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ARTICLE INFO ABSTRACT

Keywords: Historically, extended droughts combined with heat waves caused severe reductions in crop yields estimated at
Agriculture billions of dollars annually. Because global warming and climate change are driving an increase in the frequency
Climate change and intensity of combined water-deficit and heat stress episodes, understanding how these episodes impact yield
gzz gt is critical for our efforts to develop climate change-resilient crops. Recent studies demonstrated that a combi-
Flowering nation of water-deficit and heat stress exacerbates the impacts of water-deficit or heat stress on reproductive
Heat processes of different cereals and legumes, directly impacting grain production. These studies identified several
Global warming different mechanisms potentially underlying the effects of stress combination on anthers, pollen, and stigma
Reproduction development and function, as well as fertilization. Here we review some of these findings focusing on unbalanced

Stress combination reactive oxygen accumulation, altered sugar concentrations, and conflicting functions of different hormones, as
Yield contributing to the reduction in yield during a combination of water-deficit and heat stress. Future studies
focused on the effects of water-deficit and heat stress combination on reproduction of different crops are likely to
unravel additional mechanisms, as well as reveal novel ways to develop stress combination-resilient crops. These

could mitigate some of the potentially devastating impacts of this stress combination on agriculture.

1. Heat and water-deficit combination in a changing climate

The global increase in anthropogenic greenhouse gasses in our at-
mosphere has adversely impacted agriculture, subjecting crops to mul-
tiple combinations of abiotic stresses [1-5]. Average ambient
temperatures have been steadily increasing in the past 40 years and are
predicted to increase further with frequent occurrences of heat waves
and elevated night temperatures [4]. This process, termed global
warming, is driving climate changes that lead to frequent episodes of
water-deficit stress [6]. As a result, inereased ambient temperatures and
frequently occurring water-deficit stress episodes are becoming a major
threat to yield production [7,3], especially since large areas of agricul-
tural land used for cereal and legume cultivation are rain-fed [9].
Moreover, the simultaneous occurrence of water-deficit stress episodes
with heat waves subjects crops to a combination of water-deficit and
heat stress in the field [10], and this combination exacerbates the im-
pacts of water-deficit stress, as higher temperatures increase water loss
by enhanced evapotranspiration, further impacting limited soil water
resources [11]. Historically, the combination of water-deficit and heat

stress has greatly reduced crop production [12], with yield losses in the
US estimated at 33, 44, 7.6, and 7 billion $ during the summers of 1980,
1988, 2000, 2003 and 2008, respectively [13]. A combination of heat
and water-deficit stress in Europe in 2003 has also reduced crop pro-
duction by 30 % [12]. Although a combination of water-deficit and heat
stress can severely reduce seedling emergence and vegetative plant
growth, its impacts on reproductive processes of crops, such as cereals
and legumes, is thought to be the major cause of agricultural yield losses
[1,14,15]. In addition to water-deficit and heat stress combinations, the
frequency and intensity of other stress combinations, such as heat and
flooding, heat and salinity, and water-deficit and salinity are predicted
to increase due to climate change [5]. Moreover, more complex sce-
narios involving combinations of multiple factors that include abiotic,
biotic and man-made pollutants are predicted to occur and adversely
impact plants, soils and microbiomes [5,16]. These were recently
termed multifactorial stress combinations and shown to have an
alarming effect on plant growth and survival [5,17].
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2. Plant reproduction is a complex process that is highly
sensitive to abiotic stress

Plant reproduction is a complex and highly coordinated process
involving specialized organs that display heightened, and sometimes
differential, sensitivity to different abiotic conditions (Fig. 1). The
development of pollen occurs in anthers inside specialized compart-
ments called locules. This process is divided into two stages: microspo-
rogenesis and microgametogenesis. The maturation of pollen within
locules is supported by a highly coordinated process of tapetum layer
programmed cell death (PCD) that releases nutrients into the locule
compartments. Upon maturation and dehydration, pollen are shed from
anthers in a regulated manner (anther dehiscence). Pollen must then
land on a compatible female stigma, rehydrate, germinate, and form a
pollen tube that grows through the style until it reaches the ovule. At the
entrance to the female gametophyte within the ovule, the tube bursts in
the synergid cells to release its sperms (one will fuse with the egg cell
forming an embryo, and the other will fuse with the polar nuclei forming
the endosperm) [13]. In addition to the anther and pollen grain func-
tions described above, pistil (stigma, style, ovary) development and
functions, which include pistil-pollen interactions, as well as embryo
development and seed filling, are also very sensitive to abiotic stresses.
Only upon completion of all the highly coordinated stages described
above (Fig. 1), a mature seed will form. As described below and in [14,
15,19-29], many of the processes resulting in the formation of funec-
tional seeds (yield in the case of cereals and legumes) are highly sensi-
tive to heat, water-deficit and/or heat and water-deficit combination
(Fig. 2). In addition, because certain crops can be self-pollinating
(pollination occurs within unopened flower buds), and/or require in-
sect or wind vectors for pollination (cross-pollination), different envi-
ronmental conditions and stresses, associated with climate change (e.g.,
drought combined with heat waves or altered insect populations) could
affect different crops differently.
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3. Occurrence of heat and water-deficit stress combination
during flowering time exacerbates yield losses

