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Flat Tori with Large Laplacian Eigenvalues in Dimensions up to Eight*
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Abstract. We consider the optimization problem of maximizing the kth Laplacian eigenvalue, \lambda k, over flat
d-dimensional tori of fixed volume. For k= 1, this problem is equivalent to the densest lattice sphere
packing problem. For larger k, this is equivalent to the NP-hard problem of finding the d-dimensional
(dual) lattice with the longest kth shortest lattice vector. As a result of extensive computations,
for d \leq 8, we obtain a sequence of flat tori, Tk,d, each of volume one, such that the kth Laplacian
eigenvalue of Tk,d is very large; for each (finite) k the kth eigenvalue exceeds the value in (the k\rightarrow \infty 
asymptotic) Weyl's law by a factor between 1.54 and 2.01, depending on the dimension. Stationarity
conditions are derived and numerically verified for Tk,d, and we describe the degeneration of the tori
as k\rightarrow \infty .
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1. Introduction. Lattice models play an essential role in a variety of applications, includ-
ing describing periodic phenomena or arrangements in physical systems and in computational
settings where they can be used as models to transmit or store data. In these settings, it
is often of fundamental and practical interest to identify lattices with ``extremal"" properties.
Specific examples of extremal lattice problems include the following:

1. In analog-to-digital data conversion, the best quantizer problem is to minimize the
error when quantizing a source message, and it can be formulated as finding a lattice
that minimizes the mean squared error on its Voronoi cell [9, p. 57]. Quantizers
are used in, e.g., a typical medium- or long-distance landline telephone system. In
designing channel code schemes, the channel-coding problem seeks to minimize the
error in decoding a signal with added white noise inherently present due to physical
signal transmission. This problem can be formulated as finding a lattice of determinant
1 that minimizes the error probability [9, p. 69]. In physical layer security, the
objective is to properly take advantage of white noise to minimize the probability
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FLAT TORI WITH LARGE LAPLACIAN EIGENVALUES 173

an eavesdropper can correctly decode a signal. This can be formulated as finding a
lattice that minimizes a channel model-dependent value such as Eve's correct decoding
probability [15], secrecy gain [38, 30, 5], etc..

2. Sphere packing problems can sometimes be formulated as extremal lattice problems [9].
For example, the lattice sphere packing density problem, the highest kissing number
problem, and the thinnest covering problem are equivalent to finding lattices with
the longest shortest vector, the highest count of short vectors, and Voronoi cells with
minimal circumradius, respectively. These fundamental problems have been solved in
certain low dimensions but are still outstanding in higher dimensions.

3. In a variety of applications, it is of fundamental and applied interest to bound eigen-
values of the Laplacian operator; applications include controlling the frequencies of
mechanical vibrations [40, 19], maximizing heat transfer in conducting materials [10,
28, 20], bandgap design in photonic crystals [39, 12, 11, 23, 43], and optimal arrange-
ments of resources in population dynamics [3, 31, 22]. Eigenvalues of the Laplacian
operator are generally impossible to explicitly compute, except on domains with sim-
ple geometry such as spheres and tori. The explicit formula of eigenvalues on these
simple domains are important in understanding the properties and structure of the
spectrum. It is well known that there is a one-to-one correspondence between the
Laplacian eigenvalues of a flat torus and the lengths of vectors in an associated lattice.
Hence, the study of extremal eigenvalues on flat tori yields a simple but interesting
model problem that can give insight into the extremal behavior of eigenvalues in these
applications, especially in higher dimensions.

Motivated by these applications, there has been a variety of research in developing methods
that can compute extremal lattices. In this paper, we consider a particular problem in this
area related to eigenvalues of flat tori.

Eigenvalues of flat tori. Consider the d-dimensional lattice \Gamma B :=BZd generated by the
basis matrix B \in GL(d,R) and the d-dimensional flat torus TB :=Rd/\Gamma B. The volume of TB is
given by vol(TB) = | detB| . Each eigenpair, (\lambda ,\psi ), of the Laplacian,  - \Delta , on TB corresponds
to an element of the dual lattice, \Gamma \ast 

B =B - tZd =\Gamma B - t :

\lambda = 4\pi 2\| w\| 2, \psi (x) = e2\pi i\langle x,w\rangle for all x\in TB, w \in \Gamma \ast 
B.

The multiplicity of each nonzero eigenvalue is even since w \in \Gamma \ast 
B and  - w correspond to the

same eigenvalue. It follows that the eigenvalues of  - \Delta on TB, enumerated in increasing order
including multiplicity,

0 = \lambda 0 <\lambda 1 = \lambda 2 \leq \lambda 3 = \lambda 4 \leq \cdot \cdot \cdot ,
are characterized by the Courant--Fischer formula,

(1) \lambda k(TB) = min
E\in Zd

k+1

max
v\in E

4\pi 2\| B - tv\| 2,

where Zd
k := \{ E \subset Zd : | E| = k\} . Since the multiplicity is even, throughout this manuscript, it

will be convenient to use the notation \kappa := 2\lceil k2\rceil , where \lceil \cdot \rceil is the ceiling function.1 For k \in N,
define the volume-normalized Laplacian eigenvalue , \=\lambda k,d : GL(d,R)\rightarrow R, by

1One may remove the systematic double multiplicities from the enumeration of the spectrum and obtain
the so-called desymmetrized spectrum ; however, we prefer to retain the repeated values.
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174 C.-Y. KAO, B. OSTING, AND J. C. TURNER

(2) \=\lambda k,d(B) = \lambda k(TB) \cdot vol(TB)
2

d .

The volume-normalized eigenvalues are scale invariant in the sense that \=\lambda k,d(\alpha B) = \=\lambda k,d(B)
for all \alpha \in R \setminus \{ 0\} . Weyl's law states that, for any B \in GL(d,R),

(3) \=\lambda k,d(B)\sim gd \pi 
2 k

2

d as k\rightarrow \infty ,

where gd = 4(\omega d)
 - 2

d and \omega d =
\pi 

d
2

\Gamma ( d

2
+1)

is the volume of the unit ball in Rd.

In this work, for fixed k, d\in N, we consider the eigenvalue optimization problem

(4) \Lambda k,d = max
B\in GL(d,R)

\=\lambda k,d(B).

The existence of a matrix B \star attaining the maximum in (4) was proven in [26, Thm. 1.1].
The tori TA and TB are isometric if and only if A and B are equivalent in

O(d,R) \setminus GL(d,R)/GL(d,Z).

Here, O(d,R) is the group of orthogonal matrices, and GL(d,Z) is the group of unimodular
matrices. Since the Laplacian spectrum is preserved by isometry, it follows that the solution
to the optimization problem in (4) is not unique. Uniqueness up to isometry has been proved
only for dimensions d= 1 - 8 and 24 but remains an open problem for other dimensions [42,
44, 8]. Minkowski's first fundamental theorem implies that \Lambda 1,d \leq 4\pi 2d; see, e.g., Theorem
22.1 and Corollary 22.1 in [16]. Together with the Courant--Fischer formula (1), this result
implies that \Lambda k,d \leq d\pi 2\kappa 2.

For general d and k, the maximizer in (4) is unknown. In dimension d = 1, it is easy to
see that \Lambda k,1 = \pi 2\kappa 2. In dimension d= 2, it was shown by Berger that \Lambda 1,2 =

8\pi 2\surd 
3
is attained

by the basis B1,2 = (
1 1

2

0
\surd 

3

2

) - t, which generates the equilateral torus [4]. It was shown in [21]

that, for k\geq 1,

(5) Bk,2 =

\Biggl( 
1 1

2

0
\surd 
\kappa 2 - 1
2

\Biggr)  - t

is a local maximum with value \=\lambda k,2 = 2\pi 2\kappa 2\surd 
\kappa 2 - 1

. It is shown that this lattice is globally opti-

mal for k = 1,2,3,4. For each k, the corresponding eigenvalue has multiplicity six, and as
k \rightarrow \infty , the flat tori generated by these bases degenerate. In Figure 1 (top), we plot the
ellipse

\biggl\{ 
v \in R2 : \| B - t

k,2v\| 2 =
\kappa 2

4

\biggr\} 

for k= 1,3,5,7. The kth shortest lattice vectors are indicated with a green dot, which by the
Courant--Fischer formula (1) corresponds to \lambda k. Note that, for each k, the ellipse intersects
6 points, corresponding to the multiplicity six kth eigenvalue. As k increases, the ellipses
elongate in one direction.
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Figure 1. The ellipses (d= 2) and ellipsoids (d= 3) corresponding to the Gram matrix G\circ 
k,d for k= 1,3,5,7.

