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Dynamic Mode Decomposition of the 
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Oklahoma State University, Stillwater, OK, 74078, USA 

Metachronal paddling is a drag-based propulsion strategy observed in many aquatic 
arthropods in which a series of paddling appendages are stroked sequentially to form a 
traveling wave in the same direction as animal motion. Metachronal paddling’s relatively high 
force production makes these organisms highly agile, an attractive potential for bio-inspired 
autonomous underwater vehicles that is complicated by the lack of reduced order flow 
structure and dynamics models applicable to vehicle actuation and control design. This study 
uses particle image velocimetry to quantify the wake of a robot performing metachronal 
paddling. Then, dynamic mode decomposition is used to identify the frequency modes of the 
wake, which are used to reconstruct a reduced order model at Reynolds numbers of 32, 160, 
and 516. The results show that the kinetic energy in the metachronal paddling wake is well 
modeled using a superposition of the first 5 dynamic modes, and that there is typically little 
change in the reconstruction error when the reconstruction is performed with a higher 
number of dynamic modes. The low order paddling models identified using this method can 
be used to identify the physical mechanisms that differentiate metachronal paddling from 
synchronous paddling, and to develop control strategies to modulate these motions in bio-
inspired autonomous underwater vehicles. 

I. Nomenclature 
AUV = Autonomous Underwater Vehicle 
𝑑, 𝜕 = Derivative operator 
DMD = Dynamic Mode Decomposition 
𝑒̂ = Reconstruction error in kinetic energy 
E = Kinetic energy 
f = Paddling stroke frequency 
𝐹𝑟 = Froude number 
G = Inter-paddle spacing (Gap) 
I = Identity matrix 
j = Complex number √−1 
L = Paddle length 
λ, Λ = Eigenvalue, Eigenvalue matrix 
∇ = Gradient operator 
𝜈 = Kinematic viscosity 
p = Pressure 
PIV = Particle Image Velocimetry 
Φ = Dynamic mode 
Re = Reynolds number 
𝜌 = Fluid density 
Σ = Singular value matrix 
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Σ෨ = Eigendecomposition matrix 
𝑡 = Time 
𝜃 = Paddling stroke amplitude 
𝑢 = Horizontal component of fluid velocity 
𝑢ሬ⃑  = Fluid velocity vector 
𝑢ො  = Reconstructed fluid velocity 
𝑈 = Left singular vector matrix 
𝑣 = Vertical component of fluid velocity, eigenvector matrix 
𝑉 = Data matrix 
𝑊 = Right singular vector matrix 
𝜔௭ = Transverse component of vorticity vector 
𝑥 = Horizontal axis direction 
𝑦 = Vertical axis direction 

II. Introduction 
Metachronal paddling is a drag-based locomotion strategy that is commonly used by numerous species of aquatic 

and semi-aquatic organisms. The metachronal swimming stroke is performed by organisms that have multiple 
swimming appendages aligned along the body axis, where each appendage is stroked sequentially, with a small phase 
lag between the movement of adjacent appendages. In marine crustaceans with 5 pairs of swimming legs, this inter-
leg phase lag is commonly about 15-18% of the total cycle time [1]. Of particular importance to oceanography and 
marine ecology are species that form large schools or swarms, such as Antarctic krill, due to their hypothesized role 
in biogenic ocean mixing [2]. Much work has been done on the swimming performance of individual paddling 
organisms [3-5], a recent study has examined the preferred schooling orientations of krill in a laboratory aquarium 
[6], and a few studies have begun to examine how organisms might be able to sense and respond to their hydrodynamic 
environments [7-8]. All this research helps build an understanding of the behavior of individual organisms but does 
not explain how or why individuals in a group choose to interact in the ways that they do. 

Work is being done to develop highly agile autonomous underwater vehicles (AUVs) and drag-based propulsion 
strategies such as metachronal paddling are ideal for this purpose. Identification of the fluid dynamic modes in the 
wake of individual paddling swimmers can help to inform the understanding of collective decision making and can be 
used to help in the design of swarm operation of these autonomous underwater vehicles. By applying dynamic mode 
decomposition (DMD) to identify the frequency modes in the paddling wake, it may be possible to identify particular 
flow structures that can be sensed by individual vehicles in a swarm for autonomous swarm organization. Particular 
sensory elements will need to be developed for these vehicles that can read hydrodynamic cues in the paddling wake 
in order to coordinate these collective motions of multiple autonomous underwater vehicles. To test this, particle 
image velocimetry (PIV) was performed on the wake of a robotic model that was programmed to perform a 
metachronal paddling motion, and DMD was performed on the paddling wake to determine whether a low-order linear 
approximation can be used to accurately model the paddling wake. 

