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Abstract
In 1965, B. A. Troesch solved the isoperimetric sloshing problem of determining
the container shape that maximizes the fundamental sloshing frequency among two
classes of shallow containers: symmetric canals with a given free surface width and
cross-sectional area, and radially symmetric containers with a given rim radius and
volume (Commun Pure Appl Math 18(1–2):319–338, 1965, https://doi.org/10.1002/
cpa.3160180124). Here, we extend these results in two ways: (i) we consider sur-
face tension effects on the fluid free surface, assuming a flat equilibrium free surface
together with a pinned contact line, and (ii) we consider sinusoidal waves traveling
along the canal with wavenumber α ≥ 0 and spatial period 2π/α; two-dimensional
sloshing corresponds to the case α = 0. Generalizing our recent variational charac-
terization of fluid sloshing with surface tension to the case of a pinned contact line,
we derive the pinned-edge linear shallow sloshing problem, which is an eigenvalue
problem for a generalized Sturm-Liouville system. In the case without surface ten-
sion, we show that the optimal shallow canal is a rectangular canal for any α > 0. In
the presence of surface tension, we solve for the maximizing cross-section explicitly
for shallow canals with any given α ≥ 0 and shallow radially symmetric containers
with m azimuthal nodal lines, m = 0, 1. Our results reveal that the squared maximal
sloshing frequency increases considerably as surface tension increases. Interestingly,
both the optimal shallow canal for α = 0 and the optimal shallow radially symmetric
container are not convex. As a consequence of our explicit solutions, we establish
convergence of the maximizing cross-sections, as surface tension vanishes, to the
maximizing cross-sections without surface tension.
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1 Introduction

Sloshing dynamics refers to the study of the motion of a liquid free surface (i.e., the
interface between the liquid in the container and the air above) inside partially filled
containers or tanks [9, 19]. Liquid sloshing has attracted considerable attention from
engineers, scientists, and mathematicians. It is an inevitable phenomenon in many
engineering applications, causing detrimental impacts on the dynamics and stability
of marine, road, rail, and space transportation systems. For trucks and trains trans-
porting oil and hazardous material, liquid sloshing can affect vehicle dynamics during
braking maneuvers and curve negotiation, which could reduce the braking efficiency
and increase the risk of vehicle rollover [21, 39, 50]. For liquid propellant space-
craft, violent fuel sloshing produces highly localized pressure on tank walls, leading
to deviation from its planned flight path or compromising its structural integrity.

It is of practical interest to predict the natural sloshing frequencies of the liquid in
partially filled containers of arbitrary shape since large amplitude sloshing tends to
occur in the vicinity of resonance, i.e., when the external excitation (forcing) frequency
of the container is close to one of these natural sloshing frequencies. Knowing these
natural frequencies is therefore essential in the analysis and design of liquid containers.
In this case, it suffices to consider the linear sloshing problem since the details of the
fluid motion are not required in determining the natural frequencies [32]. Except for
very few simple geometries (such as upright cylindrical and rectangular containers)
with a flat free surface, where the linear problem has closed-form solutions [19, 28],
computing the natural sloshing frequencies of a liquid in arbitrarily-shaped containers
remains an intricate task but can be treated using a combination of analytical and
numerical techniques. Some of the well-known approaches include: (1) variational
formulations [27, 29, 30, 34–36, 40, 46], (2) integral equation/conformal mapping [6,
7, 10, 11], (3) special coordinate systems [31, 32, 41], and (4) the series expansion
method [8, 41, 42]. In this paper, we use a variational approach to study the linear
sloshing problem with the pinned-end edge constraint.

1.1 Pinned-Edge Linear Sloshing Problem

We begin by describing free oscillations of an incompressible, inviscid fluid in a three-
dimensional rigid container; a physical derivation of the linear sloshing problem can
be found in, e.g., [46, Appendix A]. Let �c denote a characteristic length scale of the
container and g the gravitational acceleration. We nondimensionalize all lengths by
�c, time by tc:=√

�c/g, and velocity by �c/tc. The fluid occupies a bounded, simply-
connected moving domain D(t) ⊂ R

3 that is bounded above by the fluid free surface
F(t) and below by piecewise smooth wetted container walls B(t):=∂D(t) \ F(t).
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Let (x, y, z) be dimensionless Cartesian coordinates such that the z-axis is directed
vertically upward. We make the following assumptions:

1. The fluid flow is irrotational. This implies the existence of a velocity potential
φ(x, y, z, t) whose gradient is the fluid velocity field, u = ∇φ.

2. The fluid is acted upon by the gravitational force in the bulk and capillary (surface
tension) forces on the free surface F(t). The equilibrium free surface F is flat and
lies in the plane z = 0. We describe the moving free surface as the graph of a
function η(x, y, t): F(t) = {(x, y, z) ∈ R

3 : z = η(x, y, t)}.
3. The contact line ∂F(t), i.e., the curve at the intersection of the free surface and the

container wall, is fixed at all time. This translates to ∂tη = 0 on ∂F(t) ≡ ∂F and is
known as the pinned-end edge constraint. This was first suggested byBenjamin and
Scott [4] to avoid certain discrepancies in the experimental measurements of wave
propagation of clean water in a channel. It was subsequently investigated by several
authors [3, 14–16, 20, 37, 42, 43]. The pinned contact line has been observed in
small amplitude sloshing, and this effect is enhanced on a brimful container or if
the fluid exhibits strong surface tension [2, 4].

4. The fluid undergoes small amplitude oscillations, allowing for the linearization of
the governing equations around the equilibrium solution (φ0, η0) = (1, 0), i.e.,
write (φ, η) = (1, 0) + ε(φ̂, η̂) + O(ε2), for some ordering parameter ε � 1.

This last assumption crucially permits the transformation of the nonlinear fluid prob-
lem on the moving domain D(t) to a linear one (the O(ε) equations) on the fixed,
equilibrium domain D. Finally, we seek time-harmonic solutions to the linear prob-
lem with natural sloshing frequency ω and natural sloshing modes (Φ, ξ), i.e., we
write φ̂(x, y, z, t) = Φ(x, y, z) cos(ωt) and η̂(x, y, t) = ξ(x, y) sin(ωt).

The O(ε) equations (with the time-harmonic factor canceled) are a dimensionless
linear boundary spectral problem for (ω,Φ, ξ), which we refer to as the pinned-edge
linear sloshing problem:

ΔΦ = 0 in D, (1.1a)

∂n̂Φ = 0 on B, (1.1b)

∂zΦ = ωξ on F , (1.1c)

ξ − 1

Bo
ΔF ξ = ωΦ on F , (1.1d)

ξ = 0 on ∂F , (1.1e)

where n̂ is the outward unit normal vector and ΔF ξ :=∂xxξ + ∂yyξ is twice the lin-
earized mean-curvature operator. The dimensionless number Bo = ρg�2c/σ (with
ρ > 0 the constant fluid density and σ > 0 the surface tension coefficient along the
free surface) is known as the Bond number and it measures the relative magnitudes
of gravitational and capillary forces. The mass of the fluid is conserved for any ω.
Indeed, a trivial eigenpair of (1.1) is given by (ω,Φ, ξ) = (0, 1, 0), and for ω 	= 0
mass conservation

∫
F ξ d A = 0 follows from the divergence theorem.
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Fig. 1 (Left) A canal generated by a vertical cross-section C with container shape z = −h(x). (Right) A
radially symmetric container obtained as a rotation of a planar meridian domain R with container shape
z = −h(r)

1.2 Isoperimetric Sloshing Problem

In the absence of surface tension (i.e., Bo = ∞), B. A. Troesch [47] studied the
isoperimetric sloshing problem of determining universal upper bounds for sloshing
frequencies for the following two families of shallow symmetric containers:

1. Canals (uniform horizontal channels of arbitrary cross-section) with a given free
surface width and cross-sectional area; see Fig. 1(left).

2. Radially symmetric containerswith a given rim radius and volume; see Fig. 1(right).

The term shallow refers to the assumption that the fluid depth, h, is sufficiently small
compared to the wavelength of the free oscillation. Exploiting translational symmetry
along the canal length for canals and rotational symmetry for radially symmetric
containers and then applying the shallow water theory, the three-dimensional sloshing
problem in the fluid domain reduces to a one-dimensional problem on the fluid free
surface. The isoperimetric sloshing problem becomes a one-dimensional eigenvalue
optimization problem with an area or volume constraint, in the sense that the free
surface is fixed and only the wetted bottom of the container is allowed to vary.

In the absence of surface tension, Troesch derived the first-order optimality condi-
tion using a variational argument, which says that the velocity potential must be linear
for any optimal container. Combining this with the extremal property of the sloshing
frequencies, Troesch showed that solving the isoperimetric sloshing problem is equiv-
alent to solving a certain first-order singular ODE with the area or volume constraint.
We now state Troesch’s result. Let λ1,Bo=∞ be the square of the dimensionless fun-
damental (smallest positive) sloshing frequency without surface tension for a shallow
container. For shallow canals with a dimensionless cross-sectional area A, we have

λ1,Bo=∞(h) ≤ 3A/2

for all depth functions h within a particular class and the container that saturates this
inequality is a parabola; in particular, the maximizing cross-section is convex and has
no vertical side walls. For shallow radially symmetric containers with a dimensionless
volume V , λ1,Bo=∞ (corresponding to a motion with one nodal diameter m = 1 on
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the free surface) satisfies

λ1,Bo=∞(h) ≤ 4V /π

for all depth functions h within a particular class and the container that saturates
this inequality is again a parabola. The problem for higher sloshing frequencies is
solved numerically and these optimal containers are not connected, in the sense that
the container depth vanishes at some point in the interior of the free surface.

1.3 Summary of Main Results and Outline

The goal of this work is twofold: (i) solve the isoperimetric sloshing problem for the
fundamental (smallest positive) sloshing frequency, including the effects of surface
tension on the free surface and (ii) extend transverse sloshing to longitudinal sloshing
along the canal. We now give precise statements of our main results.

