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Abstract—In recent years, using oceans of data and virtually
infinite cloud-based computation power, deep learning models
leverage the current state-of-the-art classification to reach expert
level performance. Researchers continue to explore applications
of deep machine learning models ranging from face-, text- and
voice-recognition to signal and information processing. With the
continuously increasing data collection capabilities, datasets are
becoming larger and more dimensional. However, manually
labeled data points cannot keep up. It is this disparity between
the high number of features and the low number of labeled
samples what motivates a new approach to integrate feature
reduction and sample augmentation to deep learning classifiers.
This paper explores the performance of such approach on three
deep learning classifiers: MLP, CNN, and LSTM. First, we
establish a baseline using the original dataset. Second, we
preprocess the dataset using principal component analysis (PCA).
Third, we preprocess the dataset with PCA followed by our
Gaussian data augmentation (GDA) technique. To estimate
performance, we add k-fold cross-validation to our experiments
and compile our results in a numerical and graphical using the
confusion matrix and a classification report that includes
accuracy, recall, f-score and support. Our experiments suggest
superior classification accuracy of all three classifiers in the
presence of our PCA+GDA approach.

Keywords—Deep Learning, high dimensionality, limited
labeled data, Principal Component Analysis, Gaussian Data
Augmentation, Multiclass Classification
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In recent years, oceans of datasets paved the path for
expert-level performance in deep learning models. Deep
learning has flooded journals and conferences with new
approaches and applications. In the last decade deep machine
learning has developed expert-level accuracy in image
classification [1]-[3]. In [4], convolutional neural networks
(CNNs) are able to produce dermatologist-level accuracy in
skin cancer diagnosis. Moreover, [5] demonstrated the
effectiveness of deep machine learning algorithms to the point
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of achieving ophthalmologist-level accuracy in the detection of
referable diabetic retinopathy (RDR).

Deep learning is a growing family of models. At its core
these models enable a system to automatically uncover hidden
patterns needed for multiclass classification from the data
without any preprocessing. Deep machine learning is nowadays
the state-of-the-art classification technique with proven
applications in a variety of fields from security monitoring to
remote sensing to computer-aided prognosis, and from image
to voice recognition. Applicability of deep machine learning
algorithms is fueled by data. The more data, the better learning.
However, hyperspectral datasets put a stiff told on deep
learning models, due to its dimensionality and imbalance
nature of the datasets.

Principal Component Analysis (PCA) presents one of the
most commonplace tools [6]-[8] to deal with highly
dimensional data. The work in [9]-[10] present techniques that
extract features adaptively using local and global information
and deal with imbalance hyperspectral cubes. But, arbitrary
selection of PCs may result in a poor representation and lack
the data variability needed to accurately perform classification.
Second, Data Augmentation (DA) is a commonplace tool to
expand the limited number of training samples [11]-[13]
present successful implementations of DA in the fields of
image processing and molecular modelling. Together PCA and
DA thus prove a promising option to deal with the composite
problem of both high dimensionality and limited labeled
datasets in DNN. However, regular DA cannot be applied to
PT-IS datasets, because any distortion of the original image
would result in a distortion of the signature of the underling
substance.

In this paper, we study how much a two-folded technique
(PCA+DA) impacts the performance of three deep machine
learning models, namely, Multilayer Perceptron (MLP),
Convolutional Neural Network (CNN) and Long-Short Term
Memory (LSTM). The goal is to achieve better classification
results with limited training data and thus reduce the need for
more data. We also propose a Data Augmentation variant
(GDA) which integrates signal-to-noise ratio (SNR) with an
Additive white Gaussian noise (AWGN) to generate derived
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data samples suited for multiclass classification in various deep
neural networks models. This paper continues with a
description of the PT-IS dataset. Then, Section 3 presents each
component of our proposed methodology and performance
metrics. In Section 4, you may find the results of our
experiments. And, in Section 5, the paper closes with final
remarks and future directions.

IL.

The dataset was collected and normalized in [14]. The
collection apparatus consisted of two parts. First, the substance
or analyte samples are illuminated with a quantum cascade
laser. Second, hundreds of images are collected with an
infrared camera. The collected images correspond to multiple
infrared wavelength channels. Fig. 1 shows the entire system,
from data collection by law enforcement officers and military
personnel to detection and classification.
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Fig. 1. Quantum Cascade Laser and Infrared Camera
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By using this two-part apparatus, we collected a three-
dimensional array of images, which we called a hyperspectral
cube, as shown in Fig. 2. For each pixel in the front image
there are not only RGB values, but also layers corresponding to
different infrared intensities. With this cube, it is possible to
identify certain analytes and substrates based on the unique
pattern of intensities. This pattern is called fingerprint or
spectral signature. By matching this spectral signature, the
underlying material or element can be uniquely identified.

