

1 **Gene flow accelerates adaptation to a parasite**

2 **Authors:** Jordan A. Lewis^{1,2,3*}, Prathyusha Kandala², McKenna J. Penley², Levi T. Morran²

3

4 **Institutional Affiliations:**

5 ¹Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA
6 30329, USA

7 ²Department of Biology, Emory University, Atlanta, GA 30329, USA

8 ³Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511

9

10

11 ***Corresponding Author:** Jordan A. Lewis

12

13 **Author Contributions:** JAL and LTM wrote the manuscript, while PK and MJP provided
14 comments. JAL and LTM conducted statistical analysis. JAL, PK and MJP conducted the
15 experiments and collected the data. JAL, PK, and LTM conceived the experiment and all authors
16 contributed to its design.

17

18 **Running Title:** Gene flow accelerates adaptation

19

20 **Key Words:** experimental evolution, *Serratia marcescens*, *Caenorhabditis elegans*, gene flow,
21 migration, adaptation

22

23 **ACKNOWLEDGMENTS**

24 This work was funded by the National Science Foundation (Graduate Research Fellowship
25 Program 2017246734 to JL and DEB-1750553 to LTM). Any opinion, findings, and conclusions
26 or recommendations expressed in this material are those of the authors(s) and do not necessarily
27 reflect the views of the National Science Foundation. We thank Chris Beck, David Cutler, Nicole
28 Gerardo, Kim Hoang, and Lance Waller for assistance revising the manuscript. We would also
29 like to thank Elizabeth Chong for logistical support, and the Morran and Turner laboratories for
30 helpful comments and feedback.

31 **ABSTRACT**

32

33 Gene flow into populations can increase levels of additive genetic variation and introduce
34 novel beneficial alleles, thus facilitating adaptation. However, gene flow may also impede
35 adaptation by disrupting beneficial genotypes, introducing deleterious alleles, or creating novel
36 dominant negative interactions. While theory and fieldwork have provided insight as to the
37 effects of gene flow, direct experimental tests are rare. Here, we evaluated the effects of gene
38 flow on adaptation in the host nematode *Caenorhabditis elegans* during exposure to the bacterial
39 parasite *Serratia marcescens*. We evolved hosts against non-evolving parasites for ten passages
40 while controlling host gene flow and source population. We used source nematode populations
41 with three different genetic backgrounds (one similar to the sink population and two different)
42 and two evolutionary histories (previously adapted to *S. marcescens* or naïve). We found that
43 nematode populations with gene flow exhibited greater increases in parasite resistance than those
44 without gene flow. Additionally, gene flow from adapted nematode populations resulted in
45 greater increases in resistance than gene flow from naïve populations, particularly with gene flow
46 from novel genetic backgrounds. Overall, this work demonstrates that gene flow can facilitate
47 adaptation, and suggests that the genetic architecture and evolutionary history of source
48 populations can alter the sink population's response to selection.

49

50 **INTRODUCTION**

51

52 Gene flow, the movement and establishment of alleles into a novel population (Endler,
53 1977), is a fundamental evolutionary force. Gene flow is predicted to have a multitude of effects
54 on the evolutionary trajectories of sink populations (Garant, Forde and Hendry, 2007).
55 Depending on the quantity and effect sizes of the specific alleles introduced, gene flow has the
56 potential to either facilitate or impede adaptation. At the extremes, when migrants comes from a
57 genetically similar population, gene flow can be functionally understood as a simple increase in
58 effective population size (Wright, 1931), which largely facilitates adaptation. At the other
59 extreme, when gene flow comes from a different species, it generally results in dramatic fitness
60 reductions, often via the introduction of dominant negative interactions (Turelli and Orr, 2000 ;
61 Turelli, Barton and Coyne, 2001). In between these extremes, projected outcomes often depend
62 on modeling assumptions that are rarely tested by experimental studies.

63 Generally, theory predicts that gene flow will constrain adaptation when selection is not
64 strong enough to maintain high frequencies of advantageous alleles (Haldane, 1930). Models
65 investigating the impact of gene flow on adaptation have often focused on the disruptive effects
66 of gene flow in preventing local adaptation within populations, and adaptive divergence between
67 populations (Wright, 1931; Slatkin, 1987). Gene flow is predicted to impede these processes by

68 reducing the genetic differences between populations, reducing the frequency of locally
69 advantageous alleles, and by disrupting beneficial associations between genes for adaptation or
70 reproductive isolation (Coyne and Orr, 2004; Garant, Forde and Hendry, 2007). This is
71 especially true in models of symmetrical gene flow, where alleles move between populations that
72 are concurrently adapting. Empirical studies have provided support for these ideas. For instance,
73 experiments in insects (Ross and Keller, 1995; Nosil and Crespi, 2004; Nosil, 2009), spiders
74 (Riechert, 1993), birds (Blondel *et al.*, 2006), mammals (Hoekstra, Krenz and Nachman, 2005;
75 Sullivan *et al.*, 2014), fishes (Lu and Bernatchez, 1999; Ferchaud and Hansen, 2016), reptiles
76 (King and Lawson, 1995; Calsbeek and Smith, 2003), and plants (Santon and Galen, 1997;
77 Sambatti and Rice, 2006; Papadopoulos *et al.*, 2011), have shown an inverse relationship between
78 divergence and gene flow. Some illustrative examples are studies investigating adaptive
79 divergence in sticklebacks (*Gasterosteus aculeatus*), where researchers found that populations in
80 environments connected via gene flow showed less morphological divergence than those living
81 in isolated environments (Hendry, Taylor and McPhail, 2002; Hendry and Taylor, 2004;
82 Ferchaud and Hansen, 2016). Other studies have supported the ability of gene flow to impede the
83 process of local adaptation (Storfer, 1999; Fedorka *et al.*, 2012). For example, research
84 examining phenotype mismatching in the parsnip webworm *Depressaria pastinacella*
85 determined that gene flow in worm populations led to increased trait mismatch frequency when
86 grazing on allopatric wild parsnips (*Pastinaca sativa*) (Zangerl and Berenbaum, 2003). Similarly,
87 research in the spider *Agelenopsis aperta* provided evidence that gene flow between woodland
88 and desert habitats was associated with maladaptive behavioral traits (Riechert, 1993).

89 Despite the potential for gene flow to disrupt adaptive evolution, research also suggests a
90 more complex and multifaceted role of gene flow with regards to adaptation. Theory suggests
91 (Haldane 1930 ;Pinho and Hey, 2010), and experiments support, strong selection maintaining
92 divergence and adaptive traits despite gene flow (Danley *et al.*, 2000; de Leon *et al.*, 2010;
93 Sullivan *et al.*, 2014; Fitzpatrick *et al.*, 2015; Dennenmoser *et al.*, 2017; Kolora *et al.*, 2021). For
94 example, work in water snakes (*Nerodia* spp.)(Rautsaw *et al.*, 2021), yeast (Tusso *et al.*, 2021)
95 and crickets (Zhang *et al.*, 2021), has shown that significant adaptive divergence is possible
96 despite gene flow. Further, some studies indicate that gene flow has the potential to facilitate
97 adaptation, but the outcome is dependent on the strength and direction of selection over time and
98 space. Several mechanisms may explain the potential benefits of gene flow for adaptative change
99 (Garant, Forde and Hendry, 2007; Tigano and Friesen, 2016). First, gene flow increases the
100 standing genetic variation of a sink population, thus giving selection additional material on
101 which to act (Ingvarsson and Whitlock, 2000). This is important, as adaptation from standing
102 variation has various advantages to adaptation from new mutations, and some studies indicate
103 that standing variation is the primary driver of adaptation in many contexts (Barrett and Schluter,
104 2008; Karasov, Messer and Petrov, 2010). One recent example of this is the genetic rescue of
105 inbreeding *Drosophila* populations during experimental evolution, in which gene flow alleviated
106 deleterious behavioral traits and decreased fecundity (Jørgensen, Ørsted and Kristensen, 2022).
107 Additionally, gene flow can lead to adaptive introgression by facilitating the spread of beneficial

108 alleles (Hedrick, 2013; Hawkins *et al.*, 2019; Taylor and Larson, 2019). Advantageous alleles
109 may be introduced to the sink population at relatively high frequencies, increasing their
110 probability of fixation relative to standing genetic variation or novel mutations. For instance,
111 work investigating the spread of pesticide resistance in two-spotted spider mite (*Tetranychus*
112 *urticae*) populations suggests that introgression through gene flow is likely responsible for the
113 spread of a major resistance mutation (Shi *et al.*, 2019).