Canals. In the case of canals, we restrict our attention to sinusoidal solutions of the
form Φ(x, y, z) = ϕ(x, z) cos(αy) and ξ(x, y) = ζ(x) cos(αy), where the parameter
α ≥ 0 is the wavenumber associated with the longitudinal sloshing mode with spatial
period 2π/α. In particular, the caseα = 0 corresponds to planar sloshing in the vertical
xz-plane. For a (sufficiently small) fixed cross-sectional area A > 0, we introduce the
following class of admissible shape functions for shallow canals

MA:=
{

h ∈ PC1[−1, 1] : h ≥ 0 on [−1, 1];
∫ 1

−1
h dx = A

}

,

where PC1[−1, 1] denotes the set of all continuous and piecewise continuously differ-
entiable functions on the interval [−1, 1]. For every α ≥ 0, let Ω∞

α,1 and Ωα,1 denote
the fundamental sloshing frequency for a shallow canal in the absence (Bo = ∞)
and presence (Bo < ∞) of surface tension, respectively. Define λ∞

α,1:=(Ω∞
α,1)

2 and

λα,1:=Ω2
α,1. Troesch proved that the parabolic cross-section maximizes λ∞

0,1 in MA,
with upper bound λ

∞,∗
0,1 :=3A/2. Our first theorem extends Troesch’s result fromα = 0

to α > 0 in the absence of surface tension.

Theorem 1.1 (Bo = ∞, α > 0) Let h be a shape function inMA. Then for all α > 0,
we have

λ∞
α,1(h) ≤ λ

∞,∗
α,1 :=α2A

2
.

Equality holds for h = h∞,∗
α :=A/2, i.e., the maximizing cross-section is a rectangle

for any α > 0.

Observe that α 
→ λ
∞,∗
α,1 is strictly increasing on (0,∞) and λ

∞,∗
α,1 → 0 	= λ

∞,∗
0,1 as

α → 0+. We associate this with the fact that the trivial eigenvalue λ = 0 exists for the
shallow sloshing problem without surface tension (2.14) for α = 0 but not for α > 0.
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The next two theorems generalize Troesch’s result for α = 0 and Theorem 1.1 for
α > 0 from Bo = ∞ to Bo < ∞.

Theorem 1.2 (Bo < ∞, α = 0) Let h be a shape function inMA. Then the following
inequality holds:

λ0,1(h) ≤ λ∗
0,1:=

3A

2

⎡

⎣1 −
3
(√

Bo − tanh
(√

Bo
))

Bo tanh
(√

Bo
)

⎤

⎦

−1

. (1.2)

Equality holds for h = h∗
0 defined by

h∗
0(x) = λ∗

0,1

2
(1 − x2) − λ∗

0,1√
Bo sinh(

√
Bo )

[
cosh(

√
Bo ) − cosh(

√
Bo x)

]
.

(1.3)

In particular, z = −h∗
0 is symmetric but not convex on [−1, 1].

Theorem 1.3 (Bo < ∞, α > 0) Define κα:=√
α2 + Bo. Let h be a shape function in

MA. Then for all α > 0, we have

λα,1(h) ≤ λ∗
α,1:=

α2A

2

κ2
α

Bo

[

1 − tanh κα

κα

]−1

. (1.4)

Equality holds for h = h∗
α defined by

h∗
α(x) = λ∗

α,1Bo

α2κ2
α

[

1 − cosh (καx)

cosh κα

]

. (1.5)

In particular, z = −h∗
α is symmetric and convex on [−1, 1].

Radially symmetric containers. In the case of radially symmetric containers, we con-
vert to cylindrical coordinates (r , θ, z) and look for solutions of the formΦ(r , θ, z) =
ϕ(r , z) cos(mθ) and ξ(r , θ) = ζ(r) cos(mθ), with m = 0, 1, 2, . . . the number of
azimuthal nodal lines. For a (sufficiently small) fixed volume V > 0, we introduce
the following class of admissible shape functions for shallow radially symmetric con-
tainers

MV :=
{

h ∈ PC1[0, 1] : h ≥ 0 on [0, 1];
∫ 1

0
hr dr = V /2π

}

.

For every m = 0, 1, 2, . . . , let Ωm,1 denote the fundamental sloshing frequency for
a shallow radially symmetric container in the presence of surface tension and define
λm,1:=Ω2

m,1. The next two theorems generalize Troesch’s result form = 1 andm = 0
from Bo = ∞ to Bo < ∞. Throughout this paper, Iν and Lν are modified Bessel and
Struve functions of the first kind of order ν, respectively, and pFq is the generalized
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hypergeometric function; see [38, Sect. 10.25] for Iν , [38, Chap. 11] for Lν , and [38,
Chap. 16] for pFq .

Theorem 1.4 (m = 1) Let h be a shape function inMV . Then the following inequality
holds:

λ1,1(h) ≤ λ∗
1,1:=

4V

π

[

1 − 4I2(
√
Bo )√

Bo I1(
√
Bo )

]−1

. (1.6)

Equality holds for h = h∗
1 defined by

h∗
1(r) = λ∗

1,1

2
(1 − r2) − λ∗

1,1√
Bo I1(

√
Bo )

[
I0(

√
Bo ) − I0(

√
Bo r)

]
. (1.7)

In particular, z = −h∗
1 is not convex on [0, 1].

Theorem 1.5 (m = 0) Let h be a shape function inMV . Then the following inequality
holds:

λ0,1(h) ≤ λ∗
0,1:=

18V

π

[

6d0 − 3 + 18(1 − d0)πΥ (
√
Bo )

Bo I0(
√
Bo )

+32F3

(

1, 2; 3
2
,
5

2
, 3; Bo

4

)

− 9π2L0(
√
Bo )Υ (

√
Bo )

Bo3/2 I0(
√
Bo )

]−1

, (1.8)

where

Υ (
√
Bo ):=I1(

√
Bo )L0(

√
Bo ) − I0(

√
Bo )L1(

√
Bo )

d0:=3πΥ (
√
Bo ) + 2Bo I0(

√
Bo ) − 6

√
Bo I1(

√
Bo )

3Bo I2(
√
Bo )

.
(1.9)

Equality holds for h = h∗
0 defined by

h∗
0(r) = λ∗

0,1

3

[
3d0r

2
− r2
]

+ λ∗
0,1(1 − d0)I1(

√
Bo r)√

Bo I0(
√
Bo)

+λ∗
0,1π

2Bo

[

L1(
√
Bo r) − L0(

√
Bo )I1(

√
Bor)

I0(
√
Bo )

]

. (1.10)

In particular, h∗
0(0) = 0 and z = −h∗

0 is not convex on [0, 1].
Effects of surface tension. Let us describe the effects of surface tension (Bo < ∞)
on the solution to the isoperimetric sloshing problem.

1. Except for the case α > 0, the optimal shallow containers h∗ are no longer convex.
Specifically, these containers flatten near the contact point, i.e., h∗ and its derivative
vanish on the boundary of the free surface F .
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2. Our isoperimetric inequalities for λ1,Bo(h) can be interpreted as

λ1,Bo(h) ≤ λ∗
1,Bo = C · λ∗

1,Bo=∞,

where C = C(Bo) > 1 for Bo > 0 and λ∗
1,Bo=∞ is the squared maximal sloshing

frequency for Bo = ∞. In particular, Bo 
→ C(Bo) is strictly decreasing on
(0,∞) and for Bo = 1, C is approximately 16.4 for α = 0, between 4.2 and 48
for α < 2π say, 25.5 for m = 1, and 38.8 for m = 0, i.e., surface tension results
in a significantly larger squared maximal sloshing frequency.

Because all our solutions are explicit, we are able to show that the limit of the solution
(h∗

Bo, λ
∗
1,Bo) to the isoperimetric sloshing problem with surface tension, as surface

tension vanishes, i.e., Bo → ∞, is the solution (h∗
Bo=∞, λ∗

1,Bo=∞) to the isoperimetric
sloshing problem without surface tension; see Corollaries 2.12, 2.13, 3.8, 3.9.

The results in this paper lend theoretical justification for the practice of adding
surfactant to a liquid in certain vessel geometries to change the fundamental sloshing
frequency and help mitigate negative consequences of sloshing dynamics in certain
applications.

Remark 1.6 There are a few assertions in the proofs of our main results that we verify
numerically. Except for Theorem 1.1, we verify using the finite difference method that
λ∗
1,Bo is indeed the squared fundamental sloshing frequency for the corresponding

shape function h∗
1,Bo. For Corollary 3.9, we use Mathematica to compute the limit

of the third term of h∗
0 involving combinations of the modified Bessel and Struve

functions as Bo → ∞ for any r ∈ (0, 1).

Outline.The paper is structured as follows. In Sects. 2 and 3, we describe the reduction
of (1.1) when the container is a canal and a radially symmetric container, respectively.
We generalize our recent variational characterization of fluid sloshing with surface
tension [46] to the case of a pinned contact line in Sects. 2.1 and 3.1. In Sects. 2.2
and 3.2, we derive the pinned-edge linear shallow sloshing problem and outline our
approach in solving the isoperimetric sloshing problem. We prove Theorem 1.1 in
Sect. 2.3, Theorems 1.2 and 1.3 in Sect. 2.4, and Theorems 1.4 and 1.5 in Sect. 3.3.
We establish the zero surface tension limit of the solution to the isoperimetric sloshing
problem in Sects. 2.5 and 3.4. We conclude in Sect. 4 with a discussion.

2 Canals

We choose the halfwidth x0 of the equilibrium free surface as the characteristic length
scale. Let (x, y, z) be dimensionless Cartesian coordinates with y directed along the
length of the canal, which is unbounded and z vertically upwards; see Figure 1(left).
Let h(x) be a dimensionless function describing the profile of the container’s bottom.
A canal is the equilibrium fluid domain D = C × {y ∈ R}, bounded by the wetted
bottom B = (−1, 1) × R × {z = −h(x)}, the free surface F = (−1, 1) × R × {0},
and the contact line ∂F = {±1} × R × {0}. We think of C as the cross-section of D
that lies on the plane y = 0.

