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Abstract

The charge distribution in materials at the nanoscale can often explain 
the origin of macroscopic properties such as localized conductivity 
or the plasmonic response and illuminate more fundamental changes 
in the microscopic structure such as changes in chemical bonding 
characteristics. Previously, direct visualization of the charge density 
with high spatial resolution was often a missing link in the formation of 
structure–property relationships, especially in heterogeneous materials 
systems. However, recent advancements in microscopy technology have 
enabled researchers to visualize the charge distribution in materials 
down to subatomic length scales. In this Technical Review, we discuss the 
developments in high-resolution real-space charge distribution imaging 
using diffraction techniques and electron microscopy, with a focus on 
the recent advancement of four-dimensional scanning transmission 
electron microscopy, electron holography, and applications to materials 
interfaces.
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Every step of advancement in precision and spatial resolution has 
led to a leap in studies of materials physics. In this Technical Review, we 
study the methods and milestones in the development of experimental 
measurement on charge density, with a focus on recent advances in 
4D-STEM and electron holography methods, followed by a discussion 
of their similarities, unique advantages and new development in future 
studies. In addition, other techniques, including electron energy loss 
spectroscopy in TEM, which probes electronic structure, and scan-
ning probe methods, which can map charge on materials surfaces, are 
highlighted in Boxes 1 and 2.

Quantitative convergent beam electron diffraction
X-ray and electron diffraction
Diffraction techniques, including X-ray, neutron and electron diffrac-
tion, are some of the most important tools in modern physics, chem-
istry and materials science. Most experimental setups in diffraction 
methods follow a similar design (Fig. 1). With an incident beam illumi-
nating the sample, both diffraction originating from the elastic scat-
tering and signals from the inelastic scattering of X-rays by the sample 
can be recorded. The scattering pattern can be magnified by simply 
increasing the virtual length between the scattering event and the 
recording device. According to Bragg’s law, nλ d θ= 2 sin( ), structure 
information confined within the spacing, d, between atomic planes in 
real space can thus be revealed by analysing the intensities distribution 
over sin θ/λ in the scattering pattern in reciprocal space. Although 
diffraction physics and crystallography are not the focus here, they 
form the basis of techniques in this Technical Review.

Quantum crystallography and QCBED
To extract the electron distribution around atoms and to reveal the 
bonding characteristics, quantum crystallography was originally devel-
oped with the advancement of both theoretical computation and X-ray 
diffraction analysis13. Owing to the nature of the close correlation 
between chemical bond and bond charges, the theoretical calculations 
in quantum crystallography and quantum chemistry are mostly the 
same14, and reviews of quantum chemistry are available in refs.15,16.  
In these calculations, the results from scattering experiments provide 
not only the validation but also refinement to the results from theory. 
X-ray diffraction can be applied to probe the charge density around 
atoms by analysing the changes of the wavefunction caused by the 
local charge in a crystal. The electromagnetic wave interacts with 
the electrons more than with the nucleus because electrons are much 
lighter. The X-ray diffraction pattern is then the sum of the individual 
wavefunctions Ψi of the scattered X-ray from each electron.

Co n s i d e r  t h e  i n te g ra l  f o r m  of  t h e  wavef u n c t i o n , 
∫Ψ ρ r e r= ( ) di rkk

total
−2π Δ ⋅ , where ρ r( ) is the electron probability density 

at the location r, k is the wave vector and Δk is the change in wave vector 
of the scattered X-ray from the incident one. In this form, the wavefunc-
tion is in the format of a Fourier transform of the charge density, ρ r( ). 
In a perfect crystal, the structure factor ∫F ρ r e rkk dd(Δ ) = ( )

N i rkk
1

−2π Δ ⋅ , with 
the integration taken over the unit cell, is therefore the Fourier trans-
form of the electron charge density in a unit cell. In experimental dif-
fraction patterns, the intensity for a wave vector h k lkkΔ = ( , , ) can be 
written as I F Fkk kk kk(Δ ) = (Δ ) ⋅ (Δ )*. For most structural analysis purposes, 
structure factors can be calculated assuming an independent atom 
model (IAM), in which the bonding and local chemical environment of 
each atom are not considered. However, the experimental diffraction 
patterns do include information regarding these factors; therefore, 
the difference between the structure factors measured in experiment, 

Key points

•• Real-space charge density imaging can provide key insights into 
the electronic properties of a material that are unavailable with other 
methods.

•• Transmission electron microscopy can provide high spatial 
resolution charge images through various methods.

•• Quantum crystallography and quantitative convergent beam 
electron diffraction can reveal the charge distribution in uniform 
structures with unparalleled accuracy and spatial resolution.

•• Phase-retrieval methods provide more direct ways to reveal the 
charge distribution in heterogeneous materials at atomic resolution in 
real space.

•• Continued development of both microscopy hardware and data 
analysis techniques will further enhance charge density imaging 
methods and expand our understanding of materials.

Introduction
Although materials are defined by the atomic species and how they are 
arranged into crystalline or non-crystalline structures, it is the states and 
distribution of electrons, especially those in outer orbitals and those 
forming bonds in between atoms, that determine their properties in 
chemistry, biology and solid-state physics. The interactions among 
atoms and the important properties of materials such as localized 
functionalities in electronic devices, photovoltaic activity in solar cells 
and catalytic reactions are all mediated by electrons. Thus, visualizing 
the real-space electronic charge distribution in materials is of critical 
importance for understanding the properties of materials and devices, 
especially those phenomena emergent from the interfaces and quantum-
engineered device structures. However, unlike conventional structural 
and chemical characterization, measurement of charge at individual 
defects and interfaces remains a great challenge. In fact, the most com-
mon structural characterization techniques in X-ray, neutron scattering 
and electron microscopy analyse the nanoscale structure by profiling 
the electromagnetic interactions mostly from the inner shell (core) elec-
trons and the nucleus itself, not the valence electrons that participate in 
bonding or form the basis for macroscopic properties.