The co-occurrence of water-deficit and heat stress causes large yield
reductions in both cereals and legumes [22-25]. These losses are
magnified when the two stresses coincide with different reproductive
and/or seed maturation processes [15,19,22-25,30-32]. Indeed, flower
development and fertilization, two indispensable processes affecting
crop yield production, are exceptionally vulnerable to abiotic stresses
[26-29]. The heightened sensitivity of reproductive processes to a
combination of water-deficit and heat stress suggests that this stress
combination has a unique effect on plant reproduction. However, how
these two stresses applied together impact flowering, fertilization,
embryogenesis and seed development, and compromise crop produc-
tivity is still under investigation (Fig. 2). Moreover, results from studies
focusing on reproductive processes under conditions of heat or
water-deficit stress, applied individually, can not necessarily be
extrapolated to predict responses of reproductive tissues to stress com-
bination, as this response may be unique [33]. It is therefore essential to
study the different developmental and physiological processes of
reproductive tissues to stress combination at the molecular, proteomic,
and metabolic levels, side-by-side with their responses to each of the
different stresses applied individually. Flowering and fertilization are
complex processes that involve various tissues and molecular responses,
and successful fertilization requires the proper development of male and
female reproductive organs (anther and carpel), and male and female
gametes (pollen and ovule). Here, we review some of the studies con-
ducted on reproductive tissues subjected to water-deficit, heat, and their
combination, as well as address some of the major gaps in our under-
standing of these processes that remain to be studied.

7'1. Tapetum PCD
2. Pollen maturation

3. Stigma development

4. Pollen-stigma interactions
5. Pollen tube growth

6. Pollen shedding

7. Fertilization

8. Embryogenesis

—\9. Seed filling and maturation

Fig. 1. Light microscopy images depicting different reproductive processes in soybean that could potentially be sensitive to water-deficit, heat stress and/or water-
deficit and heat stress combination. Images were obtained from cross-sections of soybean flowers grown under controlled growth conditions and assembled to
highlight different reproductive processes. Because in soybean self-pollination is predominating, stigma, pollen grains and pollen sacs can be found in close proximity

inside unopen flower buds. Abbreviations: PCD, programmed cell death.
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Fig. 2. Different reproductive processes of plants affected by water-deficit, heat stress and/or water-deficit and heat stress combination. The impact of water-deficit,
heat and/or water-deficit and heat combination on these processes is shown to result in yield reduction.

4. Impacts of water-deficit and heat stress on flowering time and
duration

When water-deficit stress occurs during vegetative development,
annual plants often initiate their reproductive development earlier, a
phenomenon called drought escape, to ensure some fertilization and
seed development before the completion of their life cycle [34,35]. In-
cidences of water-deficit occurring during floral induction and flower
development can cause however a delay in flower development and
occasionally lead to complete inhibition [36-39]. In rice (Oryza sativa),
water-deficit stress around anthesis was reported to prolong anthesis
silking intervals [40]. As a part of an avoidance strategy, some plants
exposed to high temperatures can change their flowering time to miti-
gate the potential of heat stress-induced reproductive sterility [41-43].
For example, rice plants shift their flowering time to early moming to
accomplish fertilization before the onset of heat stress [41-43], and heat
tolerant wheat (Triticum aestivum) plants shift their flower opening to the
cooler morning or evening hours [44]. Heat stress was found to accel-
erate flowering time in Arabidopsis (Arabidopsis thaliana), but delay it in
Brassica (Brassica rapa) [45,46]. One of the major questions associated
with our current and predicted climate conditions, and the inereasing
frequency of water-deficit and heat stress combination is: How do plants
modulate their flowering time or anthesis when exposed to stress com-
bination? Rang et al., [47], reported that the flowering period is
extended under a combination of water-deficit and heat stress in rice.
Similarly, Liu et al. [25], reported prolonged silking intervals in maize
(Zea mays) under combined heat and water-deficit stress. Flowering
initiates early under a combination of heat and water-deficit stress in
wheat with a decreased duration of microgametogenesis [26]. However,
the impact of this combination on many other cereals and legumes is still
unknown. It is possible that to avoid and/or minimize the impacts of
stress combination on different reproductive processes such as pollen
shedding, interactions with stigma and tube elongation, other crops,
such as self-pollinating legumes, would also favor morning hours when
the temperature is low and humidity is high. However, detailed studies
are required to unravel the role of flowering time in enhancing the
success of different processes leading up to and associated with fertil-
ization and seed setting. In addition, because night and morning tem-
peratures are also predicted to increase, as a consequence of global

warming, shifting flowering time may only work for as long as the
temperature threshold for inhibition of reproductive processes will not
be crossed during these hours. High night temperatures were found, for
example, to affect pollen development and viability, anther dehiscence,
and pod development and cause reduced yield in common bean (Pha-
seolus vulgaris), cowpea (Vigna unguiculata), and soybean (Glycine max)
(Reviewed in [15]). Several studies have also identified key differences
between the daytime and night heat stress response of plants [43-52],
and these could be playing an important role in the protection of
reproductive tissues from heat stress during the daytime or at night.
Further studies are therefore needed to distinguish between the molec-
ular mechanisms that could protect reproductive tissues during day- or
night-time, and these should be utilized in future endeavors to enhance
the tolerance of crops to global warming.