123



Applied Mathematics & Optimization (2023) 87 :33 Page 9 of 32 33

We seek sinusoidal solutions of (1.1) oscillating with wavenumber α ≥ 0 in the
positive y-direction, i.e., we write the natural sloshing modes (Φ, ξ) as Φ(x, y, z) =
ϕ(x, y) cos(αy) and ξ(x, y) = ζ(x) cos(αy). These ansatzes reduce (1.1) to the fol-
lowing two-dimensional generalized mixed Steklov problem for (ω, ϕ, ζ ) on C:

∂n̂ϕ = α2ϕ in C, (2.1a)

∂n̂ϕ = 0 on BC :=∂C ∩ B, (2.1b)

∂zϕ = ωζ on FC :=∂C ∩ F , (2.1c)
(

1 + α2

Bo

)

ζ − 1

Bo
ζ ′′ = ωϕ on FC, (2.1d)

ζ(±1) = 0. (2.1e)

Here, ∇C :=(∂x , ∂z), ΔC = ∇C · ∇C = ∂xx + ∂zz , and we now have two contact points
(x, z) = (±1, 0) in (2.1). It is straightforward to verify that the ansatz for ξ satisfies
the necessary condition

∫
F ξ d A = 0 due to the factor cos(αy) for α > 0. The case

α = 0 corresponds to the two-dimensional transverse sloshing problem on C and a
necessary condition for the existence of solutions of (2.1) is

∫ 1
−1 ζ dx = 0.

2.1 Variational Principle

Let H1(C) = W 1,2(C) and H1
0 (−1, 1) = W 1,2

0 (−1, 1) denote the standard Sobolev
spaces with real-valued functions, both equipped with norms induced by their nat-
ural inner products. Define the Hilbert space HC :=H1(C) × H1

0 (−1, 1) with norm
‖(ϕ, ζ )‖2HC :=‖ϕ‖2

H1(C)
+‖ζ‖2

H1(−1,1)
. Suppose (ω, ϕ, ζ ) is a sufficiently regular solu-

tion of (2.1) for α > 0. Testing (2.1a), (2.1d) with f ∈ H1(C), g ∈ H1
0 (−1, 1),

respectively, and using the remaining equations in (2.1), we arrive at the following
weak formulation of (2.1) for α > 0.

Definition 2.1 Given α > 0, we say that (ωα, ϕα, ζα) ∈ R×HC, (ϕα, ζα) 	= (0, 0) is
a weak sloshing eigenpair of (2.1) if the following holds for all ( f , g) ∈ HC :

∫

C

(
∇Cϕα · ∇C f + α2ϕα f

)
d A +

∫ 1

−1

[(

1 + α2

Bo

)

ζαg + 1

Bo
ζ ′
αg

′
]

dx

= ωα

∫

FC
(ζα f + ϕαg) dx . (2.2)

For α = 0, we introduce the Hilbert space HC,0:={(ϕ, ζ ) ∈ HC : ∫ 1−1 ζ dx = 0}
which is a closed subspace of HC , with norm induced by the norm of HC .

Definition 2.2 We say that (ω0, ϕ0, ζ0) ∈ R × HC,0, (ϕ0, ζ0) 	= (0, 0) is a weak
sloshing eigenpair of (2.1) for α = 0 if the following holds for all ( f , g) ∈ HC,0:

∫

C
∇Cϕ0 · ∇C f d A +

∫ 1

−1

(

ζ0g + 1

Bo
ζ ′
0g

′
)

dx = ω0

∫

FC
(ζ0 f + ϕ0g) dx . (2.3)

123



33 Page 10 of 32 Applied Mathematics & Optimization (2023) 87 :33

If (ωα, ϕα, ζα) is a weak sloshing eigenpair of (2.1), then so are (−ωα,±ϕα,∓ζα)

and we may restrict our attention to weak sloshing eigenpairs with ωα > 0. We now
derive a sufficient condition for obtaining positive sloshing frequencies. To this end,
define the functional

GC(ϕ, ζ ) =
∫

FC
ϕζ dx,

and the energy functional EC,α(ϕ, ζ ) which is the sum of the kinetic energy DC,α(ϕ)

and the potential energy SC,α(ζ ) of the fluid under small amplitude oscillations:

EC,α(ϕ, ζ ):= 1

2

∫

C

[
|∇Cϕ|2 + α2ϕ2

]
d A

︸ ︷︷ ︸
DC,α(ϕ)

+ 1

2

∫ 1

−1

[(

1 + α2

Bo

)

ζ 2 + 1

Bo
(ζ ′)2
]

dx
︸ ︷︷ ︸

SC,α(ζ )

.

Lemma 2.3 Given α ≥ 0, suppose (ωα, ϕα, ζα) is a weak sloshing eigenpair of (2.1).
We have the identity ωαGC(ϕα, ζα) = DC,α(ϕα) + SC,α(ζα) = EC,α(ϕα, ζα). In
particular, ωα and GC(ϕα, ζα) have the same sign provided GC(ϕα, ζα) 	= 0.

Proof The identity follows from substituting ( f , g) = (ϕα, ζα) in (2.2) and (2.3). The
second assertion follows by noting that EC,α is nonnegative and has a trivial kernel
for α > 0 and the one-dimensional kernel spanned by (ϕ, ζ ) = (1, 0) for α = 0. ��

For α ≥ 0, let ωα,1 denote the fundamental (smallest positive) sloshing frequency
of (2.1) with corresponding weak fundamental sloshing eigenfunction (ϕα,1, ζα,1).
We are now prepared to establish a variational characterization for ωα,1 which is
inspired by [46] and Lemma 2.3. Note that since EC,α is a homogeneous functional
of degree 2, minimizing EC,α(ϕ, ζ )/GC(ϕ, ζ ) over all nonzero functions (ϕ, ζ ) satis-
fying GC(ϕ, ζ ) > 0 is equivalent to minimizing EC,α(ϕ, ζ ) over all functions (ϕ, ζ )

satisfying the integral constraint GC(ϕ, ζ ) = 1.

Theorem 2.4 (Variational characterization, α > 0) Let C be a bounded Lipschitz
domain in R

2. For every α > 0, there exists a weak fundamental sloshing eigenpair
(ωα,1, ϕα,1, ζα,1) of (2.1), where (ϕα,1, ζα,1) is a constrainedminimizer of the following
variational problem:

ωα,1:= inf
(ϕ,ζ )∈HC

{
EC,α(ϕ, ζ ) : GC(ϕ, ζ ) = 1

}
. (2.4)

Proof Fix α > 0. Define the admissible set M := {(ϕ, ζ ) ∈ HC : GC(ϕ, ζ ) = 1}. The
existence of a minimizer to (2.4) for α > 0 follows from the direct method of the
calculus of variations, as M is weakly closed in HC and EC,α is weakly coercive and
weakly lower semicontinuous on M with respect to HC ; see [46, Lemmas 3.5 and
3.6] for similar proofs of these assertions. Let (ϕ∗

α, ζ ∗
α ) be a minimizer of (2.4). It is

straightforward to verify that both EC,α andGC are continuously Fréchet differentiable
on HC and for any (ϕ, ζ ) ∈ M we have 〈DGC(ϕ, ζ ), (ϕ, ζ )〉H′

C ,HC = ∫FC 2ϕζ dx =
2 	= 0, where H′

C is the dual space of HC and 〈·, ·〉H′
C ,HC denotes the duality pairing
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between HC and H′
C . Thus the Lagrange multiplier rule applies and there exists a

Lagrange multiplier μα ∈ R such that

d

dε
(EC,α − μαGC)(ϕ∗

α + ε f , ζ ∗
α + εg)

∣
∣
∣
∣
ε=0

= 0 for any ( f , g) ∈ HC . (2.5)

A direct computation shows that (2.5) is equivalent to (μα, ϕ∗
α, ζ ∗

α ) ∈ R× M satisfy-
ing (2.2) for all ( f , g) ∈ HC . Moreover, Lemma 2.3 together with GC(ϕ∗

α, ζ ∗
α ) = 1

gives μα = EC,α(ϕ∗
α, ζ ∗

α ) > 0. It remains to show that EC,α(ϕ∗
α, ζ ∗

α ) is the fundamen-
tal sloshing frequency, but this follows immediately by choosing any weak sloshing
eigenfunction (ϕα, ζα) ∈ M as a trial function in (2.4) and applying Lemma 2.3. ��
Theorem 2.5 (Variational characterization, α = 0) Let C be a bounded Lipschitz
domain in R

2. There exists a weak fundamental sloshing eigenpair (ω0,1, ϕ0,1, ζ0,1)

of (2.1) for α = 0, where (ϕ0,1, ζ0,1) is a constrained minimizer of the following
variational problem:

ω0,1:= inf
(ϕ,ζ )∈HC,0

{
EC,0(ϕ, ζ ) : GC(ϕ, ζ ) = 1

}
. (2.6)

Proof Define the admissible set M :={(ϕ, ζ ) ∈ HC,0 : GC(ϕ, ζ ) = 1}, its subset
N :=M ∩ {ϕ : ∫FC ϕ dx = 0}, and the operator Pϕ:=ϕ − 1

|FC |
∫
FC ϕ dx . We claim

that a minimizer of (2.6) is given by (ϕ̂, ζ̂ ), where (ϕ̂, ζ̂ ) is a constrained minimizer
of EC,0 over N . Indeed, since (Pϕ, ζ ) ∈ N for any (ϕ, ζ ) ∈ M , we obtain

EC,0(ϕ, ζ ) = EC,0(Pϕ, ζ ) ≥ EC,0(ϕ̂, ζ̂ ) for any (ϕ, ζ ) ∈ M.

The existence of (ϕ̂, ζ̂ ) follows from the arguments given in [46, Theorem 1.1], in
particular we have that (μ̂, ϕ̂, ζ̂ ) with μ̂ = EC,0(ϕ̂, ζ̂ ) satisfies (2.3) for all ( f̂ , ĝ) ∈
HC,0 ∩ { f̂ : ∫FC f̂ dx = 0}. Choosing ( f̂ , ĝ) = (P f , g) for any ( f , g) ∈ HC,0

and using
∫ 1
−1 ζ̂ dx = 0, we find (μ̂, ϕ̂, ζ̂ ) satisfies (2.3) for all ( f , g) ∈ HC,0, i.e.,

(μ̂, ϕ̂, ζ̂ ) is a weak sloshing eigenpair of (2.1) for α = 0. Finally, a similar argument
from Theorem 2.4 shows that μ̂ is the fundamental sloshing frequency and we omit
the proof for brevity. ��
Remark 2.6 Althoughwe have a family ofminimizers (ϕ̂+c, ζ̂ ) to (2.6) for any c ∈ R,
(2.1d) shows that c = − 1

ω0,1Bo

∫ 1
−1 ζ̂ ′′ dx for sufficiently regular (ϕ̂, ζ̂ ).