In the past decade, several techniques have seen substantial 
advancement toward imaging the nanoscale electronic charge distri-
bution in materials, including the contribution of valence electrons. 
There are two classes of high spatial resolution techniques: quantum 
crystallography (which not only has its origin in X-ray diffraction but 
also includes quantitative convergent beam electron diffraction 
(QCBED))1–3 and then phase-retrieval methods in transmission electron 
microscopy (TEM)4–12. Quantum crystallography is optimized for meas-
uring the valence electron density with high accuracy in homogeneous 
materials through careful analysis of diffraction data and has advanced 
quickly with modern computational resources. Phase-retrieval meth-
ods, such as electron holography and four-dimensional scanning trans-
mission electron microscopy (4D-STEM), measure the local electric 
potential and profile the charge distribution in various heterogene-
ous materials systems with high spatial resolution by calculating  
the phase (or gradient of the phase) in a scattered electron wave.
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F kk(Δ )EXP, and the structure factors calculated with IAM, F kk(Δ )IAM, can 
be attributed to the bonding characteristics of the material. Determin-
ing F kk(Δ )EXP from experimental data can be challenging as the complex 
phase is lost when the intensity is recorded on a camera. In quantum 
crystallography, the way to overcome this problem, and therefore to 
derive the charge density, ρ r( ), is by fitting the experimental intensity 
with simulated structure factors from which the charge density can be 
easily calculated. Besides the IAM, in which the electron density is 
distributed spherically, multipole models17–19 that consider the influ-
ence of surrounding atoms in a crystal are also often utilized as the 
starting point in the fitting. With the data from X-ray diffraction,  
the charge densities of transition metals20, carbon19 and molecules21 
have been studied, revealing the chemical bonds, electron density 
polarization and effects of crystal fields on the electron charges in these 
materials.

In TEM, the electron beam also interacts strongly with nuclear 
charges because they are charged particles; therefore, the structure 
factor in electron diffraction includes atomic scattering factors that 
have contributions from the Coulomb interaction with both the sur-
rounding electron density and the positive nuclear charges. When the 
electron diffraction patterns are collected using a convergent electron 
beam, the diffraction spots spread into discs and a convergent beam 
electron diffraction (CBED) pattern is formed. Compared with X-ray 
scattering or spot diffraction patterns taken using a parallel electron 
beam, the intensity within diffraction discs in CBED results from elec-
trons with a range of incident angles, containing much more informa-
tion of the electron–sample interaction (Fig. 2). The wavefunction of 
the electrons spans over a range of ki (incident beam direction) and can 
be precisely calculated by solving the Schrödinger equation using the 
Bloch wave method in each diffraction disc. For an electron travelling 

in the periodic potential field inside the crystal, the time-independent 
Schrödinger equation can be written as:

∑K k g C U C( − ( + ) ) + = 0,g
h

g h g
2 2

−

∑Ψ x y c x y C x y e( , ) = ( , ) ( , ) ,g
h

i g
i πi k g r2 ( + )⋅j

where Cg is the proportion of the gth Bloch wave, both K and Ug–h contain 
information of the potential field and i corresponds to the direction of 
the wave vector that contributes to the intensity at position (x,y) in the 
disc; for details see ref.22. Because the potential field originates from 
the charge distribution, solving the equation based on the potential 
field in the IAM gives the calculated CBED pattern. Fitting the potential 
(calculated CBED patterns) with experimental CBED patterns offers 
quantitative and accurate measurement of the structure factor and 
charge density. In this QCBED technique, multiple iterative fitting meth-
ods have been developed and applied to the study of charge density 
as well as crystal structure and Debye–Waller factors of oxides, metals 
and semiconductors2,23–29 (Fig. 2b–d).

Compared with the structure factor measurement using X-ray 
diffraction, QCBED considers the dynamic scattering process that 
allows multiple scattering in a thick crystal sample and does not suffer 
the same extinction effects of X-ray diffraction, which can reduce the 
structure factors calculated from low-order diffraction spots. Because 
CBED is usually taken with a large convergence angle, the electron beam 
size can be as small as the size of several unit cells, which is smaller than a 
few nanometres, making it possible to avoid defects and use a small vol-
ume of the crystal with uniform bulk structure. The diffraction intensity 

Box 1

Electron energy loss spectroscopy
Electron energy loss spectroscopy (EELS) is another scanning 
transmission electron microscopy-based technique that is often 
used for studying the charge distribution in materials. In scanning 
transmission electron microscopy, EELS is performed by collecting 
the transmitted electrons that have interacted with the sample  
and then passing them through a magnetic prism, which spreads the 
electrons into a spectrum based on their difference in energy from 
the original high-voltage acceleration set at the source. A set  
of magnetic lenses is then used to focus this spectrum onto a 
detector, often a direct electron detector. The change in energy of 
each electron corresponds to an excitation that has been generated 
in the sample. Thus it is possible to study a wide variety of material 
properties in EELS simply by focusing on different energy ranges, 
including lattice vibrations, plasmonic response, local band-gap 
measurements and X-ray emissions. Core-loss X-ray excitations 
are the most important for studying the charge distribution in 
materials because the energy loss near edge structure of specific 
X-ray excitations can be correlated with the valence state of specific 
elements153. For example, the titanium L2,3 edge has a distinctive 
structure if Ti has a 2+, 3+ or 4+ valence state154. The processes that 