114 Ultimately, the fate of incoming alleles may be determined by the genetic architectures of
115 both the migrants and the sink population (Tigano and Friesen, 2016). Allele effect size
116 (Griswold, 2006; Yeaman and Otto, 2011; Yeaman and Whitlock, 2011), linkage between alleles
117 (Bürger and Akerman, 2011; Feder *et al.*, 2012), recombination rates (Samuk *et al.*, 2017), and
118 the number of loci involved in conferring an adaptive trait (Mackay, 2001) all contribute to the
119 allele frequencies within a population. Epistatic interactions may determine the cost or benefit of
120 incorporating novel alleles acquired via gene flow, rather than the additive benefit of an
121 individual allele itself. These dynamics are most apparent in studies that observe outbreeding
122 depression between diverged populations (Dolgin *et al.*, 2007). Therefore, the outcome of
123 selection in the presence of gene flow likely depends on the evolutionary history, and ultimately
124 genetic architecture, of both the sink and source populations. Given the many differing
125 predictions on the effects of gene flow on a population's evolutionary trajectory and the
126 challenges of isolating the effects of gene flow in natural population, we set out to directly test
127 the effects of gene flow on adaptation via experimental evolution. Here, we use the
128 *Caenorhabditis elegans* - *Serratia marcescens* host – parasite system to test the effects of gene
129 flow on adaptive evolution, as the system permits control of both gene flow and a population's
130 evolutionary history.

131 In a previous experiment, Morran *et al.*, 2011 divided a population of obligately
132 outcrossing *C. elegans* into isolated groups and independently mutagenized them, thus creating
133 genetically differentiated host populations. Each population was then split into two treatment
134 groups, one with hosts exposed to live *S. marcescens* strain Sm2170 and a control with hosts
135 exposed to heat-killed Sm2170 and evolved for 30 generations (Figure 1). Hosts passaged
136 against heat-killed parasites showed no improvement in their ability to defend against Sm2170,
137 while those passaged against live Sm2170 adapted to the parasites, exhibiting lower mortality
138 rates over time (Figure 2; Morran *et al.*, 2011; Penley, Ha and Morran, 2017). This knowledge of
139 the genetic background and evolutionary history for each population allowed us to use
140 experimental evolution to test the effects of gene flow, source population genetic background,
141 and source population parasite exposure history (naïve or adapted), on the evolution of host
142 defense within the sink population.

143 In this experiment, we utilized the beforementioned obligately outcrossing *C. elegans*
144 host populations to evaluate the effects of one-way gene flow on host adaption to a non-evolving
145 parasite. Beginning with a common sink population, we exposed host populations to either live
146 or heat killed *S. marcescens* SM2170. After several exposures, host populations received gene

147 flow from one of several source populations (Figure 3 a&b). These source populations varied in
148 whether they had previously adapted to SM2170 and in their genetic background relative to the
149 sink population. Following several subsequent exposures to either live or heat killed Sm2170, we
150 evaluated the effects of each treatment on mean mortality in the host populations. Thus, we
151 determined how host defense evolution was influenced by gene flow, and we assessed effects of
152 the source population on the evolutionary trajectory of the sink population. By investigating one-
153 way gene flow, rather than symmetric sustained flow between populations, we sought to directly
154 test the impact of alleles entering the population and their impact on host defense. We
155 hypothesized that, 1) gene flow would facilitate adaptation to live Sm2170, relative to exposure
156 without gene flow, and that 2) the benefit associated with gene flow would be stronger when
157 gene flow originated from populations that had previously adapted to Sm2170. Further, we
158 expected these results to be dependent on the migrant's genetic background. We predicted that,
159 3) shared backgrounds between the source and sink populations would provide the greatest
160 benefits from gene flow. We hypothesized that alleles from shared backgrounds would maintain
161 beneficial epistatic interactions and thus provide either the greatest benefit or least disruption
162 (Griswold, 2006; Hansen, 2006).

163

164 MATERIALS AND METHODS

165

166 Host & Parasite Populations

167 *C. elegans* host populations were derived from the highly inbred and obligately
168 outcrossing PX386 strain. Briefly, this strain was derived from the CB4856 strain (Morran,
169 Parmenter and Phillips, 2009) and carries the fog-2 (q71) mutant allele, which prevents
170 hermaphrodites from self-fertilizing (Schedl and Kimble, 1988). In a previous experiment, a
171 population of PX386 nematodes was divided into multiple populations and each was
172 independently mutagenized with 40 mM ethyl-methanesulfonate (EMS) to generate genetically
173 variable populations prior to selection (Morran *et al.*, 2011). Populations were exposed to
174 mutagenesis for four hours during three consecutive generations, inducing ~1,000 point
175 mutations per lineage in each isolated population (Anderson, 1995). Following this process,
176 populations were kept under standard laboratory conditions for four generations in order to purge
177 the most deleterious mutations. This sequence created three populations, founded from one
178 inbred population, with separate mutational backgrounds. These populations were maintained on
179 10cm Petri dishes filled with NGM Lite (Nematode Growth Medium-Lite, US Biological,
180 Swampscott, MA, USA) and seeded with 30 μ L of *Escherichia coli* OP50 stored at 20°C.

181 The independently mutagenized populations were subsequently divided into different
182 treatment groups, with each unique population represented within each treatment group. One
183 treatment exposed host *C. elegans* to heat-killed Sm2170 as a control, while another treatment

184 exposed host populations to live Sm2170 (one-sided evolution) (Figure 1). Following 30
185 generations of experimental evolution, these host populations were frozen and stored at -80 °C.
186 After experimental evolution, mortality rates were measured for each of the populations by
187 assessing their ability to resist infection from SM2170. Additionally, fecundity and competitive
188 fitness measurements were taken for each population (Morran *et al.*, 2011; Penley, Ha and
189 Morran, 2017). Briefly, populations that were passaged with live SM2170 adapted to their
190 parasites while those passaged with heat killed SM2170 did not, which is indicated by the
191 comparatively low mortality rates recorded by the live evolution groups (Penley, Ha and Morran,
192 2017; Figure 2). Further, adaptation was driven by decreased mortality rates in host populations
193 exposed to Sm2170, as opposed to changes in fecundity. In this study, we utilized the previously
194 evolved Sm2170 naïve and Sm2170 adapted populations to investigate how gene flow, and
195 source population evolutionary history, impact host adaptation to parasites. The populations we
196 chose represent three independently mutagenized backgrounds (Groups A, B, and C in Figure 1).
197 Each of the three independent backgrounds have one population which has undergone
198 experimental evolution with live Sm2170 (adapted A, adapted B, and adapted C), and one which
199 has been passaged with heat-killed SM2170 (naïve A, naïve B, and naïve C).

200 The bacterial parasite *S. marcescens* Sm2170 is known to be highly virulent toward *C.*
201 *elegans* hosts (Schulenburg and Ewbank, 2004). Hosts become infected via feeding on *S.*
202 *marcescens*-inoculated Petri dishes, and susceptible hosts often die within 48 hours. The Sm2170
203 used here was acquired from S. Katz at Rogers State University (OK, USA). *E. coli* strain OP50
204 is the primary laboratory food source of *C. elegans* and was acquired from the Caenorhabditis
205 Genetics Center (CGC) at the University of Minnesota. Both OP50 and Sm2170 were transferred
206 from frozen stock to Luria Broth (LB) and grown overnight at 28°C; they were then used to seed
207 10cm Petri dishes filled with NGM-Lite and grown at 28°C overnight. Prior to each round of
208 selection, colonies were selected from these Petri dishes and grown in 5 mL test tubes of LB for
209 24 hours at 28°C. Importantly, Sm2170 was not permitted to coevolve with host populations
210 during experimental evolution. The Sm2170 in the one-sided treatments is in evolutionary stasis,
211 as parasites cannot evolve a counter adaptive response to the host population (Brockhurst and
212 Koskella, 2013).

213

214 **Experimental Evolution of Host Populations**

215 Experimental evolution was conducted using *Serratia* Selection Plates (SSP) as
216 previously described (Penley, Ha and Morran, 2017). Briefly, SSPs consist of a 10cm Petri dish
217 filled with autoclaved NGM Lite. One side of the plate was seeded with 35µl of *E. coli* while the
218 other side was seeded with 35µl of either live (one-sided) or heat-killed (control) *S. marcescens*.
219 20 µl of ampicillin (100 mg/mL) was streaked across the plate between the bacterial lawns to
220 prevent the spread of *S. marcescens* during the experiment. During experimental evolution, *C.*
221 *elegans* were placed directly into the parasite bacterial lawn (alive or heat-killed) and required to

222 crawl through it to safely reach their food source (Morran, Parmenter and Phillips, 2009). After
223 48 hours, living individuals were transferred from the *E. coli* food source to a standard Petri dish
224 seeded with *E. coli*. These plates also contained streptomycin to control the spread of *S.*
225 *marcescens* and were seeded with the streptomycin resistant *E. coli* strain OP50-1 as a food
226 source for the worms. Following three days on the dish, approximately 1000 individuals were
227 moved from OP50-1 to the next round of selection on SSPs. These methods were used for each
228 of the host populations in this experiment for 10 consecutive rounds of selection (Figure 3b).
229 Importantly, these methods also select against *C. elegans* leaving the plate or any *Serratia*
230 avoidance behaviors, as positive fitness within our experiment is dependent on being able to
231 successfully navigate the parasite lawn and make it to the *E. coli* food source.

