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Abstract—This paper presents a Gaussian data augmentation-
assisted deep learning using a convolutional neural network
(PCA18+GDA100+CNN LSTM) on the analysis of the state-of-
the-art infrared backscatter imaging spectroscopy (IBIS) images.
Both PCA and data augmentation methods were used to
preprocess classification input and predict with a comparable
degree of accuracy. Initially, PCA was used to reduce the number
of features. We used 18 principal components based of the
cumulative variance, which totaled 99.92%. GDA was also used
to increase the number of samples. CNN-LSTM (long short-term
memory) was then used to perform multiclass classification on
the IBIS hyperspectral image. Experiments were conducted and
results were collected from the K-fold cross-validation with
K=20. They were analyzed with a confusion matrix and the
average accuracy is 99%.

Keywords—  convolutional neural networks; principal
component analysis; data augmentation; multiclass classification
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Deep learning approaches have been applied in image
recognition for years while it is gaining more attention in the
research community over time due to the robustness and wide
applicability [1]. Recently there is a huge shift from traditional
neural network approach to deep neural network, convolutional
neural network (CNN), and many hybrid algorithms [2]-[3]. A
deep neural network (DNN) is based on an artificial neural
network with deep layer structure. Its input layer is represented
as a composition of primitives. The extra layers make use of
features from lower layers, thus potentially reduce the number
of units needed for modeling complex data than a shallow
network.

In deep learning, CNN known as ConvNet is one way to
solve the issue with DNN using convolution rather than matrix
multiplication [4]. Convolutional Neural Network (CNN) has
gotten admirable performance in the domain of image
recognition [5]. It is a common knowledge that a deep learning
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based algorithm would be more effective when accessing more
training data. Previous studies have demonstrated the
effectiveness of data augmentation through minor
modifications to the available training data, such as image
cropping, rotation, and mirroring [6]. However, these
transformations are not suitable for the infrared backscatter
images, because any cropping, rotation, and mirroring of the
original image might generate a different signature that is
associated with a different material.

In this paper, we present a novel data augmentation
technique that determines the suitable amount of white
Gaussian noise (AWGN) to be added to the original data
samples based on the desired signal-to-noise ratio (SNR). We
study how Gaussian data augmentation techniques would
impact the performance of a CNN for infrared backscatter
images classification. The rest of this paper is organized as
follows. In Section 2, the infrared backscatter imaging
spectroscopy (IBIS) technique and the convolutional neural
networks (CNN) architecture are introduced. In Section 3, a
near lossless PCA is introduced. A Gaussian data augmentation
method which can increase the number of samples 100 times is
presented. The CNN-LSTM (long short-term memory) for
multiclass classification is described. In Section 4, the
experimental results are demonstrated. In Section 5, the
conclusions are given.

II.  BACKGROUND
A. Infrared Backscatter Imaging Spectroscopy (IBIS) for
Standoff Chemical Detection

Infrared backscatter imaging spectroscopy (IBIS) system
utilized a quantum cascade laser (QCL) as an illumination
source and collects the reflection of laser beam onto a focal
plane array. Spectroscopy is implemented by continuously
tuning the wavelength of the QCL. The signals in the collected
frames are binned and turned into a hypercube image. Spectra
are generated from the IBIS hypercube images by obtaining
the signal from a spot of interest from every frame in the
image stack.

