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STEKLOV EIGENVALUES OF NEARLY SPHERICAL DOMAINS*
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Abstract. We consider Steklov eigenvalues of three-dimensional, nearly spherical domains. In
previous work, we have shown that the Steklov eigenvalues are analytic functions of the domain
perturbation parameter. Here, we compute the first-order term of the asymptotic expansion, which
can explicitly be written in terms of the Wigner 3-j symbols. We analyze the asymptotic expansion
and prove the isoperimetric result that, if ¢ is a square integer, the volume-normalized ¢th Steklov
eigenvalue is stationary for a ball.
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1. Introduction. Let Q C R?, and consider the Steklov eigenproblem on €,

(1a) Au =0 in Q,
(1b) Opt = \u on 0f).

Here A is the Laplacian acting on H'((2), and 9, denotes the outward normal de-
rivative on the boundary, 02. It is a well-known fact that, when 0f2 is smooth, the
Steklov spectrum is discrete, and the eigenvalues can be enumerated in increasing
order, 0 = Ag(Q) < A1 () < A2(R) ..., where A\, (©2) — o0 as n — oo. For a more
general description of the Steklov spectrum, see [GP17].

Isoperimetric inequalities for nontrivial Steklov eigenvalues have been explored
since the mid-twentieth century. The first major result in the shape-optimization of
Steklov eigenvalues were obtained by Weinstock [Weib4], which showed that the disc
is the shape in R? with largest first nonzero Steklov eigenvalue among all smooth
bounded domains of fixed area. This result was extended to R? for d > 3 by Brock
[Bro01]. Bogosel, Bucur, and Giacomini [BBG17] obtained general existence results
for shape optimizers for general Steklov eigenvalues A, (2),n > 2. The Steklov ei-
genvalue maximization problem for fixed perimeter has been studied numerically in
two dimensions [AKO17] and three and four dimensions [Ant21]. Tuning of mixed
Steklov—-Neumann boundary conditions have also been recently studied by Ammari,
Imeri, and Nigam [HN20], where an algorithm was designed to generate the proper
mixed boundary conditions necessary to obtain desired resonance effects.

Steklov eigenvalues have applications in electromagnetism and materials design
[Lip98a], [Lip98b]. Recently they have been used in a nondestructive testing method
to locate defects in a medium using measured far-field data [Cak+16]. For this prob-
lem, numerical results reveal that a localized defect of the refractive index in a disc
perturbs only a small number of Steklov eigenvalues.
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Results. Let Q = ). be a nearly spherical domain where the boundary can be
expressed in spherical coordinates (radius r, inclination 6 € [0, 7], azimuth ¢ € [0, 27])
and expanded in the basis of real spherical harmonics,

(2)
0o £

QE = {(r,@,(b): 0 S r S 1 +5p(97¢)}7 where P Z Z AZ mnm ¢)

{=0 m=—/¢

is a given C1(09) perturbation function.
For ¢ = 0, ) is the unit ball, and the eigenvalues are A¢,, = £ (multiplicity
2¢ 4+ 1) with corresponding eigenfunctions

we,m (7,0, 0) = Y01 (0, 0), CeN, |m| <L

In previous work [VO20], we have shown that A = A(¢) is analytic with respect
to €. The method of proof is to treat such domains as perturbations of the ball, we
prove the analyticity of the Dirichlet-to-Neumann operator with respect to the domain
perturbation parameter. Consequently, the Steklov eigenvalues are also shown to be
analytic in the domain perturbation parameter [Kat76].

The goal of this paper is to obtain and study the first term of the asymptotic
expansion of A = A(g) in terms of the small parameter, e. This extends the work in
[VO18], where the same problem is studied in dimension two for reflection-symmetric
domains. We will then use the asymptotic expansion to obtain local optimizers for
isoperimetric inequalities for certain Steklov eigenvalues.

In particular, in section 2, we derive an asymptotic expansion for Steklov eigen-
values satisfying (1) for a domain €. of the form (2) for small perturbation parameter
e > 0. For k € N, consider the group of eigenvalues {\,(g) ,(JE'H)Z_l, which satisfy
An(0) = k. In Theorem 2.2, we characterize the first-order behavior in ¢, i.e., find the
first term in the expansion

An(e) = k+eAl) 4 0(e?).