The intersecting lattice points are indicated.

Principal eigenvalue. We first review the relationship between the principal volume-
normalized eigenvalue and the lattice sphere packing problem . Recall that, for a given lattice
\Gamma A, the density of a sphere packing with centers at \Gamma A is given by

\scrP (A) = proportion of space that is occupied by the spheres.

The kissing number , \tau (A), associated with the sphere packing is the number of other spheres
that each sphere touches.

Using the Courant--Fischer formula (1) with k= 1, \lambda 1(TB) =minE\in Zd\setminus \{ 0\} 4\pi 2\| B - tv\| 2, we
see that

\sqrt{} 
\lambda 1

4\pi 2 is the length of the shortest vector in the lattice \Gamma \ast 
B. The density of a packing

of balls with centers on the dual lattice \Gamma \ast 
B is

\scrP (B\ast ) =
volume of ball

volume of fundamental region
=

\omega d\rho 
d

| detB - t| = \omega d\rho 
d| detB| ,

where \rho is the radius of the balls. Observing that the shortest vector in the lattice is exactly

twice the radius of the ball packing, we have
\sqrt{} 

\lambda 1

4\pi 2 = 2\rho , giving \rho 2 = \lambda 1

16\pi 2 . It then follows that

\scrP 2

d = \omega 
2

d

d \rho 
2(detB)

2

d = \omega 
2

d

d
\lambda 1

16\pi 2 (detB)
2

d = \omega 
2

d

d
1

16\pi 2
\=\lambda 1. Rearranging gives the following lemma.
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176 C.-Y. KAO, B. OSTING, AND J. C. TURNER

Table 1
For dimensions d = 1, . . . ,8, we tabulate the lattice with the largest known density, the corresponding

kissing number \tau (B\ast ), the density \scrP (B\ast ), and the volume-normalized eigenvalue of the torus, \=\lambda 1,d(B). All
values except \=\lambda 1,d(B) can be obtained from [9, Table 1.2].

d \Gamma \ast 
B \tau (B\ast ) \scrP (B\ast ) \=\lambda 1,d(B)

1 A1 2 1 4\pi 2 \approx 39.4784

2 A2 6 \pi 

2
\surd 
3
\approx 0.9069 [27] 8\pi 2

\surd 
3
\approx 45.5858

3 A3 =D3 12 \pi 

3
\surd 
2
\approx 0.7405 [14] 4\pi 22

1
3 \approx 49.7397

4 D4 24 \pi 2

16
\approx 0.6169 [25] 4\pi 2

\surd 
2\approx 55.8309

5 D5 40 4\pi 2

15
2 - 

5
2 \approx 0.4653 [25] 4\pi 22

3
5 \approx 59.8381

6 E6 72 \pi 3

48
\surd 
3
\approx 0.3729 [6] 8\pi 23 - 

1
6 \approx 65.7460

7 E7 126 \pi 3

105
\approx 0.2953 [6] 4\pi 22

6
7 \approx 71.5131

8 E8 240 \pi 4

384
\approx 0.2537 [6] 8\pi 2 \approx 78.9568

Lemma 1.1. Let B \in GL(d,R), and let \=\lambda 1,d(B) = \lambda 1(TB) \cdot vol(TB)
2

d be the corresponding
principal volume-normalized eigenvalue of the flat torus TB := Rd/\Gamma B. Let \scrP (B\ast ) be the
packing density for the arrangement of balls with centers on the dual lattice, \Gamma \ast 

B = B - tZd.
Then

(6) \=\lambda 1,d(B) = 16\pi 2\omega 
 - 2

d

d \scrP (B\ast )
2

d ,

where \omega d denotes the volume of a d-dimensional ball. Furthermore, the kissing number, \tau (B\ast ),
of the packing is the multiplicity of \lambda 1(TB).

A consequence of Lemma 1.1 is that the eigenvalue optimization problem in (4) for k= 1
is equivalent to finding the densest lattice packing of balls in d-dimensions. We can also restate
the eigenvalue problem in terms of the Gram matrix of B - 1

k,d, denoted

Gk,d = (Bk,d)
 - 1(Bk,d)

 - t \in Rd\times d.

When k= 1, (4) can be written as

(7)
\Lambda 1,d

4\pi 2
= max

G\in \scrS d
>0

min
v\in Zd\setminus 0

vtGv

detG
1

d

,

where \scrS d
>0 is the space of positive definite quadratic forms. The right-hand-side term of (7)

is the so-called Hermite constant . It is known that finding Hermite's constant is equivalent
to determining the densest lattice sphere packing [42, p. 6].

Much is known about the densest lattice packings for small dimensions, d [9]. In particular,
this problem is NP-hard [1, 34], but the densest known lattices for dimension d = 1, . . . ,8
are known via Voronoi's algorithm for the enumeration of perfect positive definite quadratic
forms [42]. The corresponding largest volume-normalized Laplacian eigenvalues are tabulated
in Table 1. We refer the reader to [9] for details about the lattices and to the website of Nebe
[36] for explicit bases and Gram matrices for these lattices. Note that the multiplicity of \=\lambda 1,d
for these flat tori is very large. We also note that recently, for dimension d= 8 and k= 1, the
E8 lattice was proven to be the maximizer of (4) using a different technique [44].
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FLAT TORI WITH LARGE LAPLACIAN EIGENVALUES 177

In this paper, we focus on dimensions d \leq 8, but we briefly remark that this problem
for the principal volume-normalized eigenvalue has been studied in higher dimensions. In
particular, [9] and [32] give the densest known lattices for higher dimensions, and the Leech
lattice was proven to give the densest lattice sphere packing in dimension 24 [8].

Higher eigenvalues. From the above discussion, the optimization problem in (4) can be
interpreted as finding the longest kth shortest lattice vector. For higher values of k, this
problem has not been as well studied as k = 1. Recently, Jean Lagac\'e observed that, using
the test lattice basis \~B - t

k,d = (\kappa 2 )
1

ddiag(1, . . . ,1, 2\kappa ) \in Rd\times d, one can obtain the lower bound on
the maximal value,

(8) \Lambda k,d \geq \=\lambda k,d( \~Bk,d) = 22 - 
2

d \pi 2 \kappa 
2

d , k, d\in N.

Comparing (8) with Weyl's law (3), he observed that this is a meaningful bound if \omega d \leq 2 = \omega 1,
which holds for 2\leq d\leq 10. He further proved that, for 2\leq d\leq 10, the optimal tori degenerate
as k\rightarrow \infty [26].

Summary of main results. As a result of extensive computations, for dimensions d =
2, . . . ,8 and all k \geq 1, we have identified d-dimensional flat tori T \circ 

k,d := Rd/\Gamma B\circ 
k,d
, generated

by lattices bases, B\circ 
k,d, which have a very large kth volume-normalized eigenvalue, \=\lambda \circ k,d :=

\=\lambda k,d(B
\circ 
k,d). The bases B\circ 

k,d have the largest objective function for the optimization problem
(4) that we were able to identify. Rather than report the basis matrices, we report the
corresponding Gram matrices for (B\circ 

k,d)
 - 1,

G\circ 
k,d = (B\circ 

k,d)
 - 1(B\circ 

k,d)
 - t \in Rd\times d,

which have a nicer form. Define the Z8\times 8 matrix

\scrG k =

\left( 
           

2\kappa 2 \kappa 2 \kappa 2 0 \kappa 2 0 \kappa 2  - 4
\kappa 2 2\kappa 2 0 0 0 0 \kappa 2  - 4
\kappa 2 0 2\kappa 2 0 \kappa 2 0 0 0
0 0 0 2\kappa 2  - \kappa 2 \kappa 2  - \kappa 2 0
\kappa 2 0 \kappa 2  - \kappa 2 2\kappa 2 0 \kappa 2 0
0 0 0 \kappa 2 0 2\kappa 2  - \kappa 2 0
\kappa 2 \kappa 2 0  - \kappa 2 \kappa 2  - \kappa 2 2\kappa 2  - 4
 - 4  - 4 0 0 0 0  - 4 8

\right) 
           

.