lead to these changes in spectral features are shared with X-ray 
absorption spectroscopy, so that the theoretical underpinnings of 
these interactions are well understood155–157, but EELS can provide  
much higher spatial resolution than X-ray absorption spectroscopy 
because it uses a focused electron probe158,159. The spatial distribution 
of different valence states is often mapped with nanoscale spatial 
resolution by collecting spectrum images, in which an EELS spectrum 
is collected for every probe position in a raster scan. EELS is not a direct 
measure of the local charge distribution, like phase-retrieval methods 
or quantitative convergent beam electron diffraction, so there are 
some disadvantages associated with it. For example, EELS can only be 
applied if there is a known correlation between some spectral feature 
and the valence state for an element in the material. In addition, these 
correlations can be difficult to establish or quantify as they often 
change from one element to the other and there are many spectral 
features with which to draw from153. However, unlike phase-retrieval 
methods and quantitative convergent beam electron diffraction, EELS 
valence mapping has very few requirements for sample geometry, so 
it can be applied to a greater variety of samples and has therefore seen 
wide adoption in the study of localized electronic properties160–169.
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within the CBED discs is the result of electron–sample interaction from 
a range of incident beam directions, which can be accurately fitted 
with simulation results using Bloch wave methods, stacked Bloch wave 
simulations30 and multislice methods31. The fitting can be performed 
using either a strong two-beam condition or the zone axis pattern.  
In the two-beam condition, the sample and beam are tilted, so that only 
the transmitted beam and the diffracted beam are excited. The row of 
diffraction discs appearing in the pattern is called a systematic row. 
The one-dimensional line profiles of the intensity across the discs in the 
systematic row from experiments are compared with the calculated one 
and used to refine the structure factor26,29. When using the CBED taken 
along a zone axis, the comparison and fitting are performed using the 
two-dimensional intensity map of all discs32–36. Recently, QCBED was 
also developed using off-axis CBED patterns28. More precise quantifica-
tion can be achieved when QCBED is combined with structure factor 
measurements from X-ray diffraction, because the latter provides accu-
rate recording of the weak intensity from high-order reflections, which 
are often missing or noisy in CBED images. With the much-improved 
accuracy in crystal structure and charge density determination, QCBED 
has made important contributions to quantum crystallography. The 
development of QCBED and its applications have been systematically 
reviewed in refs.23,36–38.

It is worth noting that because CBED can be done within a small 
volume defined by the size of the electron beam, local symmetry, strain 
and atomic structure can be derived using the high-order Laue zone 
lines. This means that, in principle, QCBED can correlate the bonding 
characteristics with local structural environment, thus offering high 
spatial resolution. However, modelling structural heterogeneity and 

the associated huge computational cost are obstacles that prevent this 
approach from being feasible.

Charge density imaging by electron wave phase 
retrieval
In comparison with the aforementioned techniques in quantum crystal-
lography, methods that directly probe the local charge and its distribu-
tion are advantageous to study heterogeneous structures in materials. 
Despite sharing the same basis of electron–sample interaction in QCBED, 
the direct methods of imaging the charge density in materials with TEM 
do not necessarily rely on fitting with simulated results; instead, they use 
some form of phase retrieval. Phase retrieval is the process of calculating 
the change in phase of the electron wavefunction after it has interacted 
with the sample. This task is more challenging than conventional imag-
ing in TEM because the phase of the electron wave cannot be directly 
recorded on a detector as only the intensity of the wave is recorded. 
Therefore, the techniques for phase retrieval generally require dedicated 
hardware and data analysis methods. However, the electron microscopy 
instrumentation and data analysis methods necessary for phase retrieval 
have seen considerable advancements in the recent decades, allowing 
phase retrieval methods to be applied to more complex systems. In 
this section, we introduce the basics of phase retrieval and cover recent 
advances in the two most prominent phase-retrieval methods used for 
studying electronic properties: 4D-STEM and electron holography.

The basis of all phase-retrieval methods lies in the phase-object 
approximation, which describes the effect of the electrostatic poten-
tial of the sample on the incident electron wave. The phase-object 
approximation can be derived from the Schrödinger equation for the 

Box 2

Scanning probe methods
Although transmission electron microscopy can feasibly 
characterize the defects, interfaces and other buried 
heterostructures at atomic resolution in crystalline 
materials, it is difficult to use when studying surfaces 
or organic molecules. As transmission electron 
microscopic images are projections through the entire 
sample, surface structures can be difficult to resolve. 
In addition, the beam of high-energy electrons may 
quickly damage most organic molecules. In comparison, 
scanning probe microscopy techniques are well suited 
for studying the electrical properties of surfaces and 
molecules absorbed onto surfaces170,171. The recent innovation in the 
usage of functionalized tips in atomic force microscopy, Kelvin probe 
force microscopy and scanning tunnelling microscopy has enabled 
the direct imaging of the bonding structure in organic molecules 
absorbed on surfaces. In these techniques, a small molecule, typically 
CO, can be absorbed onto the apex of the scanning probe, which 
greatly enhances the resolution. As the probe scans, changes in the 
surface potential modify the vibrational mode of the CO molecule  
(see the figure, part a, in which k is the local curvature of the vibrational 
well and ω is the frequency). An image is generated by mapping 
how various properties of the tip–sample interaction change as the 

tip is scanned across the surface. The specific property depends on 
the exact microscopy technique. In one example using scanning 
tunnelling microscopy, high-resolution images of the halogen bonds 
self-assembled halogen–benzene rings were captured by mapping 
changes in the lateral vibration mode of absorbed CO molecule as the 
probe was scanned across the sample172; constant current imaging 
of a self-assembled C6F6 island on an Ag (110) surface is shown in the 
figure (part b). A schematic diagram with the intermolecular-bonding 
network highlighted by red and orange dashed lines, indicating the 
F-3 synthon and trans-type I F···F interaction, is shown in part c. Figure 
adapted with permission from ref.172, AAAS.
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interaction of a high-energy electron with some simplifying assump-
tions about the form of the wavefunction and the thickness of the 
sample. The wavefunction as a function of position, rrΨ( ), is assumed 
to have the form of a product between a plane wave along the beam 
direction, eikz, where k is the wave vector, and another function that 
varies slowly along the beam direction, ψ r( ), such that the full wave-
function can be written as r ψ r eΨ( ) = ( ) ikz . Using this wavefunction 
with the Schrödinger equation leads to a differential equation with 
two terms:

z
ψ r

i
k

iσV r ψ r
∂

∂
( ) =

2
∇ + ( ) ( )⊥

2







where ∇⊥ is the Laplacian acting only perpendicular to the beam direc-
tion along (x,y), σ is an interaction constant and rrV( ) is the electrostatic 
potential of the sample. In this form, we can see that the evolution  
of the wavefunction can be separated into two parts. The first term 
on the right describes the propagation of the electron through free 
space and the second term describes its interaction with the potential 
of the sample. For this reason, these two terms are often called 
the propagation and transmission operators, respectively. To solve the 
wavefunction completely, the two parts must be solved simultane-
ously. However, if we assume that the sample is very thin, then the 
propagation through free space can be neglected and the remaining 
equation can be easily integrated along z, yielding the result of the 
phase-object approximation:

ψ ψ e= o
iσV

exit
proj

where ψexit is the exit wavefunction, ψo is the incident wavefunction and 
Vproj is the projected potential of the sample. Thus, determining the 
phase of the exit wave will tell us about the electrostatic potential in 
the sample. The charge density can then be calculated from Poisson’s 
equation. For more detailed derivations and full treatments of the 
electron wavefunction in an electron microscope, see refs.31,39–42. Note 
that the simple phase shift of the incident wave is an essential assump-
tion in all phase-retrieval algorithms, as more complex modifications 
to the initial wavefunction are exceedingly difficult to parse from 
experimental data. Samples must be weakly interacting to satisfy these 
assumptions; for atomic-resolution imaging, this means the phase-
object approximation generally is only quantitatively accurate when 
a sample is thinner than 5–6 nm (ref.43). For samples with heavy ele-
ments, even results from such thin specimen need to be validated by 
image simulations. Note that QCBED does not assume the weak 

phase-object approximation and provides much high accuracy in 
determining the charge distribution.

4D-STEM and electron holography
4D-STEM is one of the techniques that provide data needed to retrieve 
the phase of electron wave that has seen innovation in recent years.  
In 4D-STEM, a converged electron probe is raster-scanned across 
the sample and a CBED pattern is recorded at each scanning location 
(Fig. 3a). The CBED can be recorded on a pixelated detector synchro-
nized with the scanning probe. These detectors have been incorporated 
into many modern electron microscopes owing to the applicability of 
4D-STEM towards studying a wide variety of structural, electronic and 
magnetic properties. The most basic application of 4D-STEM is virtual 
imaging, in which specific regions of the diffraction pattern are inte-
grated to create different images that highlight specific features, such 
as regions with different structures, orientations or compositions44–46. 
Strain can also be analysed from low convergence angle 4D-STEM data 
by measuring the change in the position of diffraction discs47,48. Simi-
larly, polarization can be determined from the internal intensity in outer 
diffraction discs49–51. The symmetry of diffraction patterns can also be 
analysed to determine the orientation of a single phase52. The pixelated 
detectors themselves have also seen significant development in recent 
years. Initially, fast charge-coupled device cameras were typically used 
to collect 4D-STEM data, but direct electron detectors are becoming 
increasingly available and can provide much higher quality data at 
faster frame rates53,54. The fastest direct detectors can now acquire 
whole diffraction patterns with frame times comparable to the pixel 
times of conventional STEM detectors55–58. For complete reviews of 
4D-STEM, see refs.59,60.

As the diffraction pattern is a momentum–space image of the 
probe after interacting with the sample, the change of momentum in 
the electrons owing to interaction with the sample is encoded in the 
diffraction data. With a sample that satisfies the phase-object approxi-
mation, the gradient of the phase is proportional to the electric field  
of the sample and can be determined from 4D-STEM data by calculating 
the average change in momentum of the probe from each diffraction 
pattern which can be determined from the intensity-weighed average 
position of the diffraction pattern, also referred to as the centre of 
mass (COM)6. With a full 2D raster scan, a vector map of the electric 
field can be constructed and then the charge density can be calculated 
with Gauss’ law. Using this technique, the spatial resolution of the 
charge density image is limited primarily by the size of the electron 
probe and the step size of the electron probe. The high spatial resolu-
tion and the simple process for deriving the electric field and charge 

Ψ0 = Φ0e
–2πik.r

ρ(r)

F(Δk) = ρ(r)e–2πiΔik.rdr∫

I(Δk) = F(Δk) . F(Δk)* 

Sample Fig. 1  | X-ray and electron scattering. A schematic of the scattering 
process and the formation of a diffraction pattern applicable to the 
scattering of both X-rays and electrons. For definitions of variables, 
please see the main text.
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density make 4D-STEM ideal for studying heterogeneous structures in 
materials such as interfaces and defects. An example of the simulated 
4D-STEM image of the unit cell of SrTiO3 and a map of the calculated 
change in momentum is shown in Fig. 3a. The theory for this tech-
nique has been originally conceived61–63 and developed as differential 
phase contrast (DPC) imaging, which used segmented conventional 
detectors instead of pixelated detectors to detect change in probe 
momentum4. The shift of the diffraction pattern can be determined 
with a segmented detector by examining the difference in the signal 
collected by opposing detector segments. Theoretical and simulation 
studies have established that DPC can be used to accurately approxi-
mate COM imaging in 4D-STEM64–66. Therefore, even though a seg-
mented detector cannot be used to study the same breadth of material 
properties as the pixelated detector used in 4D-STEM, for the purposes 
of charge density/electric field imaging, they are almost equivalent and 
are often treated as such in experimental studies.