232 In total, the experiment consisted of 70 *C. elegans* populations (2 bacterial treatments \times 7
233 gene flow treatments \times 5 replicate populations per treatment). All host populations, except those
234 that did not receive gene flow, received their migrants as they began their 5th passage on SSPs
235 (Figure 3a). During this step, only 950 individuals were moved from the last round of selection
236 instead of the normal count of 1000 individuals, and each population received approximately 50
237 migrants. The number of migrating individuals was chosen to enable sufficient gene flow into
238 sink populations to reduce the strength of genetic drift relative to selection (Hartl and Clark,
239 2006). Gene flow came from the six host populations described in figure 1 (Overview in Figure
240 3a). In each of our treatments, sink populations were founded from Group A-naïve hosts. Each of
241 these treatments, except the no migration treatment, then received immigrants from one of the
242 previously evolved populations (Backgrounds A, B, and C, either adapted or naïve) (Figure 3).
243 This allowed us to directly examine how adaptation proceeds in the sink population under gene
244 flow from source populations with different mutational backgrounds and/or adaptive histories.

245

246 Mortality Assays & Statistical Analysis

247 Mortality assays were conducted following experimental evolution to determine the
248 change in host resistance over time. Mortality assays were conducted on SSPs with methods
249 similar to passaging methods used during experimental evolution. Additionally, these same
250 methods were used to collect mortality rates in the previous work (Morran *et al.*, 2011; Penley,
251 Ha and Morran, 2017). We use population level mortality as a measure of host defense. Within
252 the context of our experiment, host fitness is primarily determined by survival following Sm2170
253 exposure and subsequent reproduction. To calculate mortality rates, approximately 200
254 individuals were placed onto the *S. marcescens* lawn and exposed for 48 hours (Figure 3).
255 Following 48 hours, living individuals were counted and the mortality rate was determined using
256 the formula $1 - \left(\frac{\text{number of living worms}}{\text{number of worms plated}} \right)$. When performing mortality assays, each of the five
257 replicate populations within each treatment had four technical replicates, totaling 280 assay
258 plates. Importantly, our mortality assays did not differentiate between dead and unaccounted
259 (lawn leaving or escape) hosts. However, within the context of our experimental evolution,

260 escape prevents reproduction and thus is functionally equivalent to host death. Further, we did
261 not directly observe lawn leaving behavior in our assays. Mean mortality rates were analyzed
262 using generalized linear models (GLM) fitted with a normal distribution and identity link
263 function. We did not detect overdispersion using a Pearson test. Then, we tested for the effects of
264 bacterial treatment (live or heatkilled), gene flow (no gene flow, adapted gene flow with a shared
265 background, adapted gene flow with a novel background, naïve gene flow with a shared
266 background, or naïve gene flow with a novel background), and the interaction between the two.
267 We then performed post hoc contrast tests to compare differences within the model.
268 Additionally, we analyzed our mortality data as a binomial distribution (scoring each individual
269 as alive/unaccounted for) using a GLM fitted with a binomial distribution and logit link function.
270 The results of the binomial vs normal GLM were qualitatively similar, but the normal GLM
271 served as a more conservative measure by allowing us to analyze population means. Thus, we
272 report the results of the normal GLM. All statistical analyses were performed in JMP Pro (v.16)
273 (SAS Institute, Cary, North Carolina).

274

275 RESULTS

276

277 First, we sought to investigate how passaging *C. elegans* hosts on live Sm2170 versus
278 heat-killed Sm2170 in the previous experiment (Morran *et al.*, 2011) impacted the *C. elegans*
279 populations used in this study. This served two purposes. One, observing differences between
280 mortality rates in the live versus heat-killed treatments supports our use of populations as “naïve”
281 and “adapted” sources of gene flow (Figure 3a). Second, observing different mortality rates
282 between groups indicates differences in their overall innate resistance to Sm2170. This provides
283 evidence for relevant genetic differences between the populations, indicating that the initial EMS
284 mutagenesis, and subsequent 30 generations of evolution, created differentiation between the
285 populations (Figure 1). Using data from Penley, Ha, and Morran (2017), we found that hosts that
286 had been passaged with live parasites, as compared to hosts that had been passaged on heat-
287 killed parasites, exhibited significantly lower mortality rates when exposed to live Sm2170 ($\chi^2_1 =$
288 21.327, $P = x < .0001$; Table 1; Figure 2). We also found different levels of parasite resistance
289 across the differently mutagenized groups or backgrounds, ($\chi^2_1 = 21.709$, $P = x < .0001$; Table 1;
290 Figure 2). Together, these results enabled us to use these populations to examine the impact of
291 one-way gene flow and evolutionary history on adaptation (Figure 3a).

292 To investigate the results of experimental evolution conducted within this study (Figure
293 3), we first tested for the evolution of elevated defense in host populations exposed to live
294 Sm2170 relative to those passaged with heat-killed Sm2170. We found that host populations
295 passaged with live Sm2170 exhibited significantly lower mortality rates when exposed to
296 Sm2170 than did host populations which had been passaged with heat-killed Sm2170 ($\chi^2_1 =$
297 7.022, $P = 0.008$; Table 2; Figure 4). This is indicative of adaptation to the parasite in our live

298 treatments, and a lack of such adaptation in our heat-killed treatments. Next, we tested the effect
299 of gene flow on host mortality during exposure to Sm2170. We found that, across all treatments,
300 there was no statistical difference between groups that received gene flow and those that did not
301 when controlling for whether Sm2170 was alive or heat-killed ($\chi^2_6 = 1.488$, $P = 0.9603$; Table 2;
302 Figure 4). However, the interaction of bacterial treatment and gene flow status was statistically
303 significant ($\chi^2_6 = 22.278$, $P = 0.0011$; Table 2; Figure 4), indicating that the effect of gene flow on
304 host defense was context dependent. We then ran contrast tests to further contextualize the
305 relationship between gene flow status, gene flow source, and bacterial treatment.

306 To begin, we tested the impact of gene flow on host mortality in populations that had
307 been passaged with live Sm2170. We found that populations that received gene flow during
308 exposure to live Sm2170 exhibited significantly lower mortality rates when compared to
309 populations which did not receive gene flow while being passaged on live Sm2170 ($\chi^2_1 = 14.345$,
310 $P = x < 0.001$; Table 2; Figure 4). This demonstrates the ability of gene flow to facilitate host
311 adaptation to parasites. Next, we examined the impact of gene flow source resistance on host
312 mortality rates for sink populations passaged in the presence of live Sm2170. We found that
313 populations that received gene flow from previously adapted populations exhibited significantly
314 lower mortality rates when compared to host populations that received gene flow from naïve
315 populations ($\chi^2_1 = 20.798$, $P = x < 0.0001$; Table 2; Figure 4). This is potentially indicative of
316 beneficial alleles being transferred from previously adapted populations, and further supports the
317 idea that these populations evolved elevated resistance to Sm2170 during the previous
318 experiment (Morran et al. 2011). We then evaluated the impact of source population genetic
319 background on the resulting adaptation of the sink population. We found that populations that
320 received gene flow from sources that did not share their genetic background (novel populations)
321 exhibited greater resistance against Sm2170 than those that received gene flow from the shared
322 background ($\chi^2_1 = 11.505$, $P = x < 0.001$; Table 2; Figure 4). We further tested for differences
323 between host populations that received gene flow from adapted populations with shared genetic
324 backgrounds versus those that received migrants from adapted novel genetic backgrounds. Here,
325 we found that sink populations adapted at greater rates when receiving gene flow from
326 previously adapted source populations with novel backgrounds ($\chi^2_1 = 8.500$, $P = x < 0.0035$;
327 Table 2; Figure 4). Lastly, we found that populations that received gene flow from naïve
328 populations with novel backgrounds exhibited lower mortality rates than those which received
329 naïve gene flow from shared backgrounds ($\chi^2_1 = 3.860$, $P = 0.04817$; Table 2; Figure 4). This is
330 likely indicative of the benefits of additive genetic variation during the adaptive process in host
331 populations.

332

333 DISCUSSION

334

335 In this study, we investigated the impact of gene flow and source population on host
336 adaptation to non-adapting parasites. We predicted that (1) gene flow would facilitate increased
337 host defense relative to populations that did not receive gene flow. Further, we hypothesized that
338 the benefits of gene flow during adaptation would be most pronounced when gene flow came
339 from (2) adapted populations, and those with a (3) shared genetic background. Overall, we found
340 that (1) gene flow facilitated host adaptation to the parasite *S. marcescens* via the evolution of
341 elevated host defense, whereas gene flow provided no benefit in the absence of parasite exposure
342 (Table 2; Figure 4). Further, the benefit of gene flow was dependent on both the parasite
343 exposure and the evolutionary history of the source population. As predicted, (2) gene flow from
344 previously adapted populations resulted in the greatest increase in host defense. However,
345 contrary to our predictions, we observed that (3) gene flow from novel backgrounds facilitated
346 greater reductions in host mortality than gene flow from populations with shared genetic
347 backgrounds (Table 2; Figure 4). Therefore, we found that gene flow can facilitate adaptation,
348 but the effects of gene flow can be context-dependent and influenced by the evolutionary history
349 of the sink and source populations.