We show that the perturbation of these 2k + 1 eigenvalues A, (¢) are described by the
eigenvalues of a real, symmetric 2k + 1 x 2k + 1 matrix, denoted M), whose entries
are given by

M =—*Z S Ay (oo +1) + 26) / / 00, 6)Yieon (0, 6)Yie (6, 9) dS.

p=0g=—p

Interestingly, due to the nonsimplicity of the eigenvalues, the eigenvalues are not
Fréchet differentiable at ¢ = 0. This is manifested in the fact that the first-order
eigenvalue perturbation is not described in terms of a linear functional but rather the
eigenvalues of a finite matrix. This should be contrasted with the reflection-symmetric
two-dimensional case, where the symmetry can be used to decompose the eigenspaces
into dimension one subspaces and the first-order perturbation can be written as a
linear functional of the perturbation coefficients [VO18].

Further interpretation of the asymptotic results (Theorem 2.2) are given in Corol-
lary 2.3 in the case where only one spherical harmonic is perturbed. In particular, we
show that high frequency oscillations in the domain do not perturb low eigenvalues.
This result is consistent with the behavior seen in [Cak+16], although the eigenvalue
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problem and the nature of the perturbation they consider is different; the authors
consider a material perturbation, while we consider shape deformation.

In section 3, we further analyze the matrix M *) to prove the following isoperimet-
ric result. Denote the volume-normalized Steklov eigenvalue by Ay () := Ag(€2)-|Q5.

THEOREM 1.1. Let k € N. Then Ayz is stationary for a ball in the sense that,
for every perturbation function p, the map € — Ag2(Q:) is nonincreasing in |e| for ||
sufficiently small.

Theorem 1.1 suggests that for £ a squared integer Ay(f2) is possibly maximized
when (2 is a ball. However, recent numerical results suggest that A4 is maximized by
the ball while Ag is not maximized by the ball [Ant21]. The matrix M®*) can also
be used to show that the ball is not locally maximal for an infinite list of volume-
normalized Steklov eigenvalues.

THEOREM 1.2. Let k € N. Then Aq1)2—1 is not mazimized by the ball.

Theorem 1.2 is proved at the end of section 3. From the eigenvalues of the ball,
Qp, one can easily see that Zisz Men(Q0) = (2k + 1)k. Tt follows from the proof of
Theorem 1.1 that

(k+1)2 -1
(3) > (k) = 2k + Dk + O(?),
{=k?2

meaning that the sum of a grouping of eigenvalues is invariant to perturbation at first
order.

Our main results are illustrated in Figure 1. Here, for various choices of (p,q),
we show the first-order approximation for Steklov eigenvalues for a domain of the
form (2) with p(6,¢) = 1+ €Y, 4(6,¢). We observe that, although we have (3) is
satisfied, this is not always due to the direct cancellation of pairs of eigenvalues. For
example, for (p,q) = (2,0), the first eigenvalue group splits into three eigenvalues:
a multiplicity two eigenvalue which is positively perturbed and a simple eigenvalue
which is negatively perturbed. The magnitudes of the perturbations are such that
the sum is zero.

2. An asymptotic expansion for Steklov eigenvalues of nearly spherical
domains. In this section, we derive an asymptotic expansion for Steklov eigenvalues
satisfying (1) for a domain €. of the form (2) for small perturbation parameter & > 0.
We recall that the real spherical harmonics, Yz ,,, in (2) can be obtained from the
complex spherical harmonics as follows. Define the complex spherical harmonic by

(@) nm<0,¢)¢ D o P cost) e, (>0, |ml <,

where P;" is the associated Legendre polynomial, which can be defined through the
Rodrigues formula, P}"(z) = (;,lz,m (1- x2)%%(z2 —1)%. For £ >0 and |m| < ¢,
the real spherical harmonics are then defined by

(Y6, 6) — (~1)"Y, (6,6)] ifm <0,

We begin by deriving asymptotic expansions for geometric quantities associated
with ., in particular the volume of 2. and the outward normal vector to 0f2..
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Downloaded 04/08/23 to 155.98.131.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STEKLOV EIGENVALUES OF NEARLY SPHERICAL DOMAINS 1549