Fig. 2. Hyperspectral Cube

The matching process is possible on pure pixels because
they consists of only one material. Classification or detection
of these types of pixels is achieved by simply matching its
corresponding analyte signature. But without the proper
capturing resolution, cameras may lack the granularity or
finesse to produce pure pixel images. Thus, single pixels can
capture multiple signatures. The result pattern of intensities in
each pixel will be a combination of two or more individual
pure signatures.
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The dataset is highly-dimensional (1254 features) and
limited labeled (only 123 samples). It consists of eight classes,
explosive analytes and non-explosive substrates. We focus on
the multiclass classification problem of four analytes: AN,
RDX, Sucrose and TNT. For further reading on the collection
and normalization of this dataset, refer to [14].

III. METHODOLOGY

The proposed methodology is threefold. We first apply
PCA. Second, we proposed a novel DA technique. Third, we
explore the effects on various deep learning models for
multiclass classification.

A.  Principal Component Analysis

This section considers a well-known technique for
dimensionality reduction. The main goal of using PCA is to
reduce the high number of features yet maintain the majority of
the variability [6]. PCA is a popular, widely implemented
technique to reduce highly dimensional datasets into more
manageable datasets, by remapping each data points from a
high dimensional space into a lower dimensional space [7].
Data scientists find PCA very appealing mainly because PCs
tend to represent the most important patterns first while
removing anomalies and outliers [8].

Fig. 3 depicts a collection of data points on its original XY
space as dots and tiny triangles on the left hand side. And it
also depicts the first and second principal components as lines
on the right hand side. Note that these principal components
are orthogonal to one another and together they manage to
capture and better represent the variability of all sample points.

Fig. 3. Principal Component Analysis

The mathematics behind this dimensionality reduction
technique are based covariance. Let D[#][m] be a matrix that
holds the raw data, where the number of samples is represented
by the index » and the number of features is represented by the
index m. Assume D has zero mean. Then, let COV(D,P) be the
expected value of di*d; which is an orthonormal transformation
matrix and P[r][k], where the number of new features is
represent by the index & and £ is usually less than m and less
than n.

Fig. 4 presents the Scree Plot for our dataset. The Scree
Plot depicts the cumulative variance in percentage over the
number of principal components. In Fig. 4 we observe that
eighteen PCs (k&=18) are sufficient to model almost all the
variability in our dataset. Therefore, during our experiments,
only the first 18 PCs were used.
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Fig 4. Scree Plot

B.  New Data Augmentation Method

Traditional data augmentation (DA) has showed its
capability to improve the performance of image classification
with better levels of accuracy [11]. It is used to expand the
limited samples to large-scale data set by generating additional
data. These synthetic data points are the result of a
mathematical transformation of all or some features. And, they
automatically inherit the original label.

Equations, kernels and/or a rule-based mapping allows us
to derive and augment the original set of images [12]. For each
original image, we automatically generate multiple derived
images. Each image is a different version or variant of the
original image. By stretching, shrinking, zooming in, zooming
out, flipping, rotating, or applying a different color or contrast,
DA augments the original dataset size. Then, the original and
derived images are used in the learning stage. However, there
are two basic ways to transform the images: 1) using affine
transformations or 2) using pixel-wise transformations to
generate a derived images. Affine transformations consist of
flipping, rotating or shifting the original image. Pixel-wise
transformations consist of adding noise, increasing the contrast
or/and blur on the original image. Fig. 5. Presents a summary
of these DA transformations. On the top left corner, we have
the image. The middle row shows higher contrast, blur and
edges only. The bottom row depicts the flip transformation and
it also shows the effects of stretchmg and shrinking the i image
over the horizontal axis. All nine images portray a person in
front of a computer regardless of the transformation.

,»

Fig. 5. Data Augmentation Transformations
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Unfortunately, the affine transformations presented in Fig.
5 cannot be directly applied to raw hyperspectral cubes or
principal components because any remapping of the original
features would result in a different hyperspectral signature and
a mismatching class label.

To solve this problem, we propose a Gaussian based DA
(GDA) technique in which we use an additive white Gaussian
noise (AWGN) to generate new images. Inspired by the
communication systems concept, the received signal, x(z) will
be represented as the sent or original signal, y(#) contaminated
with some noises, n(#) (Equation 1) [15]. Both the x(f) and y()
which are random signals while n(f) follows a Gaussian
distribution with mean equal to zero (Equation 2) and a
parametrized variance ¢ which is calculated using the signal-
to-noise ratio (SNR). Equation 3 presents the formula for SNR.
We performed a set of experiments to investigate the impact of
SNR on the training accuracy of the PCA18 (PCA with 18
principal components) + GDA10 (Gaussian data augmentation
with 10 derived samples per each original sample, so that data
will be 10 times larger) approach. The target value will not
hinder the classification accuracy.

x(t) = y(@®) +n(t) M
p(t) = g 20 @)
SNRyp = 20+ logyy 22" 3)

anmse

Gaussian data augmentation (GDA) has two parameters:
SNR and the Multiplier. SNR serves as a noise tolerance limit.
It tells us how much additive white Gaussian noise (AWGN)
can be added to the original image without compromising
classification accuracy. Preliminary experiments were used to
determine the appropriate value of SNR. In Table I, the
“Noise” column denotes the percentage of noise added to the
original signal. For example, row 5, SNR=20 and Noise=10%
denotes that the noise loudness is 10% of the signal’s loudness.