Compared with 4D-STEM, electron holography is a well-established 
technique for studying electronic properties of materials. Originally 
proposed in 194867,68, holography enables phase reconstruction by 
modifying the exit wave, so that the wave incident on the detector will 
carry phase information that is either imaged directly or reconstructed 
iteratively. This can be done either through interference of the exit wave 

with a reference wave of known phase (off-axis holography; Fig. 3b) 
or by collecting multiple images with a known phase shift between 
them (in-line holography)69. Although the basis for holography has 
not changed in recent years, atomic-resolution holography has only 
become routine within the past decade owing to advancements in TEM 
hardware, including the availability of Cs-correctors, high-brightness 
sources and direct electron detectors70.

Considering the importance of the phase-object approximation 
for both 4D-STEM/DPC and holography, there are many theoretical and 
simulation studies exploring its limits and other factors that may affect 
the final phase (or phase gradient) measurement43,64–66,71–75. For example, 
it has been shown in several instances that the probe focal position can 
have a significant impact on the results in 4D-STEM COM imaging and 
that focusing the probe below the sample surface can help to mitigate 
the effects of thicker samples43,71,74,75. In addition to defocus, other fac-
tors in probe formation such as aberrations and convergence angle can 
also affect the COM image71,73. Holography is less affected by defocus 
and other aberrations because they can be corrected after acquisition 
through forward modelling12,76. The specific effects of thicker samples 
such as increased dynamical diffraction and thermal diffuse scatter-
ing have also been investigated. It has been found that the effects of 
dynamical diffraction are more prominent in holography than COM 
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Fig. 2 | Quantitative convergent beam electron diffraction.  
a, A schematic of the workflow for quantitative convergent beam 
electron diffraction (QCBED). b, The direction visualization of 
d-orbital holes and bond charges in Cu2O using QCBED. c, QCBED-
derived and density functional theory (DFT) (Wien2K)-derived 
charge density map of Al. d, The determination of the electronic 
structure of NiO using QCBED-DFT. Panel b adapted with 
permission from ref.26, Springer Nature Limited. Panel c adapted 
with permission from ref.2, AAAS. Panel d adapted with permission 
from ref.3 under a Creative Commons licence CC BY 4.0.
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imaging, whereas the opposite is true for thermal diffuse scattering43. 
Overall, these theoretical studies have made important contributions 
to the understanding of how these phase-retrieval techniques can be 
effectively applied in experiments.

Electron ptychography
The final prominent phase-retrieval technique in TEM is electron 
ptychography. Ptychography uses super-sampled 4D-STEM data to 
perform a full reconstruction of both the probe and the object func-
tion77, usually through either an iterative algorithm78,79 or Wigner distri-
bution deconvolution80. Ptychography has seen wide application as a 
method for super-resolution, light-element and low-dose imaging81–89. 
Advanced reconstruction algorithms combining multislice forward 
modelling and ptychographic reconstruction82 can even enable 3D 
imaging of some structures90. Recently, super-resolution imaging has 
seen marked advancement, reaching fundamental spatial resolution 
limits91,92. However, ptychography has not been applied directly to 
the problem of charge density or electric field imaging, except in a 
couple of cases66,93, probably owing to its computational complexity. 
In the cases in which the sample allows for the reconstruction to be 
completed quickly or already satisfies the phase-object approximation, 
4D-STEM/DPC imaging or holography can provide almost the same 
information with less computational overhead. This faster feedback 

is especially important in experimental studies of heterostructures as 
many datasets are often collected during one TEM session. As a result, 
ptychography is not covered in detail in this Technical Review; for more 
complete reviews, see refs.94,95. However, as ptychographic reconstruc-
tion algorithms continue to advance and additional computational 
power becomes available, it is possible that ptychography could be 
adopted for charge imaging.

Visualization of charge in materials
In this section, we review recent advancements and applications of 
4D-STEM and holography in visualizing the charge distribution and 
other electronic properties in three different types of materials: 2D 
materials, semiconductors and oxide heterostructures.

2D materials
2D materials often exhibit novel electronic properties because of 
their unique atomic structure. Although pristine 2D monolayers hold 
significant promise for applications in electronics96–101, 2D materi-
als are rarely synthesized without defects102. In addition, the defects 
themselves can often lead to unique properties that are not present 
in pristine monolayers and thus their own applications. For example, 
nanopores in graphene may have various applications in chemistry103, 
and linear defects in transition metal dichalcogenides could provide 
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conductive channels for nanoelectronics104. Therefore, it is important 
to understand the structure and properties of defects, interfaces and 
other heterostructures in 2D materials. STEM/TEM can provide clear 
atomic-resolution images of 2D materials105,106, which offers structural 

information, but electronic properties must be studied with more 
advanced methods. Owing to the requirement that thin samples be 
used in phase-reconstruction techniques, 2D materials are a natural fit 
for 4D-STEM and holography. In addition, conventional spectroscopic 
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methods for studying localized electronic properties in TEM, such 
as electron energy-loss near edge structure, generally require a high 
beam current and long exposure times to acquire 2D maps because 
only a small part of the spectrum is used for electron energy loss 
spectroscopy (EELS) of 2D materials; this often leads to radiation 
damage in the sample. But such issues can be avoided in 4D-STEM 
and holography because high-quality data can still be acquired with 
low beam current and long exposure times when using advanced  
detectors107,108.

Initial applications of 4D-STEM electric field and charge density 
imaging to 2D materials were conducted in 2018, using 4D-STEM to 
identify the stacking sequence in MoS2 (ref.109). Experimental 4D-STEM 
data are collected from a monolayer–bilayer interface from which the 
electric field and charge density were calculated (Fig. 4a–c). Several 
unit cells were averaged together to improve the signal-to-noise ratio in 
the 2D maps and then compared with the charge density maps and line 
profiles generated from first principles calculations. The stacking 
sequence of both pristine bilayer regions and the structure of the 

monolayer–bilayer interface were determined with this method. 
Similar studies of the electric field at the monolayer–bilayer inter-
face of graphene nanopores were also conducted in 2018110. These 
studies demonstrated that electric field and charge density imaging 
in 4D-STEM is highly sensitive to the atomic structure and specific 
bonding arrangement of light elements in 2D materials and paved the 
way for further studies into the electronic structure of 2D materials 
heterostructures.

