and an increase

in the intensity of the peak at 1315 cm�1 in the spectrum obtained from the GVPT calcu-

lation (blue) compared to that obtained from the SVPT calculation (red). These changes

in intensity reflect the effects of two distinct resonances on the spectra obtained from VPT2

calculations.

The small decrease in the intensity of the peak at 1290 cm�1 results from a coupling

between the state with one quantum of excitation in mode 4 and the state with two quanta

of excitation in mode 7. These states have energies of 1292 and 1295 cm�1, respectively,

based on the DVPT2 calculation (See Fig. S2 for illustrations of these normal modes). The

coupling of this pair of states provides an example of a Fermi resonance. Here the transition

to the state with one quantum of excitation in mode 4 has a large intensity based on the
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harmonic and DVPT calculations, while the transition to the state with two quanta in mode

7 has little intensity. On the other hand, the energy difference between these two states

is only 15 cm�1 based on the harmonic calculations. This leads the SVPT calculation to

provide a poor description of the intensities of these two transitions, as well as the shoulder

that develops on this peak when GVPT is used to calculate the spectrum that is not seen

in the results of the SVPT calculation.

The second intensity difference between the three VPT calculations is seen near 1315

cm�1. These changes reflect a decrease in the intensity of the transition to the state with

one quantum of excitation in mode 3, when this state is allowed to couple to the state with

one quantum of excitation in both modes 6 and 9 in a GVPT calculation. Interestingly, both

the GVPT and SVPT calculations give an intensity of the transition to the state with one

quantum of excitation in modes 6 and 9 of ⇠12 km mol�1. At the same time the intensity of

the transition to the state with one quantum of excitation in mode 3 increases from a value

of 120 km mol�1 based on a SVPT calculation to 163 km mol�1 from a GVPT calculation.

Moreover when a DVPT calculation is used to evaluate the spectrum, the intensities of

the transitions to these two states become 0.5 km mol�1 and 174 km mol�1, respectively.

The fact that when SVPT to GVPT are used to calculate the spectrum, the intensity of

transition to the state with one quantum of excitation in mode 3 increases so significantly

while the intensity of the transition to the state with one quantum of excitation in modes 6

and 9 remains the same is a manifestation of the fact that the leading contribution to the

corrections to the intensity for transitions to these two states arises from different orders in

the correction to the wave function. In particular, the leading contribution to the ⇠50 km

mol�1 change in the intensity of the transition to the state with one quantum in mode 3

when it is calculated using DVPT and SVPT comes from the treatment of the second order

correction to the wave function, which includes contributions that are quadratic in the ratio

of matrix elements of H(1) and the difference between the harmonic energies. This correction

will be more sensitive to possible near degeneracies than the first order correction to the

wave function, which provides the leading contribution to the difference in the intensity of

the transition to the state with one quantum of excitation in modes 6 and 9 when it is

calculated using SVPT and DVPT.

As has been noted in prior studies,35,55 there are important resonances that must be

handled in H2CO. These resonances lead to a modulation of both the frequencies and
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intensities in the spectrum of H2CO (panels (e) and (f) of Fig. 1).There is a well-known

triad of near-degeneracies between the state with one quantum of excitation in mode 5, the

state with one quantum of excitation both modes 2 and 6, and the state with one quantum

of excitation both modes 3 and 6 (see Fig. S3 for illustrations of these vibrations). In the

absence of resonance handling, these near degeneracies lead to a large shift in the frequency

of mode 5, going from 3009 cm�1 when applying SVPT to 2875 cm�1 when using GVPT.

The near degeneracies also lead to a more than an order of magnitude change in the intensity

of the transition to the state with one quantum in both modes 2 and 6, decreasing from 344

km mol�1 (SVPT) to 24 km mol�1 (GVPT).

