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Abstract

A scheme for evaluating expansions of the potential and dipole moment surfaces for vi-

brational perturbation theory is described. The approach is based on numerical differentiation

of the Hessian in the coordinates of interest. It is shown that performing these calculations

in internal coordinates generates expansions that are transferable among isotopologues of the

molecule of interest. Additionally, reexpressing the expansion of the potential in terms of

functions of the internal coordinates, e.g. cosines of angles or exponential functions of the

bond length displacements, provides expansions that can be used for higher-order perturbation

theory calculations. The approach is explored and results discussed for water, HOD, ammonia,

isomers of HNO3 and halogenated methane.
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Introduction

Vibrational spectroscopy represents a powerful tool among the available techniques that are used

to probe molecular structure, bond strengths and the nature of intermolecular interactions.1,2 The

insights obtained from the analysis of the spectrum of a molecule of interest rely heavily on the

harmonic description of molecular vibrations. Within this treatment, the Hamiltonian is expanded

through second order in a chosen set of coordinates (typically displacements of the Cartesian coor-

dinates of the atoms), and a set of normal mode coordinates is constructed from linear combinations

of the underlying coordinates. The linear transformation between the underlying coordinates and

the normal mode coordinates satisfies the requirement that the quadratic expansion of the Hamil-

tonian in normal mode coordinates is separable. In other words,3

H =
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where the system of interest contains N atoms, q j represents one of the normal mode coordinates,

p j is its conjugate momentum while w j provides the associated harmonic frequency. Expressed

in this way, p j and q j are both dimensionless. A common way to extend approximate approaches

beyond the harmonic treatment of molecular vibrations is to use the Hamiltonian in Eq. 1 as the

starting point for a perturbative expansion of the energies and wave functions.

At second order, vibrational perturbation theory (VPT2) requires a quartic expansion of the

Hamiltonian. While one can write down the kinetic energy contributions to the Hamiltonian an-

alytically,2–5 the potential energy introduces additional challenges. Often the coefficients in the

quartic expansion of the potential were fit to reproduce spectroscopic information.6,7 In the 1990’s

accurate electronic structure calculations became more computationally tractable, facilitating the

evaluation of the potentials using high-level electronic structure calculations.8–10 At that time,

codes were developed by Harding and Ermler (SURVIB)11 and by Allen (INTDER),12 which auto-

mated the expansion of the potential based on evaluations of the electronic energies over a grid of

geometries of the molecule of interest.
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Vibrational perturbation theory has gained significant traction in the computational chemistry

community over the past several decades leading to the development of numerous implementa-

tions of the approach.13–20 This is due to several important advances in the field of theoretical

spectroscopy. A key advance is the development of analytical expressions that allow for the eval-

uation of both energies and transition moments from terms in the expansion of the Hamiltonian

in the normal modes that are formed from linear combinations of the displacements of the atoms

in Cartesian coordinates.21–25 While Watson developed expressions for the kinetic contributions

to the Hamiltonian in terms of the equilibrium structure and the masses of the atoms which can

be differentiated with respect to the normal mode coordinates,4 the expansion of the potential in

terms of these coordinates provides a larger challenge as the number of terms needed to construct

a quartic expansion of the potential grows steeply with the size of the system.

Many electronic structure codes have implemented efficient evaluations of the first and sec-

ond derivatives of the electronic energy, and the first derivatives of the dipole moment in order to

perform geometry optimizations and harmonic analyses. With this in hand, the evaluation of the

necessary third derivatives of the potential and second derivatives of the dipole moment can be

readily achieved by a simple finite difference scheme in which the Hessian and dipole derivatives

are evaluated when one of the normal mode coordinates is displaced by a small amount.18,26 Like-

wise the fourth derivatives of the potential that involve only three of the normal mode coordinates

and third derivatives of the dipole moment that involve two normal mode coordinates can be ob-

tained by the same finite difference scheme. In the absence of degeneracies, fourth derivatives of

the potential that involve four different normal mode coordinates will not contribute to the ener-

gies evaluated at second order in perturbation theory. Likewise, the third derivative of the dipole

moment with respect to three normal mode coordinates will also not contribute to the intensities of

transitions to states with one or two quanta of excitation. Through this simplification, the informa-

tion needed to construct a quartic expansion of the potential and a cubic expansion of the dipole

moment can be obtained by performing 2⇥ (3N � 6) harmonic calculations. These calculations

are typically performed in the normal mode coordinates that are based on displacements of the
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Cartesian coordinates of the atoms.27,28