In 2019, linear vacancies in MoS2 and WS2 were studied using 
4D-STEM electric field and charge density imaging104. Theoretical 
studies had predicted that the local band gap in these vacancy channels 
would decrease to the point where the material becomes metallic and 
specifically that the metal–metal bond in the vacancies would lead to 
these channels being electron rich. 4D-STEM results showed that the 
electron density in these channels matched quantitatively with results 
from first principles density functional theory (DFT) calculations 
(Fig. 4d–h). Before the development of 4D-STEM, observing the elec-
tron distribution in interatomic regions was not possible in irregular 
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Fig. 6 | Applications to oxide interfaces. a, Atomic structure of the BiFeO3–
SrTiO3 interface obtained from density functional theory (DFT) calculations.  
b, Atomic-resolution HAADF scanning transmission electron microscopy  
(STEM) image of the interface. Scale bar, 4 Å. The arrows indicate the direction 
and relative magnitude of Bi displacement. c,d, The corresponding electric  
field map (part c) and charge density image (part d) acquired by 4D-STEM.  
e, Changes in A-site (Sr or Bi) displacement (in Å) determined from part b and 
from DFT calculations. Error bars denote standard deviation. Also shown is the 
O octahedron rotation determined experimentally and from DFT calculations 
(in degrees). Error bars denote the detection limit. f, Separation between the 
weighted centres of positive and negative charges within each unit cell across  
the interface measured from part d. Error bars denote the detection limit.  
g, Total charge of Ti + O and Fe + O columns on each side of the interface measured 
from part d. Error bars denote the standard deviation. h, The valence state of Ti 

and Fe measured using energy loss near edge structure. Error bars denote the 
standard deviation. The inset shows the position of the interface. i,j, 2D surface 
plot and projected map of the total charge density obtained by in-line electron 
holography for the LaAlO3–SrTiO3 (001) interface (part i) and (111) interface 
(part j), respectively. HAADF-STEM images are shown next to the charge density 
maps. k,l, 1D electron density obtained from the charge density maps of the (001) 
interface (part k) and (111) interface (part l). The solid red line corresponds to the 
average electron density from averaging three datasets. For the (001) interface, 
the density of the 2D electron gas (ne) is (2.88 ± 0.39) × 1014 cm−2, which was 
calculated by integration of the averaged profile (region shaded red). The spatial 
depth (s) is 1.0 ± 0.3 nm and the maximum density (δ) is slightly displaced from 
the interface by about 0.4 nm. For the (111) interface, ne = (1.02 ± 0.01) × 1014 cm−2, 
s = 3.3 ± 0.3 and δ = 2.4 nm. Panels a–h adapted with permission from ref.7, 
Springer Nature Limited. Panels i–l adapted from ref.10, Springer Nature Limited.

structures because of the low spatial resolution of the electron probe 
used in QCBED experiments and the requirement of periodicity in the 
QCBED analysis.

Similar capabilities have also been recently demonstrated in 
holography. In 2020, the charge of single sulfur monovacancies (Vs) was 
measured using off-axis holography11 (Fig. 4i–k). In off-axis holography, 
the greatest challenge in reaching atomic-resolution charge density 
imaging has been the combined phase sensitivity and spatial resolu-
tion. Typically, phase sensitivity and spatial resolution are inversely 
proportional in holography, thus acquiring a dataset that has atomic 
resolution and phase sensitivity to detect weak shifts owing to the slight 
change in electron distribution is especially challenging. In this work, 
the high-resolution data were made possible by collecting a large series 
of holograms over several minutes followed by software-enabled cor-
rection of the mechanical drift from the sample stage and of the drift in 
the electronics controlling the biprism and wavefront/image-forming 
lenses. Such long total acquisition times are comparable to those in 
4D-STEM; however, one advantage of holography is that the entire field 
of view is acquired in each frame, so that temporal resolution can be 
gained at the cost of increased noise—something that is generally not 
possible with commercially available 4D-STEM detectors. As noted in 
the paper11, this makes holography better suited for observing dynamic 
processes in situ. However, segmented detectors can run at the same 
speed as conventional STEM detectors and, as mentioned previously, 
the frame times for the most advanced pixelated detectors are reach-
ing the microsecond range55–58, which means that stacking multiple 
acquisitions111 or observing dynamic phenomena will soon be possible 
in 4D-STEM as well.

Semiconductors
Initial studies5 of the charge density of individual atomic columns 
were conducted on semiconducting materials (Fig. 5a–e). In this study, 
quantitative charge density measurements from GaN collected with 
segmented detectors showed negative-charge pockets surround-
ing both Ga and N atomic columns. To demonstrate the influence of 
the nucleus and electrons separately, image simulations were per-
formed in which the scattering potential of the positive and negative 
charges were separated and could each be included/excluded during 
the calculation. Only the simulation that included both the positive 
nuclear charge and the electron cloud reproduced the same charge 
density profile observed in the experiment, demonstrating that DPC/ 
4D-STEM is sensitive to both the nuclear charge and the surrounding  
electron cloud.

Although high-resolution charge density imaging of individual 
atomic columns has been initiated using GaN as a model system, most 
studies of conventional semiconductor materials in which 4D-STEM is 
applied have focused on device applications in which the real-space 
distribution of the electric field and free charge determine the overall 

functionality. In 2015, it was first demonstrated that DPC can detect the 
built-in electric field at a GaAs p–n junction112. One of the key challenges 
in imaging the built-in electronic properties of doped semiconductor 
heterostructures is that the changes in the local field and charge caused 
by the dopants are relatively weak compared with that of atomic nuclei. 
Therefore, strategies must be devised to suppress the contributions 
of individual atomic columns. This study used a very large electron 
probe, with a spatial resolution of 12 nm, to average the field over a 
large area. However, using such a large probe will not always be feasible 
as devices continue to shrink in size. In 2021, another study8 improved 
on the earlier result by resolving nanoscale electric fields and electric 
potential changes also in a GaAs p–n junction. This improved approach 
used a standard high-resolution STEM probe (spatial resolution of <1 Å) 
and a sufficiently large step size that the atomic potential is randomly 
sampled. Combining this with a low-pass filter allows for the contribu-
tions of individual atoms to be eliminated, revealing the built-in field 
of the p–n junction with much higher spatial resolution.

