Acclimatization

Also referred to as ‘acclimation’,

a process by which plants
adjust their metabolism,
physiology and biochemistry
to become accustomed to
changes in their growth
conditions or environment.
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environmental stress.

Pathogens, insects and different abiotic stresses, such
as flooding, prolonged droughts and heat waves, result
in heavy losses to agricultural production and threaten
global food security"?. The alarming increase in the fre-
quency and intensity of these stresses, an outcome of
global warming and climate change®, highlights the
importance of understanding the mechanisms that
increase plant resilience against such stresses. Reactive
oxygen species (ROS) play key roles in stress sensing, the
integration of different stress-response signalling net-
works and the activation of plant defence mechanisms
and acclimatization. Dissecting and understanding how
ROS orchestrate plant responses to stress will allow us to
increase plant tolerance to stress and increase our abil-
ity to mitigate crop damage when crops are exposed to
harsh environmental conditions’.

The term ‘reactive oxygen species’ (ROS) describes a
group of molecules derived from molecular oxygen (O,).
Whereas O, is generally non-reactive towards most cel-
lular components, ROS can cause the oxidation of lipids,
proteins, RNA, DNA and many small molecules in cells.
The high reactivity of ROS towards these cellular com-
ponents is due to their altered chemistry, compared with
0, that allows them to donate an electron or transfer
an excited energy state to an acceptor molecule’. The
major forms of ROS in cells, which vary greatly in their
properties and chemical reactivity, include hydrogen
peroxide (H,0,), superoxide (O,"), singlet oxygen ('O,),
the hydroxyl radical (HO") and various forms of organic
and inorganic peroxides® (FIC. 1a and Supplementary
Table 1). As ROS are highly reactive, and independently
produced in all or most cell compartments, their levels
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Abstract | Reactive oxygen species (ROS) are key signalling molecules that enable cells to rapidly
respond to different stimuli. In plants, ROS play a crucial role in abiotic and biotic stress sensing,
integration of different environmental signals and activation of stress-response networks, thus
contributing to the establishment of defence mechanisms and plant resilience. Recent advances
in the study of ROS signalling in plants include the identification of ROS receptors and key
regulatory hubs that connect ROS signalling with other important stress-response signal
transduction pathways and hormones, as well as new roles for ROS in organelle-to-organelle
and cell-to-cell signalling. Our understanding of how ROS are regulated in cells by balancing
production, scavenging and transport has also increased. In this Review, we discuss these
promising developments and how they might be used to increase plant resilience to

are kept under control to prevent unintended cellular
oxidation. This is achieved by balancing of ROS pro-
duction, scavenging and transport, which together keeps
ROS at low concentrations, and controls ROS signalling
reactions and their outcomes (FIG. 1h).

Several hundred genes encode the different proteins
and enzymes that regulate ROS metabolism and signalling
in plants®® (Supplementary Table 2). ROS are produced
‘passively, by housekeeping enzymes or as by-products of
metabolic pathways (for example, photosynthesis and res-
piration), or ‘actively, by dedicated oxidases that generate
ROS for the purpose of signalling — for example, respira-
tory burst oxidase homologues (RBOHs), which are the
functional equivalents of mammalian NADPH oxidases
(NOX proteins)™. At the same time, ROS are scavenged
by an array of enzymatic and non-enzymatic antiox-
idants also found in most or all cell compartments®~’
(Supplementary Table 2 and Supplementary Box 1).
In addition, ROS can be transported between different
compartments (for example, by aquaporins (AQPs))'’, or
to other cells and tissues, for the purpose of signalling,
removal or accumulation. Thus, ROS can function where
they are produced, or at a distance.

ROS accumulation in cells during stress affects
the redox state of many different proteins, including
enzymes, receptors and small molecules, activating,
modifying or integrating multiple stress-response signal
transduction pathways (FIC. 1b). These alter gene expres-
sion and enhance the resilience of plants to stress''-'.
Recent advancements in our understanding of these
important processes include the identification of spe-
cific ROS sensors and regulatory hubs that connect
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Aquaporins

(AQPs). Transmembrane water
channel proteins that allow the
diffusion of H,O, from one side
of the membrane to the other
in a regulated manner.

Photosystems | and Il
Multiprotein complexes

that reside on the thylakoid
membranes inside chloroplasts
and participate in the
harvesting of light energy

for the purpose of CO, fixation
and sugar biosynthesis.

Photorespiration

A biochemical pathway that
results in the accumulation of
H,O, in peroxisomes, triggered
when CO, concentrations are
limited in C; plants.

ROS signalling with other stress-response signal trans-
duction pathways and hormones, the use of artificial
intelligence-driven tools to dissect the different regula-
tory networks triggered by ROS sensing and the identi-
fication of new roles for ROS in organelle-to-organelle
and cell-to-cell stress signalling.

In this Review, we first describe our current under-
standing of the mechanisms that control ROS produc-
tion, scavenging, sensing and transport in plants. We
then discuss how plants integrate ROS signalling with
different hormone, retrograde, calcium, phosphoryl-
ation and other stress-response signal transduction
mechanisms to regulate gene expression and induce
stress resilience. We focus mainly on H,O,, as it has a
prominent role in the regulation of biological activity
in cells.

ROS production and scavenging during stress

Cellular homeostasis is characterized by a baseline
level of ROS that depends on the plant developmental
stage, circadian clock, environmental and physiolog-
ical conditions, and interactions with its root and leaf
microbiomes. Different biotic and abiotic stresses can
disrupt this homeostasis, uncouple metabolic pathways
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Fig. 1| Regulation of ROS metabolism and signalling in plants. a| Formation of reactive
oxygen species (ROS) by excitation or reduction of atmospheric oxygen. b | Cellular ROS
concentrations are regulated by three distinct processes: ROS production, scavenging and
transport. These processes determine the steady-state levels of ROS; they also generate
different ROS signatures and gradients (characterized by different concentrations of

the different types of ROS within organelles and cells), which function as signals. In response
to external or internal stimuli, ROS levels change. ROS levels in cells are sensed and
decoded through changes in the redox state of different proteins that lead to coordinated
responses. In addition to their localized function within cells, ROS production, scavenging
and transport can propagate, along membranes, between organelles or between cells,
altering the steady-state levels of ROS in the entire plant. Dashed arrows indicate that
ROS production, scavenging and transport can be regulated depending on the redox state
of the cell. AQP, aquaporin; SOD, superoxide dismutase. Part a adapted with permission
from REF/, Annual Reviews. Part b adapted with permission from REF.2%, Elsevier.

and lead to the accumulation of ROS in different cell
compartments.

For example, during excess light stress, when the
flux of photons overcomes the plant energy needs to
fix CO,, O,” and 'O, are primarily produced in the
chloroplasts by photosystems | and II, respectively, and if
photorespiration is activated (for example, in C; plants),
H,O, will also be produced in peroxisomes*~**. The pro-
duction of ROS could be further elevated during drought
stress when CO, availability is limited due to the closure
of stomata, and the excess energy absorbed by the photo-
synthetic apparatus cannot be channelled into CO,
fixation”~*’. During heat stress when membrane com-
plexes involved in different electron transfer chains are
disrupted, O, and H,0, are produced in mitochondria
and chloroplasts, and increased levels of ROS accumulate
in the cytosol and nucleus®®* (Supplementary Box 1).