While the approach outlined above represents a significant savings and numerical stability over

evaluating the terms in the expansions of the potential and dipole surfaces numerically, it still re-

lies on the stability of the finite difference schemes. This can introduce challenges especially for

low-frequency large amplitude bending vibrations when the normal mode coordinates are gener-

ated from linear combinations of displacements of Cartesian coordinates. Additionally, since the

expansions are performed in normal mode coordinates, they are not transferable when isotopic

substitutions are made as the definition of the normal mode coordiantes depends on the masses of

the atoms. Finally when there are degeneracies or near degeneracies, fourth derivatives involving

four different normal mode coordinates may become important. This is particularly notable in

the potential expansion for methane, where the fourth derivatives of the potential with respect to

the four CH stretches is roughly equal to the fourth derivative with respect to a single CH stretch

normal mode.9

Due to the simplicity of the evaluation of quartic force fields relative to obtaining global poten-

tial surfaces and the fact that second order pertrubation theory requires only a quartic expansion

of the potential, such potentials have played an important role in studies of vibrational spectra.

Examination of the quartic potentials, when expressed in terms of displacements of bond lengths

and angles, shows that the largest quartic terms are often those that involve displacements of single

coordinates, in particular the XH bond lengths. This observation led to the development of har-

monically coupled anharmonic oscillator models by Halonen, Child and co-workers,29,30 and such

models have been shown to provide accurate descriptions of the XH stretch region of vibrational

spectra.

These observations led us to explore how well such quartic expansions of the potential in in-

ternal coordinates (e.g. bond lengths, angles and dihedral angles) would perform in vibrational

perturbation theory. In particular, we are interested in the differences between the results obtained

from VPT2 calculations when the restricted quartic expansion of the potential surface and the

restricted cubic expansion of the dipole surface are expanded in displacements of the internal
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coordinates rather than the normal mode coordinates that are constructed from linear combina-

tions of the internal coordinates. We will also explore the possibility of extrapolating the internal

coordinate expansions of the potential to higher orders. Specifically, Lee and co-workers31 have

re-expressed quartic expansions of the potential as expansions of functions of the internal coordi-

nates, e.g. cosines of angles or functions of the bond distances, which provide more appropriate

asymptotic behavior than expansions in the displacements of the underlying internal coordinates.

Expansions of this type would allow for the application of higher order perturbation theory using

the approaches used to obtain quartic expansions of the potential descibed above. Such an ap-

proach was utilized in studies by Sibert32–34 and co-workers and by Fortenberry and co-workers

for VCI calculations.35,36

Theory

As noted above, the focus of the present study is to explore the use of expansions of the potential

either in internal coordinates or linear combinations of these coordinates as part of a perturbation

theory calculations. The advantages of using internal coordinates for calculations of vibrational

energies and wave functions has long been recognized. While the calculated energies will be inde-

pendent of the coordinate choice so long as the calculation is converged, the choice of coordinates

can have a significant impact on the convergence behavior of the calculations. It can also im-

pact the interpretation of the results – for example the origin of intensities for transitions that are

expected to be dark in the zero-order linear dipole/harmonic oscillator description of vibrational

spectroscopy.20,37

All of the calculations in this study were performed using the PyVibPTn program package20,38

developed in our group, and in all cases the VPT calculations will be performed in the normal

mode coordinates that are constructed as linear combinations of the displacements of internal coor-

dinates. We use the deperturb and diagonalize approach to handle resonances (sometimes referred

to as generalized VPT or GVPT).16,17,39,40 In our implementation of this approach, states are con-
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sidered to be in resonance with the state of interest if the contribution to the perturbative expansion

to the wave function exceeds 0.3.41 The electronic structure calculations were performed at the

