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Oscillation inequalities in ergodic theory and analysis:
one-parameter and multi-parameter perspectives

Mariusz Mirek, Tomasz Z. Szarek and James Wright

Abstract. In this survey we review useful tools that naturally arise in the study of
pointwise convergence problems in analysis, ergodic theory and probability. We will
pay special attention to quantitative aspects of pointwise convergence phenomena
from the point of view of oscillation estimates in both the single and several param-
eter settings. We establish a number of new oscillation inequalities and give new
proofs for known results with elementary arguments.

In honour of Antonio Córdoba and José Luis Fernández.

1. Introduction

Pointwise convergence is the most natural as well as the most difficult type of convergence to
establish. It requires sophisticated tools in analysis, ergodic theory and probability. In this
survey, we will review variation and oscillation semi-norms as well as the -jump counting
function which give us quantitative measures for pointwise convergence. How-ever, we
will concentrate on the central role that oscillation inequalities play, both in the one-
parameter and multi-parameter settings.

In the one-parameter setting, we derive a simple abstract oscillation estimate for the
so-called projective operators, which will result in oscillation estimates for martingales,
smooth bump functions as well as the Carleson operator. The multi-parameter oscillation
semi-norm is the only available tool that allows us to handle efficiently multi-parameter
pointwise convergence problems with arithmetic features. This contrasts sharply with the
one-parameter setting, where we have a variety of tools including oscillations, variations
or -jumps to handle pointwise convergence problems. The multi-parameter oscillation
estimates will be illustrated in the context of the Dunford–Zygmund ergodic theorem for
commuting measure-preserving transformations, as well as observations of Bourgain for
certain multi-parameter polynomial ergodic averages.

2020 Mathematics Subject Classification: Primary 37A30; Secondary 37A46, 42B25.
Keywords: Ergodic average, (pointwise) ergodic theorem, maximal, variational, jump, oscillation estimate.

https://creativecommons.org/licenses/by/4.0/


k

k
C

M M

X X
1 d

P

P
1 d

 1 P

M I X ; T M I X

P 1P  ;:::;Pd P 1P  ;:::;Pd

Z

d

Z j j j

P

P

M. Mirek, T. Z. Szarek and J. Wright 2250

We begin with describing methods that permit us to handle pointwise convergence
problems in the context of various ergodic averaging operators. Before we do this, we set up
notation and terminology, which will allow us to discuss various concepts in a fairly
unified way.

Throughout this survey, the triple . X ;  B . X / ;  / denotes a -finite measure space. The
space of all formal k-variate polynomials P .m1 ; : : : ; mk / with k 2  Z C  indetermi-nates
m1; : : : ; mk and integer coefficients will be denoted by ZŒm1; : : : ; mk • . We will always
identify each polynomial P  2  ZŒm1; : : : ; mk • wi th a function .m1; : : : ; mk / !
P .m1; : : : ; mk / from Z  to Z .

Let d; k 2  Z C .  Consider a family T D  .T1; : : : ; Td / of invertible commuting measure-
preserving transformations on X ,  polynomials P  D .P 1 ;  : : : ; Pd /ZŒm1; : : : ; mk •, an
integer k-tuple M D  .M1; : : : ; Mk / 2  Z  , and a measurable function f  W X  !  C .  We
consider the multi-parameter polynomial ergodic average

1 M1       

 
M k       

f  
 
T P1 .m1 ;:::;mk / T P d  .m1 ;:::;mk /x: 1

k  m1 D1 mk D1

We denote this average by A M I X ; T  f .x / ,  and we use the notation

(1.1) A M I X ; T  f . x /  WD E m 2 Q M  f . T  P1 .m/ T P d  .m/x/; x  2  X ;

where Q M  WD ŒM1•    ŒMk• i s a box in Z k  with ŒN• WD . 0; N • \  Z ,  for any real num-ber N
1, and E y 2 Y  f . y /  WD #Y y 2 Y  f . y /  for any finite set Y and any f  WY !  C .  We will
often abbreviate A P to A P          when the transformations are understood. Depend-
ing on how explicit we want to be, more precision may be necessary and we will write out
the averages

AM I X f . x /  D  AM 1 ; : : : ; M k I X f .x /     or     A M I X ; T  f . x /  D  AM1 ;:::;Mk IX;T1 ;:::;Td 
f .x / :

Example 1.2. Due to the Calderón transference principle [13], the most important dynam-
ical system, from the point of view of pointwise convergence problems, is the integer shift
system. Namely, it is the d -dimensional lattice . Z d  ; B . Z d  /;  d / equipped with a family of
shifts S1; : : : ; S WZd !  Z d  , where B . Z d  / denotes the -algebra of all subsets of Z d  ,  d

denotes counting measure on Z d  , and S  .x / WD x    e for every x  2  Z d  (here e is the
j th basis vector from the standard basis in Z d  , for each j  2  Œd• ). Then the aver-age
AM I X ; T  from (1.1) with T D  .T1; : : : ; Td / D  .S1 ; : : : ; Sd / can be rewritten for any x  D
.x1; : : : ; xd / 2  Z d  and any finitely supported function f  WZd !  C  as

(1.3) AM I Z d  f . x /  D  E m 2 Q M  f . x 1       P1.m/; : : : ; xd      Pd .m//:

1.1. Birkhoff ’s and von Neumann’s ergodic theorems

In the early 1930’s, Birkhoff [5] and von Neumann [61] established an almost everywhere
pointwise ergodic theorem and a mean ergodic theorem, respectively, which we summa-
rize in the following result.
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Theorem 1.4 (Birkhoff ’s and von Neumann’s ergodic theorem). Let . X ;  B . X / ;  / be a -
finite measure space equipped with a measure-preserving transformation T W X  !  X .
Then for every p 2  Œ1; 1/ and every f  2  L p . X / ,  the averages

AM I X ; T  f . x /  D  Em2ŒM • f .T mx/; x  2  X ;  M 2  Z C ;

converge almost everywhere on X  and in L p . X /  norm as M !  1 .

Although there are many proofs of Theorem 1.4 in the literature (we refer for instance
to the monographs [21, 64] for more details and the historical background), there is a par-
ticular proof which is important in our context. This proof illustrates the classical strategy
for handling pointwise convergence problems, which is based on a two-step procedure:

(i) The first step establishes L p . X /  boundedness (for p 2 .1; 1/) ,  or a weak type .1; 1/
bound (when p D  1) of the corresponding maximal function sup jAm f .x /j.
This in turn, using the Calderón transference principle [13], can be derived from the cor-
responding maximal bounds for sup jAm f .x /j,  the Hardy–Littlewood maximal
function on the set of integers, see (1.3). Having these maximal estimates in hand, one can
easily prove that the set

PCŒLp .X /• D  
®

f  2  L p . X /  W l i m M ! 1  AM I X ; T  f  exists -almost everywhere on X
¯

is closed in L p . X / .
(ii) In the second step, one shows that PCŒLp .X /• D  L p . X / .  In view of the first step,

the task is reduced to finding a dense class of functions in L p . X /  for which we have
pointwise convergence. In our problem, let us first assume p D  2. Then invoking a variant
of the Riesz decomposition [69], a good candidate is the space I T  ˚  J T   L 2 .X / ,  where

I T  WD ¹ f  2  L 2 . X /  W f  ı  T D  f  º;

JT  WD ¹g      g ı  T W g 2  L 2 . X /  \  L 1 . X / º :

We then note that A M I Z f  D  f  for f  2  I T  , and l i m M ! 1  AM I X ; T  h D  0 for h 2  JT  , since

AM I X ; T  h D  M  1.g ı  T      g ı  T M C 1 /

telescopes, whenever h D  g      g ı  T 2  JT  . This establishes pointwise almost everywhere
convergence of AM I X ; T  on I T  ˚  J T  , which is dense in L 2 .X / .  These two steps guaran-tee
that PCŒL2.X /• D  L 2 .X / .  Consequently, AM I X ; T  converges pointwise on L p . X /  \
L 2 . X /  for any p 2  Œ1; 1/. Since L p . X /  \  L 2 . X /  is dense in L p . X / ,  we also conclude,
in view of the first step, that PCŒLp .X /• D  L p . X / ,  and this completes a brief outline of
the proof of Theorem 1.4.

1.2. Dunford–Zygmund pointwise ergodic theorem

In the early 1950’s, it was observed by Dunford [19] and independently by Zygmund [77]
that the two-step procedure can be applied in a multi-parameter setting. More precisely, the
Dunford–Zygmund multi-parameter pointwise ergodic theorem, where the convergence is
understood in the unrestricted sense, can be formulated as follows.
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Theorem 1.5 (Dunford–Zygmund ergodic theorem). Let d 2  Z C  and let . X ;  B . X / ;  / be a
-finite measure space equipped with a family T D  .T1; : : : ; Td / of not necessarily
commuting and measure-preserving transformations T1; : : : ; T WX !  X .  Then for every p
2  . 1 ; 1 /  and every f  2  L p . X / ,  the averages

AM1 ;:::;Md I
X

; T  f . x /  D  E m 2 Q M  f .T1  
1 T md x/; x  2  X ;  M D  .M1; : : : ; Md / 2  Z C ;

converge almost everywhere on X  and in L p . X /  norm as min¹M1; : : : ; Md º !  1 .

This theorem has a fairly simple proof, which is based on the following identity:

AM1 ;:::;Md I
X

; T  f  D  AM 1 I X ; T 1  
ı   ı  AM d  I X ; T d  

f :

The L p . X /  bounds for the strong maximal function supM 2Zd  jAM1 ;:::;M I X ; T  f  j, for p
2  .1; 1 • ,  follow easily by applying d times the corresponding L  . X /  bounds for sup

jAm f  j. This establishes the first step in the two-step procedure described
above. The second step is based on a suitable adaptation of the telescoping argument to
the multi-parameter setting and an application of the classical Birkhoff ergodic the-orem,
see [62] for more details. These two steps establish Theorem 1.5 and motivate our
further discussion on multi-parameter convergence problems. One also knows that
pointwise convergence in Theorem 1.5 may fail if p D  1, and that the operator f  !
supM 2 Z C  

jAM1 ;:::;Md I X ; T  f  j is not of weak type .1; 1/ in general (even if we assume

that the transformations T , 1  j   d , commute). A  model example is X  D  Z d  and T x  D
x       e , 1  j   d , where e is the j th coordinate vector. Then the corresponding maximal
operator is just the strong maximal operator, for which it is well known that the weak type
.1; 1/ estimate does not hold.

1.3. Quantitative tools in the study of pointwise convergence

The approach described in the context of Theorem 1.4 and Theorem 1.5 has a quantitative
nature, but it says nothing quantitatively about pointwise convergence. This approach is
very effective in pointwise convergence questions arising in harmonic analysis, as there
are many natural dense subspaces in Euclidean settings which can be used to establish
pointwise convergence. However, for ergodic theoretic questions, when one works with
abstract measure spaces, the situation is dramatically different, as Bourgain showed [6–8].
We shall see more examples below.

Consequently, the second step from the two-step procedure may require more quan-
titative tools to establish pointwise convergence. To overcome the difficulties with deter-
mining dense subspace for which pointwise convergence may be verified, Bourgain [8]
proposed three other approaches.

(1) The first approach is based on controlling the so-called oscillation semi-norms.
Let J   N  be so that # J   2, let I  D  . I  W j  2  N J  / be a strictly increasing sequence of length J
C  1 for some J  2  Z C ,  which takes values in J ,  and recall that for any sequence .at W t 2  J /
C ,  and any exponent 1  r <  1 ,  the r -oscillation seminorm is defined by

(1.6) O r      .at W t 2  J /  WD 
J  1

sup jat      aI  jr
1=r

: I
t < I  C 1

t 2 J



t
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We will give a more general definition of r-oscillations in the multi-parameter setting;
see (2.3).