5. Impacts of water-deficit and heat combination on flower
development

Both water-deficit and heat stress, even when applied alone, signif-
icantly impair flower development and fertility [20,38,53,54]. Maize
plants exposed to water-deficit stress around anthesis show decreased
growth rate of silk and ovary, and aborted kernels [25,54,55]. Similarly,
in Arabidopsis, occurrence of water-deficit during flowering causes
reduced fertility with arrest of floral development, abnormal anther
development, reduced pollen viability, reduced filament elongation,
abortion of ovule and suppression of flower opening [32]. Water-deficit
can also lead to premature flower abscission due to flower separation at
the abscission zone [56]. When exposed to heat stress during flowering,
rice plants display spikelet degeneration, reduced floral organ devel-
opment, decreased pollen viability, reduced anther dehiscence and low
pollen shedding, reduced number of spikelets, and reduced grain filling
[57-61]. Similarly, Arabidopsis plants under heat stress have impaired
anther and pollen development [62]. Heat susceptible plants commonly
display reduced pollen grain numbers within their anthers when expe-
riencing high temperatures [30,63-65], and even a transient heat stress
at the tetrad stage of pollen development was observed to reduce pollen
germination and cause sterility in maize [66]. Under a combination of
heat and water-deficit stress, rice spikelets show shorter peduncles,
lower pollen counts, and reduced anther dehiscence and spikelet fertility
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[47,67]. Similarly, maize plants under combined water-deficit and heat
stress exhibit kernel abortion, decreased fertilization, reduced pollen
viability and seed setting, and lower starch content in kernels [25].
Water-deficit or heat stress were found to cause an increase in the levels
of abscisic acid (ABA) that were accompanied by a decrease in gibber-
ellic acid (GA) and auxin (IAA) concentrations. Enhanced water-deficit
or heat induced ABA levels prompted excessive ROS accumulation,
which caused oxidative damage to anther tissues and disrupted the
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normal process of tapetum PCD (Fig. 3). Heat was additionally found to
cause the enhanced expression of heat stress-responsive genes in anthers
and pollen, including the heat shock transcription factors (HSFs),
unfolded protein response (UPR) and multiprotein-bridging factor 1
(MBF1) associated networks (reviewed in [32]). Because heat or
water-deficit stress resulted in very similar responses, their combination
could overwhelm plant defenses and cause an even more detrimental

effect than each of them applied individually. In addition, as described
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Fig. 3. Reactive oxygen species (ROS) and plant reproduction under water-deficit,
tissue development in the absence of stress (A), under heat or water-deficit (B) or

heat stress and/or water-deficit and heat stress combination. ROS-mediated floral
under a combination of water-deficit and heat stress (C). ROS play a key role in

floral tissue development and reproduction. However, under stress, ROS levels increase and impair processes such as tapetum PCD, pollen development, pollen

shedding, and pollen tube elongation, stigma receptivity, ovary development, fertilization, and embryogenesis. Abbreviations: NO, nitric oxide;

death; ROS, reactive oxygen species; MFP, miss-folded proteins; HSR, heat shock

PCD, programmed cell
response; ABA, abscisic acid; HSFA1, heat shock factor Al; MBF1, multiprotein

bridging factor 1; DREB2A, dehydration-responsive element binding protein 2A; IREla/b, inositol requiring enzyme 1a/b; UPR, unfolded protein response.
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below, the timing of stress occurrence with respect to the different
reproductive stages plays a critical role in yield reduction.

6. Impacts of water-deficit or heat stress on sporogenesis

For effective fertilization and seed development, processes such as
microsporogenesis, microgametogenesis, megasporogenesis, and mega-
gametogenesis need to be successful, however, water-deficit or heat
stress alter these processes in many crop plants [63,63,69]. During
microsporogenesis, meiotic crossover frequency has been observed to
increase under both heat stress as well as water-deficit [70-74]. Heat
stress induces second gamete formation in Rosa (Rosa rubiginosa) [75],
Populus (Populus canescens) [76] and Arabidopsis [77] due to defects in
cell wall formation at the end of meiosis II. Draeger and Moore [75]
reported that interphase and leptotene are the most affected stages in
meiosis under heat stress in wheat, but post zygotene the meiosis of
pollen mother cells proceeds normally. Meiotic crossover during
microsporogenesis and megasporogenesis under combined heat and
water-deficit stress have not been reported yet, however, since meiosis is
vulnerable to both water-deficit and heat stress, the combination of
these two stresses may make the process even more vulnerable.