MP2/aug-cc-pVTZ level of theory/basis, as implemented in Gaussian 16.27

To obtain the quartic force fields, we initially performed a geometry optimization and normal

mode analysis within an electronic structure calculation. This generates the second derivatives of

the electronic energies and the first derivatives of the dipole moment with respect to the Cartesian

coordinates. These derivatives are reexpressed in terms of the chosen set of internal coordinates,

and a FG analysis is performed to obtain the normal mode coordinates as linear combinations of

the displacements of these internal coordinates.2,3 We also use the diagonal elements of the F and

G matrices to obtain local mode frequencies, where

wi =
p

FiiGii (2)

The size of the displacements used for the numerical differentiation of the Hessian is selected so

that the energies of the displaced geometries, when evaluated at the harmonic level, is 6.5 cm�1.

This approach is similar to that taken by Barone and co-workers.18 By representing the potential

as a restricted quartic expansion in the internal coordinates or the normal mode coordinates that

are based on displacements of internal coordinates, as opposed to expanding the potential in the

normal mode coordinates based on Cartesian coordinates as has been done previously, the energies

of the displaced geometries are found to be closer to the targeted 6.5 cm�1 value. This improved

behavior is particularly notable for large amplitude low-frequency vibrations.

More specifically, when the coordinates are defined to be dimensionless, e.g.

qi =

r
wi

Giih̄
Dri (3)

where ri is used to represent a generic internal coordinate and Gii represents the element of the

Wilson G�matrix for this coordinate,3 the displacement of the q’s are evaluated using
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di =±
r

2DE

h̄wi

(4)

Harmonic calculations are then performed by displacing each of the coordinates by ±di, and eval-

uating the gradient, Hessian and dipole derivatives in terms of the Cartesian coordinates. To obtain

derivatives of the potential and dipole surface with respect to internal coordinates, the displaced

structures are rotated to an Eckart frame,42 and the chain rule is employed to obtain the corre-

sponding derivatives with respect to internal coordinates. For the internal coordinate expansions,

derivatives of the Hessian and dipole derivatives with respect to individual internal coordinates are

evaluated numerically. For the normal mode coordinate expansions the calculated Hessians and

dipole derivatives are rotated to the normal mode representation before the numerical differentia-

tion is performed.

Quartic expansions obtained in this way provide the inputs needed for second order vibrational

perturbation theory. To allow for extensions to higher order perturbation theory, we follow the

work of Halonen,7 Lee,31 Ermler and Harding,11 and others and reexpress the quartic expansion

of the potential in terms of the internal coordinates as an expansion in so-called Morse coordinates

for bond length displacements

yi = [1� exp(aDri)]/a (5)

or displacements of the cosine of an angle for valence angles

Dz j = cosq j � cosq j,e (6)

Such expansions are commonly used for basis set calculations, and have been used in previous

perturbation theory studies.43 Following earlier studies,31 the a-parameter in the definition of the

Morse coordinates is determined so that the diagonal cubic term in the expansion of the potential

in Morse coordiantes is zero. Specifically,
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ai =�
F3,i

3F2,i
(7)

where

Fn,i =
∂ n

V

∂ r
n

i

(8)

To extrapolate the quartic expansion of the potential in terms of internal coordinates to higher

order, the potential is first expressed as a quartic expansion in the Morse coordinates and Dz. Then

the rewritten expansion is expanded in terms of the initial Dr and Dq coordinates up to (n+ 2)th

order for a VPTn calculation. This expansion will be identical to the initial expansion through

fourth order, and provides a way to extrapolate the potential to higher order with minimal additional

expense. An analogous approach is taken to extrapolate the dipole surface to (n+1)th order.

