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Dynamic Mode Decomposition of the
Metachronal Paddling Wake
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Metachronal paddling is a drag-based propulsion strategy observed in many aquatic
arthropods in which a series of paddling appendages are stroked sequentially to form a
traveling wave in the same direction as animal motion. Metachronal paddling’s relatively high
force production makes these organisms highly agile, an attractive potential for bio-inspired
autonomous underwater vehicles that is complicated by the lack of reduced order flow
structure and dynamics models applicable to vehicle actuation and control design. This study
uses particle image velocimetry to quantify the wake of a robot performing metachronal
paddling. Then, dynamic mode decomposition is used to identify the frequency modes of the
wake, which are used to reconstruct a reduced order model at Reynolds numbers of 32, 160,
and 516. The results show that the kinetic energy in the metachronal paddling wake is well
modeled using a superposition of the first S dynamic modes, and that there is typically little
change in the reconstruction error when the reconstruction is performed with a higher
number of dynamic modes. The low order paddling models identified using this method can
be used to identify the physical mechanisms that differentiate metachronal paddling from
synchronous paddling, and to develop control strategies to modulate these motions in bio-
inspired autonomous underwater vehicles.

I. Nomenclature

AUV = Autonomous Underwater Vehicle
d,d = Derivative operator

DMD = Dynamic Mode Decomposition

= Reconstruction error in kinetic energy
= Kinetic energy

= Paddling stroke frequency
Froude number

= Inter-paddle spacing (Gap)

= Identity matrix

= Complex number v—1

Paddle length

Eigenvalue, Eigenvalue matrix

= Q@radient operator

Kinematic viscosity

Pressure

Particle Image Velocimetry
Dynamic mode

Reynolds number

Fluid density

= Singular value matrix
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= Eigendecomposition matrix

= Time

= Paddling stroke amplitude

= Horizontal component of fluid velocity

= Fluid velocity vector

Reconstructed fluid velocity

= Left singular vector matrix

= Vertical component of fluid velocity, eigenvector matrix
= Data matrix

= Right singular vector matrix

Transverse component of vorticity vector
Horizontal axis direction

Vertical axis direction
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II. Introduction

Metachronal paddling is a drag-based locomotion strategy that is commonly used by numerous species of aquatic
and semi-aquatic organisms. The metachronal swimming stroke is performed by organisms that have multiple
swimming appendages aligned along the body axis, where each appendage is stroked sequentially, with a small phase
lag between the movement of adjacent appendages. In marine crustaceans with 5 pairs of swimming legs, this inter-
leg phase lag is commonly about 15-18% of the total cycle time [1]. Of particular importance to oceanography and
marine ecology are species that form large schools or swarms, such as Antarctic krill, due to their hypothesized role
in biogenic ocean mixing [2]. Much work has been done on the swimming performance of individual paddling
organisms [3-5], a recent study has examined the preferred schooling orientations of krill in a laboratory aquarium
[6], and a few studies have begun to examine how organisms might be able to sense and respond to their hydrodynamic
environments [7-8]. All this research helps build an understanding of the behavior of individual organisms but does
not explain how or why individuals in a group choose to interact in the ways that they do.

Work is being done to develop highly agile autonomous underwater vehicles (AUVs) and drag-based propulsion
strategies such as metachronal paddling are ideal for this purpose. Identification of the fluid dynamic modes in the
wake of individual paddling swimmers can help to inform the understanding of collective decision making and can be
used to help in the design of swarm operation of these autonomous underwater vehicles. By applying dynamic mode
decomposition (DMD) to identify the frequency modes in the paddling wake, it may be possible to identify particular
flow structures that can be sensed by individual vehicles in a swarm for autonomous swarm organization. Particular
sensory elements will need to be developed for these vehicles that can read hydrodynamic cues in the paddling wake
in order to coordinate these collective motions of multiple autonomous underwater vehicles. To test this, particle
image velocimetry (PIV) was performed on the wake of a robotic model that was programmed to perform a
metachronal paddling motion, and DMD was performed on the paddling wake to determine whether a low-order linear
approximation can be used to accurately model the paddling wake.