7. Impacts of water-deficit or heat stress on tapetum PCD

Tapetum cells accumulate sugars, flavonoids, fatty acids and proteins
used to feed the developing pollen [79]. A properly-developed tapetum,
coupled with a timely PCD process of this cell layer, is indispensable for
sporogenesis and pollen development [20,31]. Under non-stress condi-
tions, tapetum cells are metabolically active, with large numbers of
mitochondria and optimum ROS production for timely tapetum degen-
eration. However, heat stress disrupts ROS homeostasis in anthers
inducing lipid peroxidation, and membrane damage, and causing un-
timely PCD of the tapetal cells [52] (Fig. 3). Under high temperatures
tapetum cells become hyper vacuolated, and have deformed chloro-
plasts, altered rough endoplasmic reticulum, and excessively swollen
mitochondria [33], as well as degenerate prematurely [23-25]. This
effect delays the maturation of microspores due to the lack of nutrients
and other compounds such as flavonoids. The resulting low flavonoid
content and improperly developed pollen cell walls impact pollen
germination and pollen tube elongation [50,31,34,36]. Tapetum
degeneration was found to be either accelerated or delayed under
water-deficit stress [35,57,35] and tapetal cells in water-deficit stressed
wheat flowers were shown to contain abnormal vacuolization and de-
tached microspores [59]. The development of the tapetum under a
combination of heat and water-deficit stress requires further studies.
Although a few studies have reported reduced pollen viability, reduced
functionality of male and female organs, and reduced flower fertility
under a combination of heat and water-deficit stress [26,47], it is largely
unknown how this stress combination will impact the PCD process of the
tapetum layer. Because the timing of tapetum degradation and other
functions are critical for pollen development and maturation, and this
timing is dependent on ROS and hormone levels, as well as the avail-
ability of different nitrogen and carbon metabolites [29,30], any
stress-related alterations in ROS, glucose 6-phosphate and/or other
compounds could affect the efficiency of tapetum function and its sup-
port of pollen development and maturation, and ultimately result in
reduced yield (Fig. 3).

8. The effect of heat and water-deficit combination on flower
female reproductive processes

Heat stress reduces female gametophyte expansion, causes malfor-
mation and degeneration of the embryo sac, causes incomplete differ-
entiation of eggs, synergid cells, and ovule development, and leads to
ovule abortion [90-92]. Heat stress also causes desiccation of stigma,
style and ovary along with a reduction in the size of style transmitting
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tissue [64]. Water-deficit stress leads to abortion of the ovule [33,92],
however, the precise impact of water-deficit on female organ develop-
ment is under investigation. Some reports suggest that female repro-
ductive organs are not significantly affected by water-deficit stress [94,
95], while other studies reported reduced seed set when female flowers
from water-deficit-stressed plants were fertilized with pollen from
non-stressed plants, indicating that female reproductive organs are
impacted by water-deficit stress [53,96]. Not much information is
available on the impact of water-deficit and heat stress combination on
female gametogenesis and female organ development. In one study,
Fabian et al. [26], reported that water-deficit and heat stress combina-
tion in wheat did not affect ovule or female gametophyte development
processes. However, these two stresses together caused malformation in
cortical cells of stylodia and transmitting cells, as stylodia were reduced
in size and transmitting cells were crushed [26]. In addition, heat and
water-deficit combination reduced the turgor of papilla cells with the
resultant shriveling of stigma branches. These changes in female
reproductive organs under a combination of heat and water-deficit stress
resulted in reduced fertility [26]. Pistils are critical for proper fertil-
ization as they support, recognize, and provide the pollen with
anchorage, rehydration and soluble sugars for pollen tube elongation
[97-100]. In a recent study [101] it was found that a combination of
water-deficit and heat stress reduced seed production in soybean
without a significant effect on the number of flowers produced, or pollen
viability, further suggesting that female reproductive development
processes may be impacted by a combination of water-deficit and heat
stress. Further studies are required to understand the impacts of
water-deficit and heat stress combination on the different growth and
development processes occurring at the female reproductive organs of
different crop species.