A different pattern of ROS accumulation appears
during responses to pathogens. O,~ and H,0, are pri-
marily produced in the apoplast due to the activation
of specific oxidases such as RBOHs (Supplementary
Box 1), as well as in chloroplasts as a consequence of
the disruption and imbalance of metabolic pathways™—*.
By contrast, virus infection was recently shown to
cause the suppression of peroxisomal ROS production
due to interactions of viral proteins with glycolate
oxidase™.

Recent advancements in the use of genetically
encoded ROS sensors and dyes revealed that during
different stresses different types of ROS accumulate
in different compartments of the cell>****-*>, Therefore,
different patterns or signatures of ROS accumulation
in cells are induced in a stress-specific manner (FIG. 2).
Moreover, recent studies have revealed that ROS can
be transported into or out of different compartments
and/or trigger different retrograde and anterograde sig-
nalling pathways between different cell compartments
and the nucleus'*****-*_The different ROS and other
signals produced in the different cell compartments in
response to different stimuli could trigger stress-specific
signal transduction pathways that activate stress-specific
acclimatization and defence mechanisms (FIC. 2). The
findings that different stresses result in the formation of
different ROS signatures can serve as a working platform
for future studies on how specificity in plant responses
to stress is achieved.

When studying ROS signalling in plant cells, it is also
important to consider that aerobic life evolved in the
presence of ROS™™' (Supplementary Box 2), suggesting
that most cells are able to prevent ROS toxicity, and that
ROS are primarily used for stress-sensing and signalling
purposes®.

To understand how the transient or continuous
accumulation of ROS in different compartments during
stress triggers defence responses, it is first important to
understand how ROS are sensed in cells.

ROS perception and redox regulation

Unlike for most ‘classical signal transduction molecules
such as hormones or peptides that have a defined set of
receptors, changes in ROS levels in cells can alter the
structure and function of multiple proteins and therefore
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Baseline conditions
(Developmental stage,
circadian rythm, light,
temperature, microbiome,
etc.)

Stresses

(Drought, heat, salinity,
light, chemical stress,
bacteria, fungi, wounding,
stress combination)

C, plants

A large group of plants in
which the initial product

of the assimilation of CO,
through photosynthesis is
3-phosphoglycerate, which
contains three carbon atoms.

Stomata

Specialized pore structures
found in the epidermal layer
of plants and used for gas
exchange with the atmosphere.

Nucleophilic attack

Attack of an electron-rich
species (the nucleophile) on
an electron-deficient species
(the electrophile), forming

a new bond between

the nucleophile and the
electrophile.

® ROS production
(active and passive)

Organelle-specific
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Fig. 2| Production and scavenging of ROS in different compartments in plants during stress. The interplay between
reactive oxygen species (ROS) production and scavenging in each cell compartment, including the cell wall and apoplast,
during stress generates compartment-specific ROS signatures (hypothetical signatures are indicated on the right). These
are integrated with other (non-ROS) retrograde signals that reach the nucleus, alter the nuclear ROS signature and trigger
defence and acclimatization responses. Organelle-to-organelle ROS communication is not depicted. A list of all ROS
metabolism reactions and enzymes involved is included in Supplementary Table 2. ER, endoplasmic reticulum, ROOH,

organic hydroperoxide; RNS, reactive nitrogen species.

impact on many different signal transduction pathways.
This ‘multiple pathway’ signalling property of ROS is
primarily mediated through oxidative post-translational
modifications (oxi-PTMs)>>=*® and allow ROS to be
broad and dynamic regulators of multiple responses to
stress (FIG. 3).

Oxi-PTM:s of different proteins during stress. Thiols in
cysteine (Cys) and methionine residues of many proteins
are susceptible to nucleophilic attack by ROS. However,
their protein microenvironment, such as the presence
of positively charged residues or hydrogen bonds, influ-
ences their reactivity”’. The first ROS-induced oxidation
intermediate of the Cys thiol is sulfenic acid (-SOH),
which is highly reactive and the formation of which is
reversible (FIC. 3a). Sulfenic acid can be further oxidized
to sulfinic (-SO,H) and sulfonic (SO,H) acids, both of
which are considered to be mostly irreversible modi-
fications triggering protein degradation (-SO,H forma-
tion can in some cases be reversed through the action
of sulfiredoxin)***°. Most common in the context of
ROS signalling events are the reactions of sulfenic acids
with proximal proteinaceous thiols that are either inter-
molecular or intramolecular (that is, mixed disulfides),
or with small molecules such as glutathione (GSH; that
is, S-glutathionylation)®** (FIC. 3a).

In addition to ROS, other reactive electrophilic spe-
cies can modify Cys thiols. For example, nitric oxide
(NO) can trigger the formation of S-nitrosothiols

(-SNO), whereas hydrogen sulfide (H,S) can react
with ~-SOH to form persulfides (-SSH). Methionine
residues of proteins can also undergo oxidation to form
methionine sulfoxides, which can be reduced back
to methionine by methionine sulfoxide reductases®.
If they are not reduced back, methionine sulfoxide can
be further converted into methionine sulfone.

Recent studies have shown that most of the oxi-PTMs
described above cause protein conformation changes
(for example, in kinases, phosphatases and transcrip-
tion factors). ROS can thus induce changes in the
properties of these proteins, including their activ-
ity, specificity and localization, which can activate or
suppress stress-response signal transduction processes.

Reversibility in ROS-induced oxi-PTMs as a key feature
of ROS signalling. The ability to reverse an oxi-PTM in
a regulated manner adds plasticity to ROS signalling
during stress, especially when it comes to integrat-
ing different stress or developmental signals, and/or
recovering from stress. Glutathionylation events are
typically reversed to form the original thiol by gluta-
redoxins (GRXs), whereas protein disulfides are mostly
reduced back by thioredoxins (TRXs)*" (FIC. 3a). TRXs
contain at least one conserved redox-active dithiol, and
form a mixed disulfide bond with their target proteins,
regulating their structure and function, whereas GRXs
function as oxidoreductases that regulate the redox state
of thiol groups or exchange a glutathionylated moiety
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Yap1

A redox-regulated transcription
factor that is essential for yeast
survival under conditions of
oxidative stress.

with a protein. These reactions can be highly selective,
adding an extra level of complexity to redox signalling
during stress. Depending on the original context of
the oxi-PTM, reversing it can reactivate or suppress
protein function, which can activate, suppress or alter
stress-response pathways.