The Gram matrix G\circ 
k,d is defined to be the d\times d lower-right submatrix of \scrG k for each k \geq 1.

A lattice basis B\circ 
k,d can be recovered from G\circ 

k,d via the Cholesky decomposition. The nesting

of the Gram matrices is a result of the dual lattices generated by the basis (B\circ 
k,d)

 - t being

laminated , i.e., (B\circ 
k,d)

 - t = (
b  - 0  - 
(B\circ 

k,d - 1)
 - t ) for some gluing vector b \in Rd. For example, in

dimension d= 2 we have G\circ 
k,2 = ( 2\kappa 

2  - 4
 - 4 8 )\propto B - 1

k,2B
 - t
k,2, where Bk,2 is defined in (5).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

8/
23

 to
 1

55
.9

8.
13

1.
6 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



178 C.-Y. KAO, B. OSTING, AND J. C. TURNER

Table 2
\=\lambda \circ 
k,d

hd\pi 
2 , hd, hd/gd, and eigenvalue multiplicities for k= 1 and k\geq 2. See Numerical Observation 1.2 and the

following discussion in section 1.

d 1 2 3 4 5 6 7 8

\=\lambda \circ 
k,d

hd\pi 
2 \kappa 2

\Bigl( 
\kappa 4

\kappa 2 - 1

\Bigr) 1
2

\Bigl( 
\kappa 4

\kappa 2 - 4
3

\Bigr) 1
3

\Bigl( 
\kappa 4

\kappa 2 - 2

\Bigr) 1
4

\Bigl( 
\kappa 4

\kappa 2 - 2

\Bigr) 1
5

\Bigl( 
\kappa 4

\kappa 2 - 5
2

\Bigr) 1
6

\Bigl( 
\kappa 4

\kappa 2 - 8
3

\Bigr) 1
7

\Bigl( 
\kappa 4

\kappa 2 - 3

\Bigr) 1
8

hd 1 2 4 \cdot 3 - 1
3 2

7
4 4 2

11
6 4

\bigl( 
16
3

\bigr) 1
7 2

5
2

hd/gd 1 \pi 
2

2
3
2

1
3 \pi 

2
3 \pi 2 - 

3
4 2 5\surd 2\pi 4/5

152/5
\pi \surd 
2 3\surd 3

2 25/7\pi 6/7

33/7352/7
\pi 6 - 

1
4

hd/gd \approx 1 1.57 1.80 1.87 1.94 1.54 1.98 2.01
k= 1 mult. 2 6 12 24 40 72 126 240
k\geq 2 mult. 2 6 12 22 38 62 106 182
| detG\circ 

k,d| /8 1 2(\kappa 2  - 1) \kappa 2(3\kappa 2  - 4) 4\kappa 4(\kappa 2  - 2) 4\kappa 6(\kappa 2  - 2) 2\kappa 8(2\kappa 2  - 5) \kappa 10(3\kappa 2  - 8) 2\kappa 12(\kappa 2  - 3)

The following numerical observation2 summarizes the results of numerous computations
for the flat tori T \circ 

k,d, and their volume-normalized eigenvalues, \=\lambda \circ k,d.

Numerical Observation 1.2. For k \geq 1 and d \leq 8, the flat tori T \circ 
k,d have kth volume-

normalized eigenvalues \=\lambda \circ k,d := \=\lambda k,d(B
\circ 
k,d) as tabulated in the second row of Table 2. The

multiplicity of the eigenvalues is given in the sixth and seventh rows of Table 2. The corre-
sponding lattice vectors are of the form \pm v, where v is a vector tabulated in Table 3.

Details on our computations supporting Numerical Observation 1.2 are given in section 2.
Magma code with these supporting computations can be found at [24].

In Figure 1, we plot the ellipse/ellipsoid

\{ v \in Rd : vtG\circ 
k,dv= 2\kappa 2\} 

in dimensions d = 2 and 3 for k = 1,3,5,7. The kth shortest lattice vectors are indicated
by a green dot. In d = 2 dimensions, the ellipses intersect six lattice points, and in d = 3
dimensions, the ellipsoids intersect 12 lattice points. In both dimensions, the ellipse/ellipsoid
elongates as k increases in one direction; this is further discussed in subsection 4.3.

We plot k versus \=\lambda \circ k,d for d \leq 8 in Figure 2 and tabulate the first few values in Table 4.

Using the observation that, for a> 0, \kappa 4

\kappa 2 - a \geq k2, we have that, for each dimension d\leq 8,

\=\lambda \circ k,d \geq hd \pi 
2 \kappa 

2

d for all k\geq 1,

where \kappa := 2\lceil k2\rceil and hd is a constant, which does not depend on k, as tabulated in the third
row of Table 2. In particular, for d\leq 8, this shows that the optimal value in (4) satisfies

(9) \Lambda k,d \geq hd \pi 
2 \kappa 

2

d for all k\geq 1.

In the fourth row of Table 2, we compute the value of hd/gd, where gd is the constant appearing
in Weyl's law. Depending on the dimension, the Laplace eigenvalues of T \circ 

k,d exceed the value

2In this paper, we will use the terminology ``numerical observation"" to succinctly state results that depend
on numerical computations. ``Theorem"" will be reserved for statements that can be proven without numerical
computation.
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FLAT TORI WITH LARGE LAPLACIAN EIGENVALUES 179

Table 3
For the B\circ 

k,d-lattice, kth shortest lattice vectors and indexing for k= 1,2 and k\geq 3. For d < 8, as indicated
by horizontal lines, we use only vectors that are zero in the first 8 - d components. The italicized indices are
discussed in subsection 4.2.

k = 1, 2 k ≥ 3 lattice vector
1 1 0 0 0 0 0 0 0 k/2

2 2 0 0 0 0 0 0 1 0
3 3 0 0 0 0 0 0 1 1

4 4 0 0 0 0 0 1 0 0
5 5 0 0 0 0 0 1 1 0
6 6 0 0 0 0 0 1 1 1

7 7 0 0 0 0 1 0 0 0
8 8 0 0 0 0 1 0 -1 0
9 9 0 0 0 0 1 -1 -1 0

10 10 0 0 0 0 1 0 -1 -1
11 11 0 0 0 0 1 -1 -1 -1
12 0 0 0 0 1 -1 -2 -1

13 12 0 0 0 1 0 0 0 0
14 13 0 0 0 1 0 -1 0 0
15 14 0 0 0 1 1 -1 0 0
16 15 0 0 0 1 1 0 0 0
17 16 0 0 0 1 0 0 1 1
18 17 0 0 0 1 0 0 1 0
19 18 0 0 0 1 1 -1 -1 -1
20 19 0 0 0 1 1 -1 -1 0

21 20 0 0 1 0 0 0 0 0
22 21 0 0 1 -1 -1 1 0 0
23 22 0 0 1 0 -1 0 0 0
34 23 0 0 1 -1 -1 0 0 0
25 24 0 0 1 0 -1 0 1 1
26 25 0 0 1 0 -1 0 1 0
27 26 0 0 1 0 -1 1 1 1
28 27 0 0 1 -1 -1 1 1 1
29 28 0 0 1 0 -1 1 1 0
30 29 0 0 1 -1 -1 1 1 0
31 30 0 0 1 -1 -2 1 1 1
32 31 0 0 1 -1 -2 1 1 0
33 0 0 1 -1 -2 2 2 1
34 0 0 1 0 -1 1 2 1
35 0 0 1 0 -2 1 2 1
36 0 0 1 -1 -2 1 2 1