Results and Discussion

Water

We begin by considering H2O and HOD. In some senses water represents a trivial case as all of

the terms in the expansion of the potential are captured by numerically differentiating the Hessian

with respect to each of the three internal coordinates. On the other hand, the cubic expansion of the

dipole surface is missing the term that involves the mixed derivative with respect to all three internal

coordinates. We expect that the missing term should be small compared to the other cubic terms

in the expansion of the dipole surface. To explore the role of this missing term when the dipole

surface is expanded in internal and normal mode coordinates, this additional term was evaluated

numerically, and VPT2 calculations for HOH and HOD were performed with and without this term

included.

We find that the inclusion of the mixed third derivative of the dipole moment with respect to

the three internal coordinates in the dipole expansion leads to changes in the calculated intensities
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of at most 0.02 km mol�1 or 0.001 to 0.4 % when the Dv = 1 transitions are calculated at second

order. By symmetry, this term will not contribute to the intensities of transitions to states with two

quanta of excitation at second order in perturbation theory. Typically, the intensities of transitions

to states with one quantum of excitation are dominated by the linear terms in the expansion of the

dipole moment surface, so this mixed third derivative of the dipole moment surface is expected

to represent a small contribution to an already small correction to what would be obtained had a

linear expansion of the dipole moment been used.

While the intensities are relatively insensitive to how the expansion of the dipole surface is

performed, the calculated intensities can be sensitive to the resonances that are included in the

calculation. For example, HOD shows a notable 2:1 resonance between the HOD bend and the

OD stretch, and inclusion of this resonance will lead to the intensity borrowing that one expects

for a Fermi resonance. It is not unusual to find that the intensities show a greater sensitivity to the

choice of resonances than the frequencies. We have recently explored algorithms for identifying

resonances for vibrational perturbation theory based on the coefficients in the expansion of the

wave function, and the influence of the choice of resonances on the calculated spectrum is an area

that merits greater attention.17,41

While in general the intensities are found to be relatively insensitive to the form of the expan-

sions of the potential and dipole surfaces, the frequencies show a much larger sensitivity, partic-

ularly when perturbation theory is taken beyond second order. In Tables 1 and 2 we report the

energies and intensities of states of HOH and HOD with up to two quanta evaluated using the

harmonic approximation, VPT2 and VPT4 using a fourth and sixth order expansion of the poten-

tial and kinetic energies. Just as VPT2 requires a quartic expansion of the Hamiltonian, VPT4

requires a sixth order expansion. These calculations allow us to consider the importance of the

fifth and sixth order terms in the expansion of the Hamiltonian for the VPT4 calculations when

the Hamiltonian is expanded in internal coordinates. The results of VPT2 calculations for these

two molecules are provided in the Tables S9 - S11. For these calculations we utilize the deperturb

and diagonalize approach,16,17,39,44 where states are considered to be nearly degenerate when their
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contribution to the wave function at any order exceeds 0.3. For HOH this criterion identifies the

2:2 Darling-Dennison resonance between the two OH stretches, while for HOD it identifies a 2:1

Fermi resonance between the HOD bend and the OD stretch.

As is seen in the results reported in Tables 1 and 2, the changes in energies between second

and fourth order perturbation theory are quite large when the expansion of the Hamiltonian is

truncated at fourth order, while the VPT4 calculation that was based on a sixth order expansion of

the Hamiltonian provides much smaller corrections. For states with one or two quanta of excitation,

we expect that second order perturbation theory should provide reliable results, so corrections at

fourth order are anticipated to be small. This is what has been seen in prior perturbation theory

studies of water, which were performed up to VPT8.32

The origin of the problem with using truncated expansions in internal coordinates can be seen

in the analysis of the Morse oscillator, which is described in Ref. 20. Specifically, while the values

of the energies of the Morse oscillator are correctly captured at VPT2 and do not change at higher

orders in perturbation theory, if the expansion of the Morse potential is trucated at fourth order,

there will sizable errors in the calculated energies. This can be circumvented by reexpressing the

expansion of the potential and dipole moments in Morse variables, as described above. While such

an expansion will likely deviate somewhat from the full sixth order expansion of the potential, the

two expansions are identical through fourth order, and such higher order terms can be challenging

to obtain numerically both due to the large number of terms and challenges with instability of

numerical differentiation.