2.2 Isoperimetric Sloshing Problem on Shallow Canals

Let us now restrict our attention to shallow canals. Recall the class of admissible shape
functions for shallow canals

MA:=
{

h ∈ PC1[−1, 1] : h ≥ 0 on [−1, 1];
∫ 1

−1
h dx = A

}

.
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Appealing to the shallow water theory, we may assume that ϕ is independent of the
depth, i.e., ϕ(x, z) = ψ(x). Define the Hilbert space H:=H1(−1, 1) × H1

0 (−1, 1)

and its closed subspace H0:=H ∩ {ζ : ∫ 1−1 ζ dx = 0}. Following [29, 47] and thanks
to Theorems 2.4 and 2.5, we may approximate ωα,1 as the infimum of the following
one-dimensional constrained variational problem:

ωα,1(h) ≈ Ωα,1(h):= inf
(ψ,ζ )∈Xα

{Eα(h;ψ, ζ ) : G(ψ, ζ ) = 1} , (2.7)

where X0:=H0, Xα:=H for every α > 0, G(ψ, ζ ):= ∫ 1−1 ψζ dx , and

Eα(h;ψ, ζ ):= 1

2

∫ 1

−1
h
[
(ψ ′)2 + α2ψ2

]
dx

︸ ︷︷ ︸
DC,α(ψ):=Dα(h;ψ)

+1

2

∫ 1

−1

[(

1 + α2

Bo

)

ζ 2 + 1

Bo
(ζ ′)2
]

dx .

We then define the weak formulation of the one-dimensional pinned-edge shallow
sloshing problem for every α ≥ 0 on [−1, 1] as the weak form of the Euler-Lagrange
equations of the constrained variational problem (2.7).

Definition 2.7 Given α ≥ 0, a weak shallow sloshing eigenpair (Ωα,ψα, ζα) ∈ R ×
Xα , (ψα, ζα) 	= (0, 0), satisfies the following equation for all ( f , g) ∈ Xα:

∫ 1

−1

[

h
(
ψ ′

α f ′ + α2ψα f
)

+
(

1 + α2

Bo

)

ζαg + 1

Bo
ζ ′
αg

′
]

dx = Ωα

∫ 1

−1
(ζα f + ψαg) dx .

The corresponding one-dimensional boundary eigenvalue problem for every α ≥ 0
is given by

−(hψ ′)′ + α2hψ = Ωζ on (−1, 1), (2.8a)
(

1 + α2

Bo

)

ζ − 1

Bo
ζ ′′ = Ωψ on (−1, 1), (2.8b)

(
hψ ′) (±1) = ζ(±1) = 0. (2.8c)

For α = 0, we must impose the necessary condition
∫ 1
−1 ζ dx = 0 as well. Note that

the governing equations (2.8a) and (2.8b) can also be derived from averaging (2.1)
from z = −h(x) to z = 0 and collecting O(h) terms. With this derivation, ψ(x) is
identified as ϕ(x, 0) instead; see [45, Sect. 10.13].

We now state the isoperimetric sloshing problem for shallow canals: For every
α ≥ 0, find the shape function h ∈ MA that maximizes Ωα,1, i.e., solve

sup
h∈MA

Ωα,1(h). (2.9)
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Our approach in solving (2.9) is based on the following simple observation. Let
(ψ∗

α, ζ ∗
α ) be an admissible pair of trial functions in (2.7) satisfying

((
ψ∗

α

)′)2 + α2(ψ∗
α)2 = c2α on (−1, 1) (2.10)

for some constant cα 	= 0. Then we obtain a simple upper bound for Ωα,1(h):

Ωα,1(h) ≤ 1

2

∫ 1

−1
hc2α dx + SC,α(ζ∗

α ) = c2α A

2
+ SC,α(ζ∗

α ) for any h ∈ MA. (2.11)

Moreover, equality holds in (2.11) only if (ψ∗
α, ζ ∗

α ) is a fundamental shallow sloshing
eigenfunction of (2.8) associated with some admissible shape function h∗

α ∈ MA.
This suggests the following strategy in solving (2.9):

1. Solve (2.10) for ψ∗
α and substitute ψ∗

α into (2.8b) and (2.8c) to solve for ζ ∗
α .

2. Substitute (ψ∗
α, ζ ∗

α ) from Step 1 into (2.8a) and (2.8c) to solve for h∗
α .

3. Compute Ω∗
α,1:=Ωα,1(h∗

α) using
∫ 1
−1 h

∗
α dx = A. Then check that h∗

α ∈ MA.
4. Check that (Ω∗

α,1, ψ
∗
α, ζ ∗

α ) is a fundamental shallow sloshing eigenpair of (2.8).
This is numerically verified using the finite difference method with a standard
second-order central difference.

Note that from (2.10), ψ∗
α is proportional to cα and it follows from (2.8b) that ζ ∗

α is
also proportional to cα . Since we are only interested in Ω∗

α,1 and (2.7) is equivalent
to minimizing Eα/|G| over all nonzero functions (ψ, ζ ) ∈ Xα , we may choose cα

to be any positive real number in (2.10), i.e., the amplitude of ψ∗
α is irrelevant. We

summarize these observations in the following theorem.

Theorem 2.8 Given α ≥ 0, if there exists h∗
α ∈ MA such that (Ωα,1(h∗

α), ψ∗
α, ζ ∗

α ) ∈
R × Xα is a fundamental weak shallow sloshing eigenpair with ψ∗

α satisfying (2.10)
for some c2α 	= 0, then h∗

α is a solution of (2.9), i.e., h∗
α is a maximizer of Ωα,1.

Remark 2.9 Formally, (2.10) can be interpreted as the first-order optimality condition
for (2.9). Suppose Ωα,1(h∗

α) is differentiable. For sufficiently small ε > 0, consider
the family of functions hα(x; ε) = h∗

α(x)+ εv(x) for any piecewise smooth variation
v(x) satisfying hα(x; ε) ≥ 0 on [−1, 1] and

∫ 1
−1 hα(x; ε) dx = A. Differentiat-

ing the area constraint with respect to ε yields
∫ 1
−1 v dx = 0. For every ε > 0, let

(Ωα,1(ε), ψα(x; ε), ζα(x; ε)) denote a fundamental weak shallow sloshing eigenpair

associated with hα(x; ε) and define
•

Ωα:= dΩα,1
dε

. Differentiating the weak formulation
with respect to ε, we see that the following holds for all ( f , g) ∈ Xα:

∫ 1

−1

[

hα

( •
ψα

′
f ′ + α2

•
ψα f

)

+
(

1 + α2

Bo

) •
ζαg + 1

Bo

•
ζα

′
g′
]

dx

+
∫ 1

−1
v
(
ψ ′

α f ′ + α2ψα f
)
dx = Ωα

∫ 1

−1

( •
ζα f + •

ψαg

)

dx

+ •
Ωα

∫ 1

−1
(ζα f + ψαg)dx . (2.12)
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Choosing ( f , g) = (ψα(x; 0), ζα(x; 0)) in (2.12) and ( f , g) = (
•

ψα,
•
ζα) in Defini-

tion 2.7 corresponding to
(
Ωα,1(0), ψα(x; 0), ζα(x; 0)), setting ε = 0, and using the

assumption that
•
Ω(0) = 0, we are left with

∫ 1

−1
v
[
(ψ ′

α(x; 0))2 + α2ψ2
α(x; 0)

]
dx = 0. (2.13)

This yields (2.10) since (2.13) must hold for all v satisfying
∫ 1
−1 v dx = 0.

Theorems 1.1-1.3 tell us that in the absence or presence of surface tension, the
maximizing cross-section h∗

α for every α ≥ 0 is symmetric. We now show that this
can be interpreted as a consequence of the concavity of the map h 
→ Ωα,1(h).

Theorem 2.10 Given α ≥ 0, the map h 
→ Ωα,1(h) is concave on MA. As a conse-
quence, if there exists a maximizer of Ωα,1, then there exists a symmetric maximizer
of Ωα,1 too.

Proof Fix α ≥ 0. The concavity follows from the variational characterization of Ωα,1
(see (2.7)), as MA is convex and the map h 
→ Ωα,1(h) is the infimum of the family
of affine functions {h 
→ (Eα/|G|)(h;ψ, ζ )}(ψ,ζ ). Next, suppose h1 ∈ MA is a
maximizer of Ωα,1. Define h2(x):=h1(−x) ∈ MA and h3:=(h1 + h2)/2 ∈ MA,
the latter which is symmetric. It is clear from (2.7) that Ωα,1(h2) = Ωα,1(h1). By
concavity of the map h 
→ Ωα,1(h), we get

Ωα,1(h3) ≥ 1

2
Ωα,1(h1) + 1

2
Ωα,1(h2) = Ωα,1(h1). ��

2.3 Zero Surface Tension: Proof of Theorem 1.1

In the absence of surface tension, the corresponding shallow sloshing problem is
obtained from (2.8) by formally setting Bo = ∞. Decoupling the equations, we see
that (Ω2

α, ψα) ∈ R × H1(−1, 1) satisfies the following Sturm-Liouville problem:

−(hψ ′
α)′ + α2hψα = Ω2

αψα:=λ∞
α ψα on (−1, 1),

(hψ ′
α)(±1) = 0.

(2.14)

It is not difficult to see that for every α ≥ 0, the squared fundamental sloshing fre-
quency λ∞

α,1 admits the following variational characterization:

λ∞
α,1(h) = inf

ψ∈H1(−1,1)

{

2Dα(h;ψ) :
∫ 1

−1
ψ2 dx = 1

}

. (2.15)

Troesch proved that themaximizing cross-section for α = 0 is a parabola with squared
maximal sloshing frequency λ

∞,∗
0,1 :=3A/2 [47]. We now show that the maximizing

cross-section for α > 0 is a rectangle h∞,∗
α = A/2.
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Proof of Theorem 1.1 For any α > 0, choosing ψα = 1/
√
2 as an admissible trial

function in (2.15) yields

λ∞
α,1(h) ≤

∫ 1

−1

hα2

2
dx = α2A

2
for any h ∈ MA. (2.16)

To see that equality holds in (2.16) for h = h∞,∗
α = A/2, we substitute h = A/2 into

(2.14) and rearrange to obtain

ψ ′′
α +
(
2λ∞

α

A
− α2
)

ψα = 0 on (−1, 1); ψ ′
α(±1) = 0.