Perturbation of (2,0) spherical harmonic Perturbation of (2,1) spherical harmonic
7 7
6 5
8 8
3 =
T ° T °
g g
R e R e ——————————
i} i
3 3
X
3 S
&° = §——————=========c===t==
L i ——————————
o ! 0
0 005 01 015 o 005 01 015
€ €
Perturbation of (2,2) spherical harmonic Perturbation of (4,0) spherical harmonic
7 7
6 6
8 8
3 2
g° g°
= — =
B s & == =
w w
3 3 —======s======
o 3
[ [ e
e e e e e I
0 0
o 005 01 015 o 005 01 015
€ €
Perturbation of (4,2) spherical harmonic
7 7
6 6
8 8
=2 =2
N c°
g g
84 X
i} w
E 3 E 3 =
x x
2 2
78 »*
1 e e e e
0 3
o 0.05 0.1 0.15
€
Perturbation of (4,4) spherical harmonic
7 7
6 6
8 8
=) 2
T ° T °
g g
. S f—————mm==e==—== oo oo -
[in} i
3 === __ -
3 3 . ..ooo-oioott
p——————————=——---- - """ [ e
e m e e e e e e R S
0 0
0 005 01 015 o 005 01 015
€ €

Fic. 1. A plot of the first-order approzimation for Steklov eigenvalues satisfying (1) on a
domain of the form (2) with p(0,¢9) = 1 + €Yp q(0,¢) for indicated (p,q) spherical harmonic. See
section 2.4.

2.1. Asymptotic expansions for geometric quantities.

2.1.1. Volume. Denoting the measure dS = sinfdpdf, the volume of 2. can

easily be computed as
1
5[] a+en.0)° as
3/ /s

4%-1—6//82;7(0,(1)) dS + O(e?)

jo
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=5 +edan [[ Yoo0.0) ds + 0

4
= ?ﬂ +eVarAgo + O(?).

2.1.2. Normal vector. It is convenient to denote the spherical coordinate vec-
tors

sin (@) cos(¢) cos(0) cos(¢) —sin(¢)
7 = | sin(f) sin(¢) |, 6= cos(d)sin(¢) |, and ¢=| cos(¢)
cos(0) — sin(h) 0
The boundary can then be expressed as x(0,¢) = (1 +¢p(6, ¢)) 7. The outward unit
normal to the boundary of the domain can be computed by 7. (6, ) = éZiizl. We
compute

o = epot + (1 +ep) b,
T = epgi + (1 + ep) sin(6) .

Using the relationships (/gxf = é, HAX(ﬁ =7, and 7 x6 = é, we obtain a (nonnormalized)
vector that is outward normal to the boundary

e (0, ¢) = xg X Ty
=(14e¢p) ((1 + ep) sin 07 — epp sin 60 — 6p¢(2)>
= ((1 + 2ep) 7 — Epgé) sin() — eps¢ + O(2).

We compute

(60, 8)] " = —— (1 — 22p) + O(<?).

sin(9)
The unit-normalized outward normal vector is then
(6) fe = || " he = 7y + ity + O(e?),
where
(7a) fig = 7,

0

() == (i ).

2.2. Perturbation of eigenvalues. We consider the perturbation of a Steklov
eigenpair,

A =20 L edD 4 0e?),
u (r,0,¢) = u®(r,0,¢) + cu (r,0,¢) + O(?),

due to a perturbation in the domain of the form in (2). For fixed k € N, we let

(8a) A0 =k,

(8b) (r,0,0) = Z Y m (6, ).

m=—k
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Note that we can’t a priori determine the coefficients «, that will select the O(1)
eigenfunction from the 2k + 1 dimensional eigenspace. Since the family
{r*Y% n (0, )} ren, nj<k forms a complete orthonormal basis for L*(€2.) with & = 0,
we expand the higher-order eigenfunction perturbations in this basis. Thus, we make
the following perturbation ansatz in € for the eigenvalue A, and corresponding eigen-
function uj,

(9a) A =k + A 4 0(?),
(9b) (r,0,0) = Z Z (Sek0tm + =Bum + OE)) 1Yo (6, 9).
=0 m=

This ansatz satisfies (1a) exactly, and we will determine the eigenvalue perturbation
A and the coefficients «,, and Be.m so that (1b) is satisfied. Using the identity