9. Impacts of heat and water-deficit combination on anther

dehiscence and pollen shedding

Following the successful development of male and female repro-
ductive organs, proper orientation of anthers and stigma within the
closed flower, a successful release of pollen from anthers, pollen shed-
ding onto stigma, and proper development of pollen tubes are essential.
In Arabidopsis, pollination was found to be impacted due to differences
in the relative size and position of anther and stigma within the closed
flower under heat and water-deficit stresses [32,102]. Pollen release
from anther requires successful anther dehiscence. Plants under heat
stress show inhibition of anther dehiscence and reduced pollen shedding
onto stigma [61,69,103,104]. Heat stress was also shown to reduce the
thickenings of the endothecium wall, impair the dissolution of the
interlocular septa causing indehiscence of anther in tomato (Solanum
Lycopersicum) and common bean [69,105]. Based on transcriptional
data, Endo et al. [106] suggested that pollen adhesion and pollen
germination on the stigmatic surface are potentially affected under heat
stress in rice. Heat stress also impacts the receptivity of the stigma [90],
and reduces pollen tube growth [66,103,107]. Similarly, plants under
water-deficit stress show reduced anther dehiscence and reduced pollen
tube growth on stigma [53,37,93]1. In rice, anther dehiscence and pollen
shedding on stigma were observed to decrease and fertilization was
reduced under heat and water-deficit stress combination [47,67,108].
Jagadish et al. [108], showed that gene expression of pollen allergens
and expansins, which facilitate the loosening and extension of cell wall
to aid in the invasion of the pollen tube into the stigma, were down-
regulated under combined heat and water-deficit stress suggesting that a
combination of these two stresses could negatively affect pollen tube
growth [102]. Studying the precise molecular mechanisms involved in
the different processes described above would enable targeting these
processes to reduce the impacts of heat and water-deficit stress combi-
nation on anther dehiscence, pollen shedding and pollen tube growth.
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10. Flower temperature under conditions of water-deficit and
heat stress

Plants open stomata to cool their leaves by evaporative transpiration
during heat stress. In contrast, during water-deficit, plants close their
stomata to minimize water loss [109,110]. In general, plants close their
stomata under a combination of heat and water-deficit stress to avoid
water loss, however, this comes at the price of higher leaf temperature
(compared to heat alone) [33,111,112]. In contrast to leaf stomata
regulation during stress, much less is known about stomatal activity of
flowers under water-deficit, heat, or a combination of these two. Lawas
et al. [23], reported decreased stomatal conductance and increased
panicle surface temperature in rice under combined water-deficit and
heat stress treatment. Wei et al. [113], reported that the number of
stomata on anthers decreased in an Arabidopsis mutant deficient in
INDUCER OF CBF EXPRESSION 1 (ICE1) and that this reduction was
associated with anther indehiscence, as well as decreased pollen
viability and germination rate. These findings raise several questions,
most importantly, what is the inner temperature of flowers during stress
combination, and more specifically that of the male and female repro-
ductive organs? Are flowers using an alternative mechanism to dissipate
the heat produced during stress combination if stomata are closed dur-
ing combination of heat and water-deficit stress? These questions are
highly important because the flower inner temperature will directly
impact growth and developmental processes leading to gamete forma-
tion, as well as fertilization, embryogenesis, and seed production. All
processes critical for grain yield formation. If plants are unable to cool
their flowers during the stress combination (as is the case for leaves [33,
112,114]), then the inner temperature of flowers will be higher during a
combination of water-deficit and heat stress, compared to water-deficit
or heat stress applied individually (Fig. 2), and yield will suffer even
more under the stress combination. Further studies are needed to
address this question.

11. Reactive oxygen species and reproductive processes under
stress

Reactive oxygen species such as superoxide radicals and hydrogen
peroxide play key regulatory roles in pollen development, pollen tube
growth and various processes of pollen-stigma communication [115].
ROS are thought to regulate pollen hydration and germination on the
stigma, pollen tube growth within the pistil, and pollen tube reception
by the female gametophyte. In addition, as described above, ROS are
thought to play a key role in regulating the PCD process of the tapetum
that controls pollen development and maturation [115-122]. In general,
the levels of ROS in these different tissues is controlled by alterations in
ROS production through the function of respiratory burst oxidase ho-
molog (RBOH) NADPH oxidases and mitochondrial respiration, as well
as the function of different antioxidants and ROS scavengers such as
flavonoids and peroxidases [115-122]. The PCD of nutritive tapetum
cells requires for example a peak in ROS production [118,119,123] and
disruptions in temporal ROS patterns affect the timing of tapetal PCD
causing abortion of male gametophytes [112]. ROS production at the tip
of the pollen tube is also essential for pollen tube elongation [124] and is
required for the release of sperm cells [125]. Water-deficit and heat both
induce the accumulation of ROS and reactive nitrogen species (RNS) in
plants which can lead to cellular damage if their production exceeds the
capacity for scavenging of these compounds [126,127] (Fig. 3). ROS
content increases in floral tissues under abiotic stresses, especially in
anther and tapetum [30] due to high metabolic activity, higher number
of mitochondria, and elevated rate of respiration [30,64]. This imbal-
ance in ROS homeostasis disrupts the process of pollen development,
pollen tube elongation and overall fertility of flowers [36,123,128,129].
In rice, water-deficit stress results in higher accumulation of ROS,
decreased transcript abundance of antioxidant enzymes, and decreased
activity of antioxidant enzymes in anthers, causing pollen sterility
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[130-132]. If excess ROS is removed by overexpression of peroxidase
(POD) genes, flower damage can be prevented under water-deficit stress
[32]. ROS has important functions in inducing PCD in stigma and sets a
time window for stigma receptivity for pollen [133]. ROS over-
accumulation under heat or water-deficit stress can therefore result in an
altered time window of stigma receptivity for pollen, reducing the
chance of fertilization [134] (Fig. 3). Female reproductive organs in a
thermotolerant cotton (Gossypium hirsutum) variety were found to have
high superoxide dismutase (SOD) and glutathione reductase (GR) ac-
tivities even prior to heat stress [107], and heat stress further induces GR
in pistils [92] indicating crucial involvement of ROS scavenging mech-
anisms in heat stress tolerance in female reproductive organ function.
Fabians et al. [26], reported that when water-deficit and heat stress were
applied together during anthesis, the stigmatic papillae of a sensitive
variety of wheat generated high amounts of ROS and RNS but reduced
amounts of nitric oxide (NO), and displayed compromised flower
fertility. ROS production was also higher in mitochondria than in
cytoplasm in a sensitive variety of wheat [26]. This study proposed that
reduction in NO production due to high ROS levels could impair pollen
tube development in stigma and style leading to impaired fertilization
[26] (Fig. 3). Further studies are needed to explore the beneficial and
damaging roles of ROS [127] during the different reproductive processes
of crops under water-deficit, heat, and their combination. Regulating
ROS levels through for example controlling RBOH function via calcium
signaling and/or altering the content of antioxidants or the expression
level of different scavengers could be used as a viable strategy to reduce
the impacts of stress combination on plant reproduction. However, such
approaches should take into consideration the important role ROS play
during non-stress conditions. A drastic suppression in ROS levels could
therefore lead to reduced yield under non-stress conditions because ROS
are required for pollen-pistil interactions and other important repro-
duction processes (Fig. 3).