Electron holography is a well-established technique for measuring 
electric potential, field and charge in semiconductor materials and 
devices. The technique was first demonstrated in 1999113 and has seen 
wide applications in academia and industry114,115. With lateral spatial 
resolution in the nanometer range, holography was the only method 
capable of mapping the embedded fields in semiconductor devices 
before the development of 4D-STEM. Mapping embedded fields is 
essential for measuring dopant distributions, which in turn determines 
the overall performance of the device. Subsequent studies have demon
strated phase sensitivity down to 0.1 V and spatial resolution down to 
3 nm (refs.116,117). In 2019, a study118 directly compared holography and 
DPC for applications with semiconductor materials by imaging the 
same metal–oxide–semiconductor field effect transistor (MOSFET) 
and quantum well structures with both techniques (Fig. 5f–k). The 
paper concluded that both techniques can achieve similar spatial 
resolution and phase sensitivity, but not without some considerations. 
Holography is generally less affected by dynamic diffraction and is 
therefore more sensitive to weak fields than DPC. However, DPC can 
achieve a higher resolution while keeping the sample in the field of 
view because no reference wave is required (for the case of off-axis 
holography). However, these issues are both areas of active investiga-
tion. As discussed earlier, strategies for reducing the impact of dynamic 
diffraction are being developed for 4D-STEM/DPC; choosing an opti-
mal probe size, step size or even using precession electron diffrac-
tion119 is a possible avenue. For holography, the development of in-line/ 
focal-series holography could eliminate the need for a reference 
wave at the cost of a more complex reconstruction process and less 
sensitivity to low-frequency information. However, recent advance-
ments have improved the spatial resolution of in-line holography, 
such that it can also reach the full resolution achievable with off-axis  
holography120.
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Oxide heterostructures
Besides 2D materials, perovskite oxides have seen the most applica-
tions of DPC/4D-STEM in recent years. In perovskite oxides, like other 
strongly correlated materials, unexpected phenomena often emerge in 
interfaces, superlattices, domain walls or heterostructures121–124. Often, 
multiple properties, such as lattice distortions, the local charge and 
chemistry, interact together to generate new phenomena in the hetero-
structure. The most prominent example of such emergent interfacial 
phenomenon is the 2D electron/hole gas (2DEG/2DHG) that has been 
discovered at the LaAlO3–SrTiO3 interface125. Ferroelectric perovskite 
heterostructures and domain walls have also drawn significant atten-
tion because they can also form a 2DEG or 2DHG that is controllable 
with an external electric field126–132. In all cases, the localized electronic 
properties occur within a few unit cells surrounding the interface, 
so TEM has had a large role in characterizing these material systems. 
Aberration-corrected STEM imaging and EELS are currently the pri-
mary TEM-based methods for understanding these heterostructures  
(see Box 1). However, recent advances in 4D-STEM and holography 
have enabled direct imaging of the electrostatic properties, which is 
complementary to the structural imaging and spectroscopic study.

4D-STEM electric field and charge density imaging have been 
applied to various oxide heterostructures and domain walls4,7,112,133. The 
internal electric field of ferroelectric domains can generate contrast 
in DPC images4, and the polarization of ferroelectrics is reflected in 
the electric field of individual atomic columns, as shown in Ca-doped 
BiFeO3 superlattices133 and simulated BiFeO3 structures134. 4D-STEM 
for charge density imaging has been used to probe BiFeO3 with a sub-
ångström resolution7; a combination of atomic-resolution high angle 
annular dark-field (HAADF) imaging, 4D-STEM charge density imaging 
and first principles calculations has been applied to reveal the mecha-
nism that leads to the emergence of a 2DEG at the interface (Fig. 6a–h). 
Three new methods were developed in this study for quantitatively 
measuring the oxygen octahedral tilt, the dipole of individual unit 
cells and the charge state of atomic columns using the charge density 
image and through a modification of Bader charge analysis135,136.

These new methods helped to illustrate the asynchronous change 
in the atomic structure and charge distribution that leads to an accu-
mulation of free charge, and the technique has been used to measure 
the charge state of a BiFeO3–TbScO3 interface and directly image the 
polarization-controlled 2DEG/2DHG at the interface137. In a similar 
vein, atomic charge density imaging has been used to show how the 
conductivity of charged domain walls in BiFeO3 can be attributed 
to an accumulation of oxygen vacancies; nanoscale charge density 
images showed an accumulation of charge at the domain wall, whereas 

atomic-resolution charge density images revealed changes in the intensity  
of oxygen columns in charge density images, indicating the presence of 
oxygen vacancies138. Atomic-resolution charge density imaging has also 
been used to show the charge transfer between an oxide support and a 
gold nanoparticle catalyst. Direct visualization of the charge transfer 
with 4D-STEM revealed how oxygen treatment of the heterogeneous 
catalyst can switch the sign of the charge accumulated at the surface 
of the oxide support139.