A unique role for thiol peroxidases in ROS signalling.
Thiol-based peroxidases, such as glutathione peroxidases
(GPXs) and peroxiredoxins (PrxRs), can reduce H,0,,
peroxynitrites and different organic peroxides®. In addi-
tion to this PrxR activity, they can act as redox sensors

transducing the H,O, signal to different regulatory or
enzymatic targets (FIG. 3a). The high affinity of GPXs for
H,0,, combined with their relatively low peroxidase activ-
ity, makes some GPXs ideal candidates for these signalling
functions. For example, in yeast, Gpx3 conveys an H,O,
signal to the transcription factor Yap1 to regulate a mul-
titude of H,O, transcriptional responses”. In Arabidopsis
thaliana, a dual role of scavenging and signalling was pro-
posed for GPXL3, as loss-of-function gpxI3 mutants dis-
played higher sensitivity to H,O, treatments and, in vitro,
GPXL3 suppressed the activity of type 2C serine/threonine
protein phosphatase 2A (PP2A)”! (FIG. 3b).
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Fig. 3 | Mechanisms of ROS and redox sensing in plants. a| H,0, alters
protein structure and function through oxidation of cysteine (Cys) thiols
(directly or through the function of glutathione peroxidases (GPXs) or
peroxiredoxins (PrxRs)). H,O, also affects the ratio between oxidized and
reduced glutathione (GSH) (directly or through the function of the
ascorbate (ASC)-GSH cycle), further altering protein structure and function
through S-glutathionylation. These oxidative post-transcriptional
modifications (oxi-PTMs) can be reversed through the function of
glutaredoxins (GRXs), PrxRs and thioredoxins (TRXs), allowing reactive
oxygen species (ROS) such as H,O, to activate or suppress different cellular
functions in a reversible fashion. b | Regulation of protein phosphatase 2A
(PP2A) function by protein oxidation, used to control stomatal aperture
closing by abscisic acid (ABA) in response to water deficit stress.
c|Regulation of translocation of the transcription factor NON-EXPRESSOR
OF PATHOGENESIS-RELATED GENES 1 (NPR1) into the nucleus by
Cys oxidation and S-glutathionylation, used to control gene expression in
response to pathogens. d | Regulation of small interfering RNA binding by

Kinase

Cytoplasm

the plant protein RNASE llI-LIKE 1 (RTL1), used to control the function of the
endoribonuclease complex DICER shown to be involved in responses to
viral pathogens. e | Regulation of DNA binding by oxidation of the
transcriptional switch BRASSINAZOLE-RESISTANT 1 (BZR1), used to
control brassinosteroid responses to many different abiotic stresses,
including heat and drought. f| Regulation of the ROS/redox receptor
HYDROGEN-PEROXIDE-INDUCED CALCIUM INCREASES 1 (HPCA1) by
protein oxidation during responses to pathogen infection. Dashed arrows
indicate regulation by redox changes. APX, ascorbate peroxidase; ARF6,
AUXIN RESPONSE FACTOR 6; DHAR, DEHYDROASCORBATE
REDUCTASE; GR, GLUTATHIONE REDUCTASE; GSNO,
S-nitrosoglutathione; GSSG, glutathione disulfide; MDHAR, mono-
dehydroascorbate reductase; OST1, OPEN STOMATA 1; oxi, oxidized;
P, phosphate; PIF4, PHYTOCHROME-INTERACTING FACTOR 4;
PYR/PYL/RCAR, pyrabactin resistance/PYR-like/regulatory components of
abscisic acid receptors; RBOH, respiratory burst oxidase homologue; red,
reduced; SRX, sulfiredoxin; T, target.
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Type 2C serine/threonine
protein phosphatase 2A
(PP2A). A family of
phosphatases that generally
function as negative
regulators of different stress
responses in plants and are
inhibited by reactive oxygen
species-induced redox
reactions.

Dicer proteins
Endoribonucleases that cleave
double-stranded RNA and
pre-microRNAs into short
double-stranded RNA
fragments such as small
interfering RNA and microRNA.

Brassinosteroid

Member of a class of polyhy-
droxysteroids that function
as plant hormones involved
in many developmental
processes and responses

to stress.

Leucine-rich repeat receptor
kinase

A large protein family in plants
composed of a leucine-rich
repeat-containing extracellular
domain, a transmembrane
domain and an intracellular
kinase domain, involved in
developmental processes

and stress responses.

Quinones

A redox-active class of cyclic
organic compounds containing
two carbonyl groups, involved
in many electron transport
reactions and signalling
processes.

GSHandtheascorbate-GSHcycle.The Foyer-Asada-
Halliwell pathway (also known as the ascorbate (ASC)-
GSH cycle)>*”* is an NADPH-driven H,0,-scavenging
pathway found in many plant subcellular compartments
(Supplementary Box 1). Although an integral part of the
ASC-GSH cycle, GSH is also used by other pathways;
for example, GSH is oxidized by PrxR and/or GPX.
Although the ASC-GSH cycle was originally consid-
ered to be a potent first line of defence against excessive
H,0, accumulation, changes in the oxidation state of
the GSH pool (that is, changes in the ratio of GSH to
glutathione disulfide (GSSG)), caused by the function
of the ASC-GSH cycle, also act as a sensing mechanism
for altered ROS levels and redox perturbations during
stress”>”’°. ROS-induced changes in the GSH:GSSG
ratio can induce oxi-PTMs of Cys residues of receptors,
signal transducers, RBOHs, transcription factors and
other proteins, potentially through S-glutathionylation
(FIC.®5a). In addition to directly oxidizing Cys residues,
H,0, can therefore impact the GSH:GSSG ratio in
cells through the ASC-GSH cycle, PrxRs and GPXs,
indirectly regulating GSH-driven oxi-PTMs.

RecentexamplesofROS-inducedoxi-PTMsinvolvedin
stresssignallinginplants.ROS-driven and redox-driven
oxi-PTMs regulate many metabolic reactions in plant
cells (for example, the Calvin-Benson cycle), as well as
the activity of different kinases, phosphatases, transcrip-
tion factors and chromatin/RNA processing regulators,
ion channels and receptors during stress (FIC & b-1).

Some of the most prominent examples include
inhibition of protein phosphatases such as protein tyros-
ine phosphatase (PTP), class 2 serine/threonine protein
phosphatase (PP2A or PP2C) (FIC ®b), the catabolic phos-
phatase SAL1 and the phosphatase STARCH-EXCESS 4
(SEX4)°%7-7% which are involved in hormone, metabolic
and retrograde signalling. By contrast, ROS-induced
oxi-PTMs activate mitogen-activated protein kinase
(MAPK) cascades such as the MEKK1-MM1/MM2-
MPK4/MPKG6 cascade, and serine/threonine kinases,
which are required for the full activation of MPK3 and
MPKG6 (REFS.*-%), that play key roles in the induction of
pathogen and stress responses.

Additional examples of important oxi-PTM targets
during stress include transcriptional regulators such as
NON-EXPRESSOR OF PATHOGENESIS-RELATED
GENES 1 (NPR1) (FIG®0), heat shock transcription fac-
tors (HSFs), C-repeat-binding factors (CBFs), ANACO089,
MYB30 and RADICAL-INDUCED CELL DEATH 1
(RCD1)*#-%, which are involved in pathogen, heat, cold
and retrograde signalling, respectively. Although his-
tones are not typically subjected to oxi-PTMs, chromatin
and histone modifiers such as the methyltransferase
PROTEIN ARGININE METHYLTRANSFERASE 5
(PRMTS5) and the Dicer proteins DCL3 and DCL4 and
RNASE III-LIKE 1 (RTL1) (FIG.8d) are, linking ROS to
gene regulation®. In addition, ion channels such as the
STELAR K* OUTWARD RECTIFIER (SKOR) efflux
channel, which is involved in drought and nutrient stress
responses, were shown to undergo oxi-PTM”.