(2) The second approach is based on controlling the so-called r-variation seminorms.
For any I  N , any sequence .at Wt 2 I / C ,  and any exponent 1 r < 1 ,  the r-variation semi-
norm is defined to be

V r .a W t 2  I /  WD sup  sup     
J  1 

ja      a jr
1=r

; t
< < t

t 2 I

where the latter supremum is taken over all finite increasing sequences in I .
(3) The third approach is based on studying the -jump counting function, which is

closely related to r-variations. For any I   N  and any  >  0, the -jump counting function of a
sequence .at W t 2  I /   C  is defined by

N.at W t 2  I /  WD sup
®

J 2  N  W 9t 0 < < t J  W 
0 j J  1 

ja j C 1       at j  
¯

:

We also refer to Section 2 for simple properties of r-oscillations, r-variations and -jumps.
These will be illustrated in the context of bounded martingales, a toy model explaining
their quantitative nature and their usefulness in pointwise convergence problems.

1.4. Bourgain’s pointwise ergodic theorem

In the early 1980’s, Bellow [1] (being motivated by some problems from equidistribution
theory), and independently Furstenberg [23] (being motivated by some problems from
additive combinatorics in the spirit of Szemerédi’s theorem [73] for arithmetic progres-
sions), posed the problem of whether for any polynomial P  2  ZŒm• and any measure-
preserving map T WX !  X  on a probability space .X ; B .X /; / ,  the averages

(1.7) AM I X ; T  f . x /  D  Em2ŒM • f .T P .m/ x/; x  2  X ;  M 2  Z C ;

converge almost everywhere on X  as M !  1 ,  for any f  2  L 1 . X / .
An affirmative answer to this question was given by Bourgain in a series of ground-

breaking papers [6–8] which we summarize in the following theorem.

Theorem 1.8 (Bourgain’s ergodic theorem). Let . X ;  B . X / ;  / be a -finite measure space
equipped with an invertible measure-preserving transformation T WX !  X .  Assume that P
2  ZŒm• i s a polynomial such that P .0/ D  0. Then for every p 2  . 1 ; 1 /  and every f  2
L p . X / ,  the averages A P f  from (1.7) converge almost everywhere on X  and in
L p . X /  norm as M !  1 .

Theorem 1.8 is an instance where establishing pointwise convergence on a dense
class is a challenging problem. The decomposition I T  ˚  J T  of von Neumann (as for
AM I X ; T  ) is not sufficient if deg P   2, though it still makes sense. Even for the squares
P .m/ D  m2, it is not clear whether l i m M ! 1  AM I X ; T  h D  0 for h 2  JT  . The reason is
that the averages AM I X ; T  h do not telescope for h 2  JT  anymore, since the differences
.m C  1/2      m2 D  2m C  1 have unbounded gaps.



M 2 Z

P

j

j j

2 P

I ;

M I X ; T

M I X ; T

M. Mirek, T. Z. Szarek and J. Wright 2254

Nearly two decades after Bourgain papers [6–8], it was discovered that the range of
p 2  . 1 ; 1 /  in Bourgain’s theorem is sharp. In contrast to Birkhoff ’s theorem, if P  2  ZŒm•
is a polynomial of degree at least two, the pointwise convergence at the endpoint for
p D  1 may fail as was shown by Buczolich and Mauldin [10] for P .m/ D  m2 and by
LaVictoire [49] for P .m/ D  mk for any k  2. This also stands in sharp contrast to what
happens for continuous analogues of ergodic averages, and shows that any intuition that
we build in Euclidean harmonic analysis (when sums are replaced with integrals) can fail
dramatically in discrete problems.

Bourgain [6–8] also used the two-step procedure to prove Theorem 1.8. In the first
step, it was proved that for all p 2  .1; 1 • ,  there exists Cp ; P  >  0 such that for every
f  2  L p . X /  we have

(1.9)  sup jAM I X ; T  f  j L p . X /   Cp ; P  k f  kL p . X / :  C

However, in the second step of the two-step procedure, a quantitative pointwise ergodic
theorem was established by studying oscillation semi-norms, see (1.6). More, precisely, it
was proved that for any  >  1, any sequence of integers I  D  . I  W j  2  N /  L  WD ¹bn c W n 2  N º
such that I  C 1  >  2 I  for all j  2  N , and any f  2  L 2 .X / ,  one has

(1.10) kOI ; J  . AM I X ; T  f  W M 2  L /kL 2 . X /   C I ; . J / k f  kL 2 . X / ; J  2  Z C ;

where CI ; . J /  is a constant depending on I  and  that satisfies

(1.11) lim J  1=2 C . J /  D  0:
J ! 1

Bourgain [6–8] had the ingenious insight to see that inequality (1.10) with (1.11)
suffices to establish pointwise convergence of A P f  for any f  2  L 2 .X / .  Inequal-
ity (1.10) with (1.11) can be thought of as the weakest possible quantitative form for
pointwise convergence. On the one hand, (1.10) is very close to the maximal inequality,
since by using (1.9) with p D  2 we can derive (1.10) with a constant at most J 1=2 . On the
other hand, any improvement (better than J 1=2) for the constant in (1.10) implies (1.11)
and so ensures pointwise convergence of A P              f  for any f  2  L 2 .X / ,  see Proposi-tion
2.8, where the details, even in the multi-parameter setting, are given. Therefore, from this
point of view, inequality (1.10) with (1.11) is the minimal quantitative requirement
necessary to establish pointwise convergence.

Bourgain’s papers [6–8] were a significant breakthrough in ergodic theory, which used
a variety of new tools (ranging from harmonic analysis and number theory through prob-
ability and the theory of Banach spaces) to study pointwise convergence problems in
analysis understood in a broad sense. In [8], a complete proof of Theorem 1.8 is given
using the notions of r-variations and -jumps (introduced by Pisier and Xu [66]), which
are two important quantitative tools in the study of pointwise convergence problems. This
initiated a systematic study of quantitative estimates in harmonic analysis and ergodic the-
ory which resulted in a vast literature: in ergodic theory [10,33–36,42,43,49,54,55,59], in
discrete harmonic analysis [29–32,51,53,57,60,65,70], and in classical harmonic analysis
[2, 3, 14, 17, 26, 37, 38, 45, 46, 56, 58, 63].
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Not long after [8], Lacey refined Bourgain’s argument (see Theorem 4.23 on p. 95
of [70]), and showed that for every  >  1 there is a constant C  >  0 such that for any f
2  L 2 . X /  one has

(1.12)  sup sup kO2     . A P f  W M 2  L /kL 2 . X /   C k f  kL 2 . X / ;
J 2 Z C  I 2 S J  . L  /

where S J  . L /  denotes the set of all strictly increasing sequences I  D . I  Wj 2 N J  / L  of
length J  C  1 for some J  2  Z C .  Inequality (1.12) was the first uniform oscillation result in
the class of -lacunary sequences. Lacey’s observation naturally motivated a question
(which also motivates this survey) whether there are uniform estimates, independent of
>  1, of oscillation inequalities in (1.12). For the Birkhoff averages Am , this was
explicitly formulated in Problem 4.12 on p. 80 of [70]. We will discuss below uniform
oscillation estimates as well as other quantitative forms of pointwise convergence includ-
ing r-variations and -jumps.

1.5. Martingales: a model to study pointwise convergence problems

In order to understand the relationship between r-oscillations, r-variations and -jumps, we
will use bounded martingales f  D  . f n  W X  !  C  W n 2  Z C /  as a toy model to help us
understand the connections and various nuances. All properties that will be used in the
discussion below are collected in Section 2. The discussion will follow the development of
the various notions in chronological order.

The r-variations for f  D  . f n  W X  !  C  W n 2  Z C /  were investigated by Lépingle [50],
who established that for all r 2  . 2 ; 1 /  and p 2  .1 ; 1/ ,  there is a constant Cp ; r  >  0 such
that

(1.13) kV r . fn  W n 2  Z C / kL p . X /   Cp ; r  sup kfn kL p . X / :
n 2 Z C

In fact, Lépingle [50] also proved a weak type .1; 1/ estimate. A  counterexample from [38]
for r D  2 shows that (1.13) holds with sharp ranges of exponents. This counterexample
plays an important role showing that r-variation estimates only hold when r >  2. In fact,
this is the best we can expect in applications in analysis and ergodic theory.

Inequality (1.13) can be thought of as an extension of Doob’s maximal inequality
for martingales, which gives a quantitative form of the martingale convergence theorem.
Indeed, on the one hand, inequality (1.13) implies that the sequences . fn  W n 2  Z C /  con-
verges almost everywhere on X  as n !  1 .  On the other hand, one has

 sup j f n j L p . X /   kV r . fn  W n 2  Z C / kL p . X /  C  kfn0 kL p . X /  C

for any n0 2  Z C  (see (2.14) below), which shows that r-variational estimates lie deeper
than maximal function estimates. We refer to [8, 57, 66] for generalizations and different
proofs of (1.13).

Interestingly, Bourgain [8] gave a new proof of inequality (1.13), where it was used
to address the issue of pointwise convergence of A P f  , see (1.7). This initiated a
systematic study of r-variations and other quantitative estimates in harmonic analysis and
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ergodic theory, which resulted in a vast literature [33, 34, 37, 38, 55, 57–59, 63, 76], and
recently [29, 43, 54]. Due to (2.19) below, one has

(1.14)  sup kN.fn W n 2  Z C / 1 = r kL p . X /   kV r . fn  W n 2  Z C / kL p . X / ;  > 0

which combined with (1.13) implies -jump inequalities for martingales for any r >  2.
Although the right-hand side of (1.14) blows up when r !  2, it is possible to prove that for
every p 2  .1 ; 1/ ,  there exists a constant Cp  >  0 such that

(1.15)  sup kN.fn W n 2  Z C / 1 = 2 kL p . X /   Cp  sup kfn kL p . X / :  > 0
n 2 Z C

Inequality (1.15) was first established by Pisier and Xu [66] on L 2 .X / ,  and then extended
by Bourgain (inequality (3.5) in [8]) on L p . X /  for all p 2  .1; 1 / .  In fact, Bourgain
used (1.15) to prove (1.13) by noting that (1.14) can be reversed in the sense that for every p
2  Œ1; 1• and 1   <  r  1 ,  one has

(1.16) kV r . fn  W n 2  Z C / k L p ; 1 . X /  �p;;r sup kN.fn W n 2  Z C / 1 = kL p ; 1 . X / ;  > 0

which follows from (2.20) below. One cannot replace L p ; 1 . X /  with L p . X /  in (1.16),
see [54] for more details. Combining (1.15) and (1.16) with  D  2 and interpolating, one
obtains (1.13). Therefore uniform -jump estimates from (1.15) can be thought of as end-
point estimates for r-variations where we have seen that r-variations may be unbounded at
the endpoint in question. We have already noted the failure of Lépingle’s inequality (1.13)
when r D  2.

Even though we have a fairly complete picture of the relationship between r-variations
and -jumps, the relations with r-oscillations are less obvious. It follows from (2.15)
below that

(1.17)  sup sup kOr      . fn  W n 2  Z C / kL p . X /   kV r . fn  W n 2  Z C / kL p . X / ;
J 2 Z C  I 2 S J  . Z C /

where S J  . Z C /  denotes the set of all strictly increasing sequences I  D . I  W j 2 NJ / Z C  of
length J  C 1  for some J  2 Z C .  In view of (1.13), this immediately implies r-oscillations
estimates for martingales on L p . X /  for all r 2  . 2 ; 1 /  and p 2  .1 ; 1/ .