350 Notably, gene flow had the most beneficial effect on adaptation in host populations
351 receiving gene flow from parasite-adapted novel backgrounds (Figure 4). This demonstrates that
352 the fitness effects of beneficial alleles evolved in the source populations were at least somewhat
353 independent of the genetic background in which they evolved. Presumably, gene flow permitted
354 the introduction of novel alleles conferring greater host resistance, which facilitated an increased
355 rate of adaptation. Importantly, we did not observe any detriment to gene flow from novel
356 backgrounds that would indicate strong epistatic effects underlying increased host resistance.
357 This overall benefit of gene flow from novel backgrounds may be the result of overall genetic
358 similarity between all of our host populations. Indeed, while host populations differed in their
359 evolutionary histories and overall resistance (Figures (1 & 2), host populations used in this
360 experiment were all derived from a CB4856 background (Morran, Parmenter and Phillips, 2009).
361 While EMS mutagenesis infused the populations with genetic variation and experimental
362 evolution permitted divergence, the groups started with a relatively uniform background.
363 However, gene flow from populations with more divergent backgrounds could cause a greater
364 impediment for adaptation. Consistent with this idea, various studies provide evidence that
365 natural populations of *C. elegans* may commonly suffer from outbreeding depression (Dolgin *et*
366 *al.*, 2007; Anderson, Morran and Phillips, 2010; Gimond *et al.*, 2013; Snoek *et al.*, 2014, but see
367 Crombie *et al.*, 2019), suggesting that differing populations of *C. elegans* in nature may be
368 diverged to the point that gene flow impairs adaptation.

369 While models are far more common than experiments in assessing the impact of gene
370 flow, our results are consistent with the results of other experiments assessing one-way gene
371 flow into sink populations. A previous experiment evaluating the role of gene flow in increasing
372 adaptive potential found that populations of *Drosophila* that received gene flow showed a 30-
373 40% increase in trait response during laboratory evolution (Swindell and Bouzat, 2006). Our

374 results further demonstrate that gene flow can facilitate adaptation to directional selection, but
375 also indicate that the response to selection can depend upon the source population. We observed
376 a benefit to gene flow from adapted populations compared to those that were Sm2170 naïve
377 (Figure 3), suggesting that the alleles conferring increased resistance carried by the migrants
378 were responsible for the increased rate of adaptation in the source population. It is important to
379 note that while each treatment group received an equal number of migrants (opportunity for gene
380 flow), the level of actual gene flow between treatments may have varied depending upon the
381 source population. Just as in natural populations, migrants within our experiment must survive in
382 the environment and successfully mate to integrate their alleles into the sink population. Thus,
383 compared to adapted populations, it is likely that naive populations contributed less gene flow to
384 their sink population. Further individual migrants carrying alleles that conferred greater
385 resistance likely disproportionately contributed to gene flow. Therefore, the influx of beneficial
386 alleles likely drove the increase in host defense within our populations.

387 One limitation of this study is our use of one-directional gene flow as opposed to two-
388 way gene flow between adapting populations. In terms of its impact on variation, gene flow
389 generally works to increase variation within populations while decreasing between population
390 variation (Slatkin, 1987; Hendry, Day and Taylor, 2001; Lenormand, 2002; Garant, Forde and
391 Hendry, 2007). Many of the presumed deleterious effects of gene flow on adaptation, like the
392 breakdown of local adaptation, are dependent on the exchange of alleles between populations
393 and a degree of environmental antagonism in their fitness effects (Dias, 1996). As such, one-
394 directional gene flow may be biased toward positive effects during adaptation. Another
395 limitation is that gene flow only occurred once during our experiment. Populations were allowed
396 to adapt to their parasites, received gene flow, and were subsequently exposed again. This may
397 have allowed selection to limit the spread of maladapted alleles more effectively, thus allowing
398 for greater fitness benefits. Under repeated unidirectional gene flow, following the classic Island-
399 mainland model, maladapted alleles may persist longer in the sink population, leading to less
400 adaptation in the hosts (Lenormand, 2002). However, continuous gene flow may have also added
401 adaptation depending on the primary adaptive mechanism working in the sink population. For
402 example, in populations receiving previously adapted migrants, a continuous flow of preadapted
403 alleles may have caused greater proliferation of those alleles and more rapid adaptation.

404 Conceptually, the one-way gene flow utilized here is perhaps most analogous to assisted
405 gene flow (ASG), or the purposeful movement of gametes already adapted to an environment to
406 populations currently undergoing adaptation to a changing environment (Aitken and Whitlock
407 2013). ASG has most notably been used to restore populations of the Florida panther (*Puma*
408 *concolor*) (Johnson *et al.*, 2010; Hostetler *et al.*, 2013) and has been suggested as a potential
409 technique to combat species loss due to anthropogenic environmental change in a range of
410 organisms (Aitken and Whitlock, 2013). These include, but are not limited to, salmon (Pregler *et*
411 *al.*, 2022), koalas (Seddon and Schultz, 2020), sea corals (Hagedorn *et al.*, 2021), and various
412 species of amphibians (Byrne and Silla, 2022). For certain species, like long-lived forest trees,

413 this may present the most effective strategy to mitigate species loss (Aitken and Bemmels, 2016).
414 Resistance alleles may also be able to spread this way; however, their impact on the population
415 will also depend on the nature of the evolutionary interaction that the population is engaged in.
416 For example, in antagonistically coevolving systems where populations are chasing moving
417 peaks across the fitness landscape (Thompson, 2009), interactions between genes are also
418 important, and so genetic architecture will impact the fate of an immigrating allele (Hansen,
419 2006; Bürger and Akerman, 2011; Akerman and Bürger, 2014). This adds an additional layer of
420 complexity and has been reflected in studies of gene flow in coevolving systems, as they show a
421 multitude of effects ranging from positive to negative (Garant, Forde and Hendry, 2007).

422 In this experiment, we found that gene flow into populations facilitated adaptation to a
423 fixed bacterial parasite. Further, we found that the benefit of gene flow was contingent upon the
424 evolutionary history of the source population and the environment of the sink population. This
425 result aligns with past research that has indicated potential advantages to gene flow during
426 adaptation. Further, despite the breadth of work investigating the role of gene flow in
427 evolutionary biology, this work highlights the complexity of predicting the effects of gene flow
428 on sink populations. Overall, gene flow is relatively common, yet intricate, evolutionary force
429 that merits much further theoretical and empirical investigation.

430

431 COMPETING INTERESTS

432 The authors declare no competing interests.

433 REFERENCES

434 Aitken, S.N. and Bemmels, J.B. (2016) 'Time to get moving: assisted gene flow of forest trees',
435 *Evolutionary applications*, 9(1), pp. 271–290.

436 Aitken, S.N. and Whitlock, M.C. (2013) 'Assisted gene flow to facilitate local adaptation to
437 climate change', *Annual review of ecology, evolution, and systematics*, 44(1), pp. 367–388.

438 Akerman, A. and Bürger, R. (2014) 'The consequences of gene flow for local adaptation and
439 differentiation: a two-locus two-deme model', *Journal of mathematical biology*, 68(5), pp. 1135–
440 1198.

441 Anderson, J.L., Morran, L.T. and Phillips, P.C. (2010) 'Outcrossing and the maintenance of
442 males within *C. elegans* populations', *Journal of heredity*, 101(suppl_1), pp. S62–S74.

443 Barrett, R.D.H. and Schlüter, D. (2008) 'Adaptation from standing genetic variation', *Trends in
444 ecology & evolution*, 23(1), pp. 38–44.

445 Blondel, J. *et al.* (2006) 'A thirty-year study of phenotypic and genetic variation of blue tits in
446 Mediterranean habitat mosaics', *Bioscience*, 56(8), pp. 661–673.

447 Bürger, R. and Akerman, A. (2011) 'The effects of linkage and gene flow on local adaptation: A
448 two-locus continent–island model', *Theoretical Population Biology*, 80(4), pp. 272–288.

449 Available at: <https://doi.org/https://doi.org/10.1016/j.tpb.2011.07.002>.

450 Byrne, P.G. and Silla, A.J. (2022) 'Genetic management of threatened amphibians: using
451 artificial fertilisation technologies to facilitate genetic rescue and assisted gene flow',
452 *Reproductive Technologies and Biobanking for the Conservation of Amphibians*, p. 124.

453 Calsbeek, R. and Smith, T.B. (2003) 'Ocean currents mediate evolution in island lizards',
454 *Nature*, 426(6966), pp. 552–555.