Dynamic mode decomposition, famously introduced by Schmid [11], is a numerical method that allows for the 
extraction of frequency modes and coherent structures from flow field data [12]. An advantage of the DMD method 
is that it provides a way to characterize the most important flow structures [13], which can then be used to identify 
physical mechanisms and develop control strategies. DMD has been widely applied to wake flows and can be applied 
for both uniform and nonuniform time sampling [14]. A systematic comparison of DMD to other common data 
decomposition methods is given in [15]. These identified frequency modes can be determined in the absence of any 
prior knowledge of the physics of the problem and can help determine the frequencies of the dominant flow structures, 
for maximum efficiency in flow modeling. Researchers are hopeful that as DMD continues to rise in popularity, 
advances will make it applicable for real-time frequency mode identification and control for fluid flow applications 
[15]. 

III. Methods and Approach 

A. Experimental Methods 
A multi-appendage paddling robot was developed to investigate the metachronal paddling propulsion mechanism. 

The design of the system and experimental procedures are detailed in [4]. The model was designed to mimic 
metachronal propulsion as seen in crustaceans such as Antarctic krill and used an inter-paddle spacing (ratio of gap 
between paddles, G, to paddle length, L) of G/L=0.7. Previous work [10] has shown that close spacing of the paddles 
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(G/L<1.0) results in increased propulsive performance (increased fluid transport, increased swimming speed of the 
robot) relative to paddles that are spaced far apart. The model was programmed to perform a sinusoidal paddle stroke, 
with a stroke amplitude of 𝜃 = 90∘ and a stroke frequency of 𝑓 = 1.5 𝐻𝑧. The paddles had length 𝐿 = 76.2 𝑚𝑚, with 
a hinge located halfway along the length that allowed them to fold in one direction in order to reduce the surface area 
perpendicular to the flow during the recovery stroke. The Reynolds number based on mean paddle tip speed can be 
defined as: 

 𝑅𝑒 =
ଶ௙ఏ௅మ

ఔ
 (1) 

The model was operated in three different fluids, with varying viscosities. The fluids were mixtures of glycerin 

and water in different concentrations, with kinematic viscosities of 𝜈 = 860
௠௠మ

௦
, 𝜈 = 172

௠௠మ

௦
, and 𝜈 = 53

௠௠మ

௦
, 

which resulted in average paddle-tip speed based Reynolds numbers of 𝑅𝑒 = 32, 𝑅𝑒 = 160, and 𝑅𝑒 = 516, 
respectively. A diagram of the experimental setup as well as prescribed and measured paddle kinematics are shown in 
Figure 1.  

 

 
Fig. 1  Experimental setup used in this study. (A) Front view of experimental setup. (B) Top view. (C) Paddle 
kinematics with phase lag of 25% of total cycle time. 𝜶 represents paddle root angle. (D) kinematic viscosity 

of each fluid and resulting Reynolds numbers. Reproduced under CC-BY-4.0 from Ford et al. 2019 [4]. 
 

Particle image velocimetry experiments were performed on the robotic model at a rate of 15 double-frame images 
per second, which resulted in 10 PIV vector fields calculated per paddling stroke. An Imager sCMOS camera 
(LaVision GmbH, Göttingen, Germany) and a double-pulsed Nd:YAG laser (Gemini 200-15, New Wave Research, 
Fremont, CA, USA) were used for the recording, and PIV calculation was performed in DaVis 8.3 (LaVision GmbH, 
Göttingen, Germany). The data used for the analysis here, along with further details about the data acquisition and 
PIV processing methods are previously published in [4]. The previously published velocity field data was read into 
MATLAB R2021a (MathWorks inc., Natick, NJ), and run through the DMD as described in the next section. 