It was shown by Jones, Kaufman, Rosenblatt and Wierdl (Theorem 6.4 on p. 930
of [33]) that for every p 2  . 1 ; 1 /  there is a constant Cp  >  0 such that

(1.18)  sup sup kO2     . fn  W n 2  Z C / kL p . X /   Cp  sup kfn kL p . X / :
J 2 Z C  I 2 S J  . Z C /                                                                                        n 2 Z C

Inequality (1.18) is also an extension of Doob’s maximal inequality for martingales, as
one has

 sup jfnj p  sup sup kO2     . fn  W n 2  Z C / kL p . X /  C  kfn kL p . X /
n 2 Z C                                                J 2 Z C  I 2 S J  . Z C /

for any n0 2  Z C .  This follows from Proposition 2.6 below. Moreover, in view of Propo-
sition 2.8, inequality (1.18) also gives a quantitative form of the martingale convergence
theorem.
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In Section 3 we give a new proof of inequality (1.18), which follows from an abstract
result formulated for certain projections, see Theorem 3.1 in Section 3. This abstract
theorem will also establish oscillation inequalities for smooth bump functions (see Propo-
sition 3.13 and Theorem 3.17), and establish oscillation inequalities for the Carleson
operator (see Proposition 3.34 as well as Proposition 3.22). It will also show that oscil-
lation estimates are very close to maximal estimates even though it follows from Propo-
sition 2.6 that oscillations always dominate maximal functions, see the discussion below
Theorem 1.8.

Inequalities (1.17) and (1.18) are similar to inequalities (1.14) and (1.15), respectively,
and this raises a natural question whether 2-oscillations can be interpreted as an endpoint
for r-variations when r >  2 in the sense of inequality (1.16). Recently this problem was
investigated in [54, Theorem 1.9] and answered in the negative. Specifically, one can show if
1  p <  1  and 1 <    r <  1  are fixed, then it is not true that the estimates

sup kN.f .; t / W t 2  N /1 = r k ` p ; 1 . Z /   Cp ; ; r sup kO       . f . ; t / W t 2  N /k` p . Z / ;
> 0                                                                                                                I 2 S 1 . N /

(1.19) kV r .f .; t / W t 2  N /k ` p ; 1 . Z /   Cp ; ; r sup kO       . f . ; t / W t 2  N /k` p . Z /
I 2 S 1 . N /

hold uniformly for every measurable function f  WZ  N  !  R .  The failure of the inequal-ities
(1.19) shows that the space induced by -oscillations is different from the spaces induced
by r-variations and  jumps whenever   r . Also, the failure of the inequali-ties (1.19) shows
that -oscillation inequalities cannot be seen (at least in a straightforward way, understood in
the sense of inequality (1.16)) as endpoint estimates for r-variations, though it still makes
sense to ask whether a priori bounds for 2-oscillations imply bounds for r-variations for
any r >  2. This is an intriguing question from the point of view of quantitative pointwise
convergence problems. If true, it would reduce pointwise conver-gence problems to the
study of 2-oscillations, which in certain cases are simpler since they are closer to square
functions.

1.6. Quantitative forms of Bourgain’s ergodic theorem

Quantitative bounds in the context of ergodic polynomial averaging operators have been
intensively studied over the last decade. These investigations were the subject of the fol-
lowing papers [54–56, 59], which generalized Bourgain’s papers [6–8] in various ways,
and can be summarized as follows.

Theorem 1.20. Let d ; k 2 Z C  and P  D .P1 ; : : : ; Pd /ZŒm1;: : : ;mk • such that P  .0/ D 0
for j  2  Œd• be given. Let .X ; B .X / ; /  be a -finite measure space endowed with a family

T D  .T1; : : : ; T / of commuting invertible measure-preserving transformations on X .  Let
f  2  L p . X /  for some 1  p  1 ,  and for M 2  Z C ,  let A P f  D  AP1 ;:::;Pd f
be the polynomial ergodic average defined in (1.1) with parameters M1 D   D  Mk D  M .
(i) (Mean ergodic theorem) If 1 <  p <  1 ,  then the averages A P f  converge in

L p . X /  norm as M !  1 .

(ii) (Pointwise ergodic theorem) If 1 <  p <  1 ,  then the averages A P f  converge
pointwise almost everywhere on X  as M !  1 .
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(iii) (Maximal ergodic theorem) If 1 <  p  1 ,  then one has

(1.21)  sup jA M I
X

; T  f  j L p . X /  �d ;k;p;deg P k f  kL p . X / :  C

(iv) (Variational ergodic theorem) If 1 <  p <  1  and 2 <  r <  1 ,  then one has

(1.22) kV r .A M I
X

; T  f  W M 2  Z C / kL p . X /  �d ;k;p;r;deg P k f  kL p . X / :

(v) (Jump ergodic theorem) If 1 <  p <  1 ,  then one has

(1.23) sup kN.AM I X ; T  f  W M 2  Z C / 1 = 2 kL p . X /  �d ;k;p;deg P k f  kL p . X / :

(vi) (Oscillation ergodic theorem) If 1 <  p <  1 ,  then one has

(1.24) sup sup kO2     . A P f  W M 2  Z C / k L p . X /  �d ;k;p;deg P k f  kL p . X / :
J 2 Z C  I 2 S J  . Z C /

Moreover, the implicit constants in (1.21), (1.22), (1.23) and (1.24) can be taken to be
independent of the coefficients of the polynomials from P ,  depending only on p and the
degree of the family P .

We now give some remarks about Theorem 1.20.
(1) Theorem 1.20 is a multi-dimensional, quantitative counterpart of Theorem 1.8

with sharp ranges of parameters 1 <  p <  1  and 2 <  r <  1 ,  which contributes to the
Furstenberg–Bergelson–Leibman conjecture (see Section 5.5, p. 468, in [4]) in the linear
case for the class of commuting measure-preserving transformations. The Furstenberg–
Bergelson–Leibman conjecture is a central open problem in pointwise ergodic theory.
Moreover, inequalities (1.23) and (1.24) are the strongest possible quantitative forms of
pointwise convergence. By taking d D k  D 1  and P1 .m/ D m in Theorem 1.20, we recover
Birkhoff ’s and von Neumann’s results stated in Theorem 1.4. Taking d D  k D  1 and P1

2  ZŒm• i n Theorem 1.20, we also recover Bourgain’s polynomial ergodic theorem from
Theorem 1.8 above.

(2) The mean ergodic theorem in (i) is a consequence of the dominated convergence
theorem combined with (ii) and (iii). Each of the conclusions from (iv), (v) and (vi)
individually implies pointwise convergence from (ii), as well as the maximal estimates
from (iii). It also follows from (2.20) that (v) implies (iv). Details about these implications
can be easily derived from the properties of oscillations, variations and jumps collected in
Section 2.

(3) Sharp r-variational estimates (1.22) were obtained for the first time in [55], with
a conceptually new proof which also works for other discrete operators with arithmetic
features [56]. Not long afterwards, the ideas from [55] were extended [59] to establish
uniform -jump estimates (1.23). Partial result for r-variational estimates (1.22) were
obtained in [42, 60, 76].

(4) It was observed in [55] that (1.22) and Hölder’s inequality imply that for every
p 2  .1 ; 1/ ,  for any r >  2, every f  2  L p . X /  and every J  2  Z C ,  one has

sup kO2     . A P f  W M 2  Z C / kL p . X /  �d ;k;p;r;deg P J 1=2 1=r k f  kL p . X / ;
I 2 S J  . Z C /
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with the same implicit constant as in (1.22) and so blows up as r tends to 2. This inequality is
a non-uniform version of (1.24) in the spirit of Bourgain’s oscillation inequality (1.10).
However it was observed recently [54] that the methods from [55, 59] give the uniform
oscillation inequality in (1.24). From this point of view (and from the discussion above for
martingales) inequality (1.24) can be thought of as an endpoint for (1.22) at r D  2, though
it is not an endpoint in the sense of inequality (2.20) below. It would be nice to know
whether it is possible (if at all) to use (1.24) to recover (1.22).

(5) Inequality (1.24) is also a contribution to an interesting problem from the early
1990’s of Rosenblatt and Wierdl (Problem 4.12 on p. 80 of [70]) about uniform estimates of
oscillation inequalities for ergodic averages. In [33], Jones, Kaufman, Rosenblatt and
Wierdl proved (1.24) for the classical Birkhoff averages with d D  k D  1 and P1 .m/ D  m,
giving an affirmative answer to Problem 4.12 on p. 80 of [70]. In [54], it was shown that
Problem 4.12 on p. 80 of [70] remains true even for multidimensional polynomial ergodic
averages.

(6) The proof of Theorem 1.20 is an elaboration of methods developed in [55, 59]
and also recently in [54]. The main tools are the Hardy–Littlewood circle method (major
arcs estimates); Weyl’s inequality (minor arcs estimates); the Ionescu–Wainger multi-
plier theory (see [32, 53, 59] and also [65], [74]); the Rademacher–Menshov argument
(see for instance [58]); and the sampling principle of Magyar–Stein–Wainger (see [51]
and also [57]). The methods from [53, 55, 57–59] were further developed by the first
author in collaboration with Krause and Tao [43], which resulted in establishing point-
wise convergence for the so-called bilinear Furstenberg–Weiss ergodic averages. This
was a long-standing open problem, which makes a significant contribution towards the
Furstenberg–Bergelson–Leibman conjecture [4].

1.7. A  multi-parameter variant of the Bellow and Furstenberg problem

After completing [6–8], Bourgain observed that the Dunford–Zygmund theorem (see The-
orem 1.5) can be extended to the polynomial setting at the expense of imposing that the
measure-preserving transformations in Theorem 1.5 commute. Bourgain’s result can be
formulated as follows.

Theorem 1.25 (Polynomial Dunford–Zygmund ergodic theorem). Let d 2  Z C  and let
P1 ; : : : ; Pd 2  ZŒm• such that P  .0/ D  0 for j  2  Œd• be given. Let . X ;  B . X / ;  / be a -
finite measure space endowed with a family T D  .T1; : : : ; T / of commuting invertible
measure-preserving transformations on X .  Let f  2  L p . X /  for some 1  p  1 ,  and for M
2  Z d  , let AP1 .m1 /;:::;Pd .md / f  D  AP1 .m1 /;:::;Pd .md / f  be the polynomial ergodic
average defined in (1.1).

(i) (Mean ergodic theorem) If 1 <  p <  1 ,  then the averages AP1 .m1 /;:::;Pd .md / f  con-
verge in L p . X /  norm as min¹M1; : : : ; Md º !  1 .

(ii) (Pointwise ergodic theorem) If 1 <  p <  1 ,  then the averages AP1 .m1 /;:::;Pd .md / f
converge pointwise almost everywhere on X  as min¹M1; : : : ; Md º !  1 .
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(iii) (Maximal ergodic theorem) If 1 <  p  1 ,  then one has

(1.26)
P  .m /;:::;P .m /
M I X ; T L p . X / d ;p;deg P1 ;:::;deg Pd L  . X /

M 2 Z C

(iv) (Oscillation ergodic theorem) If 1 <  p <  1 ,  then one has

(1.27)  sup sup kO2     .AP1 .m1 /;:::;Pd .md / f  W M 2  Z d  /kL p . X /
J 2 Z C  I 2 S J  . Z d  /

�d;p;deg P1 ;:::;deg Pd k f  kL p . X / :

(We refer to Section 2 for the definitions of the sets S J  . Z d  /, see (2.2), and the multi-
parameter oscillations, see (2.3).) Moreover, the implicit constants in (1.26) and (1.27)
can be taken to be independent of the coefficients of the polynomials P1; : : : ; Pd , depend-
ing only on p and deg P1; : : : ; deg Pd .

We now give some remarks about Theorem 1.25.
(1) Theorem 1.25(i)-(iii) is attributed to Bourgain, though it has never been published.

The first and third authors learned about this result from Bourgain in October 2016, when
they started to work with Bourgain and Stein on some aspects of multi-parameter ergodic
theory [9].

(2) In this paper we prove Theorem 1.25 using a general abstract principle, see Propo-
sition 4.1 in Section 4. In contrast to Bourgain’s original observation, our proof of Theo-
rem 1.25 relies on uniform bounds for multi-parameter oscillation inequalities.

(3) Theorem 1.25(iv) with linear polynomials P1 .m/ D   D  Pd .m/ D  m was estab-
lished in [35], where it was essential that T D  .T1; : : : ; Td / is a commuting family of
measure-preserving transformations on X .  It is straightforward to see that (iv) implies (iii)
by (2.7), as well as (ii) by appealing to Proposition 2.8. Using the dominated convergence
theorem with (ii) and (iii), we also obtain (i). So it suffices to prove (1.27), which we do in
Section 4.