ROS were also shown to induce the oxidation
of BRASSINAZOLE-RESISTANT 1 (BZR1), which

functions as a master regulator of brassinosteroid signal-
ling in plants, causing it to bind DNA and alter stress
responses’’ (FIC.&e). Lastly, receptors such as the leucine-rich
repeat receptor kinase HYDROGEN-PEROXIDE-
INDUCED CALCIUM INCREASES 1 (HPCAL1) (FIG%/)
were recently shown to undergo oxi-PTM:s at their extra-
cellular domains leading to autophosphorylation and
subsequent activation of plasma membrane-localized
Ca’* channels”, which trigger stomatal closure in
response to stress. HPCA1 was also identified as
CANNOT RESPOND TO DMBQ 1 (CARD1) involved
in the signalling response of plants to quinones®, which
is required for the interaction of parasitic plants with
their hosts.

A recent study identified QUIESCIN SULFHYDRYL
OXIDASE 1 (QSOX1) as a redox sensor that inactivates
S-NITROSOGLUTATHIONE REDUCTASE (GSNOR),
which leads to increased levels of S-nitrosoglutathione,
S nitrosylation and inactivation of RBOHs”. QSOX1
could therefore function as part of a negative feedback
loop that decreases ROS production upon ROS accumu-
lation in cells. A recent cryogenic electron microscopy
analysis of the plant glutamate receptor-like chan-
nel GLR3.4, which plays a key role in Ca?* signalling,
revealed that GSH regulates GLR3.4 channel activity
by binding to Cys205 in the amino-terminal domain of
each subunit of the protein tetramer”. The redox level
of the cell, reflected in the levels of free GSH, could
therefore impact Ca** signalling.

The potential of ROS to induce oxi-PTMs of so
many different components of numerous signal trans-
duction pathways, as well as different ion channels and
other metabolic enzymes, highlights the important part
that ROS play in stress sensing and signalling in plants.
To understand and potentially modulate these roles,
it is important to know how ROS levels are regulated
across the different plant subcellular compartments, as
discussed next.

ROSsignallingpathwaysinplants

In the complex subcellular environment of plant cells,
the sensing of ROS and activation of different signal
transduction pathways can occur in different compart-
ments (FIC®). In general, ROS signalling can be divided
into extrinsic (apoplast and cell wall), intrinsic (cytosol
and nucleus) and organellar (chloroplast, mitochondria,
peroxisomes and other compartments) (FIG.®:a). Recent
studies revealed that these different routes can interact
or remain separate during stress.

ExtrinsicROSsignalling. The apoplast and cell wall
contain multiple enzymes that scavenge or actively
produce ROS, as well as several non-enzymatic antioxi-
dants (Supplementary Table 2). RBOHs, AQPs and cell
wall-bound peroxidases have the greatest role in ROS
signalling at the apoplast (FIC.®:a).

RBOHs are highly regulated transmembrane pro-
teins that use cytosolic NADPH to generate O,” in the
apoplast (converted to H,0, spontaneously or by super-
oxide dismutases)®*. They are thought to reside at the
plasma membrane in nanodomains together with sev-
eral ancillary proteins involved in their regulation®.
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metabolite/protein-derivedsignalling(bottom). ¢ |ROScanaccumulateathighlevels

indifferentcompartmentsofthecellandimpactH

,O,levelsinthecytosolandnuclei.

Becausedifferentcompartmentsarelinkedwitheachotherandthetransportof
ROSbetweendifferentcompartmentsisregulated,differentstressescangenerate
stimulus-specific'maps’orlandscapes’ofROSconcentrations,acrossthedifferent
cellularcompartments,thatwillalterH ,0,levelsinthecytosolandnucleiandtrigger
stress-specificacclimatizationand/ordefencemechanisms.Dashedarrowsindicate
retrogradesignalling.QuestionmarksindicatethatROSlevelsarenotknownyet.

apoROS,apoplasticreactiveoxygenspecies;CDPK,Ca

**-dependentproteinkinase;

chlROS,chloroplasticreactiveoxygenspecies;CIPK calcineurinB-like-interacting
proteinkinase;CPK,Ca *-dependentproteinkinase;cytROS,cytosolicreactiveoxygen
species;ER,endoplasmicreticulum;erROS,endoplasmicreticulum-associatedreactive
oxygenspecies;GPX,glutathioneperoxidase;GRX,glutaredoxin;HPCA1,HYDROGEN
PEROXIDE-INDUCEDCALCIUMINCREASES1;MAPK,mitogen-activatedprotein
kinase;mitROS,mitochondrialreactiveoxygenspecies;nucROS,nuclearreactive
oxygenspecies;OST1,0PENSTOMATA1;0XI1,0XIDATIVESIGNAL-INDUCIBLE1;
Pphosphate;PA,phosphatidicacid;pdROS,plasmodesmatalreactiveoxygenspecies;
perROS,peroxisomalreactiveoxygenspecies;PRX,peroxidase;PrxR,peroxiredoxin;
PDK1,3-PHOSPHOINOSITIDE-DEPENDENTPROTEINKINASE1;PLD,phospholipaseD;
PP2 proteinphosphatase?;RLK receptor-likekinase;ROPRhoofplants;SOD,superoxide
dismutase;TFtranscriptionfactor;TRX thioredoxin;vacROS,vacuolarreactiveoxygen
species;vesROS,vesicularreactiveoxygenspecies.

EF-hand domains
Helix—loop—helix structural
domains with an E and F
structural orientation of the
two B-helices, found in many
calcium-binding proteins.

ROS production by RBOHs can be regulated by
the binding of Ca®" to EF-hand domains in their
cytosolic amino-terminal region, phosphorylation/
dephosphorylation of their cytosolic amino or carboxy
terminals, binding of phosphatidic acid and/or binding
of Rho of plants (ROP) small GTP-binding proteins.
Recent studies have shown that RBOHs are also regu-
lated by ubiquitylation, persulfidation, nitrosylation,
glutathionylation and/or endocytosis®'"". RBOHs
have been called ‘the engines of ROS signalling, and are
turned ‘on’ or ‘off” in response to many different stresses
and/or other stimuli, driving the formation of ROS sig-
natures at the apoplast®>'*-1¢ (FIG ®:a). Cell wall-bound
peroxidases can also produce or scavenge ROS under
different conditions, and have been shown to regulate
apoplastic ROS levels in response to different stimuli*-'"".
Moreover, other oxidases localized to the apoplast
produce ROS"* (Supplementary Table 2).

ROS that accumulate in the apoplast can directly
or indirectly (potentially through redox-transducing
proteins), react with different receptors (for example,
HPCA1), oxidize different antioxidants and/or regulate
Ca*" and/or K* channels (FIG.®:a). However, to directly
regulate intracellular pathways, ROS produced at the
apoplast must enter cells via AQPs. AQPs are water chan-
nels that facilitate the transport of H,O, (REFS.!*!**!2%). The
opening and closing of AQPs is regulated by phospho-
rylation, acetylation and/or guanidinylation, linking
different signalling processes with ROS transport'?-'#.
ROS and/or entire complexes of RBOHs can also enter

cells via endocytosis and impact cytosolic ROS levels'*.
As ROS production via RBOHs and ROS transport via
AQPs are regulated processes, ROS levels in the apo-
plast and cytosol, and their signalling functions, can
be actively controlled in response to different stresses.
Moreover, because apoplastic ROS production and entry
into the cytosol are regulated through post-translational
modifications of RBOHs and AQPs at their cytosolic
side, and ROS accumulation at the apoplast can trigger
cytosolic phosphorylation reactions via receptors and
alter Ca?* fluxes through plasma membrane channels,
the apoplast—cytosol interface is emerging as a major
hub for many ROS-associated signal transduction
processes during stress (FIG.&:a).