Nanoscale 4D-STEM electric field and polarization mapping have 
also had an important role in characterizing the electronic properties 
of the recently discovered polar vortex140 and skyrmion141 nanodomains 
found in PbTiO3–SrTiO3 superlattices and multilayer systems. In both 
cases, simultaneous mapping of the electric field and ferroelectric 
polarization using 4D-STEM data enabled the discovery of stable 
regions of localized negative capacitance50,142. A similar polarization 
mapping technique has also been used to image the skyrmion-like nano
domains found in a freestanding PbTiO3–SrTiO3 bilayer film51. In con-
trast to most of the other research discussed here, the 4D-STEM data 
in these studies were collected with a low convergence angle, so that 
the CBED discs were well separated, instead of overlapping. While this 
reduces the spatial resolution of the probe, it also allows for the electric 
field and polarization to be simultaneously calculated from the central 
and outer diffraction discs in the same dataset49,53,143, respectively. This 
enables the calculation of further electronic properties such as the 
local capacitance.

Electron holography has also been recently applied to oxide inter-
faces. The geometry of samples with buried interfaces lends themselves 
more towards in-line holography because a vacuum region does not 
need to be included in the field of view to provide a reference wave. Full-
resolution in-line holography120 has been applied to an LaAlO3–SrTiO3 
interface to study the differences in (001) and (111) oriented interfaces10 
(Fig. 6i–l). In in-line holography, multiple images are collected with a 
known change in defocus between each image; this enables an iterative 
reconstruction of the exit wave phase. The study showed that the 2DEG 
at the (001) interface is concentrated within 1 nm of the interface on the 
SrTiO3 side, whereas the 2DEG at the (111) interface is spread between  
1 and 4 nm from the interface on the SrTiO3 side. This was attributed to 
the differences in relative orientation of the interface and d orbitals, 
which the accumulated electrons occupy. An in-depth analysis of the  
differences between off-axis, in-line and hybrid holography using  
the LaAlO3–SrTiO3 (111) interface as a model system can be found in 
ref.144. In hybrid holography, the data from off-axis holography are used 
as an initial guess for the iterative reconstruction by in-line holography 
of the same region145,146. Although the known deficiencies of off-axis 

Table 1 | Technical details of methods in electron microscopy

Technique Charge density image Sample requirements Specialized microscopic 
hardware

Computational difficulty

Quantitative 
convergent beam 
electron diffraction

Full 3D distribution based on 
fitting with simulated structure 
factors

Thick enough for dynamic 
diffraction to be clearly visible 
(t > 30 nm)

Energy filter High, simulation and fitting process 
is complex and time-consuming

4D scanning 
transmission 
electron microscopy

2D projection based on shift in 
probe momentum

Thin enough for phase-object 
approximation for highest spatial 
resolution (t < 6 nm)

Fast camera synchronized 
to scanning coils

Medium, datasets can grow very 
large (10–100 GB)

Holography 2D projection based on 
interference pattern or iterative 
reconstruction

Thin enough for phase-object 
approximation for highest spatial 
resolution (t < 6 nm)

Bi-prism (off-axis 
holography)

Low (off-axis holography)
Medium (in-line holography requires 
iterative reconstruction)
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and in-line holography in reconstructing high-frequency and low-
frequency information, respectively, were translated to the detection 
of the 2DEG, hybrid holography could reconstruct the full frequency 
range faithfully. Beyond the LaAlO3–SrTiO3 interface, off-axis holog-
raphy has also been applied to visualize the effects of charge transfer 
caused by band bending at a Pt–TiO2 interface147.

Outlook
Among the electron microscopy techniques for imaging the real-space 
charge distribution and other associated electrostatic properties in 
materials, QCBED can determine the charge density with high precision 
in three dimensions for homogeneous materials; 4D-STEM and holo
graphy measure the landscape of electrostatic potential by following 
the phase-object approximation (in the kinematic diffraction regime). 
Although limited by the fact that the mapped charge distribution is the 
projection in two dimensions, 4D-STEM and holography can be more 
easily applied to nanostructures and heterogeneous materials because 
of both the higher spatial resolution and the less restrictive bound-
ary conditions necessary to complete the data analysis. A summary 
of the capabilities and requirements of these techniques is presented  
in Table 1.

Note that the limitation of using phase retrieval methods in elec-
tron microscopy to map local charge at the atomic scale is obvious. 
The phase change is approximated to be linear to the local potential; 
however, the interaction of the electron probe with sample is usually 
more complicated. In addition to the effects of dynamic scattering, 
residual aberrations can also influence the relationship between the 
phase of the electron beam and the local potential. In holography, 
uncorrected aberrations affect the quality of the final phase image, 
and in 4D-STEM, they limit the size of the electron probe. Although 
the electron probe size is already smaller than that of an atom, positive 
charges from the nuclei still strongly contribute to the Coulomb force 
felt by the electron probe, and the changes of the internal electrostatic 
potential between atoms can also occur at even smaller length scales 
than the probe size. Therefore, the charge density image acquired in 
4D-STEM is generally regarded as a convolution of the true charge 
density with intensity distribution of the electron probe and often 
requires additional modelling to accurately interpret.

Moving forward, algorithmic improvements to consider the non-
linearity in the potential-phase relation148, technique advancement 
in data acquisition and processing, including the incorporation of 
machine learning methods149, sample preparation, and perhaps more 
importantly, improvements in aberration correction, stability and 
other features offered by newly developed instruments, all can improve 
the feasibility and reliability in characterizing the charge distribu-
tion and other electromagnetic properties in materials. For example, 
the intrinsic magnetic field of an anti-ferromagnetic material was 
recently visualized at the atomic scale through combined innovations 
in microscopy hardware and advanced image filtering techniques150.

Finally, as briefly mentioned earlier, microscopic properties are 
often directly influenced by microscale or even atomic-scale elec-
tronic structure, but linking knowledge gained between vastly differ-
ent length scales often remains challenging. 4D-STEM and electron 
microscopy, in general, are now the ideal tool to resolve the structure– 
property relationship across different length scales, because by sim-
ply changing the convergence angles, the size of the electron probe 
can vary from sub-ångström to tens of nanometres, covering at least 
three orders of magnitude in size, easily matching the dimension of 
the features and properties of interest. Connecting atomic-scale field 

and charge distributions to microscale and larger-scale properties is 
thus possible139,151,152.
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