V =0,7+ r—lagé + 8¢(£, we have that

1
rsin(0)

oo £
(10) Z Z (5z,kam+€ﬂe,m+0(€2)) L m,
=0 m—

where

Ué,m == en,m(ev (;S)TA' + 80}/E7m(07 ¢)é + agf)}/fﬂn(aa ¢)é

_1
sin(0)
Denoting the expansion of the normal vector by fi. = fig + efi; + O(g?) as in (6), we
have the left-hand side (LHS) and right-hand side (RHS) of (1b) are given by

(11a)  LHS= Y (dek0m +EBem + O(?)) (1 +e(l —1)p+ O(?))
LEN, |m|<e
- (7o + ity + O(e?)) - Vom,

(11b) RHS= > (A,ﬁ‘” e 4 0(52)) (8 xtm + €Bem + O(?))
(€N, |m|<e

. (1 + 56[) + 0(82)) Yéﬂn(07 ¢)

Equating O(g°) terms in (11a) and (11b), we recover (8a). Equating O(e!) terms
n (11a) and (11b), we obtain

k k
(12) A Y anYim(0.9)=— > am (kp(&a»)Yk,m(e,a:)+peaeyk,m(9,¢>
m=—k m=—k
Po
+Sinzw)a¢Yk,m(0a¢’)>

- Z (k - E)ﬂf,m}/éﬂn-

LeN, |m|<¢

Next we multiply both sides of (12) by Y (0, ¢) for |n| < k, integrate over Qo = S?
with respect to the measure dS = sin(0)d¢df, and use the orthogonality of the real
spherical harmonics to obtain

k
(13) )\](Cl)an - Z M® o, — M® = )\](Cl)a’

)

m=—k
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where the matrix M®*) e R2F+1x2k+1 hag entries given by

M), = - / / <k;p(9,¢)Yk7m(9,¢) +06(0pYi,m (60, 0))

_|_

sin (6‘) (8¢Yk m( (b))) Yk,n(a ¢) dsS.

We now simplify M*) as follows. Integrating by parts, the second term in M*) can
be written

~ [ [0 @Y1 (6.0) Yin(6.0) a5
:,//,)9 Vi (6, )96 Vi (6, 6) — Vi (6, 6)06Yion (6, 6)] d
4= / / sin™'(0)0p (sin(0)pg) Yi,m (0, ¢)Yin (0, ¢) dS
/ [Yiein (8, )02 Y (8, 0) — Yiem (6, 9)03Yi (0, 0)] dS

+5 // sin~ ()9 (sin(0)pg) Yie.m (0, $)Yi (0, ¢) dS.

Similarly, the third term in M) can be written

//bln (OsYk,m(0,9)) Yin (0, 0) dS

:_7//Sln Yien (0, 6)05 Y. (0, 9) = Yieun (0, )06 Yin (0, 9)] dS

3] a
=3/
S

Denoting the spherical Laplacian by Agu = ﬁ@g (sin(0) Opu) + m@%u, we
obtain

aQY,m(e ®) 5Yyn (9, 9)
Yin(0,0) =5 2~ ~ Yem @, ‘“W ds

1
ME =5 [[ (B0 -+ 200) Vi (6.0)Yi00,) dS

5[] P00 ASYin(6.6) — Ve (6. ) AsYin (6,)) S,

Using the fact that —AgVy,, = k(k 4 1)Y , and writing p(6,¢) = > 2 (>0 Ay,
Y, 4(0, ¢), we have
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(14a)
MF) = —% / / (=Agp + 2kp) Vi (0, 0)Yin (0, 0) dS
(14b)
1 &
- _5 Z Z AP,Q // (—ASYp’q(G,qﬁ) + 2kYp,q(97¢)) Yk,m(97¢)yk,n(97¢) as
p=0q=—p
(14c¢)
1 &
=32 X Ana (bl 1) 20 J[¥00.0¥i(0.00¥10.0) a5
(14d)
oo P
=LY Ao 1) 2R W
p=0g=—p
where
(15) wek = / / Yy.4(0, 8) Vi (0, 8)Yi.n (0, 6) dS.