(4) To prove Theorem 1.25, it is essential to note that

(1.28)
P1 .m1 /;:::;Pd .md / P1 .m1 /;:::;Pd .md / P1 .m1 / P d  .md /
M I X ; T M1 ;:::;Md IX;T1 ;:::;Td M 1 I X ; T 1 Md  I X ; T d

where the latter averages (defined in (1.7)) commute as long as the family T D .T1; : : : ; Td /
is commuting. Using identity (1.28) and iterating appropriately (1.24) with k D  d D  1, we
will be able to derive (1.27). We refer to Section 4 for details.

Theorem 1.25 can be thought of as a simple case of a multi-parameter variant of the
Bellow and Furstenberg problem, which is a central open problem in modern ergodic
theory, and can be subsumed under the following conjecture.

Conjecture 1.29. Let d; k 2  Z C  be given and let . X ;  B . X / ;  / be a probability mea-sure
space endowed with a family T D  .T1; : : : ; Td / of invertible commuting measure-
preserving transformations on X .  Assume that P  D  .P1; : : : ; Pd /  ZŒm1; : : : ; mk • such
that P  .0/ D  0 for j  2  Œd• are given. Then for any f  2  L  .X /,  the multi-parameter

polynomial averages AM I X ; T  f . x /  D  A M  ;:::;M I X ; T  ;:::;T f . x /  defined in (1.1) converge
for -almost every x  2  X ,  as min¹M1; : : : ; Mk º !  1 .
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A  few remarks about this conjecture, its history, and the current state of the art, are in
order.

(1) As seen above, the case d D  k D  1 of Conjecture 1.29 with P1 .m/ D  m follows
from Birkhoff ’s ergodic theorem, see Theorem 1.4. The case d D k  D 1  of Conjecture 1.29
with arbitrary polynomials P1 2  ZŒn• w as the famous open problem of Bellow [1] and
Furstenberg [23], and was solved by Bourgain [6–8] in the mid 1980’s, see Theorem 1.8.
The general case d; k 2  Z C  of Conjecture 1.29 with arbitrary polynomials P1; : : : ; Pd 2
ZŒm1; : : : ; mk • i n the diagonal setting M1 D   D  Mk , that is, the multi-dimensional one-
parameter setting, follows from Theorem 1.20.

(2) A  genuinely multi-parameter case d D  k  2 of Conjecture 1.29 for averages (1.1)
with P  .m1; : : : ; md / D  P  .m /, where P  2  ZŒm • for j  2  Œd• follows from Theo-rem
1.25, which extends the case of linear polynomials P1 .m/ D   D  Pd .m/ D  m established
independently by Dunford [19] and Zygmund [77] in the early 1950’s, see Theorem 1.5.

(3) Thanks to the product structure of (1.28), Theorem 1.5, as well as Theorem 1.25,
have relatively simple one-parameter proofs, which are based on iterative applications of
Theorem 1.4 and Theorem 1.20, respectively. This is explained in Proposition 4.1 below.
However, the situation is dramatically different when orbits in (1.1) are defined along
genuinely k-variate polynomials P1 ; : : : ; Pd 2  ZŒm1; : : : ; mk • since then we lose the
product structure (1.28). This can be illustrated by considering averages (1.1) for d D  1, k
D  2 with, let us say, P1.m1; m2/ D  m2m3. Then Conjecture 1.29 becomes challenging.
Surprisingly, even in this simple case, it seems that there is no simple way (like changing
variables or interpreting the average from (1.1) as a composition of simpler one-parameter
averages as in (1.28)) that would help us reduce the matter to the setup where pointwise
convergence is known. This was one of the motivations leading to Conjecture 1.29.

(4) The Dunford–Zygmund theorem (see Theorem 1.5 above) was originally proved
for not necessarily commuting, measure-preserving transformations T D  .T1; : : : ; Td /
on X .  However, it is well known for instance from the Bergelson–Leibman paper [4]
that the commutation assumption imposed on the family T1; : : : ; Td W X  !  X  in (1.1) is
essential in order to have an ergodic theorem if deg P   2 for at least one j  2  Œd• and d
2. Even in the one-parameter case (assuming k D  1) in (1.1), an ergodic theorem may fail.
The question to what extent one can relax commutation relations among T1; : : : ; Td in
(1.1), even in the one-parameter case, is very intriguing. This also motivates the desire to
understand Conjecture 1.29 in the commutative setting first, as it is unclear whether
Conjecture 1.29 is true for all polynomials P1; : : : ; Pd 2  ZŒm1; : : : ; mk • .

(5) With respect to the noncommutative setting, we mention that recently the first and
second authors with Ionescu and Magyar [29] established Conjecture 1.29 with k D  1, d
2  Z C

 
and arbitrary polynomials P1 ; : : : ; Pd 2  ZŒm• i n the diagonal nilpotent setting, i.e.,

one-parameter and multi-dimensional, when T D  .T1; : : : ; Td / is a family of invert-ible
measure-preserving transformations of a -finite measure space . X ;  B . X / ;  / that generates
a nilpotent group of step two. In view of the Bergelson–Leibman paper [4], the nilpotent
setting is probably the most general setting where Conjecture 1.29 might be true, at least in
the one-parameter case.

(6) We finally mention that progress towards establishing Conjecture 1.29 was recently
made by the first and third authors in collaboration with Bourgain and Stein [9]. This
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conjecture was verified for any integer d  2 with k D  d   1 for averages (1.1) with
polynomials

(1.30)  P  .m1; : : : ; md  1/ D  m for j  2  Œd      1• I and
Pd .m1; : : : ; md  1/ D  P .m1; : : : ; md  1/;

whenever P  2  ZŒm1; : : : ; md 1• i s a polynomial such that

P .0; : : : ; 0/ D  @1P .0; : : : ; 0/ D   D  @d 1P .0; : : : ; 0/ D  0;

which has partial degrees (as a polynomial of the variable mi for any i 2  Œd      1• ) at least
two. Furthermore, it follows from [9] that for any P  2  ZŒm1; : : : ; md •, the following
averages,

(1.31) A P  
I X ; T  f . x /  WD E.m1 ;:::;md / 2 Q M  f . T  P .m1 ;:::;md /x/; x  2  X ;

where M D  .M1; : : : ; Md / 2  Z d  ; do converge almost everywhere on X  provided that
min¹M1; : : : ; Md º !  1 .  In fact, Conjecture 1.29 was originally formulated with aver-
ages (1.31); the authors learned about this from Jean Bourgain in a private communication in
October 2016. The proof from [9] developed new methods from Fourier analysis and
number theory. Even though the averages (1.1) with polynomials from (1.30) share a lot of
difficulties that arise in the general case, there are some cases that are not covered by the
methods developed in [9]. At this moment it is not clear whether Conjecture 1.29 is true
in full generality. The work in [9] is a significant step towards understanding Conjec-ture
1.29 that sheds new light on the general case and will either lead to its full resolution or to
a counterexample. The authors plan to investigate this question in the near future.

1.8. Overview of the paper

In this paper we prove an abstract principle for the so-called projective operators, see
Theorem 3.1 in Section 3, which allows us to deal with one-parameter oscillation inequal-
ities in a fairly unified way. As a consequence of Theorem 3.1, we give a simple proof of
the Jones–Kaufman–Rosenblatt–Wierdl oscillation inequality for martingales (Theo-rem
6.4 on p. 930 of [33]), see Proposition 3.11, and then we prove oscillation inequalities for
smooth bumps, see Proposition 3.13 and Theorem 3.17. Further, we discuss oscilla-tion
estimates for projection operators corresponding to orthonormal systems in Hilbert
spaces, see Proposition 3.22, and finally we obtain new oscillations inequalities for the
Carleson operator, see Proposition 3.34. In Section 4 we build a multi-parameter theory of
oscillation estimates, see Proposition 4.1 and Corollary 4.6. As an application of our
method, we give a simple proof of Theorem 1.25.

This paper can be viewed as a fairly systematic treatment of oscillation estimates in
the one-parameter as well as multi-parameter settings in ergodic theory and analysis. In
the multi-parameter setting, oscillation semi-norms seem to be the only viable tool that
allows us to handle efficiently multi-parameter pointwise convergence problems. This is
especially the case in [9] where operators with arithmetic features were studied. It also
contrasts sharply with the one-parameter setting, where we have a variety of available tools
to handle pointwise convergence problems: including oscillations, variations or jumps,
see [37, 55] and the references given there.
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2. Notation and useful tools

We now set some notation that will be used throughout the paper. Basic properties of one-
parameter as well as multi-parameter r-oscillation semi-norms, r-variation semi-norms
and -jump counting functions will be also gathered here. We borrow notation from [9],
Section 2, and [54], Section 2.

2.1. Basic notation

Let Z C  WD ¹1; 2; : : :º, N  WD ¹0; 1; 2; : : :º and R C  WD .0 ; 1/ .  For d 2  Z C ,  the sets Z d  , R d  ,
C d  and T d  WD R d  =Zd have standard meaning. We will also consider the set of dyadic
numbers D  WD ¹2n W n 2  Zº.  For any x  2  R ,  we define the floor function

bxc WD max¹n 2  Z  W n  xº:

For x ; y  2  R ,  let x  ^  y  WD min¹x ; yº and x  _  y  WD max¹x; yº. For every N 2  R C
 
and

A   R ,  define
ŒN• WD . 0; N • \  Z  D  ¹ 1; : : : ; bN cº;

as well as

A N  WDŒ0;N •\A ; A < N  WDŒ0;N/\A; A N  WDŒN; 1/\A; A > N  WD .N; 1/ \ A:

We use 1A  to denote the indicator function of a set A. If S  is a statement, we write 1S to
denote its indicator, equal to 1 if S  is true and 0 if S  is false. For instance, 1A .x / D  1x 2 A .

For two nonnegative quantities A  and B , we write A  � B  if there is an absolute
constant C  >  0 such that A   C B ;  however, C  >  0 may change from occurrence to occur-
rence. We will write A  '  B  when A  � B  � A. We will write �ı  or ' ı  to emphasize that

the implicit constant depends on ı .  For two functions f  WX !  C  and g W X  !  Œ0; 1/, we
write f  D  O.g/ if there exists C  >  0 such that jf .x /j  C g .x / for all x  2  X .  We will

also write f  D  O ı .g/ if the implicit constant depends on ı .

2.2. Euclidean spaces

The standard inner product, the corresponding Euclidean norm, and the maximum norm
on R d  are denoted, respectively, for any x  D  .x1; : : : ; xd /,  D  .1; : : : ; d / 2  R d  , by

x    WD 
X  

x k  k ; jxj WD jxj2 WD 
p

x
  

x ;
k D 1

and     jxj WD max jx j:
k2Œd•

2.3. Function spaces

Throughout this paper, all vector spaces will be defined over C .  For a continuous linear
map T W B1 !  B2  between two normed vector spaces B1 and B2 , its operator norm will be
denoted by kT k B 1 ! B 2  .