The synthetic data set was composed of 40 different
analytes on various different substrates. For each of the 450
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permutations of analyte, substrate, a range of mass loading
levels were produced, bringing the total number of spectra in
the training set to 18,000. Various amounts of Gaussian noise
were also added to each spectrum to further simulate
experimental data. Since the existing CNNs we chose were
originally designed for image recognition and classification,
the spectra in the training set had to be presented as images.
Fig. 1 is a plot of the spectrum of avobenzone, an active
ingredient used in sunscreen products to absorb the full
spectrum of UVA rays.
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Fig. 1. Example representations of spectral image format used to train
and test a CNN. The model spectrum plotted as a simple line in white
space
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A colorized image of the identical simulated spectrum by
applying a series of high- and low-pass filters with different
cutoff frequencies to the raw spectrum and transforming all of
those values into an RGB color scale is represented in Fig. 2.
To make these results fit better into a square image file, each
spectrum was cut into three segments and placed one below
the other. As a result, Fig. 2 contains three horizontal
segments in each of which the center horizontal line carries
the raw spectrum, the rows above carry low pass filtered
versions and the rows below carry high pass filtered versions.
The training data images presented in the form illustrated in
Fig. 2 attempt to utilize the full frame of the image (as well as
the dynamic range contained in the color scale) sent through
the CNN as opposed to leaving a significant amount of white
space as seen in Fig. 1.
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Fig. 2. An RGB color scaled intensity plot of the same spectrum run
through high and low band pass filters and segmented into three
horizontal regions stacked vertically

B. Convolutional Neural Networks (CNN) Architecture

CNN also known as ConvNet is one way to solve the issue
with DNN using convolution rather than matrix multiplication
[7]. * denotes convolution between two functions x(?) and w(a)
and symbolized as S() in (1), which is also known as
convolution integral in literature. The CNN architecture
incorporates local receptive fields to ponder the spatial
information, shared weights, and pooling to consider the
summary statistics in the output. A two-dimensional CNN for
image (1) recognition with kernel K is defined in (2) where m, n
are image dimensions and i, j are kernel parameters (Fig. 3).

Fully connected layers

Input image Convolutional layers

Fig. 3 Simplified architecture of DNN

S(1) = (x*w)(t) = ji x(a)w(t — a)da (1)

SG )= =K)i, )=, > I(m,n)K(i—m,j—n)
2)

C. Principal Component Analysis

Principal component analysis (PCA) is a popular and
effective dimensionality reduction method that can be applied
before the classification task [8]. It aims to reduce the number
of irrelevant features while maintaining the most important
features and variability [9]. In addition, PCA can also remove
outliers and anomalies from the raw or original data [10].

D. Data Augmentation

Data augmentation is a well-known method to increase the
number of sample size by using different mathematical
transformations [11]. A decrived image can be obtained by
cropping, rotating or mirroring the original image. In addition,
we can add noise to the original images, or increase the
contrast on the original image. Some examples are illustrated
in Fig. 4. The left most image is the original image. The other
six images are derived from the original image using the above
transformations.
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Fig. 4 Data augmentation transformation
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II1.

Our methodology has three components followed by an
evaluation component. First, we present a lossless principal
component analysis. Then, we explain our noise-based data
augmentation technique. Third, we present a deep learning
classifier for multiclass classification based on convolution.
And finally we list the performance metrics that will be used to
evaluate our approach.

METHODOLOGY

A. Lossless Dimensionality Reduction

The first component of our methodology is a PCA variant.
A near lossless PCA is used to reduce the high number of
features with the idea to compute only necessary eigenvectors
to avoid losing information. To find the minimum number of
eigenvectors or principal components needed to represent the
majority of the spectra data, we perform a cumulative variance
analysis on the original data points. This analysis is further
explained in the Experimental Results section.

B.  Gaussian Data Augmentation

After PCA, the next component of our methodology is a
data augmentation (DA) variant. A noise-based DA is used to
increase the number of samples. Our proposed data
augmentation (GDA) method adds white noise (AWGN) to the
original image to produce derived images [12]. Let the derived
data, original data and the effect of the noise, be random
variables: Y(¢) X(¢) and N(f), respectively, where N(?) is a
weighted probability distribution. This weighted random signal
is a Gaussian distribution, see Equation 4, with mean equal to
zero and standard deviation equal to sigma, N(u,0) where W is
mean and o is standard deviation. In our approach, we derive
the value of o using the signal-to-noise ratio (SNRgg) value in
Equation 5.
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What makes our approach different from traditional data
augmentation using noise it that our noise is not just random.
Instead, we employ an AWGN to generate our noise. AWGN
will generate more derived samples that are closer to the
original samples (within one sigma) and less derived samples
that are far from the original samples while random/uniform
noise will generate derived samples without any priority. Fig. 5
depicts the original signal in red and the signal with AWGN
when SNR is 20.