For cc-HOONO (panels (g) and (h) in Fig. 1), the effects of resonances are most dramatic

and there are also significant differences between the spectra obtained with and without res-

onance handling. In the spectrum obtained from a SVPT calculation, there are multiple

peaks with intensities exceeding 5000 km mol�1. In the spectrum obtained from the GVPT

calculation, the largest transition intensity in this spectral region is around 120 km mol�1.

There are also a large number of smaller peaks that are found in the spectrum that was

obtained with GVPT that do not appear in the spectrum obtained from the SVPT calcula-

tion.

For the four systems discussed here, there are many benefits to the use of an automated

approach that accounts for the effects of resonances on the wave functions as well as the

energies, like the WFC method. In the case of the CH stretches in CH4, it provides a safe-

guard against unexpected symmetry breaking, which results from small numerical artifacts.

For HNO3, it identifies resonances with subtle but important effects on the spectrum. For

H2CO and cc-HOONO, the WFC approach identifies the resonance interactions that lead

to the divergence of the intensities when SVPT is used to calculate the spectrum.

B. Analysis of Performance of the WFC Method

The question naturally arises as to how the resonances identified by the WFC approach

depend on the value of �max. For the calculations discussed above �max = 0.3, which we have

found to be a good choice in most situations. To interrogate the effect of changing the value

of �max, we will use H2CO as a test system, as there are multiple important resonances that

affection the VPT2 calculation of its vibrational spectrum. When labeling states, we will
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borrow notation from Romanowski et al.
55 and use |ini(0) to indicate the zero-order state

with n quanta of excitation in mode i and |injmi(0) to indicate the state with n quanta in

mode i and m in mode j. In H2CO, mode 1 is the symmetric CH stretch, mode 2 is the CO

stretch, mode 3 is the HCH bend, mode 4 is the out-of-plane motion of the hydrogen atoms,

mode 5 is the anti-symmetric CH stretch, and mode 6 is the in-plane rocking motion of the

CH bonds. These motions are illustrated in Fig. S3. Comparing the harmonic frequencies

of these vibrations, one finds that the frequencies of the CH stretching vibrations, modes 1

and 5, are each roughly twice the frequencies of each of the other four vibrations. This leads

to an approximate good quantum number based on the number of quanta of excitation in

each individual vibration

Nt = 2(n1 + n5) + n2 + n3 + n4 + n6, (11)

which is proportional to the energy.

In Fig. 2, the calculated vibrational spectra for H2CO, which are obtained from GVPT

calculations with �
max (blue) ranging from 0.1 to 1.0 are compared to the vibrational spectra

obtained when considering the resonances derived from the polyad quantum number that is

defined in Eq. (11) (red). This polyad represents the most complete set of resonances that

make sense to incorporate in a GVPT calculation for H2CO.

When �
max = 1.0, corresponding to a wave function correction equal to the contribution

from the zero-order state itself, we identify only one resonance: the one that involves the

state with one quantum of excitation in the anti-symmetric CH stretch |51i(0), and the state

with one quantum of excitation in both the CH in-plane rocking motion and the CO stretch,

|6121i(0). This resonance reflects the near-degeneracy of these states at the harmonic level.

These two states have harmonic frequencies of 3047 and 3020 cm�1, respectively, and the

coupling matrix element between these states is 57 cm�1, resulting in an overlap between

|6121i(0) and |51i(1) of 2.1.

When �
max is reduced to 0.5 no additional resonances are identified, while for 0.2 <

�
max

< 0.4 we identify a second resonance, which involves |6121i(0) and |6131i(0). This is

illustrated in Fig. 2 and Tab. I. The additional resonance that is identified when �
max

< 0.4

comes from coupling between |6121i(0) and |6131i(0) through H
(2). Importantly, despite its

small coupling to the bright |51i(0) state and despite the relatively small concomitant shift

in the transition energy (8 cm�1) the intensity of the transition to the |6131i(0) state nearly
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FIG. 2. Vibrational spectra for H2CO with �max = 1.0 (a), 0.5 (b), 0.3 (c), and 0.1 (d) (blue)

compared to the spectrum obtained using the polyad defined by Eq. (11) (red). The corresponding

resonant spaces for degeneracy handling are provided in Tab. I.

quadruples when this resonance is introduced.