B. Computational Methods 
For a 2D velocity field size 𝑚 × 𝑛 with time history of length 𝑁, given by 𝑢ሬ⃑ (𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡)𝚤̂ + 𝑣(𝑥, 𝑦, 𝑡)𝚥̂, 

the velocity field data can be written as a 2D matrix given by 
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 𝑉ଵ
ே =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑢(𝑥ଵ, 𝑦ଵ, 𝑡ଵ) … 𝑢(𝑥ଵ, 𝑦ଵ, 𝑡ே)

𝑢(𝑥ଶ, 𝑦ଵ, 𝑡ଵ) … 𝑢(𝑥ଶ, 𝑦ଵ , 𝑡ே)
⋮

𝑢(𝑥௠, 𝑦௡ , 𝑡ଵ) … 𝑢(𝑥௠ , 𝑦௡ , 𝑡ே)

𝑣(𝑥ଵ, 𝑦ଵ, 𝑡ଵ) … 𝑣(𝑥ଵ, 𝑦ଵ , 𝑡ே)
⋮

𝑣(𝑥௠, 𝑦௡ , 𝑡ଵ) … 𝑣(𝑥௠ , 𝑦௡, 𝑡ே)⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (2) 

 
Since the fluid motion in the metachronal paddling system is periodically forced by the paddle motion and 

incorporates periodic shed wakes, it is convenient to apply dynamic modal decomposition (DMD) to paddling stroke 
phase-synchronized instances of the flow field. This quasi-steady approach can be used to capture the cycle-to-cycle 
variation of the propulsive wake. For this study, the time point 

௧

்
= 0.5 was chosen for the DMD processing, 

corresponding to the to the configuration indicated at 0.5 on the x-axis of the plot in Fig. 1C. Physically, this time 
point occurs just as the rightmost paddle in Fig. 1A completes its thrust-generating power stroke. Future work will 
consider additional timepoints. The first step in DMD is to calculate the singular value decomposition (SVD) of the 
matrix 𝑉ଵ

ேିଵ, given by 

 𝑉ଵ
ேିଵ = 𝑈Σ𝑊் , (3) 

where Σ is a diagonal matrix of singular values, and the columns of the matrices 𝑈 and 𝑊 are the left-hand and right-
hand singular vectors, respectively. The SVD modes are not unique. To overcome this limitation, it is possible to 
define the dynamic mode decomposition by taking performing the eigendecomposition on the square matrix Σ෨, defined 
as 

 Σ෨ = 𝑈∗𝑉ଵ
ேିଵ𝑊்Σିଵ. (4) 

While the velocity matrix 𝑉ଵ
ேିଵ is not square, Σ෨ is, and therefore the eigendecomposition can be performed. The 

decomposition of the matrix Σ෨ is performed according to the following, where the diagonalized eigenvalue matrix is 
given by Λ = 𝜆𝐼, and the eigenvector matrix is given by 𝑣: 

 Σ෨𝑣 = 𝑣Λ. (5) 

Thus the dynamic modes Φ of the system are  

 Φ = 𝑉ଵ
ேିଵ𝑊Σିଵ𝑣. (6) 

A low-order linear reconstruction of the vector field can be performed using a superposition of the first 𝑖 dynamic 
modes Φ௜. This is done by performing a linear-least-squares fit 𝜙௜ of Φ௜ to the last column of 𝑉ଵ

ே, corresponding to 
the instant 𝑡 = 𝑁: 

 Φ௜𝜙௜ = 𝑉ே (7) 

The flow field reconstruction is then based on a fit of the velocity field. The quality of the low-order reconstruction 
can be calculated based on the total error in the kinetic energy of the reconstruction. The total kinetic energy in the 
flow field per unit width for 2D velocity data can be calculated according to the equation:  

 𝐸 = ∬
ଵ

ଶ
𝜌|𝑢ሬ⃑ (𝑥, 𝑦)|ଶ 𝑑𝑥 𝑑𝑦 (8) 

And the reconstruction error in the kinetic energy data was quantified by: 

 𝑒 =
∬ቂ൫௨(௫,௬)ି௨ವಾವ(௫,௬)൯

మ
ା൫௩(௫,௬)ି௩ವಾವ(௫,௬)൯

మ
ቃ⋅ௗ௫⋅ௗ௬

∬[௨(௫,௬)మା௩(௫,௬)మ]⋅ௗ௫⋅ௗ௬
⋅ 100%, (9) 
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where 𝑢 and 𝑣 are the velocity components of the experimental data, and 𝑢஽ெ஽ and 𝑣஽ெ஽ are the velocity components 
from the data reconstructed from the DMD modes. The method in Eqns. (2)-9 was implemented in MATLAB R2021a 
(version 9.10, MathWorks Inc., Natick, MA.).  