455 Coyne, J.A. and Orr, H.A. (2004) *Speciation*. Sinauer associates Sunderland, MA.

456 Crombie, T.A. *et al.* (2019) 'Deep sampling of Hawaiian *Caenorhabditis elegans* reveals high
457 genetic diversity and admixture with global populations', *Elife*, 8, p. e50465.

458 Cutter, A.D., Morran, L.T. and Phillips, P.C. (2019) 'Males, outcrossing, and sexual selection in
459 *Caenorhabditis* nematodes', *Genetics*, 213(1), pp. 27–57.

460 Danley, P.D. *et al.* (2000) 'Divergence with gene flow in the rock-dwelling cichlids of Lake
461 Malawi', *Evolution*, 54(5), pp. 1725–1737.

462 Dennenmoser, S. *et al.* (2017) 'Adaptive genomic divergence under high gene flow between
463 freshwater and brackish-water ecotypes of prickly sculpin (*Cottus asper*) revealed by Pool-Seq',
464 *Molecular Ecology*, 26(1), pp. 25–42.

465 Dias, P.C. (1996) 'Sources and sinks in population biology', *Trends in Ecology & Evolution*,
466 11(8), pp. 326–330.

467 Dolgin, E.S. *et al.* (2007) 'Inbreeding and outbreeding depression in *Caenorhabditis* nematodes',
468 *Evolution: International Journal of Organic Evolution*, 61(6), pp. 1339–1352.

469 Endler, J.A. (1977) *Geographic variation, speciation, and clines*. 10th edn, *Monographs in
470 population biology*. 10th edn. Princeton, NJ: Princeton University Press. Available at:
471 <https://doi.org/10.2307/2418859>.

472 Feder, J.L. *et al.* (2012) 'Establishment of new mutations under divergence and genome
473 hitchhiking', *Philosophical Transactions of the Royal Society B: Biological Sciences*, 367(1587),
474 pp. 461–474.

475 Fedorka, K.M. *et al.* (2012) 'The role of gene flow asymmetry along an environmental gradient
476 in constraining local adaptation and range expansion', *Journal of evolutionary biology*, 25(8), pp.
477 1676–1685.

478 Ferchaud, A. and Hansen, M.M. (2016) 'The impact of selection, gene flow and demographic
479 history on heterogeneous genomic divergence: Three-spine sticklebacks in divergent
480 environments', *Molecular Ecology*, 25(1), pp. 238–259.

481 Fitzpatrick, S.W. *et al.* (2015) 'Locally adapted traits maintained in the face of high gene flow',
482 *Ecology Letters*, 18(1), pp. 37–47.

483 Garant, D., Forde, S.E. and Hendry, A.P. (2007) 'The Multifarious Effects of Dispersal and Gene
484 Flow on Contemporary Adaptation', *Functional Ecology*, 21(3), pp. 434–443.

485 Gimond, C. *et al.* (2013) 'Outbreeding depression with low genetic variation in selfing
486 Caenorhabditis nematodes', *Evolution*, 67(11), pp. 3087–3101.

487 Griswold, C.K. (2006) 'Gene flow's effect on the genetic architecture of a local adaptation and
488 its consequences for QTL analyses', *Heredity*, 96(6), pp. 445–453.

489 Hagedorn, M. *et al.* (2021) 'Assisted gene flow using cryopreserved sperm in critically
490 endangered coral', *Proceedings of the National Academy of Sciences*, 118(38), p. e2110559118.
491 doi:10.1073/pnas.2110559118

492 Haldane, J.B.S. (1930) 'Theoretical genetics of autopolyploids', *Journal of genetics*, 22(3), pp.
493 359–372.

494 Hansen, T.F. (2006) 'The Evolution of Genetic Architecture', *Annual Review of Ecology, Evolution,
495 and Systematics*, 37, pp. 123–157.

496 Hartl, D.L. and Clark, A.G. (2006) *Principles of population genetics*. 4th edn. Sunderland, MS:
497 Sinauer associates Sunderland.

498 Hawkins, N.J. *et al.* (2019) 'The evolutionary origins of pesticide resistance', *Biological
499 Reviews*, 94(1), pp. 135–155. Available at: <https://doi.org/https://doi.org/10.1111/brv.12440>.

500 Hedrick, P.W. (2013) 'Adaptive introgression in animals: examples and comparison to new
501 mutation and standing variation as sources of adaptive variation', *Molecular ecology*, 22(18), pp.
502 4606–4618.

503 Hendry, A.P., Day, T. and Taylor, E.B. (2001) 'Population mixing and the adaptive divergence
504 of quantitative traits in discrete populations: a theoretical framework for empirical tests',
505 *Evolution*, 55(3), pp. 459–466. Available at: [https://doi.org/10.1111/j.0014-3820.2001.tb00780.X](https://doi.org/10.1111/j.0014-3820.2001.tb00780.x).

507 Hendry, A.P., Taylor, E.B. and McPhail, J.D. (2002) 'Adaptive Divergence and the Balance
508 Between Selection and Gene Flow: Lake and Stream Sticklebacks in the Misty System',
509 *Evolution*, 56(6), pp. 1199–1216. doi:<https://doi.org/10.1111/j.0014-3820.2002.tb01432.x>.

510 Hendry, A.P. and Taylor, E.B. (2004) 'How much of the variation in adaptive divergence can be
511 explained by gene flow? An evaluation using lake-stream stickleback pairs', *Evolution*, 58(10),
512 pp. 2319–2331.

513 Hoekstra, H.E., Krenz, J.G. and Nachman, M.W. (2005) 'Local adaptation in the rock pocket
514 mouse (*Chaetodipus intermedius*): natural selection and phylogenetic history of populations',
515 *Heredity*, 94(2), pp. 217–228.

516 Hostetler, J.A. *et al.* (2013) 'A cat's tale: the impact of genetic restoration on Florida panther
517 population dynamics and persistence', *Journal of Animal Ecology*, 82(3), pp. 608–620.

518 Ingvarsson, P.K. and Whitlock, M.C. (2000) 'Heterosis increases the effective migration rate',
519 *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 267(1450), pp. 1321–
520 1326.

521 Johnson, W.E. *et al.* (2010) 'Genetic restoration of the Florida panther', *Science*, 329(5999), pp.
522 1641–1645.

523 Jørgensen, D.B., Ørsted, M. and Kristensen, T.N. (2022) 'Sustained positive consequences of
524 genetic rescue of fitness and behavioural traits in inbred populations of *Drosophila*
525 *melanogaster*', *Journal of Evolutionary Biology* [Preprint].

526 Karasov, T., Messer, P.W. and Petrov, D.A. (2010) 'Evidence that adaptation in *Drosophila* is
527 not limited by mutation at single sites', *PLoS genetics*, 6(6), p. e1000924.

528 King, R.B. and Lawson, R. (1995) 'Color-pattern variation in Lake Erie water snakes: the role of
529 gene flow', *Evolution*, 49(5), pp. 885–896.

530 Kolora, S.R.R. *et al.* (2021) 'Accelerated evolution of tissue-specific genes mediates divergence
531 amidst gene flow in European green lizards', *Genome biology and evolution*, 13(8), p. evab109.

532 Lenormand, T. (2002) 'Gene flow and the limits to natural selection', *Trends in Ecology &
533 Evolution*, 17(4), pp. 183–189. Available at: [https://doi.org/10.1016/S0169-5347\(02\)02497-7](https://doi.org/10.1016/S0169-5347(02)02497-7).

534 de Leon, L.F. *et al.* (2010) 'Divergence with gene flow as facilitated by ecological differences:
535 within-island variation in Darwin's finches', *Philosophical Transactions of the Royal Society B:
536 Biological Sciences*, 365(1543), pp. 1041–1052.

537 Lu, G. and Bernatchez, L. (1999) 'Correlated trophic specialization and genetic divergence in
538 sympatric lake whitefish ecotypes (*Coregonus clupeaformis*): support for the ecological
539 speciation hypothesis', *Evolution*, 53(5), pp. 1491–1505.

540 Mackay, T.F. (2001) 'The genetic architecture of quantitative traits.'

541 Matute, D.R. (2010) 'Reinforcement Can Overcome Gene Flow during Speciation in
542 *Drosophila*', *Current Biology*, 20(24), pp. 2229–2233.
543 doi:<https://doi.org/10.1016/j.cub.2010.11.036>.

544 Morgan, A.D. *et al.* (2007) 'Differential impact of simultaneous migration on coevolving hosts
545 and parasites', *BMC Evolutionary Biology*, 7(1), p. 1. doi:10.1186/1471-2148-7-1.

546 Morgan, A.D., Gandon, S. and Buckling, A. (2005) 'The effect of migration on local adaptation
547 in a coevolving host–parasite system', *Nature*, 437(7056), pp. 253–256.
548 doi:10.1038/nature03913.