12. Sugar metabolism in flowers during stress combination

Sugars play a key role in many reproductive and developmental
processes [99,135,136]. Flower development is energy demanding as
evident by the high respiration rates and increased mitochondrial ac-
tivity of floral organs [98,137-139]. Floral reproductive organs import
sugars from leaf tissues and/or sepals symplastically or apoplastically
[140-142]. The imported sugars are either stored in the vacuole or
cytosol, or metabolized [52]. The rate of sugar import by flower tissues
depends on the developmental stage of the flower [139]. Developing
anthers and filling grains for example display a very high sink activity
[52,95]. The process of sugar import requires enzymes such as cell wall
invertases (cwINVs) and sucrose synthases (SUSs), as well as sugar
transporters (STPs), to provide sugar monomers for metabolism. Being a
nutritive tissue, the tapetum requires high amounts of carbohydrates
which are later released into the locular fluid (upon tapetal degenera-
tion) to support pollen cell wall synthesis and accumulation of carbon
reserves in pollen for tube development [143,144]. Sugar is essential for
the viability of pollen as decreased sugar accumulation in walls of anther
and pollen correlates with reduced pollen viability [145]. In addition,
higher activities of cwINVs in developing pollen walls during pollen
development support the importance of sugars for male gamete forma-
tion [135,141]. Goetz et al. [99], reported that pollen tube elongation
involves coordinated activity of pollen tube cwINVs and vacuolar in-
vertases (vINVs) of transmitting tissues of the style to acquire sugar
resources while the pollen tube is elongating towards an ovule. De-
ficiencies in sugar metabolism under abiotic stresses are therefore ex-
pected to negatively impact the reproductive development and
fertilization at several levels [20,66,145,146]. Jin et al. [147], showed
that starch granules were abnormally deposited outside of anthers, in
the lemma and palea in water-deficit-stressed rice, suggesting impaired
tapetal functions under water-deficit stress. The expression of INVs,
hexokinases (HXKs) and glycoside hydrolase were also downregulated
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in rice flowers indicating impaired utilization of sugars in anthers under
water-deficit stress [147]. Similarly, in wheat, gene expression and ac-
tivity of cwINVs and vINVs are reduced under water-deficit and pollen
development is impaired [148]. Several studies also reported reduction
in sucrose concentrations and reduced gene expression and enzymatic
activity of ewINV in microspores and anthers under heat stress [145,
146,149-151]. Santiago et al. [30], reported a significant decrease in
sucrose and glucose concentrations along with reduced expression of the
sucrose transporter PvSUT1.1 in whole flowers and anthers of a heat
susceptible genotype of common bean exposed to high temperatures.
Tomato flowers under heat stress were reported to have decreased starch
granule in pollen grain and increased concentrations of soluble sugars in
locular fluid indicating decreased pollen sugar uptake [152]. Mild heat
stress for short duration during the tetrad stage in maize resulted in
reduced starch content but increased sucrose, glucose, and fructose
content in pollen causing impaired pollen tube growth [66]. Continuous
mild heat stress during meiotic and microspore stages of flower devel-
opment was also found to decrease the expression of vINV in anthers
[146] and this might have led to reduced pollen viability [153]. A large
number of sugar and starch metabolizing genes are expressed if heat
stress is applied at the early stage of flower development or if a moderate
water-deficit stress is applied [134]. Moreover, heat tolerant genotypes
are better able to maintain sugar concentrations [30], with relatively
higher expression of cwINV and improved pollen viability under heat
stress [67].