Ammonia

We next turn our attention to ammonia. In addition to providing another small molecule of fun-

damental interest, studying ammonia allows us to explore the role of coordinate choice on the

accuracy of the results of the VPT2 calculation. Unlike displacements of Cartesian coordinates,

for which there is no ambiguity in the choice of coordinates, the choice of internal coordinates is

not unique, and the convergence behavior of VPT calculations can depend on the choice of internal
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coordinates used for the study.43

For the calculations of ammonia, we use two sets of coordinates. Both sets of coordinates

include the three NH bond lengths, and two of the HNH angles. The first set of coordinates,

referred to as z�matrix coordinates in the following discussion, includes the angle between one

of the NH bonds and the plane containing the nitrogen atom and the remaining two hydrogen

atoms. The specific definition is given by the z�matrix, which is provided in Table S2. The

second coordinate set uses the third HNH angle and will be referred to as the q�coordinates.

The z�matrix coordinates have the advantage that they fully describe all possible geometries of

ammonia. On the other hand the three HNH angles are not treated equivalently. This can lead

to a loss of symmetry in the potential as not all of the quartic terms are evaluated. This loss of

symmetry will not be a problem for the q�coordinates. On the other hand, the three angles are

linearly dependent in planar geometries.

The energies obtained from the VPT2 calculations, performed using expansions of the potential

based on these two coordinate sets as well as expansions of the potential based on normal mode

coordinates developed from displacements of these two sets of coordinates are reported in Table

3. The corresponding comparison of the intensities are provided in Table S12. We focus on

transitions to states with one or two quanta of excitation in the NH stretch and the HNH bend.

Overall the agreement among the four calculations is very good. The largest differences are smaller

than 2.5 cm�1 for states with energies up to 7000 cm�1 above the ground state energy. Likewise,

the intensities obtained from the four calculations are in good agreement. Closer examination of

the energies and intensities of the degenerate levels, e.g. those with E�symmetry, shows that the

expansions based on the q�coordinate do a better job of capturing the underlying symmetry of

the molecule than the expansions performed in the z�matrix coordinates. This is reflected by the

nearly-zero values for most of the entries in the rows labeled as splitting in Tables 3 and S12. The

exception is found in the energies of the states with one quantum in each of the doubly degenerate

vibrations, (va + vb, E). For these states, the calculations based on the normal mode expansions

of the potential show 1.8 and 2.7 cm�1 splittings. This non-zero value of the splitting reflects
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the omission of the term that is proportional to qa,1qa,2qb,1qb,2 from the quartic expansion of the

potential. When the expansion of the potential is performed in the internal coordinates and rotated

to the normal mode coordinates this term is found to be 1.6 cm�1. As noted in the introduction,

the collective nature of the normal mode coordinates can result in non-negligible quartic terms in

the potential that involve four different coordinates. Such terms, though, reflect contributions from

terms in the expansion involving three or fewer coordinates when the expansion is performed in

internal coordinates.

Interestingly, when the potential is expanded in the z�matrix coordinates, the erroneous split-

ting is even larger when the VPT2 calculation is based on the internal coordinate expansion of

the potential than when the potential is expanded in the normal mode coordinates directly. This

reflects the loss of symmetry in the potential as the three HNH angles are not equivalent. When the

q�coordinates are used for the internal coordinate expansion of the potential, all of the splittings

become numerically zero, as they should be.

If we use the quartic expansion of the potential in the internal coordinates to generate a sixth

order expansion, as described above, and use this potential in a VPT4 calculation, the problems

with the z�matrix coordinate expansion become more pronounced. As is seen in the results pro-

vided in Table S13, the differences between the energies evaluated at VPT2 and VPT4 when the

potential is expanded in the q�coordiantes are generally smaller than 5 cm�1. This is consistent

with the energy differences for HOH and HOD, based on the energies reported in Tables 1 and

2. The three exceptions are found in the states with two quanta in the NH stretches that have A1

symmetry and the overtone in the umbrella mode. The 20 cm�1 shifts in the energies of the states

with two quanta in the NH stretching vibrations reflects the inclusion of the 2:2 Darling-Dennison

resonance in the VPT4 calculation, which was not identified in the VPT2 calculation. When this

resonance is introduced in the VPT2 calculation, the differences between the energies for these

states evaluated using VPT2 and VPT4 are reduced to less than 5 cm�1. The poorer convergence

for the overtone in the umbrella vibration reflects the low-barrier to planarity for this molecule.