IntrinsicROSsignalling. The cytosol contains many
ROS-scavenging mechanisms, as well as a few
ROS-producing enzymes (Supplementary Table 2).
These are thought to regulate ROS signals generated in
the cytosol as well as ROS signals transported from the
apoplast or the different organelles to the nucleus, via
the cytosol'*”'** (FIC ®:a). In addition, the cytosol con-
tains many different signalling hubs, such as MAPK
cascades, calcium-dependent protein kinases, calcineu-
rin B-like-interacting protein kinases, ROP/RAC small
GTPases, different phosphatases (PP2A, PP2C and
PTPs)'* and different redox sensing networks (for exam-
ple, PrxRs, GRXs and TRXs), which integrate different
ROS signals with other signalling molecules, such as
Ca?* and different hormones (FIC.®:a).

As AQPs found at the plasma membrane and/or
organelle membranes facilitate the transport of H,0, in
both directions, cytosolic H,O, levels can impact H,O,
levels in other compartments, and vice versa. In addi-
tion, retrograde and anterograde signals between orga-
nelles and the nucleus are relayed via the cytosol*>*"#>*¢.
Indeed, manipulating the ability of the cytosol to scav-
enge ROS can change signalling in response to stress
and alter acclimatization and/or defence responses,
supporting a key role for the cytosol in regulating
ROS signalling'#”!?%%13! Furthermore, ROS gradi-
ents can form within cells, suggesting that cytosolic
ROS-scavenging mechanisms attenuate ROS signals'*.
Thus, the cytosol plays an important role in decoding
and integrating different ROS signatures generated in
different cell compartments, transferring the informa-
tion stored in these signatures to the nucleus. Moreover,
the ROS-dependent and redox-dependent activation of
many transcriptional regulators that control plant stress
responses, such as NPR1, HSFA and ANAC transcrip-
tion factors, occurs in the cytosol before these proteins
enter the nucleus*®'#%,

Compared with ROS regulation in the cytosol, regu-
lation of ROS and redox levels in the nucleus is poorly
understood. The plant nucleus contains several ROS
and redox-regulating proteins, such as GRXs, TRXs,
PrxRs and GPXs, as well as GSH"*”"** (Supplementary
Table 2). These can regulate oxi-PTM:s of different tran-
scription factors, as well as attenuate ROS signals in the
nucleus'*-'*!. The findings that many redox-responsive
transcriptional regulators are activated in the cytosol
before entering the nucleus suggests that ROS levels in
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Stromules, peroxules

and matrixules

Dynamic tubular membrane
structures extending from

the surface of chloroplasts,
peroxisomes and mitochondria,
respectively, used for the
transport of signals between
different organelles and the
nucleus.

Salicylic acid

A phytohormone,
characterized by an aromatic
ring and a hydroxy group,
involved in the response of
plants to different biotic and
abiotic stresses.

Plasmodesmata

Small channels or pores that
transverse the plant cell walls
connecting the cytoplasm
and plasma membrane

of neighbouring cells with
each other, establishing
metabolic and signalling
bridges between cells.

the nucleus are maintained under control to prevent
extreme fluctuations which could cause DNA damage
and mutations. One of the most important questions
related to intrinsic ROS signalling is how can differ-
ent ROS signals, generated in the different subcel-
lular compartments during different stresses, reach
the nucleus through the cytosol without losing their
specificity?®® A possibility that has been proposed by
recent studies’*>!**-'*? is the inclusion of a separate ROS
signalling network, that of organelles.

Organelle ROS signalling network. The different

plant cell organelles contain multiple ROS-scavenging
and ROS-producing mechanisms that regulate ROS
signalling within each organelle and participate in
organelle-to-organelle and organelle-to-nucleus
communication®*’>'** (Supplementary Table 2). The
levels of ROS in each compartment are determined
by an interplay between three different processes:
organelle-autonomous regulation, nucleus-controlled
retrograde/anterograde regulation and direct export/
import (FIC®:b). Recent studies have shown that some
ROS signals between organelles or from organelles to
the nucleus do not cross the cytosol or cross the cyto-
sol only over very short distances’ . At least three
different mechanisms are thought to play a role in
this process: physical proximity between organelles
(resulting in shorter distances and gradients), physical
connections between different organelles and the
nucleus, enabled by long tube-like extensions (for
example, stromules, peroxules and matrixules), and
organelle-to-organelle protein complexes that form
membrane contact sites and may contain AQPs* (FIG &ib).
Examples of these mechanisms include stress-response
ROS signalling mediated by subpopulations of chloro-
plasts found close to the nucleus, and the formation of
stromules that mediate ROS signals between chloro-
plasts and the nucleus in response to pathogens, excess
light, H,O, or salicylic acid***'**'**, The levels of ROS in
one organelle could also impact the levels of ROS
in another organelle or the nucleus through different
intermediate metabolites, hormones and/or the mobi-
lization of different proteins*>**#>1**1%0 (FIC.®ib). The
concept of a subcellular network of organelles that can
communicate with each other via ROS and other signals
is therefore emerging (FIC ®:c). Responses to stresses that
primarily trigger extrinsic or intrinsic ROS signalling
could therefore be spatially and/or temporally (and there-
fore partially or completely) separated from responses
to stresses mediated by this organelle-to-organelle or
organelle-to-nucleus ROS signalling network (FIG®:c),
and this separation could be a mechanism for ROS to
convey specific information to the nucleus regarding
the type of stress the plant encounters. While most
studies have focused on ROS signalling in chloroplasts,
mitochondria and peroxisomes, little is known about
ROS signalling and metabolism in plasmodesmata, the
endoplasmic reticulum and the vacuole (FIC® and
Supplementary Table 2). The endoplasmic reticulum
and the vacuole are thought to have highly oxidized envi-
ronments, and plasmodesmata were recently found to
play an important role in cell-to-cell ROS signalling®*"'.

The newly gained insights into how different ROS
signatures are formed in cells during stress and how
ROS levels in different compartments are linked with
each other (FIGS. 2 4c) suggest that different stresses could
generate different stress-specific ‘maps’ or ‘landscapes’
of ROS signatures across the entire cell. These could be
decoded by multiple ROS sensors found in the different
compartments (FIG). The sensing and triggering of any
specific response to any particular stress should there-
fore be viewed as a response to a change in the entire
ROS signalling landscape of the cell rather than as a
response to an isolated event occurring in a particular
compartment. Moreover, because ROS can accumulate
to high levels in some compartments and remain at high
levels for a long time without causing toxic effects —
for example, levels of ROS produced in the apoplast of
Arabidopsis by RBOHD remained high for 3-6h fol-
lowing a 10-min excess light stress treatment)'*, some
cell compartments could serve as a reservoir of ROS.
Similarly to calcium being stored in certain compart-
ments, such as the endoplasmic reticulum or mito-
chondria, and used for signalling by opening or closing
calcium channels, ROS could be kept at high levels in
some compartments (for example, by active production
through RBOHs) and used for signalling by opening or
closing of AQPs (FIC Bic).