Dynamic mode decomposition, famously introduced by Schmid [11], is a numerical method that allows for the
extraction of frequency modes and coherent structures from flow field data [12]. An advantage of the DMD method
is that it provides a way to characterize the most important flow structures [13], which can then be used to identify
physical mechanisms and develop control strategies. DMD has been widely applied to wake flows and can be applied
for both uniform and nonuniform time sampling [14]. A systematic comparison of DMD to other common data
decomposition methods is given in [15]. These identified frequency modes can be determined in the absence of any
prior knowledge of the physics of the problem and can help determine the frequencies of the dominant flow structures,
for maximum efficiency in flow modeling. Researchers are hopeful that as DMD continues to rise in popularity,
advances will make it applicable for real-time frequency mode identification and control for fluid flow applications
[15].

III. Methods and Approach

A. Experimental Methods

A multi-appendage paddling robot was developed to investigate the metachronal paddling propulsion mechanism.
The design of the system and experimental procedures are detailed in [4]. The model was designed to mimic
metachronal propulsion as seen in crustaceans such as Antarctic krill and used an inter-paddle spacing (ratio of gap
between paddles, G, to paddle length, L) of G/L=0.7. Previous work [10] has shown that close spacing of the paddles
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(G/L<1.0) results in increased propulsive performance (increased fluid transport, increased swimming speed of the
robot) relative to paddles that are spaced far apart. The model was programmed to perform a sinusoidal paddle stroke,
with a stroke amplitude of & = 90° and a stroke frequency of f = 1.5 Hz. The paddles had length L = 76.2 mm, with
a hinge located halfway along the length that allowed them to fold in one direction in order to reduce the surface area
perpendicular to the flow during the recovery stroke. The Reynolds number based on mean paddle tip speed can be

defined as:

Re =% )
The model was operated in three different fluids, with varying viscosities. The fluids were mixtures of glycerin

and water in different concentrations, with kinematic viscosities of v = 860—2 V= 172—2 and v = 53—

which resulted in average paddle-tip speed based Reynolds numbers of Re =32, Re = 160 and Re = 516
respectively. A diagram of the experimental setup as well as prescribed and measured paddle kinematics are shown in
Figure 1.
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Fig. 1 Experimental setup used in this study. (A) Front view of experimental setup. (B) Top view. (C) Paddle
kinematics with phase lag of 25% of total cycle time. a represents paddle root angle. (D) kinematic viscosity
of each fluid and resulting Reynolds numbers. Reproduced under CC-BY-4.0 from Ford et al. 2019 [4].

Particle image velocimetry experiments were performed on the robotic model at a rate of 15 double-frame images
per second, which resulted in 10 PIV vector fields calculated per paddling stroke. An Imager sCMOS camera
(LaVision GmbH, Géttingen, Germany) and a double-pulsed Nd:YAG laser (Gemini 200-15, New Wave Research,
Fremont, CA, USA) were used for the recording, and PIV calculation was performed in DaVis 8.3 (LaVision GmbH,
Géttingen, Germany). The data used for the analysis here, along with further details about the data acquisition and
PIV processing methods are previously published in [4]. The previously published velocity field data was read into
MATLAB R2021a (MathWorks inc., Natick, NJ), and run through the DMD as described in the next section.

B. Computational Methods
For a 2D velocity field size m X n with time history of length N, given by u(x,y,t) = u(x,y, t)i + v(x,y, t)],
the velocity field data can be written as a 2D matrix given by
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[ u(xy, Y, t) o u(x, Y1, ty) |
u(xy, y1,t1) o ulxy, yq,ty)
V1N = u(xm' Yns tl) u(xm: Yns tN) (2)
v(xy, Y, t1) e U(xq,¥1,tN)
V(X Vo t1) oo V(X Yoo En)

Since the fluid motion in the metachronal paddling system is periodically forced by the paddle motion and
incorporates periodic shed wakes, it is convenient to apply dynamic modal decomposition (DMD) to paddling stroke
phase-synchronized instances of the flow field. This quasi-steady approach can be used to capture the cycle-to-cycle
variation of the propulsive wake. For this study, the time point %z 0.5 was chosen for the DMD processing,
corresponding to the to the configuration indicated at 0.5 on the x-axis of the plot in Fig. 1C. Physically, this time
point occurs just as the rightmost paddle in Fig. 1A completes its thrust-generating power stroke. Future work will
consider additional timepoints. The first step in DMD is to calculate the singular value decomposition (SVD) of the
matrix V71, given by

VN1 = yzwT, 3)

where X is a diagonal matrix of singular values, and the columns of the matrices U and W are the left-hand and right-
hand singular vectors, respectively. The SVD modes are not unique. To overcome this limitation, it is possible to
define the dynamic mode decomposition by taking performing the eigendecomposition on the square matrix £, defined
as