37 32 0 1 0 0 0 0 0 0
38 33 0 1 0 0 0 -1 -1 0
39 34 0 1 0 0 0 0 -1 0
40 35 0 1 0 -1 0 0 -1 0
41 36 0 1 0 0 1 0 -1 0
42 37 0 1 -1 0 1 0 -1 0
43 38 0 1 0 0 1 -1 -1 0
44 39 0 1 -1 0 1 -1 -1 0
45 40 0 1 0 1 1 -1 -1 0
46 41 0 1 -1 1 1 -1 -1 0
47 42 0 1 -1 1 2 -1 -1 0
48 43 0 1 0 0 1 -1 -2 0
49 44 0 1 -1 0 1 -1 -2 0
50 45 0 1 0 0 1 -1 -2 -1
51 46 0 1 -1 0 1 -1 -2 -1
52 47 0 1 -1 1 2 -2 -2 0
53 48 0 1 -1 1 2 -2 -2 -1
54 49 0 1 0 0 0 0 0 1
55 50 0 1 -1 0 2 -1 -2 0
56 51 0 1 -1 1 2 -1 -2 0
57 52 0 1 -1 0 2 -1 -2 -1
58 53 0 1 -1 1 2 -1 -2 -1
59 0 1 -2 1 3 -2 -3 -1
60 0 1 -1 1 2 -2 -3 -1

k = 1, 2 k ≥ 3 lattice vector
61 0 1 -1 0 2 -2 -3 -1
62 0 1 -1 0 2 -1 -3 -1
63 0 1 -1 1 3 -2 -3 -1

64 54 1 0 0 0 0 0 0 0
65 55 1 0 0 -1 -1 0 -1 0
66 56 1 0 0 0 0 -1 -1 0
67 57 1 1 -1 0 1 -1 -2 0
68 58 1 0 0 0 0 0 -1 0
69 59 1 0 0 -1 0 0 -1 0
70 60 1 0 -1 0 0 -1 -1 0
71 61 1 -1 0 -1 -1 1 0 0
72 62 1 -1 0 0 -1 0 0 0
73 63 1 -1 0 -1 -1 0 0 0
74 64 1 0 -1 0 0 0 -1 0
75 65 1 0 -1 -1 0 0 -1 0
76 66 1 -1 -1 0 0 0 0 0
77 67 1 -1 0 0 0 0 0 0
78 68 1 0 -1 0 1 0 -1 0
79 69 1 0 -1 0 1 -1 -1 0
80 70 1 0 -1 1 1 -1 -1 0
81 71 1 -1 0 -1 -2 1 1 0
82 72 1 -1 0 0 -1 0 1 0
83 73 1 -1 0 0 -1 0 1 1
84 74 1 0 -1 0 1 -1 -2 -1
85 75 1 0 -1 0 1 -1 -2 0
86 76 1 -1 0 0 -1 1 1 0
87 77 1 -1 0 -1 -1 1 1 0
88 78 1 -1 0 0 -1 1 1 1
89 79 1 -1 0 -1 -1 1 1 1
90 80 1 0 0 -1 -1 1 0 0
91 81 1 -1 0 -1 -2 1 1 1
92 82 1 0 0 0 -1 0 0 0
93 83 1 0 0 -1 -1 0 0 0
94 84 1 0 0 0 0 0 0 1
95 85 1 0 -1 0 0 0 0 0
96 86 1 0 0 -1 -1 1 0 1
97 87 1 0 0 0 -1 0 0 1
98 88 1 0 0 -1 -1 0 0 1
99 89 1 0 -1 0 0 0 0 1

100 90 1 -1 1 -1 -2 1 1 0
101 91 1 -1 1 -1 -2 1 1 1
102 1 -1 0 0 -1 1 2 1
103 1 -1 1 -1 -3 2 2 1
104 1 -1 1 -2 -3 2 2 1
105 1 -1 0 0 -2 1 2 1
106 1 0 1 -1 -2 1 1 1
107 1 -1 0 -1 -2 2 2 1
108 1 0 0 0 -1 0 1 1
109 1 -1 1 0 -2 1 2 1
110 1 0 0 -1 -2 1 1 1
111 1 0 0 -1 -1 1 1 1
112 1 -1 1 -1 -3 2 3 1
113 1 -2 1 -1 -3 2 3 1
114 1 -1 1 -1 -3 2 3 2
115 1 -1 1 -1 -2 2 2 1
116 1 -1 1 -1 -3 1 2 1
117 1 0 0 0 -1 1 1 1
118 1 -1 0 -1 -2 1 2 1
119 1 -1 1 -1 -2 1 2 1
120 2 -1 0 -1 -2 1 1 1
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180 C.-Y. KAO, B. OSTING, AND J. C. TURNER

Figure 2. For indicated dimensions d= 1, . . . ,8, a plot of k versus \=\lambda \circ 
k,d.

Table 4
\=\lambda \circ 
k,d for the indicated values of the eigenvalue number k and dimension d.

k \setminus d 1 2 3 4 5 6 7 8

1,2 39.478 45.586 49.740 55.831 59.838 65.746 71.513 78.957
3,4 157.914 81.546 71.005 68.648 70.596 72.363 76.480 81.033
5,6 355.306 120.115 91.527 82.487 81.768 81.494 84.590 88.336
7,8 631.655 159.162 110.262 94.644 91.275 89.217 91.387 94.461
9,10 986.960 198.387 127.623 105.511 99.567 95.873 97.187 99.662
11,12 1421.223 237.697 143.920 115.401 106.966 101.748 102.262 104.187
13,14 1934.442 277.057 159.365 124.532 113.685 107.029 106.790 108.204
15,16 2526.619 316.446 174.109 133.050 119.864 111.845 110.892 111.826
17,18 3197.752 355.855 188.263 141.062 125.605 116.283 114.651 115.132
19,20 3947.842 395.279 201.909 148.649 130.981 120.410 118.128 118.179

in Weyl's law by a factor between 1.54 and 2.01 as indicated in the fifth row of Table 2.
Additionally, since hd > 22 - 

2

d for each d= 3, . . . ,8, the lower bound on the maximal value in
(9) is a sharper result than (8).

The eigenvalue multiplicities listed in Table 2 are very large. This is a consequence of the
fact that all lattice vectors v \in Z8 in Table 3 satisfy vtG\circ 

k,dv= 8\lceil k2\rceil 2 = 2\kappa 2. Note that the first

vector in the table is (0, . . . , 0, \lceil k2\rceil )\in Z8. The k - 1 nontrivial lattice vectors v with a smaller

value of v \mapsto \rightarrow vtG\circ 
k,dv are of the form \pm (0, . . . ,0, \lceil j2\rceil ), where j = 1, . . . , k  - 1. Interestingly,

in each dimension d = 1, . . . ,8, the multiplicity of \lambda \circ k,d for k \geq 2 is the same (independent of
k). Geometrically, this corresponds to the ellipse/ellipsoid corresponding to the Gram matrix,
G\circ 

k,d, touching precisely the same number of lattice points (see Figure 1).
In section 3, we give a condition for stationarity; see Theorem 3.4. In subsection 4.2, we

show numerically that the bases B\circ 
k,d satisfy this stationarity condition for k\geq 1 and d\leq 8. In

subsection 4.3, we also show numerically that the tori T \circ 
k,d degenerate as k\rightarrow \infty . Supporting
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FLAT TORI WITH LARGE LAPLACIAN EIGENVALUES 181

Sage code for these numerical claims is available at [24]. In subsection 4.4, we consider a
family of lattices in d > 8 dimensions corresponding to gluing the 8-dimensional lattice with
gram matrix \scrG k to d - 8 orthogonal lattice vectors that are aligned with the coordinate axes.
We show that this lattice yields a meaningful lower bound on \Lambda k,d for 9\leq d\leq 15.

Finally, in Appendix A, we describe the numerical methods that were used to compute
the locally maximal solutions to the optimization problem in (4) and compute the bases B\circ 

k,d

described above. Briefly, the optimization problem in (4) was solved by solving a sequence
of linearized problems, similar to the method in [32] for the closest packing problem (k = 1).
We have also used these methods to investigate (4) for d > 8. Although we have identified
locally optimal solutions in higher dimensions for some values of k, we were not able to identify
laminated structure in these higher-dimensional lattices.