For instance, let us use DA to generate 10 derived samples
for each original sample. Given the original integer value of 25
labeled as class C, a noise-based DA will generate:
23,23,24,24,25,25,26,26,27,27, where all derived values have
the same probability. A classifier will learn that 23, 24, 25, 26
and 27 belong to the same class C. Now, our GDA will
generate: 23,24,24,25,25,25,25,26,26,27, where derived values
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have a probability based on the closeness to the original value.
This probability is the one that we want our deep learning
classifier to learn. So that, a classifier will learn that 25
definitely belongs to class C, that 24 and 26 probably belong to
class C, and finally that 23 and 27 might or might not belong to
class C.

To generate derive samples based on the degree of closeness
to the original samples, we need to determine a target SNR. We
will investigate how much loudness can our noise be and yet
accurately perform classification for a particular SNR.
Preliminary experiments were used to study the effect of
different level of loudness to the classification accuracy using
the PCA10, GDA10 and Epoch =5 in a basic CNN. The results
are shown in Table I. SNR denotes the difference in loudness
between the original signal X and the noise N. For example,
SNR=0 means that there is no difference between the loudness
of the signal X and the loudness of the noise N. SNR=20 means
that the signal X is twenty decibels louder than the noise N.
SNR=100 means that the signal X is one hundred decibels
louder than the noise N. Hence, as the signal X overpowers the
noise N, the noise become unnoticeable and the derived signal
Y becomes equal to the original signal X which causes
overfitting in our model.

TABLE 1. SIGNAL-TO-NOISY ANALYSIS
SNR (dB) Training (%) Validation (%) Test (%)

0 8.49 8.84 0.00
20 50.39 54.59 45.97
40 85.14 90.46 87.81
60 90.55 95.47 92.23
80 90.93 95.95 93.41
100 90.76 95.77 92.43
120 90.50 95.25 92.02
140 91.13 95.55 92.37
160 91.16 95.35 91.20
180 91.12 95.30 92.43
200 91.03 95.75 92.13
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Fig. 5. Comparison of the original signals and the AWGN signals

C. Convolutional Neural Networks

After PCA and GDA, the third component of our
methodology consist of a Convolutional Neural Networks
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(CNN) classifier. CNN is used to learn from the pre-processed
data samples. Fig. 6 depicts the dataflow from dimensionality
reduction to data augmentation to deep learning classification.
Our experiments were implanted on the PCA+GDA+CNN
model as shown in Fig. 6. In this model, input data will be
reduced using PCA first and will be augmented using GDA
before using deep learning neural networks. The CNN-LSTM
hyperparameters are listed in Table II.

Convolution pooling Convolution Pooling

Ay

PCA&
Data Augmentation

Outputs

Input 1x1254 Feature Maps Feature Maps
32@ 1x627 64@1x312
Feature Maps Feature Maps Fully Connected
32@ 1x1254 64@1x627 512,4

Fig 6. Overview of PCA+GDA+CNN

TABLE II. CNN-LSTM HYPERPARAMETERS
Hyper-parameter Value
Convolutional Layer [10, 10, 32, 128]
Strides of Convolutional Layers [5::35]
Padding Same
Activation ReLU

Long-Short Term Memory Layers [10, 5, 64], stateful=T
3104 x 12352 x 20

Softmax

Fully Connected Layer

Activation

The experiments were implemented using Python, Keras
[13] and TensorFlow. Each iteration has 20 Epochs and the
batch size is ten. The platform was a state-of-the-art NVIDIA
Tesla k80 GPU accelerator consisting of 2496 CUDA cores
and a main memory of 12GB GDDRS5.

D. Performacne Metrics

Fig. 7 is a representation of the data partition for a five-fold
cross-validation, where 20% of the entire original dataset is
used for testing and the remaining 80% is used for
learning/fitting the model. In order to diminish overfitting, each
fold will work in a round robin fashion. During the
fitting/learning phase, that remaining 80% is augmented using
GDA and further divided into two sets: one for deep learning
training (75%), and one for validation (25%). The test samples
are used in the prediction phase and a confusion matrix is
computed to compare overall accuracy.