E=UvNwTe L, 4)
While the velocity matrix V¥~ is not square, ¥ is, and therefore the eigendecomposition can be performed. The
decomposition of the matrix £ is performed according to the following, where the diagonalized eigenvalue matrix is
given by A = AI, and the eigenvector matrix is given by v:
Sv = vA. (5)
Thus the dynamic modes @ of the system are
& =V wz-1ly. (6)
A low-order linear reconstruction of the vector field can be performed using a superposition of the first i dynamic
modes ®;. This is done by performing a linear-least-squares fit ¢; of ®; to the last column of VN, corresponding to
the instant t = N:
O =V" (7
The flow field reconstruction is then based on a fit of the velocity field. The quality of the low-order reconstruction

can be calculated based on the total error in the kinetic energy of the reconstruction. The total kinetic energy in the
flow field per unit width for 2D velocity data can be calculated according to the equation:

1 -
E = [[5pluCx,y)I? dx dy (8)
And the reconstruction error in the kinetic energy data was quantified by:

_ J@eey)-upmp @)’ + (v -vpmp @) Jdxdy
¢= [uCey)?+v(x,y)?)-dx-dy +100%. ©)
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where u and v are the velocity components of the experimental data, and up,,, and vy, are the velocity components
from the data reconstructed from the DMD modes. The method in Eqns. (2)-9 was implemented in MATLAB R2021a
(version 9.10, MathWorks Inc., Natick, MA.).

IV. Results and Discussion

Singular value decomposition was performed as a step in the calculation of the dynamic modes. The singular
values are shown in Fig. 2. The maximum singular values and the sum of all values are shown in Table 1.

Table 1. Singular values as a function of Reynolds number

Re Max singular value o Sum of 30 singular values

32 110 127
160 176 265
516 163 432

The sum of singular values suggests there is more energy transfer within the higher Reynold’s number flow, and a
low rank decomposition is more direct for lower speed flows. This finding is consistent with the physical
understanding from the governing non-dimensional form of the incompressible Navier-Stokes equation with no body
forces, given below

a_u’_l_(ul.vl)ul__vl ! i 127

o = p' + REV u (10)

The Navier-Stokes equation behaves linearly at very low Reynolds numbers and becomes increasingly nonlinear

as Reynolds number increases. We expect higher Reynolds number flows will require a significantly greater number
of linear modes to accurately capture the dynamics at higher values of Re.
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Fig. 2 Normalized singular values X in descending order.

The dynamic modes of the system were calculated in MATLAB, which showed alternating modes of the same
magnitude but opposite directions, and that these modes were associated with complex conjugate eigenvalue pairs.
For this reason, only the odd modes are shown here, with mode 1 representing the mean value of the PIV time-
series, and subsequent modes representing periodic cycle-to-cycle variation in the flow field. The first few dynamic
modes of the paddling system for the given kinematics (25% phase lag, 90° stroke amplitude) are shown in Fig. 3.
Mode 1 appears to show coherent structures in the vorticity field, representing paddle tip vortices and the mean
shear flow. For Re = 32 and Re = 160, subsequent modes after the 1% mode show greater vorticity concentration
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near the paddle tips than anywhere else in the flow, which likely represents noise in the experimental data caused by
glare from the laser sheet reflecting off of the acrylic paddles. However, the relatively greater vorticity components
in the far-field at Re = 160 as compared to Re = 32 may indicate that there is some physical component to the
cycle-to-cycle variation in the flow fields that is above and beyond the experimental noise likely represented by the
far-field vorticity contours at Re = 32. In contrast to the other two Reynolds number cases, the vorticity modes at
Re = 516 show clearly defined regions of vorticity that are likely to correspond to periodic differences in the
metachronal paddling wake. Despite the paddles repeatedly making the same motion, the wake varies over time. A
likely cause of this variation is that there is less viscous dissipation of fluid momentum at higher Reynolds numbers.
This effect results in vortices shed from previous paddling strokes remaining non-negligible rather than decaying
quickly. The slowly decaying vortical structures can interact with the subsequent paddling strokes in different ways.
This interaction results in a time-varying wake despite the periodic forcing of the flow and can have significance for
marine ecology and engineering of autonomous underwater vehicles. A wake that does not consistently have the
same vorticity signature would require a more complex flow sensing system for schooling in animals and swarm
operation in engineered vehicles at larger Reynolds numbers.
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Fig. 3 Vorticity fields corresponding to the first 4 odd dynamic modes each Reynolds number. First row:
Re=32. Second row: Re=160. Third row: Re=516.