Other related work. We briefly mention that Milnor used the relationship between flat
tori and lattices to find two 16-dimensional compact Riemannian manifolds that have the
same Laplace spectrum (isospectral) but are not isometric [35].

In this paper, we count the length of lattice vectors with multiplicity . However, we could
consider the problem where we enumerate the length of vectors in \Gamma B in increasing order
without multiplicity ,

0 = \nu 0 < \nu 1 < \nu 2 < \cdot \cdot \cdot ,

where \nu k is called the kth length of \Gamma B. In this setting, for dimensions 2 to 8, Schaller [41]
conjectured that the lattices with best-known sphere packings have maximal lengths; i.e., for
all k > 0 their kth length is strictly greater than the kth length of any other lattice in the same
dimension with the same covolume. This problem is also equivalent to the extremal kth length
of closed geodesics among the flat tori of the same dimension and volume. In [45], Willging
showed that the conjecture is false in dimension 3 and demonstrated that the 6th shortest
vector of the honeycomb lattice is longer than the 6th shortest vector of the face-centered
cubic lattice, which is the optimal lattice for sphere packing in dimension 3.

2. Comments on the computations supporting Numerical Observation 1.2. Here, we
discuss the claims in Numerical Observation 1.2 regarding the kth volume-normalized Lapla-
cian eigenvalues of the torus T \circ 

k,d,

(10) \lambda \circ k,d := min
E\in Zd

k+1

max
v\in E

4\pi 2(detB\circ 
k,d)

2

d \| (B\circ 
k,d)

 - tv\| 2,

and the corresponding lattice vectors, E. For k = 1, the computation of \lambda \circ k,d is known as

the shortest lattice vector problem (SVP) for the dual lattice, \Gamma \ast 
B\circ 

k,d
= (B\circ 

k,d)
 - tZd. The SVP

appears in a variety of cryptoanalysis problems and, although it is NP-hard [1, 34], can be
solved for fixed k in moderately high dimensions [18, 33]. We are unaware of a method to find
the shortest k vectors of the lattice B\circ 

k,d analytically .
For fixed (small to moderately large) k \in N, we can compute \lambda \circ k,d in a rigorous way using

the ShortVectors function3 in Magma [7]. The enumeration routine underlying this function

3http://magma.maths.usyd.edu.au/magma/handbook/text/331.
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182 C.-Y. KAO, B. OSTING, AND J. C. TURNER

relies on floating-point approximation but is run in a rigorous way by using the default setting
with the parameter Proof set to true [13], which implements the L2 algorithm from [37] with
tight bounds on the accuracy of computations in order to guarantee Lenstra--Lenstra--Lov\'asz
reduction. For each d= 1, . . . ,8, we checked all values of k from 1 to 500,000 and every value
k \in \{ 1\times 106, 2\times 106, . . . , 9\times 106, 1\times 107, 2\times 107, . . . , 9\times 107, 1\times 108\} . Magma code with
these supporting computations can be found in the solve-SVP.magma file at [24]. Indeed, the
claims made in Numerical Observation 1.2 hold for these values of k.

3. Eigenvalue perturbation formulae and conditions for stationarity. Recall that the
eigenvalues of  - \Delta on a flat torus each have multiplicity of at least two. We will refer to
an eigenvalue as a double eigenvalue if it has multiplicity of exactly two. We first give the
perturbation formula for a double eigenvalue.

Theorem 3.1. When \lambda is a double eigenvalue with corresponding lattice vectors \pm v \in Zd,
the variation of the normalized eigenvalue \=\lambda with respect to the Gram matrix G satisfies

\=\lambda (G0 + \delta G) = \=\lambda (G0) +

\biggl\langle 
\partial \=\lambda 

\partial G
, \delta G

\biggr\rangle 

F

+ o (\| \delta G\| ) ,

where \partial \=\lambda 
\partial G = - \=\lambda 

dG
 - 1 + 4\pi 2 (det(G)) - 

1

d vvt and \langle \cdot , \cdot \rangle F denotes the Frobenius inner product.

Proof. For an invertible, symmetric matrix G, Jacobi's formula states that

det(G0 + \delta G) = detG0 +detG0\langle G - 1, \delta G\rangle + o (\| \delta G\| ) .

Since

\=\lambda = 4\pi 2 (det(G)) - 
1

d

\bigl\langle 
vvt,G

\bigr\rangle 
F
,

for fixed lattice vector v, we obtain the desired result using the product rule.

We next give a perturbation formula for eigenvalues of greater multiplicity.

Theorem 3.2. Suppose the Laplacian eigenvalue \lambda has even multiplicity m> 2 with corre-
sponding lattice vectors given by \pm vj \in Zd, j = 1, . . . , m2 . A perturbation of the Gram matrix

of the form G = G0 + \delta G will split the normalized eigenvalue \Lambda = | detG|  - 1

d\lambda into up to m
2

(unsorted) normalized eigenvalues (each with multiplicity of at least two) given by

\=\lambda j (G0 + \delta G) = \=\lambda (G0) + \mu j + o (\| \delta G\| ) , j = 1, . . . ,
m

2
,

where \mu j = \langle Mj , \delta G\rangle and

(11) Mj = - 
\=\lambda 

d
G - 1

0 + 4\pi 2 (detG0)
 - 1

d vjv
t
j .

Proof. The volume-normalized eigenvalue, \=\lambda , satisfies

4\pi 2 (det(G0))
 - 1

d \langle vj ,G0vj\rangle = \=\lambda , 1\leq j \leq m

2
.
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Noting that the lattice vectors vj are fixed, the perturbed volume-normalized eigenvalues
satisfy

4\pi 2 (det(G0 + \delta G)) - 
1

d \langle vj , (G0 + \delta G)vj\rangle = \=\lambda + \mu j + o(\| \delta G\| ), 1\leq j \leq m

2
.

The first order terms give

 - 4\pi 2

d
(det(G0))

 - 1

d \langle G - 1
0 , \delta G\rangle \langle vj ,G0vj\rangle + 4\pi 2 (det(G0))

 - 1

d \langle vj , \delta Gvj\rangle = \mu j , 1\leq j \leq m

2
.

Thus

\mu j = 4\pi 2 (det(G0))
 - 1

d

\biggl\{ 
\langle vj , \delta Gvj\rangle  - 

1

d
\langle G - 1

0 , \delta G\rangle \langle vj ,G0vj\rangle 
\biggr\} 

as desired.

Recall that the volume-normalized eigenvalue is scale invariant, i.e., \Lambda (\alpha G0) = \=\lambda (G0) for
\alpha \not = 0. In Theorem 3.2, if we take \delta G = \varepsilon G0 we obtain \mu j = 0 for all j = 1, . . . , m2 and
\=\lambda j(G0 + \delta G) = \=\lambda (G0) + o(\| G0\| ), as we expect.

We next use Theorem 3.2 to derive two necessary conditions for local optimality in the
eigenvalue optimization problem (4). We say that G0 is a stationary point for \=\lambda if for every
\delta G we have that there exists at least one j \in \{ 1, . . . , m2 \} such that \mu j \leq 0. We say that G0

is a strict local maximum for \=\lambda if for every \delta G satisfying \langle \delta G,G0\rangle = 0 we have at least one
j \in \{ 1, . . . , m2 \} such that \mu j < 0.

Theorem 3.3. Using the notation in Theorem 3.2, a necessary condition for G0 to be a

strict local maximum for \=\lambda is that the collection of outer products \{ vjvtj\} 
m

2

j=1 spans the space

of symmetric Rd\times d matrices.

Proof. Otherwise, there exists a matrix \delta G=A so that, for all j = 1, . . . , m2 , we have

\langle A,vjvtj\rangle = 0.

In this case, for every j = 1, . . . , m2 , we have

\mu j = \langle Mj ,A\rangle = - \Lambda 

d
\langle G - 1

0 ,A\rangle .

Changing the sign of A if necessary, we may assume that \langle G - 1
0 ,A\rangle \leq 0, implying \mu j \geq 0 for

all j = 1, . . . , m2 .

Theorem 3.4. Using the notation in Theorem 3.2, the Gram matrix G0 is a stationary
point for \=\lambda if and only if there are nonnegative coefficients cj \geq 0, j = 1, . . . , m2 , that are not

all zero such that
\sum m

2

j=1 cjMj = 0.