It is clear that (λ∞
α , ψα) = (α2A/2, c) is the fundamental eigenpair for any nonzero

constant c. ��

2.4 Finite Surface Tension: Proof of Theorems 1.2 and 1.3

Throughout this subsection, for any given α > 0 we denote by h the maximizing
cross-section, (Ω,ψ, ζ ) its corresponding fundamental shallow sloshing eigenpair,
and λ:=Ω2 for notational convenience.

Proof of Theorem 1.2 Set α = 0. Choosing c0 = 1 in (2.10), one such solution is
ψ(x) = x + d0 for some d0 ∈ R. We first solve for ζ . Define κ:=√

Bo. Substituting
ψ(x) = x + d0 into (2.8b) for α = 0 and rearranging yield

ζ ′′ − κ2ζ = −Ωκ2 (x + d0) on (−1, 1).

Together with ζ(±1) = 0 and
∫ 1
−1 ζ dx = 0, the solution is given by

ζ(x) = Ω

(

x − sinh(κx)

sinh κ

)

.

Next we solve for h. Substituting ψ and ζ into (2.8a) for α = 0 and (2.8c) yield

h′ = −λ

[

x − sinh(κx)

sinh κ

]

; h(±1) = 0.

The solution is given by

h(x) = λ

2
(1 − x2) − λ

κ sinh κ

(
cosh κ − cosh(κx)

)
.

A direct computation of
∫ 1
−1 h dx = A shows that λ = λ∗

0,1 > 0 as defined in (1.2).
Finally, we have h ∈ MA as h is even, h(1) = 0, and h′ < 0 on (0, 1); the latter
follows from the fact that sinh(z)/z is strictly increasing for z > 0. ��
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Proof of Theorem 1.3 Fix α > 0. Choosing cα = α2 in (2.10), one such solution is
ψ = 1. We first solve for ζ . Define κα:=√

α2 + Bo. Substituting ψ = 1 into (2.8b)
and rearranging yield

ζ ′′ − κ2
αζ = −ΩBo on (−1, 1).

Together with ζ(±1) = 0, the solution is given by

ζ(x) = ΩBo

κ2
α

[

1 − cosh(καx)

cosh κα

]

.

Next we solve for h. Since (hψ ′)(±1) = 0 is trivially satisfied with ψ = 1, it follows
from (2.8a) that

h(x) = Ωζ(x)

α2ψ(x)
= λBo

α2κ2
α

[

1 − cosh(καx)

cosh κα

]

.

Again, a direct computation of
∫ 1
−1 h dx = A shows that λ = λ∗

α,1 > 0 as defined
in (1.4). Finally, it is clear that h ∈ MA as h is even, h(1) = 0, and h is strictly
decreasing on (0, 1). ��
Remark 2.11 Given α ≥ 0, let h1 and h2 be twomaximizing cross-section. By concav-
ity of h 
→ Ωα,1(h) (see Theorem 2.10), we know that the average h3:=(h1 + h2)/2
is also a maximizing cross-section. Let (ψα, ζα) be an eigenfunction associated with
Ωα,1(h3). From the variational characterization (2.7) together with linearity of the
map h 
→ Dα(h;ψ), we get

Ωα,1(h3) = Eα(h3;ψα, ζα) = 1

2
Eα(h1;ψα, ζα) + 1

2
E(h2;ψ, ζ )

≥ 1

2
Ωα,1(h1) + 1

2
Ωα,1(h2).

By extremality of h1 and h2, it must be the case that (ψα, ζα) is an eigenfunction
associated with both Ωα,1(h1) and Ωα,1(h2). Consequently, we have

∫ 1

−1
(h1 − h2)

[
ψ ′

α f ′ + α2ψα f
]
dx = 0 for all f ∈ H1(−1, 1). (2.17)

We claim that the maximizing cross-section is unique under the assumption that the
eigenfunction associated with any maximizer of (2.9) is unique. For α = 0, (2.17)
gives (h1−h2)ψ ′

0 = C for some constantC . Sinceψ ′
0 	= 0 from the proof of Theorem

1.2, we must have h1 = h2 on (−1, 1). For α > 0, (2.17) gives
[
(h1 − h2)ψ ′

α

]′ =
(h1 − h2)α2ψα . Since ψα is constant from the proof of Theorem 1.3, we again have
h1 = h2 on (−1, 1).
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Fig. 2 An illustration of the zero surface tension limit for α = 0 (top) and α = π (bottom), both with
A = 1. (Left) The maximizing cross-section plotted for varying Bo (see (1.3) and (1.5)) and for Bo = ∞
(zero surface tension). (Right)The squaredmaximal sloshing frequency (1.2) and (1.4) plotted as a function
of Bo. The inset is a log-log plot of the squared maximal sloshing frequency for Bo ∈ [0.1, 10]

2.5 Zero Surface Tension Limit (Bo → ∞)

In this subsection, we show that for every α ≥ 0, the corresponding optimal shallow
canal without surface tension is the zero surface tension limit of the optimal shallow
canal with surface tension. Moreover, the map Bo 
→ λ∗

α,1(Bo) is strictly decreasing
on (0,∞). Figure 2 illustrates these results for α = 0 (top) and α = π (bottom).
For Bo = 1, we get λ∗

0,1/λ
∞,∗
0,1 and λ∗

π,1/λ
∞,∗
π,1 to be approximately 16.4 and 15.6,

i.e., the squared maximal sloshing frequency increases drastically when capillary and
gravitational forces are comparable. In Figure 2(right), the log-log plots reveal that
λ∗
0,1(Bo) ∝ Bo−0.808 and λ∗

π,1(Bo) ∝ Bo−0.8307 for Bo ∈ [0.1, 10].

Corollary 2.12 (α = 0,Bo → ∞) Let λ∗
0,1, h

∗
0 be defined as in Theorem 1.2. The map

Bo 
→ λ∗
0,1(Bo) is strictly decreasing on (0,∞) and λ∗

0,1(Bo) → λ
∞,∗
0,1 = 3A/2 as

Bo → ∞. Moreover, h∗
0(Bo; x) → h∞,∗

0 (x):=3A(1 − x2)/4 as Bo → ∞ for every
x ∈ [−1, 1] .

123



33 Page 18 of 32 Applied Mathematics & Optimization (2023) 87 :33

Proof Define κ:=√
Bo > 0. From (1.2), we write λ∗

0,1 as

λ∗
0,1(Bo) = λ∗

0,1(κ
2) = λ

∞,∗
0,1

(
1 − 3Y (κ)

)−1
, with Y (κ) = κ − tanh κ

κ2 tanh κ
.

To prove the first statement, we need to show that Y is strictly decreasing on (0,∞),
with range (0, 1/3). This was proven in [1, Example 4(3), p. 809]. Lastly, we compute
the zero surface tension limit of h∗

0(Bo; x). Comparing (1.3) to h∞,∗
0 (x), we need only

show the second term in (1.3) vanishes in the limit of Bo → ∞ for any x ∈ [−1, 1].
This is evident for x = ±1. For any fixed x ∈ (−1, 1), this follows from the fact that
cosh(κx)/ cosh κ → 0 as κ → ∞. ��
Corollary 2.13 (α > 0, Bo → ∞) For any α > 0, let λ∗

α,1, h
∗
α and λ

∞,∗
α,1 , h∞,∗

α be
defined as in Theorems 1.3 and 1.1, respectively. The map Bo 
→ λ∗

α,1(Bo) is strictly
decreasing on (0,∞) and λ∗

α,1(Bo) → λ
∞,∗
α,1 as Bo → ∞. Moreover, h∗

α(Bo; x) →
h∞,∗

α (x) as Bo → ∞ for every x ∈ (−1, 1).

Proof Fixα > 0. From (1.4),wewriteλ∗
α,1(Bo) = λ

∞,∗
α,1 Z(Bo) [1 − Y (Bo)]−1,where

Z(Bo) = κ2
α

Bo
= 1 + α2

Bo
, Y (Bo) = tanh κα

κα

=
tanh
(√

α2 + Bo
)

√
α2 + Bo

.

The first statement now follows immediately. For any fixed x ∈ (−1, 1), the zero
surface tension limit of h∗

α(Bo; x) follows from the fact that cosh(καx)/ cosh κα → 0
as Bo → ∞. ��

3 Radially Symmetric Containers

Wenowassume thatD is radially symmetric, i.e.,D\Γ0 is generated by the rotation of a
planarmeridian domainR about the z-axis, whereΓ0 is the part of the z-axis contained
in D; see Figure 1(right). We choose the radius r0 of the equilibrium free surface as
the characteristic length scale. Let (r , θ, z) be dimensionless cylindrical coordinates
with θ ∈ T :=(−π, π ]. Then D \ Γ0 is transformed to R × T and we write R =
{(r , z) : r ∈ (0, 1), z ∈ (−h(r), 0)} with boundary ∂R = Γ0 ∪ BR ∪ FR ∪ {(1, 0)}.
Here, BR is the graph of z = −h(r) with 0 < r < 1 and FR = (0, 1) × {0}.

In cylindrical coordinates, the functions Φ and ξ defined onD andF , respectively,
can be represented by the Fourier series

∑
m∈Z ϕm(r , z)eimθ and

∑
m∈Z ζm(r)eimθ ,

respectively. Since we are interested in real-valued solutions, we consider the cor-
responding real Fourier series. It is clear that Φ = ϕm(r , z)Θ(mθ) and ξ =
ζm(r)Θ(mθ), with m = 0, 1, 2, . . . and Θ(mθ) being cos(mθ) or sin(mθ), reduces
(1.1) in cylindrical coordinates to the following infinite sequence of two-dimensional
generalized mixed Steklov problems for (ωm, ϕm, ζm):
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r−1∂r (r∂rϕm) + ∂zzϕm = m2

r2
ϕm in R, (3.1a)

∂n̂ϕm = 0 on BR, (3.1b)

∂zϕm = ωmζ on FR, (3.1c)

ζm − 1

Bo

(

r−1(rζ ′
m)′ − m2

r2
ζm

)

= ωmϕm on FR, (3.1d)

ζm(1) = 0, (3.1e)

where we now have one contact point (r , z) = (1, 0) in (3.1). It is straightforward to
verify that the ansatz for ξ satisfies the necessary condition

∫
F ξ d A = 0 due to the

factor Θ(mθ) for m > 0. The case m = 0 corresponds to a purely radial motion and
a necessary condition for the existence of solution is

∫ 1
0 ζ0r dr = 0.