TABLE L. SIGNAL-TO-NOISY ANALYSIS
SNR (dB) | Noise (%) | Training (%) | Validation (%) | Test (%)

0 100% 99.03 96.73 86.96

5 56.2% 99.27 97.09 86.96
10 31.6% 99.52 98.91 91.30
15 17.8% 99.64 100.00 95.65
20 10.0% 99.76 100.00 100.00
25 5.6% 99.88 100.00 100.00
30 3.2% 100.00 100.00 100.00
40 1.0% 100.00 100.00 100.00
60 0.1% 100.00 100.00 100.00
100 0.0% 100.00 100.00 100.00
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The second parameter, the multiplier values indicates how
many additional samples will be generated by GDA. Based on
[1], we set our Multiplier value equal to 100. With this value
will provide sufficient augmented samples to achieve expert-
level classification accuracy.

C. Deep Learning Models

Deep learning is currently the best performing family of
techniques for uncovering the defining patterns needed for
classification from oceans of big datasets. A deep neural
network (DNN) is one technique under such umbrella. DNN is
en essences an artificial neural network (ANN) with not just
one or two layers, but instead with multiple hidden layers. By
using these “deeper” models, more complex patterns and non-
linear relationships can be modeled. Three DNN models are
studied.

MLP is a basic deep learning model which consists of
fully-connected feedforward layers with a ReLU activation
function. Fig. 6 shows our implementation of MLP. The input
data is shown as a purple cube. The dense layers are shown in
gray and the dropout layer in orange. The output consists of a
softmax activation function for multiclass classification.

[ XN

Fig. 6. One-layer MLP for Multiclass Classification

CNN is a convolutional neural network which consists of at
least one convolution kernel with a ReLU activation function.
Fig. 7 shows our implementation of CNN. The input data is
shown as a purple cube. The convolutional layers are shown in
blue, the pooling layers in green, and the dropout layer in
orange. We flatten it and use two fully-connected layers before
reaching the final sofimax activation function for multiclass
classification.

Fig. 7. Three-layer CNN for Multiclass Classification

LSTM is a recurrent neural network which consists of at
least one long-short term memory layer with an activation
function that uses tanh. Fig. 8 shows our implementation of
CNN-LSTM, for which the input transformations and recurrent
transformations are both convolutional. The core LSTM layers
are shown in yellow. For consistency, the input data is shown
as a purple cube. The convolutional layers are shown in blue,

the pooling layers in green, and the dropout layer in orange.
We still flatten it and use two fully-connected layers before
reaching the final soffmax activation function.

Fig. 8. Two-layer CNN+LSTM for Multiclass Classification

D. Performance Metrics

To evaluate the impact of our pre-processing approach on
the classification accuracy, the confusion matrix was computed
for each classifier without and with PCA, and without and with
PCA+GDA. Table II presents the basic structure of the
confusion matrix and depicts how true positives, true negatives,
false positives and false negatives are defined.

TABLE II. CONFUSION MATRIX
Predicted Class
True Class Detected Not Detected
Detected True Positive (TP) False Negative (FN)
Not Detected False Positive (FP) True Negative (TN)

Another tabular performance metric is the classification
report. Table III presents the basic structure of this report,
which includes the Precision, Recall, F1-score and Support for
each class, as well as their average values. To compile these
metrics the below equation are used:

e Precision is the ratio between number of true positives
over the sum of true positives and false positives.

®  Recall is the ratio between number of true positives
over the sum of true positives and false negatives.

e  Fl-score is number of true positives over the sum of
true positives, ¥2false positives and Y2false negatives.

e Support refers to the number of samples in a Class.

TABLE III. CLASSIFCATION REPORT
Classes Precision Recall F1-score Support
TP TP TP TP+FP
Class; - +
(TP+FP) (TP+FN) (TP+ Y4FP+ Y4FN) FN+TN

Finally, classification accuracy is calculated as the ratio
between the number of correctly classified samples, which
includes both true positives and true negatives, over the
support. Moreover, to reduce the effect of overfitting, twenty-
fold cross-validation is used to obtain an overall accuracy, as
the average for all runs and classes. Fig. 9 present a graphical
data partition for five-fold cross-validation, where the test set
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consists of 's of the data (blue squares), the validation set also
consists of ¥ of the data (orange squares) and the training set
consists of the remaining % of the data (white squares). And, in
every run, different partitions are used for training, validation
and testing.