Proof. We consider the linear map U : Sd++ \rightarrow R
m

2 defined by

Uj(G) := \mu j(G) = \langle Mj ,G\rangle F , j = 1, . . . ,
m

2
.
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184 C.-Y. KAO, B. OSTING, AND J. C. TURNER

To find the adjoint map of U , denoted U\ast : R
m

2 \rightarrow Sd++, for c\in R
m

2 , we compute

\langle Uj(G), c\rangle Rm
2
=

m

2\sum 

j=1

cj\langle Mj ,G\rangle F =

\Biggl\langle \left( 
 

m

2\sum 

j=1

cjMj

\right) 
 ,G

\Biggr\rangle 

F

so that U\ast c=
\sum m

2

j=1 cjMj .

Stationarity of G0 means that \delta G \mapsto \rightarrow U(\delta G)\in R
m

2 has at least one nonpositive component
for every \delta G; i.e., there is no solution to the linear system

(12) U(\delta G)> 0.

We recall Gordan's alternative theorem (see, e.g., [2, Thm. 10.4]) which states that either
(12) has a solution or

(13) U\ast c= 0, c\geq 0, c \not = 0

has a solution. Here c \geq should be interpreted componentwise. Thus it is enough to show
that there is a nontrivial, nonnegative c\in ker(U\ast ).

Remark 3.5. For k= 1, the eigenvalue optimization problem (4) is equivalent to Hermite's
constant (7) and determining the densest lattice sphere packing. It was shown by Voronoi
that a lattice gives the densest lattice sphere packing if and only if it is perfect and eutactic
[42, Thm. 3.9]. It can be seen that the necessary conditions here imply Theorems 3.3 and 3.4
for k= 1. Note that the lack of convexity for higher eigenvalues makes a sufficiency condition
more difficult to state.

4. Properties of flat tori, \bfitT \circ 
\bfitk ,\bfitd , and degeneracy as \bfitk \rightarrow \infty . In this section, we show that

G\circ 
k,d for d \leq 8 and k \geq 1 satisfies the necessary condition for strict local maximum given in

Theorem 3.3 (see subsection 4.1) and provide numerical evidence that it satisfies the necessary
condition for stationarity in Theorem 3.4 (see subsection 4.2). In subsection 4.3, we describe
the degeneracy of flat tori T \circ 

k,d as k\rightarrow \infty .

4.1. Linear independence.

Theorem 4.1. Let \{ vj\} 
m

2

j=1 be the collection of lattice vectors given in Table 3. The collection

of outer products \{ vjvtj\} 
m

2

j=1 spans the space of symmetric Rd\times d matrices. Consequently, G\circ 
k,d

for d \leq 8 and k \geq 1 satisfies the necessary conditions for a strict local maximum given in
Theorem 3.3.

Proof. We only need (d2)\leq m
2 outer products vjv

t
j to span the space of symmetric matrices,

so for dimensions, d = 4,5,6,7,8, it is not necessary to use all of the lattice vectors listed in
Table 3. The lattice vector indices we use are given by

J = \{ 1 | 2,3 | 4 : 6 | 7 : 10 | 12 : 14,16,17 | 20 : 25 | 32 : 37,49 | 54,56,64,66,67,82,83,84\} .

Here, the vertical lines correspond to the horizontal lines in Table 3 and identify the dimension
that the lattice vector first appears. For each dimension d, we reshape the upper triangular
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part of the matrices vjv
t
j into vectors and stack the vectors as columns of a matrix Fd \in 

R( d

2
)\times ( d

2
). The matrices Fd are the lower-left (

d
2)\times (d2) block of the following matrix, F \in R36\times 36,

where to reduce size we use the shorthand \blacktriangle = 1, \blacktriangledown = - 1, and \blacksquare = \kappa 2

4 :
FLAT TORI WITH LARGE LAPLACIAN EIGENVALUES 15

F =

\left[ 
                                                                   

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle 0 0 0 \blacktriangle \blacktriangle 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown 0 0 0 0 \blacktriangle 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle \blacktriangle 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown \blacktriangledown \blacktriangledown \blacktriangledown 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle 0 0 0 0 0 \blacktriangle 0 0 0 \blacktriangle \blacktriangle 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown 0 \blacktriangledown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown \blacktriangledown \blacktriangledown \blacktriangledown 0 0 0 0 0 \blacktriangledown 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle \blacktriangle 0 0 0 0 0 \blacktriangle 0 0 0 \blacktriangle 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle 0 \blacktriangle 0 \blacktriangle 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 0 0 \blacktriangle 0
0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle 0 0 0 \blacktriangle 0 \blacktriangle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle 0
0 0 0 0 0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown 0 0 0 \blacktriangledown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle \blacktriangle 0 0 0 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 \blacktriangle \blacktriangle \blacktriangle \blacktriangle 0 0 \blacktriangle 0 0 0 \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle 0 0 0 0 \blacktriangle \blacktriangle 0 0 0 0 0 0 \blacktriangle \blacktriangle 0
0 0 0 0 0 0 0 0 \blacktriangledown 0 0 0 \blacktriangledown 0 0 0 \blacktriangledown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown \blacktriangledown 0 0 0 0 0 0 0 0 0 \blacktriangledown \blacktriangledown 0 0 0 0 \blacktriangledown \blacktriangledown 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 \blacktriangledown 0 0 0 0 0 0 0 0 0 \blacktriangledown 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 \blacktriangle \blacktriangle \blacktriangle 0 0 \blacktriangle 0 0 \blacktriangle \blacktriangle 0 0 0 \blacktriangle 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0
0 0 0 0 \blacktriangle \blacktriangle 0 0 \blacktriangle 0 0 0 0 0 0 0 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0
0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 \blacktriangle \blacktriangle 0 \blacktriangle \blacktriangle 0 \blacktriangle \blacktriangle \blacktriangle 0 0 0 \blacktriangle \blacktriangle 0 0 0 0 \blacktriangle \blacktriangle 0 \blacktriangle \blacktriangle \blacktriangle \blacktriangle \blacktriangle 0 0 \blacktriangle \blacktriangle 0 0 0 0 0
0 0 \blacktriangle 0 0 \blacktriangle 0 0 0 \blacktriangle 0 0 0 \blacktriangle 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\blacksquare 0 \blacktriangle 0 0 \blacktriangle 0 0 0 \blacktriangle 0 0 0 \blacktriangle 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 \blacktriangle 0 0 0 0 0 0 0 \blacktriangle 

\right] 
                                                                   

.

We will show that the matrices Fd have non-zero determinant, and hence the outer products
are linearly independent. If the matrix F has non-zero determinant, then Fd for each d \leq 8
also has non-zero determinant. Observing that the upper left submatrix blocks of F are zero,
we see that the determinant of F is the product of the lower-left to upper-right diagonal
sub-blocks of the matrix F . Judiciously choosing the minors in the Laplace expansion for the
determinant4, we obtain | detF | = | detFd| = \kappa 2

4 \not = 0.

4 For example, we can expand column-wise: (36, 1) | (34, 2), (35, 3) | (31, 4), (32, 5), (33, 6) | (27, 7) (29, 8),

(28, 9), (30, 10) | (22, 11), (24, 12), (23, 13), (25, 15), (26, 14) | (16, 16), (18, 18), (17, 19), (19, 17), (20, 21), (21, 20)

| (9, 22), (14, 24), (13, 23), (11, 25), (12, 26), (10, 27), (15, 28) | (1, 29), (2, 33), (3, 32), (7, 31), (6, 30), (5, 34), (4, 35),

(8, 36).