Finally, at a �
max value of 0.1 (panel (d) in Fig. 2) the algorithm identifies an additional

set of resonances that includes the |11i(0), |32i(0), and |3121i(0) states. Such resonances are

anticipated by the ubiquity of strong Fermi resonances between CH stretching vibrations and

the associated HCH bends,25,62 although in the case of H2CO the resonance is admittedly

weak. The origin of the resonance interaction between the stretch fundamental |11i(0) and

bend overtone |32i(0) is the small but significant coupling matrix element of 25 cm�1 with

a modest sized difference in the harmonic frequencies, being separated by around 90 cm�1.

Looking at the displacement vectors provided in Fig. S3, mode 2 also has contributions
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TABLE I. Resonant spaces for H2CO that are identified by the WFC approach for specified values

of �max as well as the transition frequencies and intensities obtained from the resulting GVPT

calculation. Resonance spaces are grouped by symmetry. The corresponding spectra are plotted in

Fig. 2.

B2
a A1

a

�max State Frequency Intensity State Frequency Intensity

(cm�1) (km mol�1) (cm�1) (km mol�1)

1.0
|51i(0) 2866 74.87 |11i(0)b 2827 65.48

|6121i(0) 2990 23.50

0.5
|51i(0) 2866 74.87 |11i(0)b 2827 65.48

|6121i(0) 2990 23.50

0.3
|51i(0) 2875 68.36 |11i(0)b 2827 65.48

|6131i(0) 2730 9.14

|6121i(0) 2989 23.62

0.1
|51i(0) 2875 68.36 |11i(0) 2829 67.02

|6131i(0) 2730 9.14 |32i(0) 3015 4.68

|6121i(0) 2989 23.62 |3121i(0) 3221 0.49

a B2 corresponds to the space of resonant states with B2 symmetry while A1 corresponds to the states

with A1 symmetry.
b No resonances with this state are identified at this threshold.

from the HCH bending vibration. Thus the couplings among these three states can be

interpreted to be a classic stretch-bend Fermi resonance, where the HCH bend contribution

is distributed over two normal modes.

As noted above, we have found that a value for �
max of around 0.3 is effective. At this

value, we recover both the resonances that cause the perturbation theory to break down
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as well as the weaker resonances that still have a notable effect on the spectrum. It is

possible that going to a smaller value of �max would lead to the inclusion of more relevant

resonances, however the effect of these resonances will be small. As can be seen in Fig.

2(d), where the spectra obtained using �
max = 0.1 and when Nt in Eq. (11) is used to define

the set of resonances, it is difficult to detect any significant differences between the spectra

calculated by these two approaches. Moreover, by increasing the size of the resonant space,

we come closer to the limit of performing a variational calculation with a quartic force-field.

Not only will such a variational calculation be more computationally intensive than a VPT

calculation, it can be expected to yield poorer results than VPT since the Hamiltonian is

expressed as a quartic expansion.

C. Comparison to the Martin Test

FIG. 3. Vibrational spectra for H2CO with resonances identified by the Martin test with �Martin =

1.0 cm�1 (a) and �Martin = 0.3 cm�1 (b) (blue) compared to the spectrum obtained using the

polyad defined by Eq. (11) (red). The corresponding resonant spaces for degeneracy handling are

provided in Tab. S7 and spectra obtained when other values of �Martin are used can be found in

Fig. S5.

It is also important to note how the WFC method compares to commonly used ap-

proaches, specifically the Martin test. The Martin test and its derivation are outlined in
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the Supplemental Materials. In comparing the WFC approach and the Martin test, we will

again consider H2CO. The results of applying the Martin test with values of �Martin rang-

ing from 0.1 cm�1 to 1.0 cm�1 are plotted in Fig. 3 and Fig. S5 and the corresponding

frequencies and intensities are provided in Tab. S7.