3.1 Variational Principle

We first define suitable function spaces for the Fourier coefficients ϕm defined on R.
For any k ∈ R, we consider the weighted L2-spaces onR with weight rk

L2
k(R):=

{

ϕ : R → R : ‖ϕ‖2
L2
k (R)

:=
∫

R
ϕ2rk drdz < ∞

}

.

For m = 0, we consider the following weighted Sobolev-space on R with weight r

H1
1 (R):=

{
ϕ ∈ L2

1(R) : ∂rϕ, ∂zϕ ∈ L2
1(R)
}

,

with norm ‖ϕ‖2
H1
1 (R)

:=‖ϕ‖2
L2
1(R)

+ ‖∂rϕ‖2
L2
1(R)

+ ‖∂zϕ‖2
L2
1(R)

. For m > 0, the factor

m2/r2 in (3.1a) prompts us to considering a separate weighted Sobolev space

V 1
1 (R):=H1

1 (R) ∩ L2−1(R),

with norm ‖ϕ‖2
V 1
1 (R)

:=‖ϕ‖2
L2−1(R)

+ ‖∂rϕ‖2
L2
1(R)

+ ‖∂zϕ‖2
L2
1(R)

. The function spaces

L2
k(0, 1), H

1
1 (0, 1), and V 1

1 (0, 1) can be defined analogously by replacing the measure
drdz with dr . Since ζm satisfies the Dirichlet boundary condition ζm(1) = 0, we

introduce the subspaces
◦
H1
1 (0, 1) and

◦
V 1
1 (0, 1) of functions that vanish at r = 1.

Form = 1, 2, 3, . . . , we introduce the Hilbert spaceHR:=V 1
1 (R)×

◦
V 1
1 (0, 1) with

norm ‖(ϕ, ζ )‖2HR :=‖ϕ‖2
V 1
1 (R)

+ ‖ζ‖2
V 1
1 (0,1)

. Suppose (ωm, ϕm, ζm) is a sufficiently

regular solution of (3.1). Testing (3.1a), (3.1d) with f r and gr respectively, with
( f , g) ∈ HR, and using the remaining equations in (3.1), we arrive at the following
weak formulation of (3.1) for m = 1, 2, 3, . . . . To this end, define ∇:=(∂r , ∂z).

123



33 Page 20 of 32 Applied Mathematics & Optimization (2023) 87 :33

Definition 3.1 Given m = 1, 2, 3, . . . , we say that (ωm, ϕm, ζm) ∈ R × HR,
(ϕm, ζm) 	= (0, 0) is a weak sloshing eigenpair of (3.1) if the following holds for
all ( f , g) ∈ HR:

∫

R

(

∇ϕm · ∇ f + m2

r2
ϕm f

)

r drdz +
∫ 1

0

[

ζmg + 1

Bo

(

ζ ′
mg

′ + m2

r2
ζmg

)]

r dr

= ωm

∫ 1

0
(ζm f + ϕmg) r dr .

For m = 0, it is necessary to introduce the Hilbert space defined by

HR,0:=
{

(ϕ, ζ ) ∈ H1
1 (R) ×

◦
H1
1 (0, 1) :

∫ 1

0
ζr dr = 0

}

,

with norm ‖(ϕ, ζ )‖2HR,0
:=‖ϕ‖2

H1
1 (R)

+ ‖ζ‖2
H1
1 (0,1)

.

Definition 3.2 We say that (ω0, ϕ0, ζ0) ∈ R × HR,0, (ϕ0, ζ0) 	= (0, 0) is a weak
sloshing eigenpair of (3.1) for m = 0 if the following holds for all ( f , g) ∈ HR,0:

∫

R
(∇ϕ0 · ∇ f ) r drdz +

∫ 1

0

[

ζ0g + 1

Bo
ζ ′
0g

′
]

r dr = ω0

∫ 1

0
(ζ0 f + ϕ0g) r dr .

Arguing as in the case of canals, we may restrict our attention to weak sloshing
eigenpairs with ωm > 0, and show that imposing GR(ϕ, ζ ) = ∫FR ϕζr dr > 0 is a
sufficient condition for obtaining positive sloshing frequencies. Similar to the energy
functional EC,α for canals, we define the energy functional ER,m(ϕ, ζ ) given by

ER,m(ϕ, ζ ):= 1

2

∫

R

[

|∇ϕ|2 + m2

r2
ϕ2
]

r drdz

︸ ︷︷ ︸
DR,m (ϕ)

+ 1

2

∫ 1

0

[

ζ 2 + 1

Bo

(

(ζ ′)2 + m2

r2
ζ 2
)]

r dr

︸ ︷︷ ︸
SR,m (ζ )

.

For every m = 0, 1, 2, . . . , let ωm,1 denote the fundamental sloshing frequency of
(3.1) with corresponding weak fundamental sloshing eigenfunction (ϕm,1, ζm,1). We
now establish a variational characterization for ωm,1.

Theorem 3.3 (Variational characterization, m ≥ 1) Let R be a bounded Lipschitz
domain in R

2. For every m = 1, 2, 3, . . . , there exists a weak fundamental sloshing
eigenpair (ωm,1, ϕm,1, ζm,1) of (3.1), where (ϕm,1, ζm,1) is a constrained minimizer
of the following variational problem:

ωm,1:= inf
(ϕ,ζ )∈HR

{
ER,m(ϕ, ζ ) : GR(ϕ, ζ ) = 1

}
. (3.2)

Proof Fix m ≥ 1. Define the admissible set M := {(ϕ, ζ ) ∈ HR : GR(ϕ, ζ ) = 1}.
Adapting the proof of [46, Lemma 3.6], we see that M is weakly closed in HR as
L2−1(·) ⊂ L2

1(·) and the embeddings V 1
1 (R) ↪→ L2

1(FR) and V 1
1 (0, 1) ↪→ L2

1(0, 1)
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are both compact [33, Lemma 4.2]. Next we prove a coercivity estimate for ER,m .
Applying Hölder’s and Young’s inequalities, we get for any δ > 0,

2SR,m(ζ ) ≥ −‖ζ 2/r‖L1(0,1)‖r2‖L∞(0,1) + 1

Bo

∫ 1

0

(

(ζ ′)2 + m2

r2
ζ 2
)

r dr

≥ − δ

2
‖ζ 2/r‖L1(0,1) − 1

2δ
‖r2‖L∞(0,1) + 1

Bo

∫ 1

0

(

(ζ ′)2 + m2

r2
ζ 2
)

r dr

=
(
m2

Bo
− δ

2

)

‖ζ‖2
L2−1(0,1)

+ 1

Bo
‖ζ ′‖2

L2
1(0,1)

− 1

2δ
.

Choosing δ = m2/Bo, we obtain 2SR,m(ζ ) ≥ 1
2Bo‖ζ‖2

V 1
1 (0,1)

− Bo
2m2 . Together with

2DR,m(ϕ) ≥ ‖ϕ‖2
V 1
1 (R)

, this shows that ER,m(ϕ, ζ ) controls‖(ϕ, ζ )‖HR and so ER,m

is weakly coercive on HR. Weak lower semicontinuity of ER,m on HR follows from
weak lower semicontinuity of the norms ‖ · ‖V 1

1 (R) and ‖ · ‖V 1
1 (0,1) and the compact

embedding V 1
1 (0, 1) ↪→ L2

1(0, 1). The existence of a minimizer to (3.2) now follows
from the direct method of the calculus of variations. Finally, showing a minimizer
and its argmin is a weak fundamental sloshing eigenpair of (3.1) is similar to that of
Theorem 2.4 and we omit this proof for brevity. ��
Theorem 3.4 (Variational characterization, m = 0) Let R be a bounded Lipschitz
domain in R

2. There exists a weak fundamental sloshing eigenpair (ω0,1, ϕ0,1, ζ0,1)

of (3.1), where (ϕ0,1, ζ0,1) is a constrained minimizer of the following variational
problem:

ω0,1:= inf
(ϕ,ζ )∈HR,0

{
ER,0(ϕ, ζ ) : GR(ϕ, ζ ) = 1

}
.

Proof Note that H1
1 (R) and

◦
H1
1 (0, 1) are isomorphic to the space of all radially sym-

metric functions in H1(D) and in H1
0 (0, 1), respectively; see [5, Sect. II.4]. The proof

is then similar to Theorem 2.5 and we omit the proof for brevity. ��

3.2 Isoperimetric Sloshing Problem on Shallow Radially Symmetric Containers

Recall the class of admissible shape functions for shallow radially symmetric contain-
ers

MV :=
{

h ∈ PC1[0, 1] : h ≥ 0 on [0, 1];
∫ 1

0
hr dr = V /2π

}

.

Similar to the case of shallow canals, we apply the shallow water theory and

assume ϕ(r , z) = ψ(r). Define the function spaces H:=V 1
1 (0, 1) ×

◦
V 1
1 (0, 1) and

H0:={(ψ, ζ ) ∈ H1
1 (0, 1) ×

◦
H1
1 (0, 1) : ∫ 10 ζr dr = 0}. We may approximate ωm,1 as
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the infimum of the following one-dimensional constrained variational problem, thanks
to Theorems 3.3 and 3.4:

ωm,1(h) ≈ Ωm,1(h):= inf
(ψ,ζ )∈Xm

{Em(h;ψ, ζ ) : Gr (ψ, ζ ) = 1} , (3.3)

where X0:=H0, Xm :=H for every m = 1, 2, 3, . . . , Gr (ψ, ζ ):= ∫ 10 ψζr dr , and

Em(h;ψ, ζ ):=1

2

∫ 1

0
h

[

(ψ ′)2 + m2

r2
ψ2
]

r dr

+ 1

2

∫ 1

0

[

ζ 2 + 1

Bo

(

(ζ ′)2 + m2

r2
ζ 2
)]

r dr .

We then define the weak formulation of the one-dimensional pinned-edge shallow
sloshing problem for every m = 0, 1, 2, . . . on [0, 1] as the weak form of the Euler-
Lagrange equations of the constrained variational problem (3.3).