We will show that the matrices Fd have nonzero determinant, and hence the outer products
are linearly independent. If the matrix F has nonzero determinant, then Fd for each d \leq 8
also has nonzero determinant. Observing that the upper-left submatrix blocks of F are zero,
we see that the determinant of F is the product of the lower-left to upper-right diagonal

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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186 C.-Y. KAO, B. OSTING, AND J. C. TURNER

Table 5
The values of ak,d and bk,d used in the definition of the vector c\circ . See subsection 4.2.

d 2 3 4 5 6 7 8

ak,d
2\kappa 2 - 4

\kappa 2
3\kappa 2 - 8

\kappa 2 4\kappa 2 - 4
\kappa 2 6\kappa 2 - 4

\kappa 2 8\kappa 2 - 5
\kappa 2 4 3\kappa 2 - 16

\kappa 2 18\kappa 2 - 6
\kappa 2

bk,d \cdot 2\kappa 2 - 4
\kappa 2 2\kappa 2 - 4

\kappa 2 2\kappa 2 - 3
\kappa 2 2\kappa 2 - 4

\kappa 2 2\kappa 2 - 4
\kappa 2

2\kappa 2 - 9
\kappa 2

subblocks of the matrix F . Judiciously choosing the minors in the Laplace expansion for the
determinant,4 we obtain | detF | = | detFd| = \kappa 2

4 \not = 0.

4.2. Stationarity of tori. Here, for each k \geq 1 and 2 \leq d \leq 8, we give a vector c =
c(k, d) \in R

m

2 that satisfies the stationarity condition given in Theorem 3.4. We first observe
that such a vector c, if one exists, is not unique for d= 4,5,6,7,8, as the following argument
shows. Reshaping the symmetric matrices Mj as defined in (11) into vectors of length ( d2),
the condition for stationarity in Theorem 3.4 is that a nonnegative linear combination gives
zero. Of course, if the number of vectors, m

2 , exceeds (
d
2), i.e., m>d(d+1), then the columns

are linearly dependent. Looking at Table 2, this is the case for d =4, 5, 6, 7, 8.
For k = 1,2, for every 2 \leq d \leq 8, define c\circ = (1, . . . ,1) \in R

m

2 . For k \geq 3 and 2 \leq d \leq 8,
define the vector c\circ \in R

m

2 by

c\circ i =

\left\{ 
  
  

ak,d, i= 1,

bk,d, i\in I,
1 otherwise,

where the constants ak,d and bk,d are specified in Table 5 and the index set I is defined

I := \{ 4 | 7 | 12 : 15 | 20 : 23 | 33 : 42 | 55 : 70\} .

The indices in I correspond to the lattice vectors in Table 3, where the indices in I are
italicized. The vertical lines here correspond to the horizontal lines in Table 3 and identify
the dimension that the lattice vector first appears. There is a dot \cdot for bk,d when d= 2 since
there are no elements in I corresponding to d= 2.

Numerical Observation 4.2. For every k\geq 1, and 2\leq d\leq 8, the vector c\circ \in R
m

2 satisfies the
stationarity condition given in Theorem 3.4.

It is straightforward to check that Numerical Observation 4.2 holds. Sage code that
symbolically verifies the claim is provided in [24]. Comments on how we first identified c\circ \in R

m

2

are made in Appendix A.2.

4For example, we can expand columnwise: (36, 1) | (34,2), (35,3) | (31,4), (32,5), (33,6) | (27,7) (29,8),
(28,9), (30,10) | (22,11), (24,12), (23,13), (25,15), (26,14) | (16,16), (18,18), (17,19), (19,17), (20,21), (21,20)
| (9,22), (14,24), (13,23), (11,25), (12,26), (10,27), (15,28) | (1,29), (2,33), (3,32), (7,31), (6,30), (5,34),
(4,35), (8,36).
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FLAT TORI WITH LARGE LAPLACIAN EIGENVALUES 187

As an example, we verify Numerical Observation 4.2 in dimension d= 3. We have

G\circ 
k,d =

\left( 
 

2\kappa 2  - \kappa 2 0
 - \kappa 2 2\kappa 2  - 4
0  - 4 8\kappa 2

\right) 
 

so that

(G\circ 
k,d)

 - 1 =
1

8(3\kappa 2  - 4)

\left( 
 
16\kappa 2 - 1

\kappa 2 8 4
8 16 8
4 8 3\kappa 2

\right) 
 ,

and detG\circ 
k,d = 8\kappa 2(3\kappa 2  - 4). We also have \=\lambda \circ k,3 = 4\pi 2( \kappa 4

3\kappa 2 - 4)
1

3 = 8\pi 2\kappa 2(detG\circ 
k,d)

 - 1/d (see
Table 2), and from Tables 3 and 5,

c\circ 1 =
3\kappa 2  - 8

\kappa 2
, v1v

t
1 =

\left( 
 
0 0 0
0 0 0

0 0 \kappa 2

4

\right) 
 ,

c\circ 2 = 1, v2v
t
2 =

\left( 
 
0 0 0
0 1 0
0 0 0

\right) 
 ,

c\circ 3 = 1, v3v
t
3 =

\left( 
 
0 0 0
0 1 1
0 1 1

\right) 
 ,

c\circ 4 =
2\kappa 2  - 4

\kappa 2
, v4v

t
4 =

\left( 
 
1 0 0
0 0 0
0 0 0

\right) 
 ,

c\circ 5 = 1, v5v
t
5 =

\left( 
 
1 1 0
1 1 0
0 0 0

\right) 
 ,

c\circ 6 = 1, v6v
t
6 =

\left( 
 
1 1 1
1 1 1
1 1 1

\right) 
 .

We can then compute

6\sum 

i=1

c\circ iMi = - 
\Lambda \circ 
k,3

d

\Biggl( 
6\sum 

i=1

c\circ i

\Biggr) 
(G\circ 

k,d)
 - 1 + 4\pi 2

\bigl( 
detG\circ 

k,d

\bigr)  - 1

d

6\sum 

i=1

c\circ i viv
t
i .

Since
\sum 6

i=1 c
\circ 
i = 3(3\kappa 

2 - 4
\kappa 2 ) and

6\sum 

i=1

c\circ i viv
t
i =

\left( 
 
4(\kappa 2  - 1)/\kappa 2 2 1

2 4 2
1 2 3\kappa 2/4

\right) 
 ,

we obtain
\sum 6

i=1 c
\circ 
iMi = 0.
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188 C.-Y. KAO, B. OSTING, AND J. C. TURNER

Figure 3. Log-log plots of k versus the eigenvalues, \mu , of the Gram matrix G\circ 
k,d for dimensions d= 2, . . . ,8.

4.3. Degeneracy of flat tori as \bfitk \rightarrow \infty . For fixed k \in N and d\leq 8, denote the eigenvalues

of the normalized Gram matrix
G\circ 

k,d

\mathrm{d}\mathrm{e}\mathrm{t}(G\circ 
k,d)

1
d
by \mu k1 \leq \mu k2 \leq \cdot \cdot \cdot \leq \mu kd. In Figure 3, we plot k versus

\mu k1, . . . , \mu 
k
d for d= 2, . . . ,8. From Figure 3, we hypothesize that, in each dimension, for large k,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FLAT TORI WITH LARGE LAPLACIAN EIGENVALUES 189

\mu ki \sim cik
2\cdot pi/d

for constants ci, pi that are independent of k. In particular, p1 = - (d - 1) and p2 = \cdot \cdot \cdot = pd = 1,
which necessarily satisfy

\sum d
i=1 pi = 0.

Geometrically, we illustrate the degeneracy in Figure 1 for dimensions d= 2 and 3. Here,
for k = 1,3,5,7, we plot the ellipses/ellipsoids corresponding to the Gram matrix, \{ v \in 
Rd : vtG\circ 

k,dv = 2\kappa 2\} , as well as the kth shortest lattice vectors (green points). In both cases,
the elongation in one direction corresponds to the first eigenvalue of the Gram matrix scaling
as \mu 1(k)\sim c1k

 - 2(d - 1)/d and the other eigenvalues scaling as \mu i(k)\sim cik
2/d.

Finally, we conclude with a discussion of the successive minima. Recall that, for 1\leq i\leq d,
the ith successive minimum of a lattice with basis B is defined by

\gamma i(B) =min\{ \| vi\| : \exists linearly independent v1 . . . , vi \in BZd with \| v1\| \leq \cdot \cdot \cdot \leq \| vi\| \} .