2.3. Evaluation of Wg’,’fm,n. In (15), we require the evaluation of W2 . the
integral of the triple product of real spherical harmonic functions. Recall that the
product of three complex spherical harmonics can be expressed in terms of the Wigner
3-7 symbol by
(16)

mavmayms a2+ D)2 +1)(20+1) (6 by L3\ (b by L3
//Yfl Y Ve, dS_\/ 47 0 0 0)\m me ms)"

( [1 ZQ Z3 )

my m2 m3

The Wigner 3-j symbol,
satisfied:!

(1) miE{—Ei,—ﬂi+1,—€i+2,...,£i}, (i=1,2,3).

(2) mq + meo +msg = 0.

(3) [1 — o] < l3 <ty + Lo

(4) (b1 + €3 + €3) is an integer (and, moreover, an even integer if m; = mgy =

ms = 0)

The Wigner 3-j symbol also satisfies

(17) ( 0 2 03 ):(_1)21%“3 (el 0y 43)

—mp —mz —Mg mip Mmgz M3

, is zero unless the following selection rules are

The following Lemma gives an expression for Wé’,’fm

LEMMA 2.1. Let p,k > 0 be fized > and let |q| < p and |m|,|n| < k. Write

Cpr = (2k+1) ijgl. Since Wé”;’fl’n is symmetric in m and n, without loss of

generality, assume that m > n. The integral defining W({;’,ﬁb’n in (15) can be expressed
in terms of Wigner 3-j symbols as follows.

Thttps://dlmf.nist.gov/34.2
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Case 1: m >0 and n > 0.

0,
p k
Om.nC, m
pk( ) 0 0
wek = (-1 (PF
qg,m,n V2 JC(_) 0 0
m (P Kk
Tcpk( ) (0 0
0,
Case 2: m=n=0
0,
Woh W=
0,

Case 3: m <0 andn <0.
0,

mn m P
! %Cp,k(_l) 1 (

0,
0,

Case 5: m >0 and n =0.

0,

Pk 0,
q,m,n

(68 1)
y

ok e Cvgi1 [P k k k
Wq,mn— \/ﬁcp,k( 1)q (0 0 0)( m

k)(p k k) ifqg=m+n,
0 —q m n
k

if g=m—n,
0 q —m n
otherwise,
q <0,
ko)
p
) :07
’“(o 0 0) 1
qg>0
if g=—m—n,

k) <p k k;) ,
ifq=m—n,
0 qg —m n

otherwise,

ifq=m-+n,

qu:n_m7

k k\(p k k )
ifg=—n—m,
0 0 qg m n
otherwise,
q <0,
q=0,

p k k P k kK
SqmCoi(—1)1 . g>0.
amCpr(=1) <0 0 0) <m —m o) 4

q > 0.

q > 0.

q <0.

qg=0,
q>0,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Case 6: m =0 and n < 0.

p k k p k k
SqnCpn(—1)1 , ¢<0,
anCpi(~1) (0 0 0) <n —n 0) 1

0, q=0,
Oa q>0

wek =

q,m,n

A proof of Lemma 2.1 is given in Appendix A.

2.4. An asymptotic expansion for Steklov eigenvalues. In (13), we have
shown that the first-order perturbation of the k2, ..., (k+1)? — 1 Steklov eigenvalues
are given by the 2k + 1 eigenvalues of the matrix M) given in (14). The expression

for M) involves the terms Wpk | defined in (15) and computed in Lemma 2.1.

All terms in M®) involve (6 IO( ’8)7 which by the fourth selection rule is zero
unless p € 2N. Furthermore, by the third selection rule, we may assume that p < 2k.

Thus, we obtain

2k p
1
(18) Mith==5 > 3 Apa0p+1)+26) Wi o
ppejgnq:—p

We have shown that M(®) is a symmetric matrix computed by a finite sum. By
the spectral decomposition theorem for real symmetric matrices, there are 2k + 1 real
eigenvalues in (13), and the corresponding eigenvectors can be chosen to be orthogonal.

Labeling each eigenvalue/eigenvector of M (%) with the subscript n = —k, ..., k, we
have
(19) M®a, =\ ay, n < |k|.

If o, is an eigenvector, the corresponding O(e?) Steklov eigenfunction is given by

k

(20) U (1,0,8) = Y ()t Yim (0, 0).

m=—k

We summarize the analyticity result in [VO20] and the preceding results in the fol-
lowing theorem.