549 Morran, L.T. *et al.* (2011) 'Running with the Red Queen: Host-Parasite Coevolution Selects for
550 Biparental Sex', *Science*, 333(6039), pp. 216–218. Available at:
551 <https://doi.org/10.1126/science.1206360>.

552 Morran, L.T., Parmenter, M.D. and Phillips, P.C. (2009) 'Mutation load and rapid adaptation
553 favour outcrossing over self-fertilization', *Nature* 2009 462:7271, 462(7271), pp. 350–352.
554 Available at: <https://doi.org/10.1038/nature08496>.

555 Nosil, P. (2009) 'Adaptive population divergence in cryptic color-pattern following a reduction
556 in gene flow', *Evolution: International Journal of Organic Evolution*, 63(7), pp. 1902–1912.

557 Nosil, P. and Crespi, B.J. (2004) 'Does gene flow constrain adaptive divergence or vice versa? A
558 test using ecomorphology and sexual isolation in *Timema cristinae* walking-sticks', *Evolution*,
559 58(1), pp. 102–112.

560 Papadopoulos, A.S.T. *et al.* (2011) 'Speciation with gene flow on Lord Howe Island',
561 *Proceedings of the National Academy of Sciences*, 108(32), pp. 13188–13193.

562 Penley, M.J., Ha, G.T. and Morran, L.T. (2017) 'Evolution of *Caenorhabditis elegans* host
563 defense under selection by the bacterial parasite *Serratia marcescens*', *PLOS ONE*, 12(8), p.
564 e0181913. Available at: <https://doi.org/10.1371/journal.pone.0181913>.

565 Pinho, C. and Hey, J. (2010) 'Divergence with Gene Flow: Models and Data', *Annual Review of
566 Ecology, Evolution, and Systematics*, 41, pp. 215–230. Available at:
567 <http://www.jstor.org/stable/27896221>.

568 Porcher, Emmanuelle Giraud, T. and Lavigne, C. (2006) 'Genetic differentiation of neutral
569 markers and quantitative traits in predominantly selfing metapopulations: confronting theory and
570 experiments with *Arabidopsis thaliana*', *Genetics Research*. 2006/03/14, 87(1), pp. 1–12.
571 doi:DOI: 10.1017/S0016672306007920.

572 Pregler, K.C. *et al.* (2022) 'Assisted gene flow from outcrossing shows the potential for genetic
573 rescue in an endangered salmon population', *Conservation Letters*, p. e12934.
574 doi:<https://doi.org/10.1111/conl.12934>.

575 Rautsaw, R.M. *et al.* (2021) 'Genomic adaptations to salinity resist gene flow in the evolution of
576 Floridian watersnakes', *Molecular biology and evolution*, 38(3), pp. 745–760.

577 Riechert, S.E. (1993) 'Investigation of potential gene flow limitation of behavioral adaptation in
578 an aridlands spider', *Behavioral Ecology and Sociobiology*, 32(5), pp. 355–363.

579 Ross, K.G. and Keller, L. (1995) 'Joint influence of gene flow and selection on a reproductively
580 important genetic polymorphism in the fire ant *Solenopsis invicta*', *The American Naturalist*,
581 146(3), pp. 325–348.

582 Sambatti, J.B.M. and Rice, K.J. (2006) 'Local adaptation, patterns of selection, and gene flow in
583 the Californian serpentine sunflower (*Helianthus exilis*)', *Evolution*, 60(4), pp. 696–710.

584 Samuk, K. *et al.* (2017) 'Gene flow and selection interact to promote adaptive divergence in
585 regions of low recombination', *Molecular Ecology*, 26(17), pp. 4378–4390.

586 Santon, M.L. and Galen, C. (1997) 'Life on the edge: adaptation versus environmentally
587 mediated gene flow in the snow buttercup, *Ranunculus adoneus*', *The American Naturalist*,
588 150(2), pp. 143–178.

589 Schedl, T. and Kimble, J. (1988) 'fog-2, a germ-line-specific sex determination gene required for
590 hermaphrodite spermatogenesis in *Caenorhabditis elegans*', *Genetics*, 119(1), pp. 43–61.
591 Available at: <https://doi.org/10.1093/Genetics/119.1.43>.

592 Schulenburg, H. and Ewbank, J.J. (2004) 'Diversity and specificity in the interaction between
593 *Caenorhabditis elegans* and the pathogen *Serratia marcescens*', *BMC Evolutionary Biology* 2004
594 4:1, 4(1), pp. 1–8. Available at: <https://doi.org/10.1186/1471-2148-4-49>.

595 Seddon, J.M. and Schultz, B. (2020) 'Koala Conservation in Queensland, Australia: A Role for
596 Assisted Gene Flow for Genetic Rescue?', in Ortega, J. and Maldonado, J.E. (eds) *Conservation
597 Genetics in Mammals: Integrative Research Using Novel Approaches*. Manhattan, NY: Springer
598 International Publishing, pp. 331–349. doi:10.1007/978-3-030-33334-8_15.

599 Shi, P. *et al.* (2019) 'Independently evolved and gene flow-accelerated pesticide resistance in
600 two-spotted spider mites', *Ecology and Evolution*, 9(4), pp. 2206–2219.

601 Slatkin, M. (1987) 'Gene Flow and the Geographic Structure of Natural Populations', *Science*,
602 236(4803), pp. 787–792.

603 Snoek, L.B. *et al.* (2014) 'Widespread genomic incompatibilities in *Caenorhabditis elegans*', *G3: Genes, Genomes, Genetics*, 4(10), pp. 1813–1823.

605 Storfer, A. (1999) 'Gene flow and local adaptation in a sunfish-salamander system', *Behavioral
606 Ecology and Sociobiology*, 46(4), pp. 273–279.

607 Sullivan, J. *et al.* (2014) 'Divergence with gene flow within the recent chipmunk radiation
608 (*Tamias*)', *Heredity*, 113(3), pp. 185–194.

609 Swindell, W.R. and Bouzat, J.L. (2006) 'Gene flow and adaptive potential in *Drosophila
610 melanogaster*', *Conservation Genetics*, 7(1), pp. 79–89.

611 Taylor, S.A. and Larson, E.L. (2019) 'Insights from genomes into the evolutionary importance
612 and prevalence of hybridization in nature', *Nature ecology & evolution*, 3(2), pp. 170–177.

613 Thompson, J.N. (2009) *The Coevolutionary Process*. University of Chicago Press. Available at:
614 <https://doi.org/10.7208/9780226797670>.

615 Tigano, A. and Friesen, V.L. (2016) 'Genomics of local adaptation with gene flow', *Molecular
616 ecology*, 25(10), pp. 2144–2164.

617 Turelli, M., Barton, N.H. and Coyne, J.A. (2001) 'Theory and speciation', *Trends in Ecology &
618 Evolution*, 16(7), pp. 330–343. Available at: [https://doi.org/10.1016/S0169-5347\(01\)02177-2](https://doi.org/10.1016/S0169-5347(01)02177-2).

620 Turelli, M. and Orr, H.A. (2000) 'Dominance, Epistasis and the Genetics of Postzygotic
621 Isolation', *Genetics*, 154(4), pp. 1663–1679. Available at:
622 <https://doi.org/10.1093/genetics/154.4.1663>.

623 Tusso, S. *et al.* (2021) 'Experimental evolution of adaptive divergence under varying degrees of
624 gene flow', *Nature Ecology & Evolution*, 5(3), pp. 338–349.

625 Wright, S. (1931) 'Evolution in Mendelian Populations', *Genetics*, 16(2), pp. 97–159. Available
626 at: <https://doi.org/10.1093/genetics/16.2.97>.

627 Yeaman, S. and Otto, S.P. (2011) 'Establishment and maintenance of adaptive genetic
628 divergence under migration, selection, and drift', *Evolution: International Journal of Organic
629 Evolution*, 65(7), pp. 2123–2129.

630 Yeaman, S. and Whitlock, M.C. (2011) 'The genetic architecture of adaptation under migration–
631 selection balance', *Evolution: International Journal of Organic Evolution*, 65(7), pp. 1897–1911.

632 Zangerl, A.R. and Berenbaum, M.R. (2003) 'Phenotype matching in wild parsnip and parsnip
633 webworms: causes and consequences', *Evolution*, 57(4), pp. 806–815.

634 Zhang, X. *et al.* (2021) 'Rapid parallel adaptation despite gene flow in silent crickets', *Nature
635 Communications*, 12(1), pp. 1–15.

636

637

638

639

640

641

642 **FIGURE & TABLE LEGENDS**

643

644 **Figure 1. Migrant Evolutionary History**

645 Experimental evolution history of each background (Adapted from Morran *et al.*, 2011). A
646 population of *C. elegans* was divided into three groups and then mutagenized to infuse standing
647 variation (creating three distinct genetic backgrounds). Each group (A, B, & C) was then split
648 into two treatments and exposed to either heat-killed, or live *S. marcescens* Sm2170, for 30
649 generations. The resulting parasite naïve hosts served as naïve gene flow sources in this
650 experiment, while the live parasite exposed hosts served as adapted gene flow sources. Created
651 with BioRender.com.