Regulationofplantdefenceandacclimatization
byROS

Changes in ROS levels in different cell compartments
and integration of such signals during stress activate
defence and acclimatization responses.

Integration of stress sensing with ROS signalling.
Plants have different sensors and receptors for changes
in light, temperature and osmotic pressure. These
include Ca’*-permeable channels such as REDUCED
HYPEROSMOLALITY, INDUCED CA?* INCREASE 1
(OSCA1) and MECHANOSENSITIVE CHANNEL
OF SMALL CONDUCTANCE-LIKE 10 (MSL10) that
detect osmotic changes; Ca**-permeable channels such
as cyclic nucleotide-gated channels that detect heat
stress; receptor-like kinases and ROP proteins that
detect osmotic changes; and photoreceptors such as
PHYTOCHROME B (PHYB) and cryptochrome that
detect changes in light quality and intensity. Retrograde
signalling and release of ROS and Ca** from chloro-
plasts are also thought to be involved in the sensing of
light stress in plants, and PHYB also detects changes in
temperature'>>'¥’ (FIG ®a).

The physical proximity of some of these receptors to
RBOH:s (for example, when they reside in the same nan-
odomains at the plasma membrane or when chloroplasts
are near the plasma membrane or nucleus) could facil-
itate ROS production during the initial stages of stress
sensing and responses™****-% The initial sensing of abi-
otic stresses by plants through different receptors and
sensors that leads to rapid changes in Ca®* signalling
and phosphorylation reactions could therefore be directly
linked to ROS production (FIC.%a). This process is similar
to the sensing of pathogens, whereby Ca?*-dependent
and/or phosphorylation-dependent activation of RBOHs
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Fig. 5| ROS in early and late responses of plants to stress. a| Different plant sensors for changes in environmental
conditions such as temperature, light intensity/quality and osmotic potential are directly linked to reactive oxygen species
(ROS) signalling through the respiratory burst oxidase homologue (RBOH) signalling hub. These links allow ROS signalling
to be triggered during early stages of stress sensing in plants. b | During early responses (seconds to minutes of stress
initiation; stages 1 and 2), ROS produced ‘actively’ or ‘passively’ in cells are used to sense stress and trigger signal
transduction mechanisms, while during late responses (minutes to hours of stress initiation; stage 3), ROS are used to
regulate different networks and metabolic responses, balance plant acclimatization and defence, and induce stress
memory. Dashed arrows indicate ROS and other stress metabolites used for early stress signalling. Question marks indicate
possible links. ANN1, ANNEXIN 1; CDPK, Ca**-dependent protein kinase; CNGC, cyclic nucleotide-gated channel; CRY,
cryptochrome; ETC, electron transport chain; MSL10, MECHANOSENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 10;
NO, nitric oxide; OSCA1, REDUCED HYPEROSMOLALITY, INDUCED CA?* INCREASE 1; P, phosphate; PA, phosphatidic
acid; PHYB, PHYTOCHROME B; PLD, phospholipase D; PPI, protein—protein interaction; RLK, receptor-like kinase;

ROP, Rho of plants; Ubi, ubiquitylation.

rapidly triggers ROS production?®®®-101106=10%111-113,
highlighting the evolutionary importance of ROS sig-
nalling for plants and the central role of RBOHs in

This finding is surprising because it was traditionally
thought that during light stress the excess ROS pro-
duced in chloroplasts diffuse to the cytosol through

these processes.

One of the most intriguing findings in recent years
is that in the absence of certain RBOHs, light stress
does not induce rapid ROS accumulation in plants'>'®.

AQPs®, and this raises the possibility that during light
stress chloroplasts are capable of managing their inter-
nal ROS levels, and ROS accumulation in cells is pre-
dominantly the result of ROS production for signalling
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by RBOHs. It is also possible that two different popu-
lations of chloroplasts are involved in ROS signalling
during light stress: (1) nucleus-associated chloroplasts
that mediate chloroplast-to-nucleus signalling and (2)
plasma membrane-associated chloroplasts that trigger
RBOH-driven ROS signals (FIC. 4¢). O,~, H,0, or 'O,
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light stress could also trigger different retrograde signals
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that activate ROS production by RBOHs. Alternatively,
PHYB could serve as the light sensor causing the
activation of RBOHs during light stress'* (FIC. 5a).

The dynamics of ROS signalling during stress. Responses
to stress can occur within seconds to minutes of stress
perception, and involve changes in the metabolome and
transcriptome of plants. These early responses initiate
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X Fig.6 | Integration of ROS signalling with stress-response networks in plants and

transcriptional regulation by H,0, during stress. a [Thesensingofstresstriggers
differenttranscriptionfactornetworksthroughdifferentsignallinghubsinvolvingCa
phosphorylation,phytohormonefunctionandmanyothersignaltransductionreactions.
Reactiveoxygenspecies(ROS)altermanycomponentsofthesesignallinghubsthrough
oxidativepost-translationalmodificationsanddirectlytriggerROS-dependentand
redox-dependenttranscriptionfactornetworks.ROSalsoregulatetranscriptionby
modifyingproteinsinvolvedinmRNAsplicing,microRNA(miRNA)regulationandthe
Mediatorcomplex.TheintegrationofROSwithotherstress-responsesignallingnetworks
tunesthesenetworkstotheoveralllevelsofROSincellsthatcanserveasaninitialalert,
stress-levelmonitorsand/ormemorysignals.Thedashedarrowsindicateearlyresponses
tostress. b|H ,O,cantriggerthemobilizationandactivationofTFssuchasheatshock
transcriptionfactorA(HSFA)proteinsor  ArabidopsisNACdomain-containingproteins
(ANAC)fromthecytosolorendoplasmicreticulum,respectivelytothenucleus,trigger
theactivationofmitogen-activatedproteinkinase(MAPK)cascadesthatphosphorylate
andactivatetranscriptionfactorssuchasWRKYproteinsandAP2/ethylene-response
factors(ERFs)and/ordirectlyimpactthebindingoftranscriptionfactorssuchasMYB30
toDNA TheseregulatoryfunctionsofROSarecontrolledbyH ,0,-derivedoxidative
post-transcriptionalmodificationsanddirectlylinktranscriptiontoH ~,0,levelsincells
duringresponsestobioticandabioticstresses.2 CPA two-cysteineperoxiredoxinA;

ABA abscisicacid;AOX alternativeoxidase;APX,ascorbateperoxidase;AQPaquaporin;
ASC,ascorbate;CAT,catalase;CIPK calcineurinB-like-interactingproteinkinase;
CPK,Ca **-dependentproteinkinase;DREB2A,dehydration-responsiveelement-
bindingprotein2A;HSPheatshockprotein;ET.ethylene;GRX,glutaredoxin;GSH,
glutathione;lAA,indole-3-aceticacid;JA,jasmonicacid;MBF1C,MULTIPROTEIN
BRIDGINGFACTOR1C;miRNA,microRNA;NO,nitricoxide;OST1,0PENSTOMATA1;
OXI1,0XIDATIVESIGNAL-INDUCIBLE1;Pphosphate;PA,phosphatidicacid;
PAD3,PHYTOALEXINDEFICIENT3;PP2 proteinphosphatase2;PPl,protein-protein
interaction;PR pathogen-relatedprotein;PRX peroxidase;RAP2.4,RELATEDTO
APETALAZ2.4;RBOH respiratoryburstoxidasehomologue;RCD1,RADICAL-INDUCED
CELLDEATH1;RLK receptor-likekinase;ROPRhoofplants;SA,salicylicacid,;
SOTsulfotransferase;TFtranscriptionfactor;TPX thiolperoxidase;TRX thioredoxin;
Ubi,ubiquitylation.