THEOREM 2.2. Fiz k € N. The Steklov eigenvalues, \,(g), forn € {k?, ..., (k+
1)2 — 1} consist of at most 2k + 1 branches of analytic functions which have at most
algebraic singularities near € = 0. At first-order in e, the perturbation is given by the
eigenvalues of the symmetric matriz M® in (18), as in (19).

COROLLARY 2.3. Consider a domain Q. of the form in (2) with Ap ¢ = Opr p0gr q-
We make the following general observations.

(1) If p is odd, no eigenvalue is perturbed at O(g).

(2) If p > 2k, no eigenvalue is perturbed at O(g).

(3) If p=q=0, then

k

21 A =
( ) k.n \/E

VkeN, |n| <k

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Proof of Corollary 2.3. Points (1) and (2) follow from the fact that p odd and
p > 2k do not make an appearance in (18).

For point (3), we consider the case with p = ¢ = 0. In this case, we have from
(18) that

M*)

0,k
m,n — _kWO,m,n'
From Lemma (2.1), M®) is a diagonal matrix. For m < 0, we compute

M — gk

m,m 0,m,m
m (0 k K\ (0 k kK
= ~kCox(=1) <0 0 0) (0 m —m)'

Using the following identities?

0k k p [ 1 0k k bem |1
(0 0 0) U1 (0 m —m) (=1 1+ 2k

we obtain

m,m /47]' N

A similar expression gives the same result for m = 0 and m > 0. The eigenvalues

of this diagonal matrix are f\/% with multiplicity 2k + 1, which gives the desired

ym ko

result. 0

We interpret point (2) in Corollary 2.3 to mean that high frequency oscillations
in the domain do not perturb low eigenvalues.

It is not difficult to show that the quantity A(Q) := A(Q) - || is invariant to
homothety, i.e.,

AaQ) = A(Q), a>0.

Theorem 2.2 and Corollary 2.3 can be used to show the following local version of this
statement.

COROLLARY 2.4. A(RQ) is invariant to homothety for nearly circular Q.

Proof. Fix k € N and |n| < k. We consider a domain (2. of the form in (2) with
Agm = 00,00m,0. We define

Apn(e) = )\k,n(g)‘QEﬁ

d C [4m\7 1\ (17
20 = () a0+ (3) () +

Using (21), we find that d%Ak,n(O) = 0, as desired. ad

and compute

2https://dlmf.nist.gov/34.3
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3. Proof of main theorems.

3.1. Proof of Theorem 1.1. We now prove Theorem 1.1. Let k? € N be fixed.
We will show that )\,(612) < 0. By Theorem 2.2, we know that )\( ) is the smallest
eigenvalue of the matrix M*). We will show that tr(M*)) = 0. NOW

p k
Z M = Z ZAM (plp+1)+2k) > WPE .
q=

m=—k m=—k
p even

We first note that, along the diagonal of the matrix M®*) we have WPk =0 for

q,m,m

q < 0 by Lemma 2.1. Thus, if we call ©F = an: L WEE ., the trace of M*)
reduces to

tr(M®)) = —= Z Zqu (p+1) + 2k) OBF.

p=0 ¢=0
p even

Set ¢ = 0. Then, again using Lemma 2.1, we compute

b A p kK
ko k _ m _
ot = . Witk =Cu(§ 6 ) X0 (f o ) =o

m=—k m=—k

where we have used a Wigner 3-; symbol identity [01].
Now suppose ¢ > 0. Using Lemma 2.1 one more time, we obtain

k

—1 k
pk _ D, D, D,
ork = Z wrk = Z wrk o+ ZWq,mm
m=1

m=—Fk m=—k

_zk:1 » k K\(p k k

*1\/5“ 00 0/\—¢q m m

m

_i p k E\(p k k
0 0 O g m m

m—k:

5 TH (g G

1 p k k p k k
- _ q —
ﬁcpﬁk( 1) (o 0 0) (—q m m>_0

by (17). We conclude that tr(M®*)) = 0, and thus )\,(612) < 0 as desired. This completes
the proof.