I Entire Dataset
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Fig 7. Five-fold Cross-Validation Partitions
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IV. EXPERIMENTAL RESULTS

The goal is to measure performance improvement in
multiclass classification accuracy using our proposed system:
PCA18+GDA100+CNN-LSTM. To this end, first we define
each steps of our system. This is followed by a 5-fold cross-
validation on three different datasets. The block diagram of the
proposed approach is shown in Fig. 8.

PCAI18 ‘ GDA100 } CNN-+LSTM

Fig 8. Block diagram of the proposed Gaussian data augmentation
approach

Step 1: PCAI1S8

We found 18 principal components have represented
99.92% of the data variability based of the cumulative variance
analysis, as shown in Fig. 9. Therefore, the 18 most significant
eigenvectors for the spectra from each pixel in the image were
calculated. Next, all the spectral points were projected along
these axes.
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Fig 9. Scree Plot

The Cumulative Explained Variance values for the first 20
Principal Components are in Table III:

TABLE IIL CUMULATIVE EXPLAINED VARIANCE
#PCs CumVar #PCs CumVar
1 47.66% 11 99.04%
2 71.66% 12 99.32%
3 83.12% 13 99.52%
4 89.62% 14 99.69%
5 93.24% 15 99.79%
6 95.12% 16 99.85%
7 96.38% 17 99.89%
8 97.49% 18 99.92%
9 98.19% 19 99.94%
10 98.70% 20 99.95%
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Step 2: GDA100

In the second step, GDA is used to increase the number of
samples. We generated 100 derived images per sample using a
SNR equal to 80dB. This means that we increased the number
of samples 100 times.

Step 3: CNN+LSTM

In the third and final step, CNN-LSTM (long short-term
memory) is used to perform multiclass classification. This deep
learning model consists of two types of neural networks. CNN
is a convolutional neural network which consists of at least one
convolution kernel with a ReLU activation function. LSTM is a
recurrent neural network which consists of at least one long-
short term memory layer with an activation function that uses
tanh. The complete architecture is shown in Fig. 10.

———

Fig 10. CNN-LSTM architecture

The pre-processed input data is shown as a purple cube.
The convolutional layers are shown in blue, the pooling layers
in green, and the dropout layer in orange. The core LSTM
layers are shown in yellow. Fully-connected layers or dense
layers are shown in gray. A softmax activation function is used
for multiclass classification.

We use an IBIS data set to explore the capability of the
proposed method. This data set consists of 40 analytes on
various different substrates. For each of the 450 permutations
of analyte, substrate, a range of mass loading levels were
produced, bringing the total number of spectra in the training
set to 18,000. The data set is divided by multiple batches, with
the batch size of 10. 60% of the data are randomly chosen as
the training set, 20% are used a test data, and 20% are
validation data.

For 60% training data samples and 20% validation data
samples, Fig. 11 and Fig. 12 show the accuracy and loss in
percentage as a function over 20 epochs.
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Fig 11. Accuracy of PCA18+GDA100 +CNN-LSTM
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Fig 12. Loss of PCA18+GDA100 +CNN LSTM

For the 20% test data samples, Fig. 13 shows the confusion
matrix for PCA18+ GDA100+CNN-LSTM on 40 different
analytes. The real class labels are on the vertical axis while the
predicted class labels are on the horizontal axis. The intensity
of the shade of blue denotes the number of samples that were
labeled as that class. Less intensity or lighter blues denote less
number of samples. Higher intensity or darker blues denote
greater number of samples. Therefore, the perfect classifier
will only depict high intensity blues on the main diagonal.
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Fig. 13. Confusion Matrix

Note that in Fig. 13, we cannot visualize any blue squares
under or above the main diagonal, suggesting that accuracy is
near perfection. Quantitatively, our PCA18+GDA100+CNN-
LSTM approach achieved 99% accuracy. To rule out
overfitting on training, validation and test data, cross-validation
was applied.