 

IV. Results and Discussion 
Singular value decomposition was performed as a step in the calculation of the dynamic modes. The singular 

values are shown in Fig. 2. The maximum singular values and the sum of all values are shown in Table 1.   

Table 1. Singular values as a function of Reynolds number 

Re Max singular value σ Sum of 30 singular values 

32 110 127 
160 176 265 
516 163 432 

The sum of singular values suggests there is more energy transfer within the higher Reynold’s number flow, and a 
low rank decomposition is more direct for lower speed flows. This finding is consistent with the physical 
understanding from the governing non-dimensional form of the incompressible Navier-Stokes equation with no body 
forces, given below 

 
డ௨ᇲ

డ௧ᇲ + (𝑢ᇱ ⋅ ∇ᇱ)𝑢ᇱ = −∇ᇱ𝑝ᇱ +
ଵ

ோ௘
∇ᇱଶ

𝑢ᇱ (10) 

The Navier-Stokes equation behaves linearly at very low Reynolds numbers and becomes increasingly nonlinear 
as Reynolds number increases.  We expect higher Reynolds number flows will require a significantly greater number 
of linear modes to accurately capture the dynamics at higher values of Re. 

 

 
Fig. 2 Normalized singular values 𝜮 in descending order. 

 
 The dynamic modes of the system were calculated in MATLAB, which showed alternating modes of the same 
magnitude but opposite directions, and that these modes were associated with complex conjugate eigenvalue pairs. 
For this reason, only the odd modes are shown here, with mode 1 representing the mean value of the PIV time-
series, and subsequent modes representing periodic cycle-to-cycle variation in the flow field.  The first few dynamic 
modes of the paddling system for the given kinematics (25% phase lag, 90o stroke amplitude) are shown in Fig. 3. 
Mode 1 appears to show coherent structures in the vorticity field, representing paddle tip vortices and the mean 
shear flow. For 𝑅𝑒 = 32 and 𝑅𝑒 = 160, subsequent modes after the 1st mode show greater vorticity concentration 
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near the paddle tips than anywhere else in the flow, which likely represents noise in the experimental data caused by 
glare from the laser sheet reflecting off of the acrylic paddles. However, the relatively greater vorticity components 
in the far-field at 𝑅𝑒 = 160 as compared to 𝑅𝑒 = 32 may indicate that there is some physical component to the 
cycle-to-cycle variation in the flow fields that is above and beyond the experimental noise likely represented by the 
far-field vorticity contours at 𝑅𝑒 = 32. In contrast to the other two Reynolds number cases, the vorticity modes at 
𝑅𝑒 = 516 show clearly defined regions of vorticity that are likely to correspond to periodic differences in the 
metachronal paddling wake. Despite the paddles repeatedly making the same motion, the wake varies over time. A 
likely cause of this variation is that there is less viscous dissipation of fluid momentum at higher Reynolds numbers. 
This effect results in vortices shed from previous paddling strokes remaining non-negligible rather than decaying 
quickly. The slowly decaying vortical structures can interact with the subsequent paddling strokes in different ways. 
This interaction results in a time-varying wake despite the periodic forcing of the flow and can have significance for 
marine ecology and engineering of autonomous underwater vehicles. A wake that does not consistently have the 
same vorticity signature would require a more complex flow sensing system for schooling in animals and swarm 
operation in engineered vehicles at larger Reynolds numbers. 
 

 
Fig. 3 Vorticity fields corresponding to the first 4 odd dynamic modes each Reynolds number. First row: 

Re=32. Second row: Re=160. Third row: Re=516. 
 