3.2. Proof of Theorem 1.2. We now prove Theorem 1.2. It suffices to provide
a perturbation function p(f,$) such that under that particular perturbation, M (¥)

has at least one positive eigenvalue. In that case, AU > 0 as well, since it is by

(k+1)2 1
definition the largest eigenvalue of M (*
Choose p(0, ¢) as in (2) with

AWJ = 61),2165%0'
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Then, using Lemma 2.1, one readily calculates that

1 2k kK k\ (2t k Kk
(k) - _ - 2 _1\m
(22) Mm’n 2(4]{7 +5k)02k,k5m,n( 1) (0 0 0) (0 m m>7
i.e., M) is diagonal. Moreover, since both Wigner 3-j symbols in (22) are real and
positive for all integers k& > 0 and —k < m < k which satisfy the selection criteria
(see [Mesl4], Appendix C.I, pp. 1058-1060), it follows that Ml(kl) > 0. Since M*) is
diagonal for this particular choice of p, the proof is complete.

Appendix A. Proof of Lemma 2.1. We use the expression for real spherical
harmonics in terms of complex spherical harmonics in (5) and use (16) to evaluate
the six cases for the combinations of (n < 0, n =0, and n > 0) and (m < 0, m =0,
and m > 0) assuming m > n in turn.

Case 1: m > 0 and n > 0. For ¢ < 0, we compute

p.k

1
w = —
wmn 92 ) g2

since the integral of a triple product of complex spherical harmonics is a real number

is WPk
and so is WP .

For ¢ = 0, we have

(¥ = (DY, OV + (D)"Y (Y™ + (1)) dS =0

1 —m m m —n n n
Wika =5 [ [ Y000 + (0" + (1) as
1

— 5 / . }/po[ykimykfn + (_1)mYk7nYk*’ﬂ + (_1)nkamYkn + (_1)7L+7nyk')rnylgb] dS

Applying (16) and the selection criteria for Wigner 3-j symbols, we obtain

ok _ym (P kK k\ (p k k
Wiimn = OmnCpa(=1) (0 0 0) (o m —m)’

For ¢ > 0, we compute

1 .
p,k _ —q _1\dv9q —m _ym~ym —n o\
whr = Ve /S2(Yp + DI+ (DY (Y 4 (DY ds

1,
_ MmN My — Gy — MM\, — QM= MAn s — g mn
,2\/5//521/? Yo Y (DY, Y Y 4+ (DY Ty Y T 4 (- Y, vty
m

+ (DI IY Y (71)q+*"ypqyk_mykn + (=TT Y IV YT g ()T Yyt s

1 o .
— p kK P k k P k k P k k
B Qﬁcp’k (0 0 0) Ii(*q —-m 771) + D" (7q —m n) + D™ (7q m 7n>

+nmEn (P kR

g m n
_a (P k k _qyatn (P k k _ya+m (p k k
+ ( 1) (q —m 7’7L) + ( 1) ((] —m ’VL) + ( 1) (q m 777,)

qg+m+n (p k k
+1) G o oW

Since ¢, m,n > 0 the first and last Wigner 3-j symbols are zero by the second selection
rule. Since m > n, by the second selection rule, we also have that the second and
second to last terms vanish. Furthermore, using (17), each of the remaining sums
combine to give
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1 k k kK E k
D,k = __C p _1\49 p
et et (5 (s &)

k k k k .
Cp( ) g 0 0 P ) 1fq:m+nv

7 —q m n
= %C’ ( )( —]jn 7’2) ifg=m—n,
otherwise,
as desired.
Case 2: m =n = 0. For ¢ < 0, we have
TH(Y)2dS =0
q,mn \/’ //:;12 )( k)

as in Case 1.
For ¢ = 0, we have

kEok)
W;hn:/SQYpO(Yk) ds = Cpk<0 0 0)

by (16).
Finally, for ¢ > 0, we obtain

Wi = \f//s2 (Y, 7+ (-D)Y,)(Y)? dS
S R R RN )
=0

by the second selection rule.

Case 3: m < 0 and n < 0. If ¢ < 0, then we calculate

Wik = 5o [ [ 05 = (O )05 = ()™ MO - (<1 ™) ds =0

as in Case 1.
If ¢ = 0, then we have

1 m n m —m n n m —n
Wit = =5 [ VS0V = (COmYme - (0

+ (—1)"™TmY, MY dS.