The triple . X ;  B . X / ;  / denotes a measure space X  with a -algebra B . X /  and a -
finite measure . The space of all -measurable functions f  WX !  C  will be denoted
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by L 0 .X / .  The space of all functions in L 0 . X /  whose modulus is integrable with p-th
power is denoted by L p . X /  for p 2  .0; 1 / ,  whereas L 1 . X /  denotes the space of all
essentially bounded functions in L 0 .X / .  These notions can be extended to functions tak-
ing values in a separable normed vector space .B ; k  kB /; for instance,

L p . X I B /  WD 
®

F 2  L 0 . X I B /  W kF kL p . X I B /  D  kkF kB kL p . X /  <  1
¯

;

where L 0 . X I  B / denotes1 the space of measurable functions from X  to B  (up to almost
everywhere equivalence). For any p 2  Œ1; 1•, w e define a weak-Lp space of measurable
functions on X  by setting

L p ; 1 . X /  WD ¹ f  W X  !  CW kf kL p ; 1 . X /  <  1 º ;

where for any p 2  Œ1; 1/ we have

k f  kL p ; 1 . X /  WD sup . ¹ x  2  X  W jf .x /j >  º/1=p ; and     k f  k L 1 ; 1 . X /  WD k f  k L 1 . X / :
> 0

In our case, we will mainly take X  D  R d  or X  D  T d  equipped with the Lebesgue
measure, and X  D  Z d  endowed with the counting measure. If X  is endowed with a count-
ing measure, we will abbreviate L p . X /  to ̀ p .X / ,  L p . X I B /  to ̀ p .X I B / ,  and L p ; 1 . X /  to
` p ; 1 . X / .

2.4. Fourier transform

We will use the convention that e.z/ D  e2i z for every z 2  C ,  where i 2 D   1. Let F  d

denote the Fourier transform on R d  defined for any f  2  L 1 . R d  / and for any  2  R d  as
Z

F R d  f . /  WD f .x / e.x   / dx:
R d

We can also consider the Fourier transform for finite Borel measures  on R d  . If f  2
` 1 .Z d  /, we define the discrete Fourier transform (Fourier series) F  d , for any  2  T d  , by
setting

F Z d  f . /  WD 
X  

f .x / e.x   /:
x 2 Z d

Sometimes we shall abbreviate F Z d  f  or F R d  f  to f  , if the context will be clear.
Let G  D  R d  or G  D  Z d  . It is well known that their corresponding dual groups

are G  D  .R d  / D  R d  or G  D  . Z d  / D  T d  , respectively. For any bounded function
mWG !  C  and a test function f  WG !  C ,  we define the Fourier multiplier operator by

Z
(2.1) TGŒm•f .x / WD e.   x / m./ FG f ./ d ; for x  2  G :

G

One may think that f  W G  !  C  is a compactly supported function on G  (and smooth if
G  D  R d  ) or any other function for which (2.1) makes sense.

1Note that there are various definitions of L 0 . X I B /  in the literature.
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2.5. Littlewood–Paley theory

Often we will control oscillation and variation semi-norms by certain square functions of
the form

S . f  /.x / WD jk  f .x /j2 ;
k 2 Z

where . k / k 2 Z  is a sequence of Borel measures on R d  with bounded total variation sat-
isfying jy ./j  C  min¹jak C1 j ; jak j º for some ˛  >  0 and for all k 2  Z .  Here,
infk 2 Z  ak C1 =ak >  1. What we call standard Littlewood–Paley arguments sometimes refer
to the arguments developed in the seminal paper [20]. In particular, Theorem B  in [20]
implies that the square function S  satisfies L p  bounds k S . f  /kL p   Cp k f  kL p      for all p
2  . 1 ; 1 /  whenever the corresponding maximal function  associated to the measures . k / k 2 Z

satisfies the same L p  bounds.
At one point we will use a powerful square function bound of Rubio de Francia asso-

ciated to any pairwise disjoint collection of intervals . I  W j  2  Z /  on R .  It states

j 2 Z  

jTRŒ1I • f  j2
1=2

Lp .R/  
� k f  kL p . R /

whenever p 2  Œ2; 1/. See Theorem 1.2 in [71].

2.6. Coordinatewise order

For any x  D  .x1 ; : : : ; xk / 2  R k  and y  D  .y1 ; : : : ; yk / 2  R k ,  we say x   y  if an only if x i   y i
for each i 2  Œk• . We also write x   y  if and only if x   y  and x  ¤  y , and x  s y  if and only if
x i  <  y i  for each i  2  Œk• . Let I   R k  be an index set such that # I   2, and
for every J  2  Z      [  ¹ 1 º  define the set

(2.2) S J  . I /  WD 
®

.ti W i  2  N
J
 /  IWt0 s t1 s : : : s t J  

¯
;

where N 1  WD N . In other words, S J  . I /  is the family of all strictly increasing sequences
(with respect to the coordinatewise order) of length J  C  1 taking their values in the set I .

2.7. Oscillation semi-norms

Let I   R k  be an index set such that # I   2. Let .a t .x / W t 2  I /  be a k-parameter family of
complex-valued measurable functions defined on X .  For any J   I ,  any 1  r <  1  and a
sequence I  D  . I i  W i 2  N

J
 / 2  S J  . I /,  the multi-parameter r-oscillation seminorm is defined

by

(2.3) O r      .a t .x / W t 2  J /  WD 
J  1

sup jat .x/      aI  .x/jr
1= r

;
j D 0  t 2BŒI • \ J

where BŒIi • WD ŒIi1; I.i C1/1/    ŒIi k ; I.i C1/k / is a box determined by the element I i  D
.Ii1 ; : : : ; Ii k / of the sequence I  2  S J  . I /.  In order to avoid problems with measurability,
we always assume that I  3  t !  at .x/ 2  C  is continuous for -almost every x  2  X ,  or J  is
countable. We also use the convention that the supremum taken over the empty set is zero.



r

r r r

r

N N N

NI ; J I ; J

L  . X / NI ; J L  . X /

N

n ! 1 n ! 1

n n

n ! 1L  . X / L  . X /

L  . X /
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Remark 2.4. Let 1  r <  1 .  Some remarks are in order.
(1) Clearly, OI ; J  .at W t 2  J /  defines a semi-norm.

(2) Let I   R k  be an index set such that # I   2, and let J1 ; J2   I  be disjoint. Then for
any family .at W t 2  I /   C ,  any J  2  Z C  and any I  2  S J  . I /,  one has

OI ; J  .at W t 2  J 1  [  J2 /  OI ; J  .at W t 2  J1 / C  OI ; J  .at W t 2  J2 /:

(3) Let I   R k  be a countable index set such that # I   2 and J   I .  Then for any
family .at W t 2  I /   C ,  any J  2  Z C ,  any I  2  S J  . I /, one has

(2.5) OI ; J  .at W t 2  J /  � 
X

ja t j r
1 = r

:  t 2 I

(4) Let .at W t 2  I k /  be a k-parameter family of measurable functions on X .  For any
I R  with # I   2 and any sequence I  D  . I i  W i 2  N J  / 2 S J  . I /  of length J  2  Z C  [ ¹ 1 º ,  we
define the diagonal sequence I  D  . I i  W i 2  N J  / 2  S J  . I k /  by setting I i  D  .Ii ; : : : ; I i / 2  I k

for each i 2  N J  . Then for any p 2  Œ1; 1• and for any J   I k ,  one has

sup     kOr      .at W t 2  J /kL p . X /  sup kOr      .at W t 2  J /kL p . X / :
I 2 S J  . I /                                                                          I 2 S J  . I k /

We now show that oscillation semi-norms always dominate maximal functions.

Proposition 2.6. Assume that k 2  Z C ,  I   R  is such that # I   2, and let .at W t 2  I k /  be a k-
parameter family of measurable functions on X .  Then for every p 2  Œ1; 1 •  and r 2
Œ1; 1/, we have

(2.7) sup jat j p  sup kat kLp .X / C  sup sup O r      .atWt 2 I k /  
p ;

t 2.I n¹sup I º/k                                                t 2 I k J 2 Z C  I 2 S J  . I /

where I  2  S J  . I k /  is the diagonal sequence corresponding to a sequence I  2  S J  . I /  as
in Remark 2.4.

Proof. Let a D  inf I and b D  sup I. We see that a <  b, since # I   2. We choose a decreas-ing
sequence .an

 
W n 2  N /  I  and an increasing sequence .bn W n 2  N /  I  such that a  an  bn  b

for every n 2  N , satisfying

lim an D  a and lim bn D  b;

and such that an D  a for all n 2  N  if a 2  I .  By the monotone convergence theorem, we get
sup jat j

 
p D  lim sup jat j

 
p

t 2.I n¹sup I º/k t 2Œan ;bn /k \I k

 sup kaaNn kL p . X /  C  sup sup jat      aaNn j p ;
t 2Œan ;bn /k \I k

where aNn D  .an; : : : ; an/ 2  Œan; bn/k \  I k ,  and consequently we obtain (2.7).
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A  remarkable feature of the oscillation seminorms is that they imply pointwise con-
vergence. This property is formulated precisely in the following proposition.

Proposition 2.8. Let . X ;  B . X / ;  / be a -finite measure space. For k 2  Z C ,  let .at W t 2
R k  / be a k-parameter family of measurable functions on X .  Suppose that there are p; r
2  Œ1; 1/ such that for any J  2  Z C  one has

sup kOr      .at W t 2  R k  /kL p . X /   Cp ; r . J /;
I 2 S J  . R C /

where
lim J  1=.p _r /  C . J /  D  0;

J ! 1

and I  2  S J  . R k  / is the diagonal sequence corresponding to a sequence I  2  S J  . R C /  as
in Remark 2.4. Then the limits

(2.9)
m i n ¹ t 1 ; : : : ; t k º ! 1  

a.t1;:::;tk / and
max¹t1 ;:::;tk º!0 

a.t1;:::;tk /;

exist -almost everywhere on X .

Proof. We only prove the first conclusion of (2.9), as the second one can be proved in
much the same way. Suppose by contradiction that the first limit in (2.9) does not exist
almost everywhere on X .  Since  is a -finite measure, then there exists X 0

 
 X  such that

.X0 / <  1 ,  and also there is a small ı  >  0 such that
 ®

x 2  X  W lim sup ja .x /      a .x/j >  2ı
¯ 

>  2ı ;
N ! 1  s;t N

where N D  .N; : : : ; N / 2  Z C .  For N 2  Z C ,  define

A N  WD 
®

x 2  X 0  W sups;t N jas .x/      at .x/j >  2ı
¯

:

Note that A N C 1   A N  for every N 2  Z C ,  and consequently from the continuity of mea-
sure one has

lim 
 ®

x 2  X 0  W sups;t N jas .x/      at .x/j >  2ı
¯ 

>  2ı :

Hence there is an N0 2  Z C  such that for every N  N0, we have
 ®

x 2  X 0  W supt N jat .x/      aN .x/j >  ı
¯ 

>  ı :

For M; N 2  Z C ,  we now define

B M  WD 
®

x 2  X 0  W supN t s M jat .x/      aN .x/
¯ 

>  ı j:

We observe that B N   B N for every M; N 2  Z C  and using once again continuity of
measure, we obtain for every N  N0,

(2.10) lim . B M  / D  
 ®

x 2  X 0  W supt N jat .x/      aN .x/j >  ı
¯ 

>  ı :
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Using (2.10) recursively, we can construct a strictly increasing sequence . I i  W i 2  N /  R C
with I 0  D  N0 such that for every i  2  N  we have

(2.11)
 ®

x 2  X 0  W supt 2BŒIi • jat .x/      aI i  
.x /j >  ı

¯ 
>  ı ;

where I i  D  .Ii ; : : : ; I i / 2  R C .  Then by (2.11) we obtain for every J  2  Z C  that

J  1 Z     J  1

J ı p C 1  D ı p C 1  sup jat .x/      a N .x /jp d.x /
j D 0                           X  j D 0  t 2BŒI •

 J 1  q=r sup kOr      .at W t 2  R k  /kp
p ;

I 2 S J  . Z C /

where q WD p ^  r. Thus

J q = r ı p C 1  sup kOr      .at W t 2  R k  /kp
p  Cp ; r . J / p :

I 2 S J  . R C /

Letting J  !  1  we get a contradiction. This completes the proof of Proposition 2.8.

2.8. Variation semi-norms

We recall the definition of r-variations. For any I   R ,  any family .at W t 2  I /   C ,  and any
exponent 1  r <  1 ,  the r-variation semi-norm is defined to be

(2.12) V r .a W t 2  I /  WD sup  sup
J  1 

ja      a jr
1=r

; t
< < t

t 2 I

where the latter supremum is taken over all finite increasing sequences in I .