652

653 **Figure 2. Host Mortality Rates from Previous Experiment**

654 Average mortality rate for each population following their previous experimental evolution
655 (Adapted from (Penley, Ha and Morran, 2017)). Each open circle represents a single mortality
656 assay replicate and black circles represent the average mortality rate for the treatment population.
657 Each error bar is constructed using one standard error from the mean. Groups A, B, & C refer to
658 different mutational backgrounds, as described in figure 1. Control populations were passaged
659 with heat killed parasite, while live treatments were passaged with normal Sm2170. Asterisks

660 designate statistically significant differences between groups (< 0.001). Full statistics
661 summarized in Table 1.

662

663 **Figure 3. Experimental Overview**

664 **a. Overview of Treatments & Significance.** Group A Naïve worms (Figure 1) were divided
665 into seven treatment groups before the start of the experiment. Each treatment group consisted of
666 10 replicate populations, with five passaged against heat-killed Sm2170, and five against live
667 Sm2170. Each treatment group, outside of the no migration control, received gene flow during
668 the 5th passage. Gene flow varied in whether it came from Sm2170 naïve or Sm2170 adapted
669 sources, and whether populations had a shared background with the sink population (Group A)
670 or different background (Groups B&C). **b. Passaging Methodology.** Each host sink population
671 began with ~1000 individuals from a previous experiment where they had been exposed to heat-
672 killed Sm2170 for 30 generations (Group A Naïve worms; Figure 1) (Morran et al. 2011).
673 Populations were then passaged on *Serratia* Selection Plates with either live or heat-killed
674 Sm2170 for 4 passages. In each round of passaging ~1000 individuals were moved randomly. On
675 passage 5, experimental populations received 50 migrants from one of 7 source populations.
676 Groups receiving migrants received 950 individuals from their previous round of passaging,
677 while control groups received the usual 1000. After passage 5, populations were passaged for 5
678 additional generations. Created with BioRender.com.

679 **Figure 4. Host Mortality Rates**

680 For each mortality assay 200 worms were exposed to Sm2170 for a period of 48 hours using
681 *Serratia* Selection Plates. Surviving worms were counted and the mortality is expressed as
682 ((worms plated – worms counted)/ worms plated). Each open circle represents the average
683 mortality rate of 3 replicate assays for a given replicate population. Black circles represent the
684 average mortality rate of all host populations within a given treatment. Each error bar is
685 constructed using one standard error from the mean. For reference, shared background refers to
686 migration from populations which have a shared mutagenized background group (Refer to Figure
687 1). Novel backgrounds do not share this origin with the sink population. All sink populations
688 started from Group A naïve worms. Novel background I refers to populations from Group B,
689 while novel background II refers to populations with a Group C background. Adapted
690 populations have previously been passaged with live Sm2170, while naïve populations have not.
691 Full statistics in Table 1. Each treatment column has received a designator from a-n to allow for
692 ease of comparison with the statistics table.

693

694 **Table 1. Statistical Values for Previous Migrant Adaptation**

695

696 **Table 2. Statistical Values for Gene Flow & *Serratia***

697

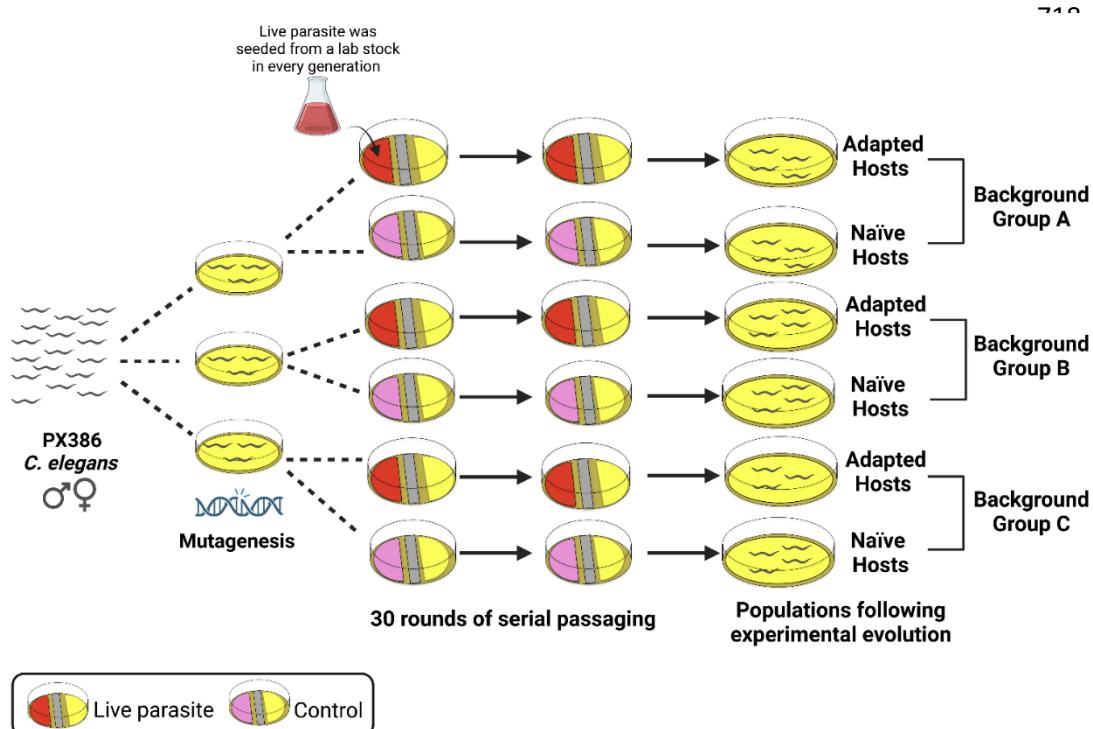
698

699 **Table 1. Statistical Values for Previous Migrant Adaptation**

700 Data from Penley, Ha and Morran, 2017. Shows the difference in mortality rates for treatments
 701 after experimental evolution described in Morran *et al.*, 2011. Treatment refers to whether
 702 populations were exposed to heat-killed or living Sm2170. Background refers to whether the
 703 populations came from mutagenized background group A, B, or C. Mean mortality rates were
 704 analyzed using generalized linear models (GLM) fitted with a normal distribution and identity
 705 link function.

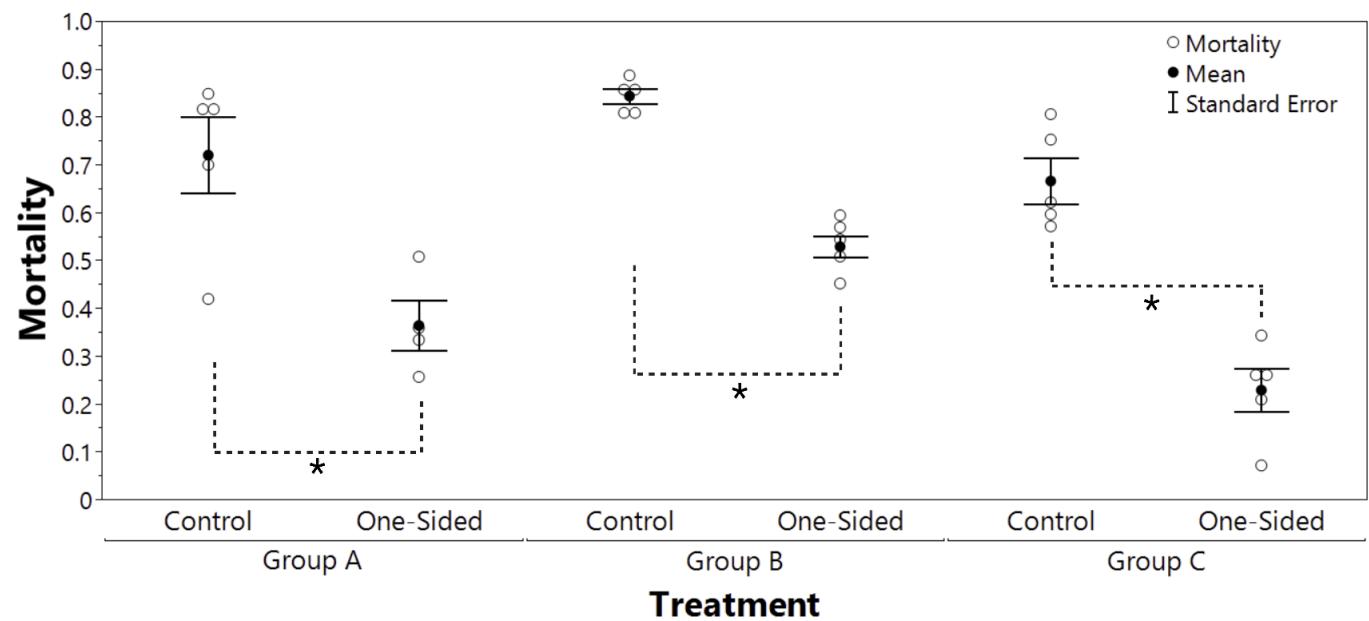
706

707 **Table 2. Statistical Values for Host Gene Flow, *Serratia* status, and Contrast Tests**


708 Difference in mortality rates for treatments after exposure to heat-killed, or living, *Serratia*
 709 *marcescens* Sm2170. *Serratia* refers to population exposure to living or heat killed parasite,
 710 while gene flow refers to presence or absence of gene flow. Contrast tests compare the
 711 treatments passaged on live Sm2170. Mean mortality rates were analyzed using generalized
 712 linear models (GLM) fitted with a normal distribution and identity link function. Letters
 713 correspond to the columns being compared in Figure 4.