The dynamic modes of the system were used as the basis for a reduced-order model of the paddling wake. 
During the experiments, the robotic model was run for 100 paddling cycles to develop a steady, periodic wake based 
on the momentum and momentum flux values as seen in [4]. After this steady periodic wake state was achieved, 
data was recorded for 31 cycles. The first 30 paddling stroke cycles were used to calculate the DMD modes, which 
were then fit to the 31st cycle data for comparison to determine how well the low-order reconstruction fit the 
experimental data. The experimental PIV data, along with low-order reconstructions based on the first dynamic 
mode, and on the first 5 distinct modes are shown for each Reynolds number in Fig. 4. For the lowest Reynolds 
number (𝑅𝑒 = 32), there is virtually no difference between the experimental data and the two linear approximations 
of the data, so a first order approximation of the wake works just as well as a 5th order approximation. However, 
increasing the Reynolds number increases non-linear interactions in the fluid physics (Equation 10), which should 
require a higher-order linear approximation to accurately model the flow physics. At 𝑅𝑒 = 160, There are some 
visual differences in the wake vorticity between the three plots (Fig. 4), but the differences in velocity magnitude are 
small, and the difference in vorticity is primarily far from the core of the wake jet. At 𝑅𝑒 = 516, there are larger 
differences in the wake velocity between the data and both the first and fifth-order linear reconstructions of the fluid 
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wake. This indicates that there is much greater cycle-to-cycle variation in the wake. Despite the differences between 
the data and the reconstructions far from the wake core, the overall flow field looks fairly similar even using just a 
first order linear approximation for the reconstruction. In order to quantify how well the reconstructions matched the 
wake, the total error in the kinetic energy of the reconstructions were calculated using Equation 9.  

 
Fig. 4 PIV velocity and vorticity fields (left) compared with low-order reconstructions using the first 5 modes 

(center) and the first mode only (right). The Reynolds numbers are 𝑹𝒆 = 𝟑𝟐 (top), 𝑹𝒆 = 𝟏𝟔𝟎 (center), and 
𝑹𝒆 = 𝟓𝟏𝟔 (bottom).  

 
The total amount of error in the kinetic energy of the reconstructed flow field is shown in Fig. 5, for varying 

number of modes used for the flow field reconstruction at each Reynolds number. For the lowest Reynolds number, 
𝑅𝑒 = 32, there is little difference made in the kinetic energy reconstruction error by adding more modes beyond the 
first mode. The first mode captures more than 99.92% of the total kinetic energy, with an error slightly less than 
0.077%. The total kinetic energy for this case was 2.04 J/m. At higher Reynolds numbers, the reconstruction error in 
the kinetic energy increased. For 𝑅𝑒 = 160, the total kinetic energy in the field of view from the PIV experiments 
was 5.38 J/m, with the reconstruction error decreasing from 2.11% to 1.10% as the number of modes used for 
reconstruction increased from 1 to 29. At 𝑅𝑒 = 516, the reconstruction error increased drastically to 10.4% when 
using only the first mode for reconstruction, dropped to 4.38% when reconstructed using the first 15 modes, and 
finally to 1% when the first 29 modes were used in the flow field reconstruction. So as Reynolds number increases, 
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it is likely necessary to use a more complex sensory array to detect the wake of an individual paddler, but at these 
Reynolds numbers, a low order model should do nicely due to the large amount of energy information contained in 
the first few modes. From Fig. 4, the mean flow occurs near the same location and with similar intensity in both the 
first and fifth order reconstructions of the paddling wake at each Reynolds number. Since the wake structure and 
energy content from the low-order model is relatively close to that from the experimental data, it means that animals 
that swim in groups using metachronal paddling, and engineered AUVs attempting to follow a formation leader 
could require only low-order feedback control that responds to low-speed, high-intensity fluctuations in the paddling 
wake. This simplification would allow them to respond to changes in the wake that correspond primarily to the 
reorientation of the wake jet due to the swimming motion of other individuals in the swarm, rather than the 
fluctuations in the flow field that are due to nonlinearities of the flow physics. 
 

 
Fig. 5 Reconstruction error (calculated according to equation 9) versus number of modes used for 

reconstruction.  
 

V. Conclusion 
In this study, it was found that a low-order linear model does a good job of capturing the energy content of the 

metachronal paddling wake. Dynamic Mode Decomposition (DMD) was used to determine cycle-to-cycle variations 
in the periodic wake of a metachronally paddling robot, and it was found that up to 𝑅𝑒 = 516, a linear reconstruction 
using only the first dynamic mode captures nearly 90% of the energy in the wake flow. The results of this study can 
be combined with information on the coherent wake structures to develop simple linear models for swarm operation 
that could be used to control bio-inspired Autonomous Underwater Vehicles or applied to describe the motion of 
marine organisms in a school. 
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