Remark 2.13. Some remarks about definition (2.12) are in order.

(1) Clearly, V r .at W t 2  I /  defines a semi-norm.

(2) The function r !  V r .at W t 2  I /  is non-increasing. Moreover, if I1   I2 , then

V r .at W t 2  I1 /  V r .at W t 2  I2 /:

(3) Let I   R  be such that # I   2. Let .at W t 2  R /   C  be given, and let r 2  Œ1; 1/. If V
r .at W t 2  R /  <  1 ,  then l i m t ! 1  at exists. Moreover, for any t0 2  I  one has

(2.14) sup jat j  jat j C  V r .at W t 2  I /:
t 2 I

(4) Let I   R  be such that # I   2. Then for any r  1, any family .at W t 2  I /   C ,  any J
2  Z C  [  ¹ 1 º ,  and any I  2  S J  . I /, one has

(2.15) OI ; J  .at W t 2  I /   V r .at W t 2  I /   2
X

ja t j r
1 = r

:  t 2 I



I ; N

I ; N L  . X /

X
t t p

jt 2 I j J
j j
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®
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j      j 1 j J
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(5) Let .a t .x / W t 2  R C /  be a family of complex-valued measurable functions on a
-finite measure space .X ; B .X /; / .  Then for any p  1 and r  2 we have

(2.16)  sup sup kOr       .at W t 2  R C / kL p . X /
N 2 Z C  I 2 S N  . R C /

� sup sup     kOr       .a W t 2  D/k p C  V r .a W t 2  Œ2n; 2nC1• /2 
1=2

:
N 2 Z C  I 2 S N  . D / n 2 Z L  . X /

The inequality (2.16) is an analogue of Lemma 1.3 on p. 6716 of [37] for oscillation
semi-norms.

2.9. Jumps

The r-variation is closely related to the -jump counting function. Recall that for any
>  0, the -jump counting function of a function f  WI !  C  is defined by

Nf  WD N.f .t /  W t 2  I /
(2.17) WD sup J  2  N  W 9t 0 <<t J  W 

0
min

 1 
j f . t  C1 /       f . t  /j   :

Remark 2.18. Some remarks about definition (2.17) are in order.
(1) For any  >  0 and a function f  WI !  C ,  let us also define the following quantity:

N f  WD N.f . t /  W t 2  I /
WD sup J  2  N  W 9s < t  s < t       W min jf . t  /      f . s  /j   : s ;t 2 I

Then one has N f   N f   N=2 f .
(2) It is clear from these definitions that f  !  sup kN.f .; t / W t 2  I /1 =kL p . X /

satisfies a quasi-triangle inequality. However it is not obvious whether a genuine triangle
inequality is available for -jumps. In many applications, the problem can be overcome
since there is always a comparable semi-norm in the following sense. Namely, for every p
2  .1 ; 1/ ,  and  2  . 1 ; 1 /  there exists a constant 0 <  C  <  1  such that for every measure space
.X ; B .X /; / ,  and I   R ,  there exists a (subadditive) seminorm jjj jjj such that the following
two-sided inequality

C  1jjjf jjj  sup kN.f .; t / W t 2  I /1 =kL p . X /   C jjjf jjj > 0

holds for all measurable functions f  WX  I  !  C .  This was established in Corollary 2.2
on p. 805 of [57].

(3) Let .at .x / W t 2  R/  be a family of measurable functions on a -finite measure space
.X ; B .X /; / .  Let I   R  and # I   2. Then for every p 2  Œ1; 1• and r 2  Œ1; 1/, we have

(2.19)  sup kN.at W t 2  I /1 = r kL p . X /   kV r .at W t 2  I /kL p . X / ;  > 0

since for all  >  0 we have the following pointwise estimate:

N.at .x/ W t 2  I/1= r  V r .a t .x / W t 2  I /:



I ; N C

C

X
I Ij C 1 j p p ; r L  . X /

j  j

t j p ; r jp p
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(4) Let . X ; B . X / ;  / be a -finite measure space and let I   R .  Fix p 2  Œ1; 1 •  and 1
<  r  1 .  Then for every measurable function f  WX  I  !  C  we have the estimate (2.20)

kV r
 
f .; t / W t 2  I k L p ; 1 . X /  �p;;r  sup kN.f .; t / W t 2  I / 1 =kL p ; 1 . X / :

> 0

The inequality (2.20) can be thought of as an inverse to inequality (2.19). A  proof of (2.20)
can be found in Lemma 2.3 on p. 805 of [57]. Moreover, one cannot replace L p ; 1 . X /
with L p . X /  in (2.20), see Lemma 2.24 in [54]. One can also show that there is a function f
W ZC Z C  !  R  such that

sup sup kOr       . f . ; n/ W n 2  Z
C
/ k ` p . Z  / D  1 ; 2  r  1 ;

N 2 Z C  I 2 S N  . Z C /

but
sup kN.f .; n/ W n 2  Z C / 1 = 2 k ` p . Z  / <  1 :  > 0

3. One-parameter oscillation estimates

We state a simple one-parameter oscillation estimate for projections, which has many
interesting implications. Here we are inspired by observations of M. Lacey who high-
lighted and pointed out the importance of projections in pointwise ergodic theory; see [70].

Theorem 3.1. Let .X ; B .X / ; /  be a -finite measure space and let I   R  be such that # I   2.
Let .P t / t 2 I  be a family of projections; that is, the linear operators Pt W L0.X / !  L 0 . X /
satisfy

(3.2) Ps P t  D  Ps ^t ; for s D  t:

If the set I  is uncountable, then we assume in addition that I  3  t !  P t f  is continuous -
almost everywhere on X  for every f  2  L 0 .X / .  Let p; r 2  . 1 ; 1 /  be fixed. Suppose that the
P t  are bounded on L p . X / ,  and suppose that the following two estimates hold:

(3.3) sup sup 
J  1

j.P      P  / f  jr
1=r

� k f  k p ; f  2  L p . X / ;
J 2 Z C  I 2 S J  . I / j D 0 L  . X /

and the vector-valued estimate uniformly in . f  / 2 Z  2  L p . X I ` r . Z / /

(3.4)
X

s u p j P  f  jr
1=r

�
X

j f  jr
1=r

:

j 2 Z  t 2 I L  . X /
j 2 Z

L  . X /

Then the following one-parameter oscillation estimate holds:

(3.5)  sup sup kO r      . P t f  W t 2  I /kL p . X /  �p;r k f  kL p . X / ; f  2  L p . X / :
J 2 Z C  I 2 S J  . I /

Proof. Fix J  2  Z C  and I  2  S J  . I /  and observe, using (3.2), that

.P t       P I  / f  D  P t . P I  C 1       P I  /f; whenever I  <  t <  I  C1 :



X

j D 0 j j

t I j p

t 2 I L  . X /j j

1=rX X
I I

1=r

L  . X /

j

X

j D 0
j I j C 1 I j p p L  . X /

t t p p L  . X /

I ; J

t 2 I
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Using this identity and then (3.4), we see that
J  1

sup jP f       P  f  jr
1=r

I  < t < I  C 1 L
. X /  t 2 I

J 1 J 1

 sup jP t .PI  C 1   P I  / f  jr  
p

�p;r j .P  j C 1   P  j  / f  jr  
p

:
j D 0                                                                                                                   j D 0

Now applying (3.3) we arrive at (3.5). The proof of Theorem 3.1 is complete.

Remark 3.6. A  few remarks are in order.
(1) Theorem 3.1 will be applied mainly when r D  2. Then the estimate in (3.3) is a

square function estimate, which can be deduced from the estimate

J 1
(3.7) sup sup sup " . P f   P  f  / � k f  k p ; f  2 L p . X / :

J 2 Z C  I 2 S J  . I /  j" j1 L
. X /  0 j J

In fact, the implication from (3.7) to (3.3) is a simple consequence of Khintchine’s
inequality.

(2) Let . X ;  B . X / ;  / be a -finite measure space, let I   R  be countable, and let
.T t / t 2I be a family of bounded operators on L p . X /  for p 2  . 1 ; 1 /  satisfying

(3.8)
X

j . T       P  / f  j2
1=2

� k f  k p ; f  2  L p . X / ;

t 2 I
L  . X /

where .P t / t 2 I  is a family of projections as in Theorem 3.1 satisfying (3.3) and (3.4) with
r D  2. Then one has

(3.9)  sup sup kO2     .T t f  W t 2  I /kL p . X /  �p k f  kL p . X / ; f  2  L p . X / :
J 2 Z C  I 2 S J  . I /

In fact, in view of (2.15), the inequality (3.8) easily reduces the 2-oscillation estimate for
.Tt / t 2I to a 2-oscillation estimate for .P t / t 2I .  This observation will be very useful in
many applications. We will see how it works in the case of smooth bump functions, see
Theorem 3.17.

(3) As we know, oscillation inequalities are important in pointwise convergence prob-
lems, and in the vast majority of applications it suffices to understand (3.9) for p D  2. This
can be nicely illustrated as follows: suppose for p 2  .1; 1 /  one has an a priori maximal
bound

(3.10) ksupjPt f jkL p . X /  �p k f  kL p . X / ; f  2  L p . X / :

Then (3.10) with p D  2 can be used to verify (3.4) with p D  r D  2. Finally, it remains to
verify (3.3) with p D  r D  2, which in many cases can be deduced by using Fourier
techniques or exploiting almost-orthogonality phenomena invoking T T  arguments, see
Proposition 3.22.

We now derive some consequences of Theorem 3.1.



I ; J

X
j C 1 jI I I IJ J p p n L  . X /

ˇ ˇ
pj n jp p

j  j
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3.1. Oscillation inequalities for martingales

We recall some basic facts about martingales. We will follow notation from [28], Sec-
tion 3, p. 165. Let .X ; B .X / ; /  be a -finite measure space and let I  be a totally ordered set. A
sequence of sub--algebras . F t  W t 2  I /  is called a filtration if it is increasing and the measure
is -finite on each F t . A  martingale adapted to a filtration . F t  W t 2  I /  is a fam-ily of functions
f  D . f t  Wt 2 I / L 1 . X ; B . X / ; /  such that fs D EŒft jFs • for every s; t 2 I  so that s  t , where
EŒjF • denotes the the conditional expectation operator with respect to a sub--algebra F
B . X / .  We say that a martingale f  D  .f t

 
W t 2  I /   L p . X ; B . X / ; /  is bounded if

sup kf t kLp .X /  �p 1:
t 2 I

Applying Theorem 3.1, we immediately recover the oscillation inequality of Jones–
Kaufman–Rosenblatt–Wierdl [33], which in fact is an oscillation inequality for bounded
martingales.

Proposition 3.11. For every p 2  .1 ; 1/ ,  there exists a constant Cp  >  0 such that for every
bounded martingale f  D  . f n  W n 2  Z /   L p . X ;  B . X / ;  / corresponding to a filtration . F n  W
n 2  Z /  one has

(3.12)  sup sup kO2     . fn  W n 2  Z / kL p . X /   Cp  sup kfn kL p . X / :
J 2 Z C  I 2 S J  . Z /                                                                                    n 2 Z

Inequality (3.12) was established in Theorem 6.4 on p. 930 of [33]. The authors first
established (3.12) for p D  2, then proved weak type .1; 1/ as well as L 1  !  BMO vari-
ants of (3.12), and consequently derived (3.12) for all p 2  .1; 1 /  by interpolation. Our
approach is direct and will avoid using any interpolation arguments in the proof.