2+
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slower responses that activate many different defence
and acclimatization networks, enabling the plant to sur-
vive the stress and eventually recover from it'*'~'’. It was
recently shown that ROS are involved in both early and
late responses to stress, and that this involvement is an
outcome of both ‘active’ and ‘passive’ ROS production
(FIG.®b). This new view of plant responses to stress
suggests that different stresses are rapidly sensed by
stress-specific receptors (FIC ®a) that trigger ROS produc-
tion by RBOHSs and/or cause stress-specific imbalances
that alter the levels of ROS and other stress-associated
metabolites (FIC&b). This process occurs within seconds
to minutes of stress initiation, and is coordinated with
changes in redox, Ca?* levels, phosphorylation and other
signalling events that trigger stress-specific signal trans-
duction pathways. The activation of these pathways is
also accompanied by rapid increases in the levels of hor-
mones, for example newly synthesized jasmonic acid, or
release of abscisic acid and salicylic acid from conjugated

formszi,lfa?—lm

The activation of acclimatization and defence net-
works resulting from these early signalling events fur-
ther alters ROS signatures, increasing plant resilience to
stress'! 2110319171 (FIG ®Bb). Some aspects of this height-
ened state of resistance can be long-lasting or trans-
mitted to the next generation through ROS-associated
epigenetic mechanisms'”>. ROS are thus involved in
almost all stages of early and late responses to stress, and
are intimately linked with many of the pathways, net-
works and hormones required for plant survival during

Mediator complex

An important component of
the eukaryotic transcriptional
machinery, linking different
transcription factors with RNA

polymerase II. stress (FIG.EDb).

ROSrolesduringexposuretomultiplestresses.In nature,
plants are often exposed to different stresses simulta-
neously; for example, a combination of drought, high
light levels and heat, which activates multiple signalling
pathways, referred to as ‘stress combination’ ROS were
found to be essential for plant acclimatization to such
conditions®. Indeed, mutants deficient in ASCORBATE
PEROXIDASE 1 (APX1) are more sensitive to a com-
bination of drought and heat stress, and mutants defi-
cient in RBOHD are more susceptible to conditions
of multifactorial stress combination'’*'”*. During
the integration of cold stress and pathogen responses, the
ROS-regulated MPK3/MPK6 and MPK4 cascades play
antagonistic roles in the triggering of defence and accli-
matization networks'”. ROS thus have an important role
in the integration of different signals generated during
stress combination. Different stresses simultaneously or
sequentially impacting a plant could induce different
ROS signatures, and the integration of these could atten-
uate or regulate the overall response of plants to complex
environmental conditions. Integration of two different
ROS signatures could also occur when a particular
stress (for example, heat) occurs on the background
of a particular developmental stage (for example, plant
reproduction)'’® or during interactions with the
plant microbiome'”’. Under such conditions, the overall
levels of ROS are integrated to trigger a specific or broad
state of plant tolerance or susceptibility to stress.

Inductionofplantresiliencethroughtranscriptional
regulationbyROS. Stress sensing by receptors and
ROS-activated redox sensors triggers and modulates
different transcription factor networks that enable
the plant to respond to a wide spectrum of different
conditions (FIG.5).

Transcriptional responses are regulated in plants by
two distinct processes: (1) stress-derived or ROS-derived
changes in phosphorylation, Ca**-binding, sumoylation
and/or other signal transduction mechanisms that alter
transcription factor function and (2) direct or indirect
ROS-induced redox regulation®'?%!33-136178-1%5 "These two
processes are interlinked because ROS signalling and
other signalling events (for example, those mediated by
Ca*" and phosphorylation) are also interconnected, for
example through RBOHs and AQPs (FICS. 4a,6a).

Redox-dependent modulation of gene expression
in response to stress is also achieved through other
mechanisms. Subunits of the plant Mediator complex
are redox regulated, and ROS can alter the levels and
function of different microRNAs, as well as modulate
mRNA splicing'**"'* (FIC®a). The effect of ROS on these
mechanisms further tunes plant stress responses and
connects them to cellular ROS levels. For example, an
increase in ROS levels could inhibit the expression of
groups of housekeeping genes that require extensive
splicing, microRNA function or interactions with the
Mediator complex for their expression (for example,
during heat stress)'®'.

In addition to regulating transcription through
genetic and/or epigenetic mechanisms during stress, ROS
affect the translocation of different redox-regulated tran-
scriptional regulators, such as NPR1, HSFA8/HSFA1A,
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Unfolded protein response
A cellular stress response
pathway triggered by the
presence of unfolded proteins
inside the endoplasmic
reticulum.

MBF1C and ANACO013/ANACO017/ANAC 089, which
are involved in responses to biotic and abiotic stresses,
from the cytosol or the outer membranes of the endo-
plasmic reticulum to the nucleus following their
activation®'*-1%¢1% (FIG ®Db). The translocation of these
transcriptional regulators into the nucleus then triggers
gene expression networks and enhances plant resilience
to stress. A recent study that used a supervised learn-
ing approach to generate an ROS-response integrated
gene regulatory network, using DNA motifs, open chro-
matin regions, transcription factor-binding sites and
expression-based regulatory interactions, discovered
several new ROS-regulated transcription factors and
defined some of the regulatory networks and hubs they
control'®. Transcriptomic studies of mutants deficient in
regulatory hubs such as RBOHs, MAPK cascades, HSFs
and different Ca?* signalling pathways also revealed how
these hubs integrate ROS signals with other signal trans-
duction networks activated during stress (FICS ®:a,6). For
example, a study examining the transcriptome response
of the rbohD mutant to light stress revealed that RBOHD
is required for the expression of many early response
transcripts'®, including the transcription factor MYB30,
which was found to be important in plant responses to oxi-
dative stress'®’. Moreover, MYB30 functions upstream of
many other transcription factors to regulate thousands
of transcripts in response to light stress'** (FIG.5b).

Transcriptionalcontrolofabioticandbiotic
stressresponses

Redox-regulated transcription factors have roles in the
response to heat stress, pathogens and excess light, as
discussed next.

Responsesto heatstress.In response to increased

temperatures, ROS accumulate in the cytosol and
nuclei of plants®. The elevated levels of ROS cause
the redox-dependent activation and translocation of
HSFA1 and MBFI1C from the cytosol to the nuclei**'®
(FIG.®5b). Moreover, BZIP28 is activated and translo-
cated from the endoplasmic reticulum to the nucleus'®.
HSFA and MBF1C cooperate in the transcriptional
activation of many heat shock proteins and other
transcription factors, such as dehydration-responsive
element-binding factors, and are both required for
the acquisition of thermotolerance'' (FIC &b). BZIP28
cooperates with BZIP60 to transcriptionally activate
the unfolded protein response following heat stress'®.
Furthermore, the redox state of the chloroplast is impor-
tant for the induction of heat stress tolerance, suggesting
that chloroplasts also play a part in these responses'®’.