Pollen tube growth and successful fertilization require the conver-
sion of sucrose into glucose and fructose. Sugar transport to ovaries
decreases under water-deficit stress resulting in decreased ovule fertility
[154,155]. Heat stress reduces the concentrations of sucrose and soluble
sugars in pistils, which is thought to be the reason for diminished pollen
tube growth in the pistil [92,107,156]. Water-deficit and heat were also
reported to downregulate the expression of ovary-specific cwINV
(Incw2), and soluble INV (Incw2) in maize which subsequently decreased
the ovary sugar pool causing senescence and abortion of ovaries via
activation of ribosome-inactivating protein (RIP2) and phospholipase
D1 (PLD1) genes [157]. Under combined water-deficit and heat stress,
studies in rice reported depletion of sucrose levels and upsurge of
monosaccharides in floral organs of stress sensitive plants [23,67]. Li
et al. [67], reported that in floral organs of a sensitive genotype of rice,
sucrose concentrations decreased, supported by increased gene expres-
sion of stachyose synthase and SUS and decreased expression of the
sugar transporter gene SUT3. Gene expression of a monosaccharide
transporter (MST8), a cwINV (INV4) and a UDP-glucose pyrophos-
phorylase (UGP1) were also down-regulated in anthers of a susceptible
cultivar while gene expression of carbon starved anthers (CSA, a MYB
family transeription factor) was increased, further supporting reduced
sucrose concentration in anthers [67]. Although sugar metabolism was
shown to play an important role in anther and pollen functions during
stress combination, available information is restricted to only one or a
few crop species and little is known about the role of sugar metabolism
in pistils, ovules, and styles during stress combination. How conserved
are these responses across diverse species? Would sugar levels increase
in female reproductive tissues during stress combination? If yes, would
they support pollen tube growth and fertilization? Is decreased sugar
concentration one of the important reasons for fertilization failure under
combined stress? Further studies are needed to address these important
questions.

13. Hormone signaling during flowering under stress

Hormones, especially GA, auxin, ABA, jasmonic acid (JA), brassi-
nosteroid (BR), ethylene (ET), and cytokinin, play important roles dur-
ing flower development [32,158,159]. While GA plays an important role
during the transformation of a shoot apical meristem to a floral meri-
stem, it is also essential for anther and pollen development [160,161].
Auxins are required for organogenesis and are crucial for carpel
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development [160]. Similarly, auxin, GAs and JA are needed for petal
development, and GA along with BR, cytokinins, auxins, and JA are
involved in anther and pollen development [160,162]. In addition, in
many plant species, the sex of the flowers depends on the relative ratios
of hormones such as GA and auxin [163].

Heat or water-deficit stress disrupt the hormonal balance of plants
and decrease fertility of flowers. Hormones such as salicylic acid (SA),
auxin, ABA and ET help in alleviating the damage to pollen caused by
heat stress [32,164-166]. A large number of genes involved in the
biosynthesis and signal transduction of hormones such auxin, GA, ABA
and ET display differential expression in flower tissues under heat stress
[104,167]. Unlike vegetative tissues, heat stress was reported to impair
auxin biosynthesis in the anthers of rice, barley, cotton, and Arabidopsis
and the resultant decrease in auxin levels were observed to cause pollen
abortion [168-172]. Reversal of anther development upon external
application of auxin [169,172], and increased male fertility by upre-
gulation of auxin biosynthesis genes under heat stress [173], further
support the importance of auxin in male gametophyte development and
functioning. Auxin homeostasis is also required for pistil function during
pollen tube germination and/or tube growth [166,174] and heat
stress-mediated decrease in auxin levels in pistils of a susceptible variety
of rice resulted in spikelet sterility [166]. Water-deficit stress also de-
creases endogenous auxin levels in rice spikelets [172]. Heat and
water-deficit stress downregulate the expression of the flavin
monooxygenase-like enzyme YUCCA (YUC), which is involved in auxin
biosynthesis and impact the expression of auxin co-receptor genes in rice
spikelets [172]. If supplemented externally, auxin decreases
water-deficit and heat stress-induced peroxidation of membrane lipids
in rice spikelets, in turn rescuing spikelet fertility [172]. Auxin can also
modulate ROS homeostasis by enhancing the expression of enzymes
involved in ROS detoxification [175-177]. Although unknown at pre-
sent, the role of auxin may be pivotal for the success or failure of
fertilization and ultimately grain yield formation under conditions of
water-deficit and heat combination. Heat stress decreases GA and
various GA-responsive genes in anthers [106,163]. Similarly,
water-deficit stress alters GA biosynthesis and signaling in flower tissues
which has been associated with male sterility [147]. Since GA-deficiency
leads to abnormal anther development and male sterility [178,179],
heat- or water-deficit-induced decreases in GA could be an additional
important factor during heat/water-deficit-induced male sterility.
Similarly, ABA is a central hormone enhanced during drought stress.
Increased ABA and JA signaling in flowers under water-deficit stress is
known to cause male sterility and impair reproductive development
[147,180]. High temperature increases ABA levels in young rice pani-
cles, rice anthers and Arabidopsis flowers leading to decreased flower
fertility [38,168], and ABA was found to play a key role in vegetative
plant responses to water-deficit and heat stress combination [111]. It is
thought that enhanced ABA levels are driving an increase in ROS levels
that could disrupt different reproductive processes during water-deficit
or heat stress, and that ABA accumulation suppressed tapetum PCD
during heat stress [32]). Cytokinins play protective roles during heat
stress or water-deficit [131], however, heat stress decreases cytokinin
levels in young panicles causing sterility in rice [182]. Thus far, a
comprehensive analysis of flower hormonal homeostasis under com-
bined heat and water-deficit stress is unavailable. Drawing from the few
studies conducted on hormone functions during stress combination of
vegetative tissues [126,133], it is likely that hormone homeostasis and
possible conflicting hormonal interactions would significantly impact
crop reproduction and yield under a combination of water-deficit and
heat stress. Further studies are of course needed.