Proof of Proposition 3.11. Fix p 2  .1 ; 1/ .  Define projections by P n . f  / WD EŒf jFn •  for
any n 2  Z  and f  2  L p . X / .  Since f  D  . f n  W n 2  Z /  is a martingale, then fn  D  Pn .fn / for
any n 2  Z ,  and consequently (3.2) holds. Moreover, by Burkholder [11], see also [12], it is
very well known that (3.7) holds, which in view of Remark 3.6 implies

sup sup
J  1 

jP . f  /      P  . f  /j2
1=2

� sup kf k p :
J 2 Z C  I 2 S J  . Z C / j D 0 L  . X / n 2 Z

This consequently verifies inequality (3.3). Invoking the Fefferman–Stein inequality for
non-negative submartingales (Theorem 3.2.7 on p. 178 of [28]), we obtain

X  
sup ˇEŒjf j jF • ˇ2

1=2
� 

X
j f  j2

1=2
;

j 2 Z  n 2 Z L  . X /
j 2 Z

L  . X /

uniformly in . f  / 2 Z
 
2  L p . X I  `2 .Z//, which in turn verifies the vector-valued estimate

from (3.4). Appealing to Theorem 3.1, the oscillation inequality (3.12) follows and the
proof of Proposition 3.11 is complete.

3.2. Oscillation inequalities for smooth bump functions

Our aim will be to show that oscillation inequalities hold for L1-dilated smooth bump
functions. We begin with the main estimate.



J 2 Z
I ; J

R

J 2 Z
I ; J

J 2 Z
I ; J
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Proposition 3.13. For d 2  Z C ,  let WRd !  Œ0;1• be a smooth function satisfying

(3.14) 1Œ  1;1• d    1Œ 2;2• d for  2  R d  :

For every n 2  Z  and  2  R d  , define 2n ./ WD .2 n/. Then for every p 2  .1 ; 1/ ,  one has

(3.15) sup sup kO2     .TR d  Œ2n • f  W n 2  Z / kL p . R d  / �p k f  kL p . R d  /;
C  I 2 S J  . Z /

uniformly in f  2  L p . R d  /.

Proof. Setting P n f  WD T d Œ2n • f  for every n 2  Z ,  and using (3.14), one sees that P n  is a
projection in the sense of (3.2). Standard arguments based on the Littlewood–Paley theory
(see Section 2.5) show that (3.3) with r D  2 holds. By the Fefferman–Stein inequality [72],
we also obtain (3.4). An application of Theorem 3.1 now gives (3.15) as desired.

Now our aim will be to extend inequality (3.15) to continuous times and general
smooth bump functions.

Remark 3.16. A  few remarks concerning Proposition 3.13 are in order.
(1) An important feature of our approach in Proposition 3.13 is that we do not need

to invoke the corresponding inequality for martingales in the proof. This stands in sharp
contrast to variants of inequality (3.15) involving r-variations, where all arguments to the
best of our knowledge use the corresponding r-variational inequalities for martingales.

(2) Of course, inequality (3.15) can be reduced to the martingale setting from Propo-
sition 3.11 by invoking square function arguments (Lemma 3.2 on p. 6722 of [37]) and
standard Littlewood–Paley theory. The details may be found in [58].

(3) With respect to the previous two remarks, it would be interesting to know whether
the r-variational counterpart of Proposition 3.13 can be proved without appealing to r-va-
riational inequalities for martingales, see Lépingle’s inequality (1.13).

Theorem 3.17. For d 2  Z C ,  let W R d  !  C  be a Schwartz function. For t 2  R C  and x
2  R d  , define t .x / WD t  d .t  1x/. Then for every p 2  .1 ; 1/ ,  one has

(3.18) sup sup kO2     .t  f  W t 2  R C / kL p . R d  / �p k f  kL p . R d  /; f  2  L p . R d  /:
C  I 2 S J  . R C /

Remark 3.19. Theorem 3.17 immediately extends to families of partial convolution oper-
ators. If R d  D  R n   Rm , we write elements x  2  R d  as x  D  .x0; x00/, where x0 2  R n  and

x00 2  Rm . Let  be a Schwartz function on R n  and define
Z

T t f .x / D f .x 0       y; x00/ t .y/ dy:
R n

The oscillation inequality (3.18) implies the corresponding oscillation inequality for the
family of partial convolution operators .T t / t 2 R C  .

Proof of Theorem 3.17. To prove (3.18), in view of (2.16), it suffices to show

(3.20) sup sup     kO2     .t  f  W t 2  D /kL p . R d  / �p k f  kL p . R d  /; f  2  L p . R d  /;
C  I 2 S J  . D /



t p         d
p         dL  . R  /

R
RR R

R R

R

2k
p         d

p         dL  . R  /

n

I ; J

n 2 N

I ; J

X
I I

1=2 2

L  . X /

I IX X X

j j
X
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(3.21)  X  
V 2

 
  f  W t 2  Œ2k; 2kC1• 2 1=2

� k f  k ;

k 2 Z
L  . R  /

2274

f  2  L p . R d  /:

Short 2-variational estimates were treated in [37] and in particular, the estimate (3.21)
follows directly from Lemma 6.1 in [37].

To establish (3.20), we first observe that we may assume that d .x /d x D  0. Indeed, if
d .x /d x ¤  0, then by scaling we may assume that d .x /d x D  .0/ D  1, where

appears in Proposition 3.13. By standard Littlewood–Paley arguments (see Section 2.5),
we note that (3.8) holds with T t f  D  t  f  and P t f  D  T d Œt•f . Thus, by Remark 3.6, we
see that (3.20) follows from the oscillation inequality (3.15) and so we may assume
has mean zero. Using (2.5), we see that

LHS of (3.20) � 
 X  

j  f  j2
1=2

� k f  k I

k 2 Z
L  . R  /

the last inequality following directly from Theorem B  in [20]; see Section 2.5. This com-
pletes the proof of Theorem 3.17.

3.3. Oscillation inequalities for orthonormal systems

The following result justifies in a strong sense the importance of oscillation inequalities.

Proposition 3.22. Let . X ;  B . X / ;  / be a -finite measure space such that the corre-
sponding Hilbert space L 2 . X /  is endowed with an orthonormal basis .ˆ n / n 2 N .  Then the
projection operators

(3.23) P n f  WD 
X

h f ; ˆ k i ˆ k ; f  2  L 2 .X / ;
k D 0

satisfy the oscillation estimate

(3.24)  sup sup kO2     . P n f  W n 2  N N  /kL 2 . X /  � log.N C  1/ kf kL 2 . X / :
J 2 Z C  I 2 S J  . N N  /

Furthermore, if the projection operators P n  satisfy the maximal estimate
(3.25) sup jP n f  j L 2 . X /  � k f  kL 2 . X / ; f  2  L 2 .X / ;

then one has the uniform bound

(3.26)  sup sup     kO2     . P n f  W n 2  N /kL 2 . X /  � k f  kL 2 . X / ; f  2  L 2 .X / :
J 2 Z C  I 2 S J  . N /

Proof. It is easy to see that P n  from (3.23) satisfies (3.2). To verify (3.3), we fix J  2  Z C
and I  2  S J  .N / and note that by orthogonality we have
J  1 J  1 j C 1 j C 1

j .P  j C 1       P  j  / f  j2  
2

D hf; ˆ k 1  ihf ; ˆ k 2  ihˆk 1  ; ˆ k 2  i
j D 0                                                                                     j D 0  k 1 D I  C 1  k 2 D I  C 1

jhf; ˆk ij2  D  k f  kL 2 . X / ;
k 2 N



L  . X /

P n
k D 0

t >0
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where in the last equality we have used Parseval’s identity for orthonormal bases. This
proves (3.3) with p D  r D  2. A  famous result of Rademacher [68] and Menshov [52]
asserts that there is a constant C  >  0 such that for any N 2  Z C ,  the projection operator P n

from (3.23) satisfies

(3.27)  sup jP n f  j 2  C  log.N C1/
 X  

jhf; ˆn ij2
1=2 

� log.N C1/ kf kL 2 . X / :
n2ŒN •                                                                              

 n2ŒN •

Using (3.27), we see that (3.4) holds with p D  r D  2 with constant log.N C  1/. Now
applying Theorem 3.1 we obtain (3.24).

Under condition (3.25), we see that (3.4) holds with a uniform constant for p D  r D  2
and so, applying Theorem 3.1 again, we obtain (3.26).

Proposition 3.22 is a key example in the study of oscillation semi-norms from the point
of view their importance and usefulness in pointwise convergence problems. It exhibits,
in view of inequality (2.7), that oscillation estimates (3.26) and maximal estimates (3.25)
are equivalent in the class of orthonormal systems.

However, we have to emphasize that the maximal estimate from (3.25) is a very strong
condition. On the one hand, we have Menshov’s construction [52] of an orthonormal basis
.‰n/n2N  L2.Œ0; 1• / and a function f 0

 
2  L2.Œ0; 1• / with almost everywhere diverging

partial sums hf;‰ki‰k. Therefore maximal estimate (3.25) for Menshov’s system
cannot hold. In fact, the best what we can expect in the general case is the Rademacher–
Menshov bound (3.27). The above-mentioned Menshov’s construction [52] also shows
that (3.27) is sharp and that the logarithm in (3.27) cannot be removed.

On the other hand, there is the famous result of Carleson (see [15]) which led to
establishing (3.25) for the canonical trigonometric system .e.n//n2Z on L2.Œ0; 1• / (see
also [22, 27, 48]).

3.4. Oscillation inequalities for the Carleson operator

In this subsection, we obtain certain r-oscillation estimates for partial Fourier integrals on
the real line R .

The Carleson operator Ct is defined, for f  2  .R/,  x  2  R  and t 2  R C ,  by Z
t

(3.28) C t f .x /  WD TRŒ1Œ t ;t • • f .x / D F R f . / e .  x/ d ;
 t

The celebrated Carleson–Hunt theorem (see the papers of Carleson [15] and Hunt [27])
asserts that for every p 2  . 1 ; 1 /  there is a constant Cp  >  0 such that

(3.29) sup jCt f j L p . R /   Cp k f  kL p . R / ; f  2  L p . R / :

Remark 3.30. A  few remarks about the Carleson–Hunt theorem are in order.
(1) Carleson [15] originally proved that the maximal partial sum operator of Fourier

series corresponding to square-integrable functions on the circle is weak type .2; 2/. Not
long afterwards this result was extended by Hunt [27] who proved that the maximal partial
sum operator of Fourier series is bounded on L p . T /  for any p 2  .1 ; 1/ .



t j p ; r jp p

j  j

® ¯

I ; J
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(2) Kenig and Tomas [39] used a transplantation arugment to show that the latter result
is equivalent to inequality (3.29). This equivalence was extended to variation and oscil-
lation inequalities in [63]. The foundational work of Kolmogorov [40, 41] shows that the
range of p 2  . 1 ; 1 /  in inequality (3.29) is sharp.

(3) An alternative proof of Carleson’s theorem was provided by Fefferman [22], who
pioneered the ideas of the so called time-frequency analysis.

(4) Lacey and Thiele [48] established an independent proof on the real line of the
weak type .2; 2/ boundedness of the maximal Fourier integral operator (3.28). The latter
bound was extended by Grafakos, Tao, and Terwilleger [25] to (3.29) for all p 2  .1 ; 1/ ,
see also [67].

(5) Inequality (3.29) was extended to the vector-valued setting by Grafakos, Martell
and Soria [24], who proved that that for every p; r 2  .1 ; 1/ ,  there is a constant Cp ; r  >  0
such that

(3.31)
X

s u p  jC f  jr
1=r

 C
X

j f  jr
1=r

;

j 2 Z  t >0 L  . R /
j 2 Z

L  . R /

uniformly in . f  / 2 Z  2  L p . X I ` r . Z / / .
(6) We finally refer to the survey of Lacey [45], where details (including comprehen-

sive historical background) and an extensive literature are given about this fascinating
subject of pointwise convergence of Fourier series and related topics.