Pathogenresponses.Responses to pathogen infection

following pathogen recognition (for example, by plasma
membrane-localized pattern recognition receptors)
are often initiated by a transient oxidative burst, medi-
ated by RBOHs or peroxidases at the apoplast®™'”'. This
burst is followed by an increase in the reduced state of
the cytoplasm, the accumulation of the plant hormone
salicylic acid'*® and the deposition of callose at the cell
wall and plasmodesmata, which prevents pathogen
spread’”!. The enhanced accumulation of ROS and

salicylic acid following pathogen recognition triggers
a redox-regulated transcriptional response mediated
by NPR1. Under controlled growth conditions, NPR1
is localized to the cytoplasm as an oligomer held by
intermolecular Cys bonds involving Cys82 and Cys216
(REFS.®5) (FIC®Bc). Salicylic acid triggers a reduction of
these bonds that is mediated by thioredoxins (TRX3
and TRX5) and results in monomerization of NPR1
(REF"?). Monomeric NPRI1 is transported to the nucleus,
where it interacts in a redox-dependent manner with
TGA1, and activates the transcription of different
pathogenesis-related protein-encoding genes and tran-
scription factors, such as WRKY'*. Interestingly, the
plant hormone jasmonic acid antagonizes this process
by promoting the S nitrosylation of NPR1 on Cys156,
causing its oligomerization'** (FIG.&5c). NPR1 is also
involved in the response to other abiotic stresses (for
example, salinity)'”, and could be an important inte-
grator between daily changes in redox levels and plant

responses to biotic and abiotic stresses'*".

Excesslightstress. Excess light stress causes oxidation of
the chloroplast, apoplast and cytosol, regulating nuclear
transcription through multiple redox-response tran-
scription factors, including MYB30, ZAT10, ZAT12,
RELATED TO APETALA 2 (RAP2) and different
HSFs'?71851941% During light stress, the chloroplastic
3 -phosphoadenosine 5 -phosphate (PAP) phosphatase
SAL1 undergoes redox-dependent oxidative inactiva-
tion. This leads to the accumulation of PAP, which serves
as a retrograde signal to regulate gene expression in the
nuclei’”**. Interestingly, PAP is associated with another
retrograde signalling pathway involving the mitochon-
dria. In this pathway, PAP levels are affected by an inter-
play between the redox-activated ANAC transcription
factors that translocate from the endoplasmic reticulum
to the cytosol and the negative regulator RCD1* (FIC®b).
ROS and retrograde signals are therefore interlinked and
mediate many signal transduction responses to stress,
and this integration could play an important role when
pathogen infection or heat stress occurs (for example,
under conditions of excess light).

The transcriptional changes triggered in response
to elevated ROS levels during stress (FIC &) cause the
enhanced accumulation of different antioxidants, osm-
oprotectants, molecular chaperones, pathogen-response
proteins and many other enzymes and proteins that
together enable the plant to resist the stress and
survive!=2H191741861% Tn the next section we discuss how
ROS signals can propagate from their localized site of
production to other cells and tissues of the plant and
coordinate its systemic, whole-plant, responses to stress.

ROSandcell-to-cellsignalling

ROS such as O,” or H,0, are rapidly scavenged in cells,
so they cannot diffuse over long distances in different
biological systems. Instead, an ‘altered ROS state} such as
‘excessive ROS accumulation, can propagate (for exam-
ple, through the regulation of ROS production, scaveng-
ing and transport mechanisms) between neighbouring
cells, between different organelles or along membranes
(FIC®a). This new concept in ROS signalling stems from
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studies that reported cell-to-cell (in plants)!!®!51,163197-200
and mitochondrion-to-mitochondrion (in mamma-
lian cells)?*'-** signalling pathways that involve an
‘ROS-induced-ROS production’ response by each cell or
organelle that communicate with another cell or orga-
nelle, and could in principle be extended to membrane
nanodomain-to-nanodomain ROS signalling (FIG. 7a).
Although mitochondrion-to-mitochondrion ROS sig-
nalling has not been demonstrated in plants, plants
have an extensive network of organelle ROS signalling

REVIEWS

Fig. 7 | Propagation of ROS signals within and between
cells. a| Because reactive oxygen species (ROS) are rapidly
scavenged in cells, they cannot diffuse over long distances
in different biological systems. Instead, the state of their
‘production, scavenging and transport’ can propagate

as an ‘on-off ROS accumulation’ or ‘altered ROS’ state
between cells (top), between organelles (middle) or along
membranes (bottom). This process, termed the ‘ROS wave’,
is achieved by the coupling of ROS sensing, production and
transport mechanisms between cells, between organelles
or along membranes, and could involve calcium signalling
and/or different protein phosphorylation networks.

b | Time-lapse imaging of whole-plant ROS accumulation
in Arabidopsis thaliana plants subjected to a localized
stress such as wounding or excess light showing the
spread of the ROS wave from the treated cells on one

leaf (arrows) to the entire plants within minutes. Dashed
arrows indicate the propagation of ROS. The colour

scale bar in part b indicates signal intensity. AQP, aquaporin;
CDPK, Ca’*-dependent protein kinase; P, phosphate;
RBOH, respiratory burst oxidase homologue.

(FIG. 4c), which is in principle capable of supporting sim-
ilar organelle-to-organelle ROS transport and signalling
cascades.

As the rigid structure of plant cell walls keeps cells
in close physical proximity, ROS levels and/or the redox
status in one cell can affect neighbouring cells via plas-
modesmata, the cell wall and/or the apoplast. Recent
studies have shown that the apoplast and plasmodesmata
are involved in transducing RBOH-mediated cell-to-cell
ROS and redox signals in plants!®!-16%197:200204 (F|G, 73).
This process, termed the ‘ROS wave), is autopropagat-
ing and capable of transferring stress-induced ROS and
redox signals from cell to cell over long distances, some-
times spanning the entire length of the plant (FIC. 7b). The
main difference between ROS diffusion and an auto-
propagating process, such as the ROS wave, is that it is
not ROS per se that are mobilized between two different
locations; instead, it is a state of ‘ROS production, scav-
enging and transport’ that becomes activated across cells
and along tissues (FIGS. 1,7). This distinction is impor-
tant because unlike many other signalling molecules
in plants, ROS are likely to be scavenged during trans-
port over long distances. However, an autopropagating
state of ROS production, scavenging and transport can
maintain a certain steady-state ROS level or signature at
almost any cellular location along its path. Moreover, it
was recently reported that two ROS waves originating
from different tissues of the same plant can integrate
two different stress-induced signals, leading to a state
of enhanced acclimatization of the entire plant'*. This
finding indicates that the intracellular networks of ROS
signalling in plants can extend to become an intercellular
cell-to-cell network that integrates ROS signals from dif-
ferent cells or tissues and coordinate whole-plant phys-
iological responses that involve different molecular and
metabolic mechanisms'®>!6%16%196:205206,

Conclusions and perspectives

The study of ROS biology in plants started with a focus
on ROS scavenging and production mechanisms in
chloroplasts. This emphasis has changed into studying
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