14. Potential strategies to mitigate the impact of global warming
and climate change on plant reproduction

Developing strategies to enhance the tolerance of reproductive tis-
sues to stress is challenging since many of these processes already
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involve the activation of multiple stress response programs in the
absence of stress. For example, pollen undergo a dehydration and
rehydration cycle that involves expression of multiple water-deficit
responsive genes [13,154-136]. In addition, pollen were found to ex-
press different HSFs, heat shock proteins (HSPs) and UPR genes in the
absence of stress [20,137-189]. The timing of stress occurrence with
respect to the timeline of the different reproductive processes is also
critical. Triggering of a particular stress response pathway at the wrong
time might for example interfere with the PCD process of the tapetum or
interfere with some of the ROS-dependent signalling processes that
determine pollen-pistil compatibility. This situation is further compli-
cated since many stress-response transcripts and proteins are thought to
accumulate in pollen in the form of stress granules or RNA-protein
complexes/granules [19]. The formation of these granules and the
release of their content has to be coordinated with different reproductive
processes and disrupting this coordination could also interfere with
normal flower development, fertilization and overall yield. Keeping
these complex considerations in mind, several different avenues for the
development of crops with enhanced yield production under conditions
of stress combination could nevertheless be explored. For example, once
processes and mechanisms are better understood, it may be possible to
manipulate the levels of ROS, different sugars, and/or different plant
hormones such as ABA, GA, IAA and SA at the right time in different
flower organs using different CRISPR or breeding strategies to mitigate
the effects of stress combination on stress sensitive processes such as
tapetum PCD, pollen maturation, pollen-pistil interactions, grain filling
and more (Fig. 2). In addition, the expression of key regulatory genes
that control processes such as the heat stress response (e.g., HSFs, UPR,
MBF1 and others), and/or acclimation to water-deficit conditions (e.g.,
osmoprotectants, dehydrins and others), could be manipulated in
different flower organs at specific times to increase their tolerance to
stress. Different genes and or acclimation/adaptation strategies could
also be adopted from wild plants that evolved to withstand extreme
stress conditions during flowering time (e.g., plants grown in arid zones,
or different invasive species [5]). A completely different strategy could
involve manipulating the plant microbiome (at the root, leaves and/or
flowers) to include more beneficial microbes that could enhance plant
tolerance to stress [190-193], and/or using different chemical priming
molecules [194]. In addition, the function and number of stomata on
flowers could be regulated to control the temperature of different flower
parts by enhancing transpiration. Of course, as more studies of the effect
of stress combination on plant reproduction will become available, more
strategies, genes and/or different combinations of strategies and genes
are expected to emerge, and these should be tested in crops under field
conditions [195].

15. Concluding remarks

Flower development and fertilization, two processes critical for yield
production in cereals, legumes, and other crops, are especially vulner-
able to abiotic stresses such as water-deficit and heat stress. Recent
studies have shown that a combination of water-deficit and heat stress
causes a severe reduction in yield and suggest that this yield reduction is
the outcome of the stress combination impacting reproductive pro-
cesses, even more than the individual occurrence of water-deficit or heat
(Fig. 2). Because the frequency and intensity of water-deficit and heat
stress combination is likely to increase in the coming years due to global
warming and climate change [5], understanding the mechanisms un-
derlying the severe effects of stress combination on reproductive pro-
cesses of different crops, and especially the signaling roles of ROS [127,
196] in these processes, are critical to our success in developing crops
that are resilient to climate change and global warming. We highlight
several possible mechanisms by which water-deficit and heat combi-
nation impact reproduction and yield in crops. These include flower
temperature, increased production of ROS, altered sugar metabolism,
and conflicting functions of different hormones. Future studies of the
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impacts of stress combination on reproductive processes ought to
identify additional mechanisms, as well as reveal ways to counter the
negative impacts of stress combination on yield in different crops,
opening the way for the development of more resilient crops that will
improve our chances to survive the changing climate on our planet [5].
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