The dynamic modes of the system were used as the basis for a reduced-order model of the paddling wake.
During the experiments, the robotic model was run for 100 paddling cycles to develop a steady, periodic wake based
on the momentum and momentum flux values as seen in [4]. After this steady periodic wake state was achieved,
data was recorded for 31 cycles. The first 30 paddling stroke cycles were used to calculate the DMD modes, which
were then fit to the 31* cycle data for comparison to determine how well the low-order reconstruction fit the
experimental data. The experimental PIV data, along with low-order reconstructions based on the first dynamic
mode, and on the first 5 distinct modes are shown for each Reynolds number in Fig. 4. For the lowest Reynolds
number (Re = 32), there is virtually no difference between the experimental data and the two linear approximations
of the data, so a first order approximation of the wake works just as well as a 5® order approximation. However,
increasing the Reynolds number increases non-linear interactions in the fluid physics (Equation 10), which should
require a higher-order linear approximation to accurately model the flow physics. At Re = 160, There are some
visual differences in the wake vorticity between the three plots (Fig. 4), but the differences in velocity magnitude are
small, and the difference in vorticity is primarily far from the core of the wake jet. At Re = 516, there are larger
differences in the wake velocity between the data and both the first and fifth-order linear reconstructions of the fluid
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wake. This indicates that there is much greater cycle-to-cycle variation in the wake. Despite the differences between
the data and the reconstructions far from the wake core, the overall flow field looks fairly similar even using just a
first order linear approximation for the reconstruction. In order to quantify how well the reconstructions matched the
wake, the total error in the kinetic energy of the reconstructions were calculated using Equation 9.

y (mm)

y (mm)

¥ (mm)

3mis 30 20 10 0 10 20 30
wz [s71]
Fig. 4 PIV velocity and vorticity fields (left) compared with low-order reconstructions using the first S modes

(center) and the first mode only (right). The Reynolds numbers are Re = 32 (top), Re = 160 (center), and
Re = 516 (bottom).

The total amount of error in the kinetic energy of the reconstructed flow field is shown in Fig. 5, for varying
number of modes used for the flow field reconstruction at each Reynolds number. For the lowest Reynolds number,
Re = 32, there is little difference made in the kinetic energy reconstruction error by adding more modes beyond the
first mode. The first mode captures more than 99.92% of the total kinetic energy, with an error slightly less than
0.077%. The total kinetic energy for this case was 2.04 J/m. At higher Reynolds numbers, the reconstruction error in
the kinetic energy increased. For Re = 160, the total kinetic energy in the field of view from the PIV experiments
was 5.38 J/m, with the reconstruction error decreasing from 2.11% to 1.10% as the number of modes used for
reconstruction increased from 1 to 29. At Re = 516, the reconstruction error increased drastically to 10.4% when
using only the first mode for reconstruction, dropped to 4.38% when reconstructed using the first 15 modes, and
finally to 1% when the first 29 modes were used in the flow field reconstruction. So as Reynolds number increases,
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it is likely necessary to use a more complex sensory array to detect the wake of an individual paddler, but at these
Reynolds numbers, a low order model should do nicely due to the large amount of energy information contained in
the first few modes. From Fig. 4, the mean flow occurs near the same location and with similar intensity in both the
first and fifth order reconstructions of the paddling wake at each Reynolds number. Since the wake structure and
energy content from the low-order model is relatively close to that from the experimental data, it means that animals
that swim in groups using metachronal paddling, and engineered AUV attempting to follow a formation leader
could require only low-order feedback control that responds to low-speed, high-intensity fluctuations in the paddling
wake. This simplification would allow them to respond to changes in the wake that correspond primarily to the
reorientation of the wake jet due to the swimming motion of other individuals in the swarm, rather than the
fluctuations in the flow field that are due to nonlinearities of the flow physics.
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Fig. 5 Reconstruction error (calculated according to equation 9) versus number of modes used for
reconstruction.

V. Conclusion

In this study, it was found that a low-order linear model does a good job of capturing the energy content of the
metachronal paddling wake. Dynamic Mode Decomposition (DMD) was used to determine cycle-to-cycle variations
in the periodic wake of a metachronally paddling robot, and it was found that up to Re = 516, a linear reconstruction
using only the first dynamic mode captures nearly 90% of the energy in the wake flow. The results of this study can
be combined with information on the coherent wake structures to develop simple linear models for swarm operation
that could be used to control bio-inspired Autonomous Underwater Vehicles or applied to describe the motion of
marine organisms in a school.
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