Applying (16) and the selection criteria for Wigner 3-j symbols, we obtain

ko _ym (P k k p k k
Wiimn = OmnCpa(=1) (0 0 0) (0 m —m

as desired.
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For ¢ > 0, we compute

ok = m ny — mys —n my/s— —myn
Wi = s [ WY = (UMY (Y
+ (—D)"Y YY"
+(_ )ququmYk _ (_ )n-&-qypqykakfn _ (_1)m+qy;)qyk*m kn
+ (—1)"+m+qu‘1Yk’mYk’”} ds.

Since m,n < 0 and g > 0, the first and last terms vanish. If ¢ # m—n and ¢ # —n—m,
then by the selection criteria all of the above terms are zero. If ¢ = m — n, then only
the second and second-to-last terms are nonzero, and we obtain

1 k k k k
pk 1\ [P p
W%m,n = \/5010776( 1) <0 0 0) (q —-m n) .

Finally, if ¢ = —n — m, then only the fourth and fifth terms are nonzero, and we

have
1 k k k k
”r;mk _ _1\q+1 p p
qym,n_\/icp-,k( 1) (0 0 0) <q m n)

as desired.

Case 4: m >0 and n < 0.
For ¢ < 0, we have,

Whi o = YY"y = (D)"Y Y 4+ ()Y
2\[ 52
_( n+myqme n
— (1) 4 (—1)MIY Y YT — (— 1) YTy
+ (—1yrmtay—aymy n g,

Since m > 0 and ¢,n < 0, the first and last terms vanish. If ¢ ¢ {m+n,n—m, —n—m},
then the rest of the terms vanish as well by the selection criteria. If ¢ = n + m, then
only the second and second-to-last terms are nonzero, and we obtain

1 p k k\(p k k
pk 1)
Wq myn \/ﬁcpyk( 1) (O 0 0) (q —m _n> :
If ¢ = n — m, then only the fourth and fifth terms are nonzero, and we obtain
. 1 k k kEk
.k _ = _1\q [P p
W%m,n - \/ECPJC( 1) (0 0 0) (q m n) .
Finally, if ¢ = —n—m, then only the third and sixth terms are nonzero, and we obtain
1 k k kE k
pk _1\ym+1 (P p
Wq m,n \/icp»k( 1) (0 0 0> (q m n) .

For ¢ = 0, we have

Z‘ —m m m n n —n
Wik =5 [ Y000 + (G007 = (1Y) ds =0

as in Case 1.
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For ¢ > 0, we have

Wi n = 2{ //S Y, T4+ (=D ) (Y, 4+ (D)) - (-1)"Y ") dS =0
as in Case 1.

Case 5: m >0 and n = 0.
For ¢ < 0, we have

Wik =5 [ L 05 = GOm0 4+ (<) as = o

as in Case 1.
For ¢ = 0, we have

Wk~ \[ //32 (—D)™Y™)YL dS
e ’5) [ R (]
=0

by the second selection rule.
For g > 0, we have

Wik =5 [ [0+ GO0+ (<) as

// qy—'rnYo 4 (_l)my;qukmyk()
S2
DIYLY, ™Y + (1) YY"y dS

=%Cm (65 0) (% S b)) (G o b)
(e )

Using the selection rules, we obtain

P, _ _1ya (P E k p k k
Wiman = 0amCpr(=1) (o 0 0) <m -m 0)’

as desired.
Case 6: m =0 and n < 0. If ¢ < 0, then we obtain

/ Yk Yqu ( 1)nypqyk—n _ (_1)qypfqykn_|_(_1)q+nyz;qyk—n] ds.

qmn_

The first and last terms vanish since ¢,n < 0. If ¢ # n, then the middle two terms
vanish as well, and so we obtain

pk P k K\ (p Kk k
Waimn = OamCpr(=1) (0 0 0) (n -n 0)°
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If ¢ = 0, then

P,k _

i
| ——_—
q,m,n \/§ g2

as in Case 1. Finally, if ¢ > 0, then we have

VYV — (=1)"Y, " dS =0

wek 1 / [ YR (LYY ()T - ()Y d

q,m,n 2

=0

as in Case 1.
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