A  far-reaching quantitative extension of (3.29) was obtained by the third author in
collaboration with Oberlin, Seeger, Tao and Thiele [63], which asserts that for every p 2
. 1 ; 1 /  and for every r >  max¹2; p=.p      1/º, there is a constant Cp ; r  >  0 such that

(3.32) kV r . C t f  W t 2  R C / kL p . R /   Cp ; r k f  kL p . R / ; f  2  L p . R / :

See also in [75] for a different proof using outer measures. Furthermore, a restricted weak-
type bound is established at the endpoint p D  r0 when p 2  .1; 2/ (here r0 D  r=.r   1/) and
it is open whether weak type .p; p/ holds true. It also follows from [63] that the ranges
of parameter p 2  . 1 ; 1 /  and r >  max 2; p0     in (3.32) are sharp. In the endpoint case p
D  r0, the Lorentz space L r 0 ; 1  cannot be replaced by a smaller Lorentz space. For
weighted variational estimates for the Carleson operator, see [18] and [17], and the
references given there.

Inequality (3.32), in view of inequality (2.15), immediately implies that for every p 2
.1; 1 /  and for every r >  max¹2; p0º, there is a constant Cp ; r  >  0 (actually, the same as
in (3.32)) such that

(3.33)  sup sup kOr      . C t f  W t 2  R C / kL p . R /   Cp ; r k f  kL p . R / ; f  2  L p . R / :
J 2 Z C  I 2 S J  . R C /

For applications of (3.32) and (3.33) to the Wiener–Wintner theorem in ergodic theory,
see [47] and [63].

It has been observed by M. Lacey [44] (see [70] for the case p D  2) that (3.33) remains
true for r D  2 whenever p 2  Œ2; 1 / .  Furthermore, this can be extend to all p >  1 when we

restrict the t parameter in Ct to dyadic numbers t 2  D . Our aim here is to show how these
results follow as an immediate consequence of Theorem 3.1.
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Proposition 3.34. Let . C t / t 2 R       be as in (3.28). Then for every p 2  Œ2; 1/, there exists a
constant Cp  >  0 such that

(3.35)  sup sup kO2     . C t f  W t 2  R C / kL p . R /   Cp k f  kL p . R / ; f  2  L p . R / :
J 2 Z C  I 2 S J  . R C /

Furthermore, for . C t / t 2D , we have

(3.36)     sup sup kO2     . C t f  W t 2  D /kL p . R /   Cp k f  kL p . R / ; for all p 2  .1 ; 1/ :
J 2 Z C  I 2 S J  . D /

Proof. Observe the operators . C t / t 2 R       are projections in the sense of (3.2). Moreover,
when the sequence . I  / 2 N   D  lies among the dyadic numbers, the bound

sup sup     
J  1 

j.C      C  / f  j2
1=2

� k f  k p ; p 2  .1 ; 1/ ;
J 2 Z C  I 2 S J  . D / j D 0 L  . R /

follows from the classical Littlewood–Paley inequality associated to dyadic intervals (no
need to refer to the refinements of the theory from Section 2.5). This verifies (3.3) with r
D  2 and p 2  .1; 1 /  in the dyadic case. Furthermore, by Rubio de Francia’s square
function theorem for intervals (see Section 2.5), one has for every p 2  Œ2; 1/ that

sup sup
J  1 

j .C      C  / f  j2
1=2

� k f  k p ; f  2  L p . R / ;
J 2 Z C  I 2 S J  . R C / j D 0 L  . R /

which verifies (3.3) with r D  2 and p 2  Œ2; 1 / .  Using (3.31) with r D  2, we also see that
(3.4) is verified with r D  2 and p 2  .1; 1 / .  Thus, invoking Theorem 3.1, inequali-ties
(3.35) and (3.36) follow.

Proposition 3.34 for p D  2 was established by Rosenblatt and Wierdl (see inequal-
ity (4.12) on p. 82 of [70]). In [47], Lacey and Terwilleger established (3.36) for p 2
.1 ; 1/ .  Proposition 3.34 gives a simple proof of these results.

In view of inequality (2.7) it is not difficult to see that the maximal estimates (3.29) and
the oscillation estimates (3.35) for the Carleson operator are equivalent for all p 2  Œ2; 1/.

We also remark that the proof above also gives a proof of (3.33) which does not appeal
to the variational inequality (3.32). Indeed, Rubio de Francia’s result (inequality (7.1) on
p. 10 of [71]) states that for every p 2  .1; 2/ and r >  p0, one has

(3.37)  sup sup
J  1 

j .CI      C I  / f  jr
1=r

�p;r k f  kL p . R / ;
J 2 Z C  I 2 S J  . R C /         j D 0

for f  2  L p . R / .  Hence using (3.37) and (3.31) and invoking Theorem 3.1, we obtain the
desired claim in (3.33).

A  counterexample of Cowling and Tao [16] to Rubio de Francia’s conjecture (Conjec-
ture 7.2 in [71]) shows that for all p 2  .1; 2/, one has

sup sup
X

j . C      C  / f  jr
1=r

D  1 ;
k f  kL p . R / 1  I 2 S 1 . R C / j D 0 L  . R /

where     r D  
p      1

Therefore (3.33) for r D  p0 with p 2  .1; 2/ cannot hold. This shows that the range of p
and r in (3.33) and (3.35) is sharp.
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4. Multi-parameter oscillation estimates

In this section we establish Theorem 1.25. We begin with proving an abstract multi-
parameter oscillation result, which may be of independent interest. Before we do this, we
need more notation. For a linear operator T W L0.X/ !  L 0 .X / ,  we shall denote by jT j the
sublinear maximal operator taken in the lattice sense defined by

jT j f .x /  D  sup jT g.x/j; x  2  X ;  and f  2  L p . X / :
j g j j f  j

For two linear operators S ; T W L 0 . X /  !  L 0 .X / ,  we have jS T j f   jS jjT j f  whenever f
2  L 0 .X / .

Proposition 4.1. Let . X ;  B . X / ;  / be a -finite measure space and let I   R  be such that # I
2. Let k 2  N2 and p; r 2  .1; 1 /  be fixed. Let .Tt / k  be a family of linear
operators of the form

Tt WD Tt1 
Ttk 

; t D  .t1; : : : ; tk / 2  I k ;

where ¹Tt W i 2  Œk• ; ti 2  I º  is a family of commuting linear operators, which are bounded
on L p . X / .  If the set I  is uncountable, then we also assume that I  3 t ! T  i f  is continuous -
almost everywhere on X  for every f  2 L 0 . X /  and i 2Œk• . Further assume that for every i 2
Œk•, we have

(4.2)  sup sup kO r      .T i f  W t 2  I /kL p . X /  �p;r k f  kL p . X / ; f  2  L p . X / ;
J 2 Z C  I 2 S J  . I /

and

(4.3)
X  

supjT i jjf  jr 1=r
�

X
j f  jr

1=r
;

j 2 Z       t 2 I L  . X /
j 2 Z

L  . X /

uniformly in . f  / 2 Z  2  L p . X I  ` r .Z//.  Then we have the multi-parameter r-oscillation
estimate

sup sup     kOr      .T t f  W t 2  I k /kL p . X /  � k f  kL p . X / ; f  2  L p . X / :
J 2 Z C  I 2 S J  . I k /

Proof. For i  2  Œk• and n D  .n1; : : : ; ni  1; ni C1; : : : ; nk / 2  I k  1, let us denote

T .i / WD T 1 T i  1T i C 1  T k  :

Using this definition, the bound (4.3) and proceeding inductively, we easily see that

(4.4)
X   

sup jT . i / j jf jr 1=r
� 

X
j f  jr

1=r
;

j 2 Z      n 2 I k  1 L  . X /
j 2 Z

L  . X /

uniformly in i  2  Œk• and . f  / 2 Z  2  L p . X I  ` r .Z//.  Furthermore, for n 2  I k  and I  D
. I  1; : : : ; I k / 2  I k ,  we have the identity

(4.5) Tn f       TI  f  D  
X  

Tn.m;n ;I  / .T m      T 
j m  

/f;
mD1

where n.m; n; I / WD .n1; : : : ; nm 1 ; I .mC1/ ; : : : ; I k / 2  I k  1.
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r      1=r
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We now fix J  2  Z C  and a sequence I  2  S J  . I k /.  Applying the identity (4.5), the
triangle inequality, the bound (4.4) applied to

f  m D sup jT m f       T m f  j I
m n m < I . j C 1 / m

n m 2 I

and (4.2), we obtain
J  1

sup jT f       T f  jr
1=r

j D 0  n2BŒI • \ I k L  . X /

 
X J  1 

sup jT .m/ j jT m f       T m f  j
r 1=r

mD1 j D 0       n2BŒI • \ I k L  . X /

k      J  1  
sup jT .m/j sup jT m f       T m f  j

n 2 I k  1 I  m n m < I . j C 1 / m L
. X /  n m 2 I

� 
X J  1

sup jT m f       T m f  jr
1=r

� k f  k p :
I  m n m < I . j C 1 / m L

. X /  n m 2 I

This completes the proof of Proposition 4.1.

We have a simple consequence of the above result.

Corollary 4.6. Let k 2  N2 and fix parameters n1; : : : ; n 2  Z C ,  and p 2  .1; 1 / .  For
every i 2  Œk•, l et i  W R n i  !  C  be a Schwartz function, and define i

i  
.x / WD ti      

i  i .t i  
1x/ for

every ti 2  R C  and x  2  R  i  . Set N WD n1 C   C  nk and for t D  .t1; : : : ; tk / 2  R  and x
D  .x1; : : : ; x / 2  R N  WD Rn 1     R n k  , consider the operator Tt W Lp .RN / !  L p . R N  /
defined by

Z Z  k
T t f .x / WD  t .zi / f . x       z/ dz1 : : : dzk ; z D  .z1; : : : ; zk /:

1                         k          i D 1

Then we have the following multi-parameter oscillation estimate:

(4.7)  sup sup kO2     .T t f  W t 2  R k  /kL p . R N  / �p k f  k L p . R N  /; f  2  L p . R N  /:
J 2 Z C  I 2 S J  . R C /

Proof. For i  2  Œk• and zi 2  R n i  , we denote by z .i / D  .z .i / ; : : : ; z.i // the point in R N  D
Rn 1     R n k  such that z .i / D  1¹j º .i /zi 2  R n i  for any j  2  Œk• . We define the operators T i

W Lp .RN / !  L p . R N  / by
Z

Tt f . x /  WD  i  .z i / f .x       z.i // dzi ; x  D  .x1; : : : ; xk / 2  R N  ; ti 2  R C :
i
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These operators commute and we have Tt D  T 1 ı   ı  T k  . Furthermore, these are partial
convolution operators with Schwartz functions and so Theorem 3.17 (see Remark 3.19)
implies that the oscillation estimate (4.2) holds for the family .T i / t 2 R  , for each i  2  Œk• .
Finally, the Fefferman–Stein vector-valued maximal inequality shows that (4.3) holds and
so Proposition 4.1 gives us the desired conclusion (4.7). This completes the proof of Corol-
lary 4.6.

We close this section by establishing the main ergodic result of this survey.

Proof of Theorem 1.25. We will invoke Proposition 4.1 with k D d  and r D 2. As in (1.28)
note that

P1 .m1 /;:::;Pd .md / P1 .m1 /;:::;Pd .md / P1 .m1 / P d  .md /
M I X ; T M1 ;:::;Md IX;T1 ;:::;Td M 1 I X ; T 1 Md  I X ; T d

where the averages AP1 .m1 / ; : : : ; A P d  .md / commute. Thus it remains to verify (4.2)
and (4.3). We fix j  2  Œd• . For (4.2), we refer to Theorem 1.4 in [54], which ensures that
for every p 2  .1 ; 1/ ,  one has

sup sup kO2     . A P  .m /      W M 2  Z C / kL p . X /  �p k f  kL p . X / ; f  2  L p . X / :
J 2 Z C  I 2 S J  . Z C /

For (4.3) we refer to Theorem C  in [56], which guarantees that for every p 2 .1 ; 1/  one has
X   

sup jA P  .m / jjf  j2
1=2

� 
X

j f  j2
1=2

;

2 Z      M  2 Z C L  . X /
2 Z

L  . X /

uniformly in . f  / 2 Z  2  L p . X I  ̀ 2 .Z//. This completes the proof of the multi-parameter
oscillation inequality (1.27) in Theorem 1.25.
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