Table IV presents in detail the results of our performance
measurements for our PCA18+GDA100+CNN-LSTM system
on 40 different analytes (classes). Results were collected from
our twenty-fold cross-validation. Precision indicates the
number of accuracy labeled test samples. Support represents
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the number of samples for a particular class inside the test set
and the weighted-average is based on the total support per
class.

TABLE IV. CLASSIFCATION REPORT
PCA18+GDA100 +CNN LSTM (Accuracy 99%)
Classes Precision Recall F1-score Support
Saccharin 1.0 1.0 1.0 26
Acetaminophen 1.0 1.0 1.0 36
Ampicillin sodium salt 1.0 1.0 1.0 30
Aspartame 1.0 1.0 1.0 32
Caffeine 1.0 1.0 1.0 34
Calcium Stearate 0.97 1.0 0.98 29
Diphenylamine 1.0 1.0 1.0 32
Naproxen 1.0 0.97 0.99 34
Aspirin 1.0 1.0 1.0 23
Gentamicin sulfate 1.0 1.0 1.0 34
Histidine 1.0 1.0 1.0 30
Lactose 0.84 1.0 091 21
Potassium Nitrate 1.0 1.0 1.0 44
Furoic acid 1.0 0.97 0.99 38
Urea 1.0 1.0 1.0 27
Chloramphenicol 1.0 1.0 1.0 35
Erythritol 0.97 0.94 0.95 31
Hydrocortisone 1.0 1.0 1.0 30
Loratadine 1.0 1.0 1.0 26
Prednisolone 1.0 1.0 1.0 28
Cellulose 1.0 1.0 1.0 35
Amylose 1.0 1.0 1.0 32
Biotin 1.0 0.97 0.98 29
fructose 1.0 1.0 1.0 37
sucrose 1.0 0.86 0.92 21
avobenzone 0.95 0.97 0.96 36
chitin 1.0 1.0 1.0 32
Warfarin 1.0 1.0 1.0 45
Benzophenone 1.0 1.0 1.0 24
Glutaric acid 1.0 1.0 1.0 36
Sodium tetraborate 1.0 1.0 1.0 39
sodium bicarbonate 0.97 1.0 0.99 39
ammonium sulfate 1.0 1.0 1.0 27
sodium nitrate 0.94 1.0 0.97 32
2-4-dinitrotoluene 1.0 1.0 1.0 33
ammonium acetate 1.0 1.0 1.0 35
ammonium nitrate 0.96 0.9 0.93 30
Triacontane 1.0 1.0 1.0 33
1-cloro-3-nitrobenzene 1.0 1.0 1.0 26
benzamide 1.0 1.0 1.0 39
Accuracy 0.99 0.99 0.99 1280
macro avg 0.99 0.99 0.99 1280
weighted avg 0.99 0.99 0.99 1280

V. CONCLUSIONS AND FUTURE WORK

A Gaussian data augmentation-assisted deep learning using
a convolutional neural network (PCAI18+GDA100+CNN
LSTM) was designed and explored on the state-of-the-art
infrared backscatter imaging spectroscopy (IBIS) datasets.
Both PCA and data augmentation methods were used to
preprocess classification input and predict with a comparable
degree of accuracy. Initially, PCA was used to reduce the
number of features. We used 18 principal components based of
the cumulative variance, which totaled 99.9%. This means that
18 PCs are enough to represent most of the data variability.
GDA was also used to increase the number of samples. We
generated 100 derived images per sample. This means that we
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increased the number of samples 100 times. CNN-LSTM (long
short-term memory) was then used to perform multiclass
classification on the IBIS hyperspectral image.

Experimental results were compiled from the cross-
validation with twenty runs each. They were analyzed with a
confusion matrix and the average accuracy is 99%. In the
future, we will apply the proposed PCA18+GDA100+CNN-
LSTM on the noisy infrared backscatter imaging spectroscopy
(IBIS) and compare the performance with the state-of-the-art
deep learning approaches.
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