Definition 3.5 Givenm = 0, 1, 2, . . . , aweak shallowsloshing eigenpair (Ωm , ψm, ζm)

∈ R × Xm , (ψm, ζm) 	= (0, 0), satisfies the following equation for all ( f , g) ∈ Xm :

∫ 1

0

[

h

(

ψ ′
m f ′ + m2

r2
ψm f

)

+ ζ g + 1

Bo

(

ζ ′g′ + m2

r2
ζ g

)]

r dr

= Ωm

∫ 1

0
(ζm f + ψmg)r dr .

The corresponding one-dimensional boundary eigenvalue problem for every m =
0, 1, 2, . . . is given by

−
(
1

r
(rhψ ′

m)′ − m2

r2
hψm

)

= Ωmζm on (0, 1), (3.4a)

ζm − 1

Bo

(
1

r
(rζ ′

m)′ − m2

r2
ζm

)

= Ωmψm on (0, 1), (3.4b)

(
hψ ′

m

)
(1) = ζm(1) = 0. (3.4c)

For m = 0, we must impose the necessary condition
∫ 1
0 ζ0r dr = 0 as well.

We now state the isoperimetric sloshing problem for shallow radially symmetric
containers: For every m = 0, 1, 2, . . . , find the shape function h ∈ MV that maxi-
mizes Ωm,1, i.e., solve

sup
h∈MV

Ωm,1(h). (3.5)

Similarly to the case of shallow canals (see Theorem 2.8), we obtain the following
sufficient condition for solving (3.5).
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Theorem 3.6 Given m = 0, 1, 2, . . . , if there exists h∗
m ∈ MV such that

(Ωm,1(h∗
m), ψ∗

m, ζ ∗
m) ∈ R × Xm is a fundamental weak shallow sloshing eigenpair

with ψ∗
m satisfying

((
ψ∗
m

)′)2 + m2

r2
(ψ∗

m)2 = c2m on r ∈ [0, 1) (3.6)

for some constant c2m 	= 0, then h∗
m is a maximizer of Ωm,1.

Remark 3.7 Formally, (3.6) can be interpreted as the first-order optimality condition
for (3.5). The formal computation is similar to that in Remark 2.9 and we omit this
for brevity.

3.3 Finite Surface Tension: Proof of Theorems 1.4 and 1.5

We now solve (3.5) form = 1 andm = 0 only. Throughout this subsection, we denote
by h the maximizing cross-section, (Ω,ψ, ζ ) its corresponding fundamental shallow
sloshing eigenpair, and λ:=Ω2 for notational convenience.

Proof of Theorem 1.4 Set m = 1. In this case, we must have ψ(0) = 0 = ζ(0) since
functions in V 1

1 (0, 1) have null trace at r = 0 [33]. Choosing c21 = 2 in (3.6), one
such solution satisfying ψ(0) = 0 is ψ(r) = r . We first solve for ζ . Substituting
ψ(r) = r into (3.4b) for m = 1 and rearranging, we find ζ satisfies the following
nonhomogeneous Bessel-type boundary value problem:

r2ζ ′′ + rζ ′ − (Bo r2 + 1)ζ = −ΩBo r3; ζ(0) = ζ(1) = 0. (3.7)

Define κ:=√
Bo and introduce a scaled coordinate s:=κr . Letting y(s) = ζ(r) =

ζ(s/κ), we see that (3.7) transforms to

s2y′′ + sy′ −
(
s2 + 1

)
y = −Ω

κ
s3; y(0) = y(κ) = 0.

Using the method of undetermined coefficients, the solution is given by

y(s) = Ω

[
s

κ
− I1(s)

I1(κ)

]

or ζ(r) = Ω

[

r − I1(κr)

I1(κ)

]

,

where Iν is the modified Bessel function of the first kind of order ν. We discard the
modified Bessel function of the second kind K1 since we require ζ(0) = 0.

Next we solve for h. Substituting ψ and ζ into (3.4a) for m = 1 and (3.4c) and
rearranging suitably, we get

h′ = −λ

[

r − I1(κr)

I1(κ)

]

; h(1) = 0.
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Using the integration formula [38, Eq. 10.43.1] with ν = 1, the solution is given by

h(r) = λ

2
(1 − r2) − λ

κ I1(κ)

[
I0(κ) − I0(κr)

]
.

Imposing the volume constraint
∫ 1
0 hr dr = V /2π yields

V

2π
= λ

8
− λ

κ I1(κ)

[
I0(κ)

2
− I1(κ)

κ

]

= λ

8
− λI2(κ)

2κ I1(κ)
,

where we use the integration formula [38, Eq. 10.43.1] with ν = 0 and the recurrence
relation [38, Eq. 10.29.1] with ν = 1. Rearranging for λ gives λ = λ∗

1,1 as defined in
(1.6). Finally, it can be shown that h ∈ MV as h(1) = 0 and h′ < 0 on (0, 1); the latter
follows from the fact that I1(z)/z is strictly increasing for z > 0which is an immediate
consequence of the derivative formula [I1(z)/z]′ = I2(z)/z [38, Eq. 10.29.4]. ��
Proof of Theorem 1.5 Set m = 0. Choosing c20 = 1 in (3.6), one possible solution is
ψ = r − d0 for some d0 ∈ R. We first solve for ζ . Substituting ψ(r) = r − d0 into
(3.4b) for m = 0 and rearranging, we find ζ satisfies the following nonhomogeneous
Bessel-type equation:

r2ζ ′′ + rζ ′ − Bo r2ζ = −ΩBo r2(r − d0). (3.8)

Define κ:=√
Bo and introduce a scale coordinate s:=κr . Letting y(s) = ζ(r) =

ζ(s/κ), we see that (3.8) transforms to

s2y′′ + sy′ − s2y = −Ω

κ
s2(s − d0κ). (3.9)

The associated homogeneous equation has solutions I0(s) and K0(s). Motivated by
the particular solution of ζ from the proof of Theorem 1.4, we guess a particular
solution of the form yp(s) = Bs + C + F(s) for some constants B,C and function
F(s). Substituting yp into (3.9), we get B = Ω/κ , C = −Ωd0, and F(s) satisfies the
following Struve-type equation:

s2F ′′ + sF ′ − s2F = −Bs = −Ωs

κ
. (3.10)

Comparing (3.10) with [38, Eqs. 11.2.9, 11.2.10] with ν = 0, we may take F(s) =
−ΩπL0(s)/(2κ), where L0 is the modified Struve function of the first kind. Thus,
the general solution of (3.9) is given by

y(s) = c1 I0(s) + Ω

κ

[
s − d0κ − π

2
L0(s)

]
, c1 ∈ R,

where we discard K0 since we require ζ(0) = y(0) < ∞. Imposing the boundary
condition ζ(1) = y(κ) = 0, converting from s to r , and rearranging suitably, we

123



Applied Mathematics & Optimization (2023) 87 :33 Page 25 of 32 33

obtain

ζ(r) = Ω

[

r − I0(κr)

I0(κ)
− d0

(

1 − I0(κr)

I0(κ)

)

− π

2κ

(

L0(κr) − L0(κ)

I0(κ)
I0(κr)

)]

=:Ω
[
ζ1(r) − d0ζ(r) − π

2κ
ζ3(r)
]
.

Next we find d0 by imposing the necessary condition
∫ 1
0 ζr dr = 0. Using the

integral formula [38, Eq. 10.43.1 and 11.7.3] with ν = 0, we obtain antiderivatives of
ζ1r , ζ2r , and ζ3r :

A1(r):=
∫

ζ1r dr = r3

3
− I1(κr)r

κ I0(κ)
, A2(r):=

∫
ζ2r dr = r2

2
− I1(κr)r

κ I0(κ)

A3(r):=
∫

ζ3r dr = L1(κr)r

κ
− L0(κ)I1(κr)r

κ I0(κ)
.

(3.11)

It is clear that A1(0) = A2(0) = A3(0) = 0. Also, A3(1) = −Υ (κ)/κ I0(κ) with
Υ (κ) defined in (1.9) and the recurrence relation [38, Eq. 10.29.1] with ν = 1 gives
A2(1) = I2(κ)/2I0(κ). Thus, we obtain

∫ 1

0
ζr dr = Ω

[
A1(1) − d0 A2(1) − π

2κ
A3(1)

]
= 0. (3.12)

Rearranging for d0 yields the desired expression for d0 as defined in (1.9).
Next we solve for h. Substituting ψ and ζ into (3.4a) for m = 0 and (3.4c), we get

(rh)′ = −λ
[
ζ1r − d0ζ2r − π

2κ
ζ3r
]
; h(1) = 0.

Integrating once using (3.11), imposing h(1) = 0 together with (3.12), and grouping
terms suitably, the solution is given by

h(r) = λ

3

[
3d0r

2
− r2
]

+ λ(1 − d0)I1(κr)

κ I0(κ)
+ λπ

2κ2

[

L1(κr) − L0(κ)I1(κr)

I0(κ)

]

.

Integrating I1(κr) and L1(κr) using the integral formulas [38, Eq. 10.4.3] with ν = 1
and [13, Formula 1.3] with ν = 1, respectively, the volume constraint

∫ 1
0 hr dr =

V /2π becomes

V

2π
= λ

3

[
d0
2

− 1

4

]

+ λ(1 − d0)πΥ (κ)

2κ2 I0(κ)

+ λπ

2κ2

[
κ2

6π
2F3

(

1, 2; 3
2
,
5

2
, 3; κ2

4

)

− πL0(κ)Υ (κ)

2κ I0(κ)

]

.