At the MP2/aug-cc-pVTZ level of theory/basis used for this study, the barrier to planarity is 1770
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cm�1. This is smaller than the energy of the state with two quanta of excitation in the umbrella

vibration, as calculated using VPT2. As a result, this vibration is not expected to be well-described

by vibrational perturbation theory. This is also the reason the states with excitation in the umbrella

vibration are not reported in Tables 3 and S12.

Based on the above analysis, we find that using the internal coordinate expansion of the po-

tential for vibrational perturbation theory calculations provides results that are very close to those

obtained when the potential is expanded in the normal mode coordinates. We also find that using

coordinates that reflect the symmetry of the molecule, e.g. including all three of the HNH bending

angles in NH3, can provide an expansion of the potential that better reflects the symmetry of the

molecule being investigated. Before concluding this discussion, we note that similar sensitivity of

the results of high-order perturbation theory was identified in an early study of the out-of-plane

bending vibration formladehyde.34

Other molecules

We also applied VPT2 to several molecules consisting of five atoms as well as H2CO. Formalde-

hyde was chosen due to the fact that four of the modes have frequencies ranging from 1200 to

1700 cm�1, which is roughly half the 2800 cm �1 frequency of the CH stretches. This leads to a

large number of nearly degenerate states. For this reason, for the perturbation theory calculations

on formaldehyde we use the value of43,45

Nt = 2(ns +na)+nCO +noop +nwag +nrock (9)

to determine which states are expected to be nearly degenerate. Here ns and na represent the num-

ber of quanta in the symmetric and antisymmetric CH stretching vibrations, while the remaining

four quantum numbers provide the number of quanta in the CO stretch and the three bending vi-

brations. For all other molecules, nearly degenerate states are identified based on the size of their

contribution to the wave function of the state of interest, as described above. The halogenated
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methane molecules were chosen to explore how well the z�matrix coordinates perform for tetra-

hedral molecules. Finally we include three isomers of nitric acid. The two isomers of peroxyni-

trous acid (HOONO) are differentiated by the torsion angles. In tp-HOONO, the OONO is in a

trans geometry, while the OH bond is perpendicular to the plane containing the heavy atoms. in

cc-HOONO, both HOON and OONO are in cis-geometries, forming a ring structure with an in-

tramolecular hydrogen bond. The existence of the intramolecular hydrogen bond in cc-HOONO

leads to the expectation that the terms in the expansion of the potential that involve three or four

internal coordinates will be larger than those in the tp-HOONO, which does not contain a hydrogen

bond.

A summary of the results obtained by performing VPT2 calculations on these molecules when

the potential is expanded in internal and normal mode coordinates is provided in Table 4. The

results are characterized by the mean absolute difference (MAD) between the energies obtained

from the two calculations as well as the magnitude of the largest difference between these energies

(maximum). Complete lists of the VPT2 results are provided in the Supporting Information. The

results in Table 4 are separately reported for states with one and two quantum of excitation. They

are further divided between states with two quanta of excitation in a single vibration and ones

where two vibrations each have one quantum of excitation.