That is, \gamma i is the smallest number \gamma such that the ellipsoid \{ \| Bx\| \leq \gamma \} contains i linearly
independent vectors (see, e.g., [42]). For each k \geq 1, d \leq 8, we have that \gamma 1((B

\circ 
k,d)

 - t) = 2
\surd 
2

is attained by the vector (0, . . . ,1) and \gamma 2((B
\circ 
k,d)

 - t) = \cdot \cdot \cdot = \gamma d((B
\circ 
k,d)

 - t) =
\surd 
2\kappa . In particular,

since the injectivity radius of a flat torus, TB, satisfies inj(TB) = \gamma 1(B)\asymp \gamma d(B
 - t) - 1, we have

that inj(T \circ 
k,d)\asymp k - 1. If we scale T \circ 

k,d by \alpha =vol(T \circ 
k,d)

 - 1

d = | detG\circ 
k,d| 

1

2d \asymp k
d - 1

d (see Table 2), we

obtain that vol(\alpha T \circ 
k,d) = 1. We then compute inj(\alpha T \circ 

k,d) = \gamma 1(\alpha B) = \alpha \gamma 1(B)\asymp \alpha \gamma d(B
 - t) - 1 =

k - 
1

d , which is consistent with [26, Thm. 1.2].

4.4. A lattice model for dimension \bfitd > \bfeight . We consider the d > 8-dimensional lattice
with Gram matrix given by

\~Gk,d =

\biggl( 
2\kappa 2Id - 8 0

0 \scrG k

\biggr) 
.

Here, Id - 8 is the (d - 8)\times (d - 8) identity matrix, so this corresponds to gluing the 8-dimensional
lattice with gram matrix \scrG k to d  - 8 orthogonal lattice vectors that are aligned with the
coordinate axes. We compute

det \~Gk,d = 2d - 4\kappa 2d - 4(\kappa 2  - 3).

The kth shortest lattice vectors of this lattice still have squared length vt \~Gk,dv = 2\kappa 2. We
then compute

(14) \=\lambda k,d = 4\pi 2 \cdot 2\kappa 2 \cdot 
\Bigl( 
2d - 4\kappa 2d - 4(\kappa 2  - 3)

\Bigr)  - 1

d

= \pi 2 Hd \kappa 
2

d ,

where Hd = 22+
4

d

\bigl( 
1 - 3\kappa  - 2

\bigr)  - 1

d > 22+
4

d . Comparing this scaling to Weyl's law (3), we have

Hd

gd
> (4\omega d)

2

d .
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190 C.-Y. KAO, B. OSTING, AND J. C. TURNER

We see that Hd

gd
> 1 if and only if \omega d >

1
4 , which holds for d\leq 15. To summarize, for 9\leq d\leq 15,

we obtain a meaningful lower bound on the maximal value,

(15) \Lambda k,d \geq \=\lambda k,d = \pi 2 Hd \kappa 
2

d , k \in N.

We do not believe that this lower bound is optimal in these dimensions; however, this con-
structed sequence of lattices extends the argument in [26] from d \leq 10 dimensions to d \leq 15
dimensions.

Appendix A. Numerical methods. In this appendix, we describe a numerical method
for approximating solutions to the optimization problem in (4) and for generating a vector
c\in R

m

2 that satisfies the stationarity condition given in Theorem 3.4.

A.1. Optimization method In section 2, we explained how we can compute Laplacian
eigenvalues of given tori. Here we describe an optimization method for generating those
lattices. The optimization problem in (4) can be trivially rewritten as

\=\lambda k,d =max
\alpha ,B

\alpha (16a)

s.t. \Lambda j(TB)\geq \alpha , j \geq k.(16b)

Our strategy for solving (16) is to successively solve its linearization. Writing

B - t = (I + \varepsilon )B - t
0

for some fixed B0 \in GL(d,R) and a matrix \varepsilon \in GL(d,R) with small norm, we compute the
first order approximations

detB - t =detB - t
0 det(I + \varepsilon )

= detB - t
0 (1 + \langle I, \varepsilon \rangle F + o(\| \varepsilon \| ))

and

\lambda k(TB) = 4\pi 2\| B - tvk\| 2

= 4\pi 2
\bigl( 
vtkB

 - 1
0 (I + \varepsilon t)(I + \varepsilon )B - t

0 vk
\bigr) 

= 4\pi 2\| B - t
0 vk\| 2 + 8\pi 2\langle (B - t

0 vk)(B
 - t
0 vk)

t, \varepsilon \rangle F + o(\| \varepsilon \| ).

Combining these and assuming detB - t
0 > 0, we obtain

\=\lambda k,d(B) = \lambda k(TB)| detB - t|  - 2

d

=
\bigl( 
4\pi 2\| B - t

0 vk\| 2 + 8\pi 2\langle (B - t
0 vk)(B

 - t
0 vk)

t, \varepsilon \rangle F + o(\| \varepsilon \| )
\bigr) 

\times det(B - t
0 ) - 

2

d (1 + \langle I, \varepsilon \rangle F + o(\| \varepsilon \| )) - 2

d

=\Lambda k(B0) + \langle \Sigma k, \varepsilon \rangle F + o(\| \varepsilon \| ),

where

\Sigma k := 8\pi 2 det(B - t
0 ) - 

2

d (B - t
0 vk)(B

 - t
0 vk)

t  - 2

d
\=\lambda k,d(B0)I.
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FLAT TORI WITH LARGE LAPLACIAN EIGENVALUES 191

A linearization of the optimization problem in (16) is then

max
\alpha ,\varepsilon 

\alpha (17a)

s.t. \Lambda j,d(B0) + \langle \Sigma j , \varepsilon \rangle F \geq \alpha , j \geq k.(17b)

Additionally, for \beta > 0, we add the diagonally dominant constraints

 - \beta \leq \varepsilon i,i \leq \beta , i\in [d],(17c)

 - \beta 

d - 1
\leq \varepsilon i,j \leq 

\beta 

d - 1
, i \not = j,(17d)

which ensure \| \varepsilon \| < 2\beta . We retain only a finite number of constraints in (17b) by considering
only the j = k, . . . , k+K+1 for some integer K > 1 shortest lattice vectors. This linearization
procedure is similar to that appearing in [32] for the closest packing problem.

The linear optimization problem (17), which depends on the parameter \beta , is then solved
using the Gurobi linear programming library [17] repeatedly until \| B  - B0\| falls below a
specified tolerance. The parameter \beta is treated as a trust-region parameter and adaptively
set at each iteration to ensure that the linearization of \=\lambda k,d(B) is faithful.

In these numerical computations, floating-point arithmetic was performed to find the
maximal lattice Bk,d. We then formed the Gram matrix for the dual lattice B - 1

k,dB
 - t
k,d and

observed numerically that all of the elements are multiples of the smallest nonzero element of
the Gram matrix, suggesting that the Gram matrix can be rescaled as an integer matrix. We
then used the Lenstra--Lenstra--Lov\'asz lattice basis reduction algorithm [29] to simplify the
matrix and row/column permutations to obtain the laminated structure of \scrG k.

A.2. Numerical method for the stationarity condition Here, we explain how, in subsec-
tion 4.2, we computed a vector c\circ = c\circ (k, d) \in R

m

2 that satisfies the stationarity condition
given in Theorem 3.4. As explained in subsection 4.2, the vector is not unique, so it is chal-
lenging to derive a general formula for c\circ from an (arbitrarily computed) solution for various
k, d. To overcome this obstacle, we specify an addition condition that gives uniqueness. For
fixed k\geq 1, 2\leq d\leq 8, m as the multiplicity of the eigenvalue, and Mj \in Rd\times d, j = 1, . . . , m2 as
defined in (11), we consider the quadratic optimization problem

min
c\in Rm

2

\| c\| 22(18a)

s.t. c\geq 0,(18b)

m/2\sum 

j=1

cjMj = 0,(18c)

c1 = 1,(18d)

which asks for the shortest vector c (in the \ell 2 sense) that satisfies the desired properties. For
each dimension d, we solved this problem for small values of k and were able to deduce the
general formula, yielding c\circ \in R

m

2 as given in subsection 4.2.

Acknowledgments. We would like to thank Jean Lagac\'e and Lenny Fukshansky for useful
conversations.
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