Factoring 1/36 from the right side of the equation above, rearranging for λ, and
simplifying, we obtain λ = λ∗

0,1 as defined in (1.8). Finally, we observe that h ≥ 0 on
[0, 1] and so h ∈ MV . ��
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Fig. 3 An illustration of the zero surface tension limit for m = 1 (top) and m = 0 (bottom), both with
V = 1. (Left) The maximizing cross-section plotted for varying Bo (see (1.7) and (1.10)) and for Bo = ∞
(zero surface tension). (Right)The squaredmaximal sloshing frequency (1.6) and (1.8) plotted as a function
of Bo, with λ1,1,Bo=∞ = 4/π and λ0,1,Bo=∞ = 18/π (dashed lines). The inset is a log-log plot of the
squared maximal sloshing frequency for Bo ∈ [0.1, 10]

3.4 Zero Surface Tension Limit (Bo → ∞)

In this subsection, we show that Troesch’s optimal containers without surface tension
form = 1 and m = 0 are the zero surface tension limit of the optimal containers from
Theorems 1.4 and 1.5, respectively. Moreover, the map Bo 
→ λ∗

m,1(Bo) is strictly
decreasing on (0,∞). Figure 3 illustrates these results with m = 1 (top) and m = 0
(bottom). For Bo = 1, we get λ∗

1,1/λ
∗
1,1,Bo=∞ and λ∗

0,1/λ
∗
0,1,Bo=∞ to be approximately

25.5 and 38.8, i.e., the squared maximal sloshing frequency increases drastically when
capillary and gravitational forces are comparable. In Figure 3(right), the log-log plots
reveal that λ∗

1,1(Bo) ∝ Bo−0.86 and λ∗
0,1(Bo) ∝ Bo−0.911 for Bo ∈ [0.1, 10].

To prove the claimed zero surface tension limit, we will repeatedly use the asymp-
totic behavior of Iν [38, Eq. 10.30.4]:

Iν(κ) ∼ eκ

√
2πκ

, κ → ∞, ν ∈ R. (3.13)
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Corollary 3.8 (m = 1,Bo → ∞) Let λ∗
1,1 and h∗

1 be defined as in Theorem 1.4.
The map Bo 
→ λ∗

1,1(Bo) is strictly decreasing on (0,∞) and λ∗
1,1(Bo) → 4V /π as

Bo → ∞. Moreover, h∗
1(Bo; r) → 2V (1 − r2)/π as Bo → ∞ for every r ∈ [0, 1].

Proof Define κ:=√
Bo > 0. From (1.6), we write λ∗

1,1 as

λ∗
1,1(Bo) = λ∗

1,1(κ
2) = 4V

π

(
1 − 4Y (κ)

)−1
, with Y (κ) = I2(κ)

κ I1(κ)
.

Proving the first statement of the corollary is equivalent to proving that Y is strictly
decreasing on (0,∞), with range (0, 1/4). The strict monotonicity and limit as κ →
0+ were both proved in [44], and the limit at infinity follows from (3.13). To prove the
second statement, we need only show the second term in (1.7) vanishes in the limit of
Bo → ∞ for any r ∈ [0, 1], but this follows easily from (3.13). ��

For the next corollary,we observe that themapBo 
→ λ∗
0,1(Bo) is strictly decreasing

on (0,∞) as well.

Corollary 3.9 (m = 0,Bo → ∞) Let λ∗
0,1 and h

∗
0 be defined as in Theorem 1.5. Then

λ∗
0,1(Bo) → 18V /π as Bo → ∞. Moreover, h∗

0(Bo; r) → 6(r − r2)/π as Bo → ∞
for every r ∈ [0, 1].
Proof Define κ:=√

Bo > 0. From (1.8), we write λ∗
0,1 as

λ∗
0,1(Bo) = λ∗

0,1(κ
2) = 18V

π

[

Y1(κ) + 18(1 − d0)Y2(κ) + Y3(κ)

36

]−1

,

where Y1(κ):=6d0 − 3, Y2(κ):=πΥ (κ)/(κ2 I0(κ)), and

Y3(κ):= I0(κ)
∫ κ

0 sL1(s) ds − L0(κ)
∫ κ

0 s I1(s) ds

κ4 I0(κ)
.

The integral expression for Y3(κ) follows from noticing the last two terms in λ∗
0,1 are

obtained as the definite integral of the last term in h∗
0; see the proof of Theorem 1.5.

From [12, Corollary 2.6] with ν = 1 and (1.9), we find

2

κ2 <
πΥ (κ)

κ2 I2(κ)
<

8

3κ2 for all κ > 0 �⇒ lim
κ→∞

πΥ (κ)

κ2 I2(κ)
= 0,

and together with (3.13), we obtain

lim
κ→∞ d0 = lim

κ→∞

[
2I0(κ)

3I2(κ)
− 2I1(κ)

κ I2(κ)
+ πΥ (κ)

κ2 I2(κ)

]

= 2

3
.

The two limits above yield Y1(κ) → 1 and Y2(κ) → 0 as κ → ∞. To compute
the limit of Y3, let Mν :=Lν − Iν be the modified Struve function of the second
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kind of order ν [38, Eq. 11.2.6]. Integrating by parts using the derivative formulas
L′
0(r) = L1(r) + 2/π and I ′

0(r) = I1(r) [38, Eqs. 10.29.3, 11.4.33], we obtain

Y3(κ) = M0(κ)

κ4

∫ κ

0 I0(s) ds

I0(κ)
− 1

κ4

∫ κ

0
M0(s) ds − 1

πκ2 .

Combining (3.13) and a standard asymptotic analysis using integration by parts yield

∫ κ

0
I0(s) ds ∼ eκ

√
2πκ

as κ → ∞.

This together with (3.13) and the limiting forms [38, Eqs. 11.6.1 (with ν = 0), 11.6.4]
show Y3(κ) → 0 as κ → ∞. The first statement of the corollary now follows.

It remains to establish the zero surface tension limit of h∗
0(Bo; r). Comparing (1.10)

with the desired expression, we need only show the last two terms in (1.10) vanish in
the limit of Bo → ∞ for any r ∈ [0, 1]. This is evident for r = 0 and r = 1. For
r ∈ (0, 1), this follows from (3.13) for the second term and from Mathematica for the
third term. ��

4 Discussion

Assuming a flat equilibrium free surface and a pinned contact line, we considered
the problem of maximizing the fundamental sloshing frequency over two classes of
shallow containers: canals with a given free surface width and cross-sectional area,
and radially symmetric containers with a given rim radius and volume. In addition
to including the effects of surface tension, for canals, we extended the problem of
two-dimensional sloshing in the vertical plane to traveling sinusoidal waves along the
canal, which introduced the wavenumber α ≥ 0 as an additional parameter.

In Sects. 2.1 and 3.1, we established a new variational characterization of fluid
sloshing with surface tension for a pinned contact line. Combining this result with
the shallow water theory, we approximated the fundamental sloshing frequency for
shallow containers as the infimum of a one-dimensional constrained variational prob-
lem; see (2.7) and (3.3). We defined the pinned-edge linear shallow sloshing problem
as the corresponding Euler-Lagrange equations; see (2.8) and (3.4). Based on a sim-
ple observation of the specific form of the energy functional, we derived a sufficient
condition and outlined a strategy for solving the isoperimetric sloshing problem; see
Theorems 2.8 and 3.6.

In the absence of surface tension, to our surprise, we found that the optimal shallow
canal for every α > 0 is rectangular; see Theorem 1.1. In the presence of surface
tension, we found explicit solutions for both the optimal shallow containers and the
corresponding maximal sloshing frequency; see Theorems 1.2–1.5. Interestingly, the
optimal shallow canal for anyα ≥ 0 is symmetric, but it is convex only for the caseα =
0. On the other hand, the optimal shallow radially symmetric container is not convex in
both cases m = 1 and m = 0. For each of these optimal shallow containers, we found
that the corresponding squared maximal sloshing frequency is a decreasing function
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of Bo and including the effects of surface tension gives a significantly larger squared
maximal sloshing frequency. Finally, because all our results are explicit, we proved that
the limit of the solution (both the maximizing cross-section and its squared maximal
sloshing frequency) to the isoperimetric sloshing problem with surface tension, as
surface tension vanishes, i.e., Bo → ∞, is the solution to the isoperimetric sloshing
problem without surface tension.

Wemade three crucial assumptions that allowed us to solve the isoperimetric slosh-
ing problem explicitly: (1) the equilibrium free surface is flat, (2) the contact line is
pinned, and (3) the container is shallow. It would be interesting to extend our results
by removing one or more of these assumptions, such as considering a curved equi-
librium free surface (meniscus), other dynamic contact line boundary conditions such
as Hocking’s wetting boundary condition [17, 18], or more general three-dimensional
containers.

Two additional avenues for future work are finding lower bounds for natural slosh-
ing frequencies and investigating other geometrical constraints for the container shape.
Troesch considered the isoperimetric sloshing problem of finding the container shape
that minimizes the first and second sloshing frequencies among shallow convex con-
tainers [48]. Troesch proved that these optimal containers are trapezoidal containers
[49] and obtained the following result: For planar sloshing in symmetric canals, the
optimal container is rectangular for λ0,1 and triangular for λ0,2. For radially symmetric
containers, the optimal container is cylindrical for λ1,1 and conical for λ0,1. Kuzanek
studied a similar isoperimetric sloshing problem of maximizing the natural sloshing
frequencies λn on symmetric shallow canals, where he replaced the area constraint
with an arc length constraint [25, 26]. Kuzanek established the existence of a unique
optimal container for each λn , proved that they are convex, obtained the optimal con-
tainers numerically, and conjectured that they do not have vertical side walls. We
would be interested in determining if these results continue to hold in the presence of
surface tension.

In the absence of surface tension, several results about the location of high spots,
i.e., the maximal elevation of the free surface height ξ , were obtained in [22–24]
for the fundamental sloshing mode. For a planar domain whose wetted boundary B
is the graph of a negative C2 function on F and B form nonzero angles with F at
their common endpoints, the high spot is located on ∂F . A similar result holds for
finite canals whose vertical cross-sections satisfy the same condition. For the ice-
fishing problem, i.e., sloshing in the lower half-plane with F = {(x, 0) : |x | < a} and
F = {(x, y, 0) : x2 + y2 < a2} for the two- and three-dimensional case respectively
and a > 0, the high spot is located in the interior of F . For a radially symmetric,
convex, bounded container D ⊂ F × (−∞, 0), the high spot is located on ∂F . All
these results rely on the property that the free surface height is proportional to the
trace of the fundamental sloshing mode Φ1 on F if the fluid oscillates freely with the
fundamental sloshing frequency, which is no longer true in the presence of surface
tension due to the curvature term ΔF ξ in (1.1d). In recent joint work with Nathan
Willis, we used computational methods to study high spots for the ice-fishing problem
with surface tension [51]. It would be interesting to investigate the high spot problem
with surface tension on bounded containers.
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