714 **FIGURES**

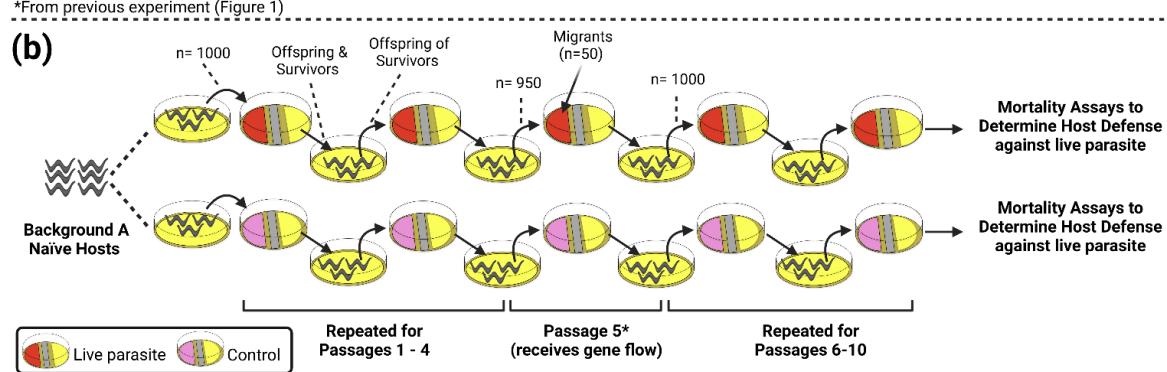
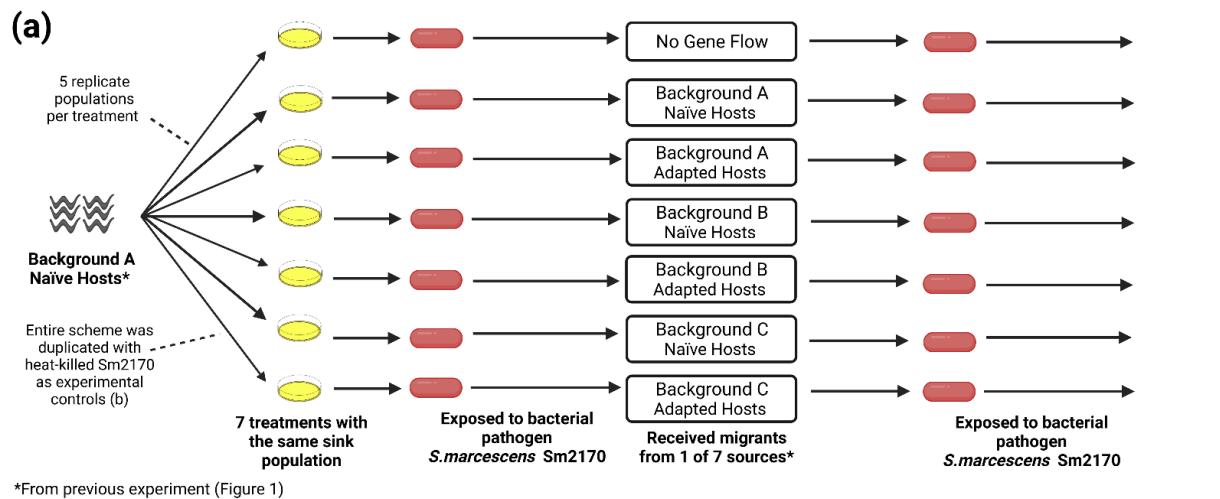
715


716

717

730

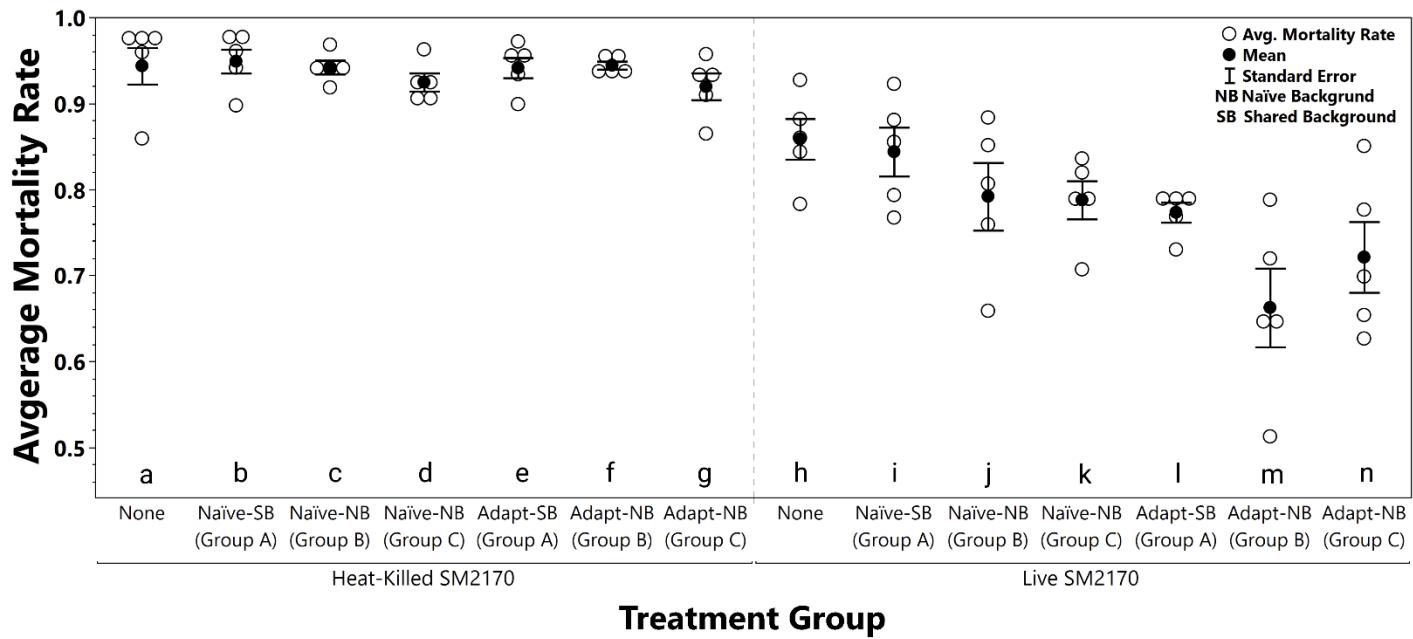
731

732

733

734


735

736

737

738

Each error bar is constructed using 1 standard error from the mean.

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755 **Table 1.**

Effect Tested	Degrees of Freedom	Chi-square	Prob> Chi-square
Treatment	1	21.327	$P = x < 0.001$
Background Group	2	21.709	$P = x < 0.001$
Treatment * Background Group	2	2.077	$P = 0.3540$

756 **Table 2.**

Effect Tested	Degrees of Freedom	Chi-square	Prob> Chi-square
<i>Serratia</i> (live or heat-killed) (a-g vs. h-n)	1	7.022	$P = 0.0081$
Gene Flow (Received or did not) (a&h vs. b-g&i-n)	6	1.488	$P = 0.9603$
<i>Serratia</i> * Gene Flow interaction	6	22.278	$P = 0.0011$
Contrasts Tests			
Effect Tested	Degrees of Freedom	Chi-square	Prob> Chi-square
No Gene Flow vs. Gene Flow (live <i>Serratia</i> ; h vs i-n)	1	14.345	$P = 0.0001$
Adapted vs. Naïve Gene flow (live <i>Serratia</i> ; i-k vs. l-n)	1	20.798	$P = x < 0.001$
Novel vs. Shared Background Gene Flow (live <i>Serratia</i> ; jkmn vs. il)	1	11.505	$P = 0.0007$
Naïve Shared background vs. Naïve Novel Background (live <i>Serratia</i> ; i vs. jk)	1	3.860	$P = 0.04817$
Adapted Shared background vs. Adapted Novel Background (live <i>Serratia</i> ; l vs. mn)	1	8.500	$P = 0.0035$

757