With the exception of CH3F, the mean absolute differences are smaller than 1 cm�1 and the

largest differences are smaller than 5 cm�1. The larger differences for CH3F reflects the challenges

in capturing the symmetry when z-matrix coordinates are used. When the symmetry is reduced in

CH2F2 and CH2FCl the differences between the calculations based on the two potential expansions

are smaller and are comparable to those found for the isomers of nitric acid. Of the three isomers

of nitric acid, cc-HOONO shows the largest sensitivity to how the potential is expanded. This is

attributed to the intramolecular hydrogen bond. When we look at the results for tp-HOONO, which

has similar vibrational frequencies but no intramolecular hydrogen bond, the differences between

the results obtained using the two expansions of the potential are reduced significantly.
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Conclusions

In this work, we presented an alternative approach for obtaining the quartic expansions of the po-

tentials used in vibrational perturbation theory calculations. We show that expanding the potential

in terms of internal coordinates provides energies and intensities at second order that are in good

agreement with those obtained when an expansion of the potential in normal mode coordinates is

used. In cases where the molecules have high symmetry, care needs to be taken to ensure that the

internal coordinates that are used to expand the potential capture this symmetry.

The use of internal coordinate expansions of the potential has several advantages over using

expansions in normal mode coordinates. First, the expansion coordinates do not depend on the

masses of the atoms, making these potentials transferable among isotopologues. Also such in-

ternal coordinate expansions can be extrapolated to higher order, through a change in variables

from displacements of distances and angles to displacements of Morse-coordinates or the cosines

of the angles. This provides a straightforward way to obtain the higher order expansions of the

potential, which are needed to extend the perturbation theory to higher orders, without requiring

additional electronic structure calculations. Finally if a restricted quartic expansion of the potential

is to be used in which only terms in the expansion that involve at most three vibrational coordi-

nates are included, one expects that the omitted terms in the internal coordinate expansion will be

smaller than those in the normal mode coordinate expansion. This can become important when

near degeneracies are considered as was demonstrated for NH3.
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Table 1: Results of Vibrational Perturbation Theory Calculations of Water

Harmonic Anharmonic - 2ndb Anharmonic - 4th c Anharmonic - 6thd

Statea Energy Intensity Energy Intensity Energy Intensity Energy Intensity
nb ns na (/cm�1) (/(km mol�1)) (/cm�1) (/(km mol�1)) (/cm�1) (/(km mol�1)) (/cm�1) (/(km mol�1))
0 0 1 3947.70 75.46 3767.79 72.22 3824.83 73.31 3767.62 72.09
0 1 0 3821.87 5.56 3654.26 4.34 3709.25 4.41 3653.77 4.31
1 0 0 1628.38 71.68 1578.09 72.40 1581.02 72.54 1575.67 72.46
0 0 2 7895.40 0.00 7466.09 0.09 7625.73 0.03 7466.77 0.07
0 2 0 7643.75 0.00 7204.04 0.26 7399.94 0.33 7201.00 0.30
2 0 0 3256.75 0.00 3124.46 0.61 3130.32 0.61 3114.73 0.60
0 1 1 7769.57 0.00 7267.08 2.26 7506.67 2.33 7263.89 2.32
1 0 1 5576.07 0.00 5325.67 3.96 5391.84 4.01 5324.55 4.07
1 1 0 5450.25 0.00 5215.39 0.06 5278.89 0.06 5212.72 0.06

a States are labeled by the number of quanta in the HOH (b)end, (s)ymmetric OH stretch and (a)symmetric OH stretch.
b Results of VPT2.
c Results of VPT4 based on a quartic expansion of the Hamiltonian.
d Results of VPT4 based on a sixth order expansion of the Hamiltonian.
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Table 2: Results of Vibrational Perturbation Theory Calculations of HOD

Harmonic Anharmonic - 2ndb Anharmonic - 4th c Anharmonic - 6thd

Statea Energy Intensity Energy Intensity Energy Intensity Energy Intensity
nb nOD nOH (/cm�1) (/(km mol�1)) (/cm�1) (/(km mol�1)) (/cm�1) (/(km mol�1)) (/cm�1) (/(km mol�1))
0 0 1 3887.72 45.28 3712.84 41.79 3769.36 42.43 3712.87 41.87
0 1 0 2820.84 19.75 2722.43 15.10 2740.59 11.12 2721.16 13.88
1 0 0 1427.37 60.82 1388.25 61.26 1390.33 61.36 1386.64 61.30
0 0 2 7775.44 0.00 7268.10 1.20 7510.85 1.23 7267.68 1.22
0 2 0 5641.68 0.00 5362.36 0.56 5461.47 0.60 5372.08 0.49
2 0 0 2854.75 0.00 2757.85 4.87 2765.54 8.72 2752.58 5.80
0 1 1 6708.56 0.00 6422.52 0.20 6516.85 0.11 6437.76 0.11
1 0 1 5315.09 0.00 5079.24 1.68 5144.63 1.70 5078.91 1.64
1 1 0 4248.21 0.00 4091.61 1.90 4142.73 1.72 4117.47 1.52