A commonly used value for the threshold energy for the Martin test, �Martin, is 1.0 cm�1.

When this value is used the only resonance in H2CO identified is between |51i(0) and |6121i(0).

This is the same resonance that is identified when �
max

> 0.4. When �
Martin is lowered to 0.3

cm�1, the |6131i(0) state is added to the resonace space. This generates the same resonance

space that was identified by the WFC approach when �
max

< 0.4. For �Martin = 1.0 cm�1, no

resonances are identified that involve symmetric CH stretch. This is similar to the results

of the WFC approach with �
max

> 0.2. Once �
Martin is decreased a value of 0.3 cm�1,

the resonance between the |11i(0) and |32i(0) states is identified, the |3121i(0) state, remains

unidentified even when �
Martin = 0.1 cm�1.

FIG. 4. Simulated spectrum for cc-HOONO using the Martin test with a threshold value of 1 cm�1

with the denominator in Eq. (9) determined by either the harmonic frequency difference (blue) or the

deperturbed energy difference (red). When using the deperturbed energy difference the resonance

between the ON stretch (mode 6, top inset) and the overtone in the out-of-phase combination of

the out-of-plane hydrogen and nitrogen motions (mode 9, bottom inset) is not identified. This leads

to the state with one quantum of excitation in mode 6 and the state with two quanta of excitation

in mode 9 having unphysically large intensities.
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In cc-HOONO, there is a near-degeneracy between the state with two quanta of excitation

in mode 9 and the state with one quantum of excitation in mode 6. The displacement vectors

for these motions are illustrated in the insets in Fig. 4. If this resonance is not included

in the VPT treatment, the intensity of the transition to the state with one quantum of

excitation in mode 6 exceeds 5000 km mol�1. Interestingly, the ability of the Martin test to

identify this resonance depends on the form of the denominator in Eq. (9). As noted in the

discussion of the Martin test in the Supplemental Materials, the working equations rely on

the assumption that the energy difference between the two coupled states is the same when

these energies are evaluated at the harmonic level or based on the deperturbed energies.

The choice of which energy difference to use is unclear and often the difference between the

deperturbed energies is used. As seen in Fig. 4, if the difference between the harmonic

frequencies is used the resonance is identified when �
Martin = 1.0 cm�1. The same threshold

will not capture this resonance if the deperturbed energies are used, as is seen by the large

intensities of two of the transitions in the specrum shown in red. This reflects the large

differences between the anharmonicities of the out-of-plane motions (mode 9) and the ON

stretch (mode 6). This subtlety is obviated in the WFC approach as there is no ambiguity

since the energy difference is accounted for directly in the corrections to the wave functions.

IV. CONCLUSION

The choice of resonance interactions considered in vibrational perturbation theory calcula-

tions can have a significant effect on the simulated spectrum. By focusing on the corrections

to the wave functions, as provided by the approach described in Paper I, it is possible to

develop a method for the identifying resonances that is straightforward and effective and

which does not have the ambiguity of the Martin test with respect to the energies used

to evaluate the denominator in Eq. (9). This approach, which we call the wave function

correction approach (WFC), identifies the same important resonances as existing method-

ologies, while allowing for the identification of both Fermi and Darling-Dennison resonances

with a single test. It has been shown to be effective in identifying important resonances

in both H2CO and cc-HOONO, and the algorithm as presented generalizes cleanly to ar-

bitrary order in perturbation theory. It has also been shown by Stanton and coworkers

that a mixed approach to the identification of resonances where polyads are combined with
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automatic identification can provide a powerful method for the identification of all impor-

tant resonances.25 The WFC approach, and its implementation in the PyVibPTn
61 package

for vibrational perturbation theory is well-suited to this type of extension, and can inform

approaches using polyad quantum numbers and other approaches.
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See the supplementary material for a description of the Martin test; table containing the
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frequencies and intensities for the spectra provided in this study; visualizations of relevant
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