a States are labeled by the number of quanta in the HOD (b)end, the (OD) stretch and the (OH) stretch.
b Results of VPT2.
c Results of VPT4 based on a quartic expansion of the Hamiltonian.
d Results of VPT4 based on a sixth order expansion of the Hamiltonian.
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Table 3: Energies (in cm�1) Obtained from VPT2 Calculations of NH3

Coordinatesa

stateb,c
q/z r/z q/q r/q

va 3483.97 3483.93 3484.00 3483.96
splittingd 0.02 0.09 0.02 0.01

va 3360.27 3360.36 3360.29 3360.26
vb 1621.40 1621.43 1621.39 1621.37

splittingd 0.02 0.29 0.00 0.00
vu 959.28 959.43 959.01 959.08

2va, A1 6856.70 6856.47 6856.77 6856.62
2va, E 6931.03 6930.87 6931.08 6930.96

splittingd 0.07 0.09 -0.10 0.03
2vs 6669.39 6669.55 6669.44 6669.37

2vb,E 3232.22 3231.89 3232.22 3232.17
splittingd 0.01 0.23 0.01 0.00
2vb, A1 3209.30 3209.07 3209.30 3209.25
va + vs 6728.88 6728.85 6728.96 6728.85

splittingd 0.11 0.02 0.08 0.02
va + vb, A1 5100.67 5099.53 5099.83 5100.54
va + vb, E 5089.69 5089.60 5087.46 5088.49
splittingd 1.82 2.33 2.72 0.00

va + vb, A2 5084.13 5084.79 5085.04 5083.67
vs + vb 4978.10 4977.78 4978.10 4978.56

splittingd 0.02 0.97 0.00 0.00

a Potential is expanded in either internal (r) or normal
mode (q) coordinates in which the angles are defined
based on the z�matrix (z) or treating all three
HNH angles equivalently (q ).

b States are labeled by the number of quanta in the HNH
(b)end, the (s)ymmetric NH stretch, (a)symmetric NH
stretch and the umbrella vibration.

c Symmetry labels under C3v are included when there are
multiple excited states with the same assignment and
different symmetries.

d Energy difference between pairs of states that should be
degenerate.
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Table 4: Maximum and Mean Absolute Difference (MAD) (in cm�1) Between VPT2 Energies
Calculated When the Potential is Expanded in Internal and Normal Mode Coordinates.

v = 1a
v = 2b

v = 1 and v
0 = 1c

Molecule MAD maximum MAD maximum MAD maximum
H2COd 0.12 0.35 0.30 1.62 0.54 2.90

NH3 (z)e 0.12 0.24 0.29 0.65 0.44 1.33
NH3 (q )e 0.04 0.07 0.12 0.25 0.56 1.69

CH3F 1.00 3.30 1.99 7.16 1.83 7.19
CH2F2 0.35 0.79 1.16 4.11 0.89 4.60

CCH2FCl 0.43 0.91 0.91 2.70 0.93 4.04
HNO3 0.36 1.54 0.88 4.18 0.59 2.62

cc-HOONO 0.90 1.82 1.70 3.65 1.65 4.20
tp-HOONO 0.11 0.34 0.20 0.69 0.23 0.67

a States with one quantum of excitation.
b States with two quanta of excitation in a single mode.
c States with one quantum of excitation in two modes.
d Energies calculated using resonance conditions based on the global

quantum number, Nt , defined in Eq 9.
e Energies calculated for NH3 when the angles are defined based

on the z�matrix (z) or treating all three HNH angles equivalently (q ).
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