Run #1

u
I
-

Run #3 Run #4

1 r 1 r 1

Run #5

|

Validation
set

Entire
Dataset

Training
Set

Fig. 9. K-fold Cross Validation Partitions

IV. EXPERIMENTAL RESULTS

This section presents our experimental results in a graphical
and tabular way. We start with MLP, CNN and CNN+LSTM
without any pre-processing. Then, we present the results of
adding PCA to the models. And, we add our GDA approach to
the models as a second layer of pre-processing. The code was
written in Python. Keras and TensorFlow [16] packages were
also employed. A Jupyter notebook environment was used to
run all experiments on a cloud-based virtual machine sporting a
Tesla k80 GPU, which has a total of 2496 CUDA cores and
main memory size of 12GB GDDRS5.

A.  Multilayer Perceptor (MLP)
This subsection presents a baseline for a Multilayer

Perceptor (MLP) classifier. Fig. 10 shows two graphs for MLP,

one depicts classification accuracy percentage on the right
column and one shows classification loss on the left column.
Both graphs are functions of the number of epochs. The blue
line represents the training set while the orange line represents
the validation set. One dropout layer was used to deal with
overfitting as depict in section III.C.1. Note that MLP seems
to suffer from overfitting. Yet we are interested only in the
impact of PCA+GDA.
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Fig. 10. MLP for Multiclass Classification
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B. Convolutional Neural Network (CNN)

This subsection presents a baseline for Convolutional
Neural Network (CNN). Fig. 11 shows two graphs for CNN,
one depicts classification accuracy percentage on the right
column and one shows classification loss on the left column.
Both graphs are functions of the number of epochs. The blue
line represents the training set while the orange line represents
the validation set. Three dropout layers were used to deal with
overfitting as depict in section IIL.C.2.
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Fig. 11. Principal Component Analysis
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C. Long-Short Term Memory (LSTM)

This subsection presents a baseline Long-Short Term
Memory (LSTM). Fig. 12 shows two graphs for LSTM, one
depicts classification accuracy percentage on the right column
and one shows classification loss on the left column. Both
graphs are functions of the number of epochs. The blue line
represents the training set while the orange line represents the
validation set. Two dropout layers were used to deal with
overfitting.
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Fig. 12. Loss and accuracy for LSTM
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D. Deep Learning Models without Preprocessing

To establish the classification accuracy without
preprocessing, CNN was initially selected as the better
classifier. Table IV presents the experimental results on the
test set without incorporating any pre-processing. Precision
and Recall is given in percentages. Fl1-score and Support was
also calculated for CNN. All values were collected from our
twenty-fold cross-validation experiments. The classification
accuracy for each of our models (MLP, CNN and
CNN-+LSTM) without preprocessing is 78%, 81% and 44%;
correspondingly.
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TABLE IV. CLASSIFICATION REPORT WITHOUT PREPROCESSING

No Preprocessing
Classes  Precision Recall FI-score Support
AN 100% 57% 0.73 7
RDX 44% 100% 0.62 4
Sucrose 100% 83% 0.91 6
TNT 100% 88% 0.93 8

E. Deep Learning Models with PCA

To evaluate the classification accuracy with PCA
preprocessing, CNN was initially explored. Table V presents
the experimental results on the test set incorporating PCA.
Precision and Recall is given in percentages. Fl-score and
Support was also calculated for PCA+CNN. All values were
collected from our twenty-fold cross-validation experiments.
Moreover, the classification accuracy for each of our models
(MLP, CNN and CNN+LSTM) with PCA is 78%, 84% and
60%; correspondingly.

TABLE V. CLASSIFICATION REPORT WITH PCA
Principal Components
Classes  Precision Recall FI-score Support
AN 100% 67% 0.80 6
RDX 78% 88% 0.82 8
Sucrose 100% 100% 1.00 8
TNT 50% 67% 0.57 3

F. Deep Learning Models with PCA and GDA

To establish the classification accuracy with PCA and
GDA preprocessing, CNN was initially evaluated. Table VI
presents the experimental results on the test set incorporating
both PCA and GDA. Precision and Recall is given in
percentages. Fl-score and Support was also calculated for
PCA+GDA+CNN. All values were collected from our twenty-
fold cross-validation experiments. The classification accuracy
for each of our models (MLP, CNN and CNN+LSTM) with

both PCA and our GDA is 94%, 99% and 96%;
correspondingly.
TABLE VI. CLASSIFICATION REPORT WITH PCA+GDA
Augmented Components
Classes  Precision Recall FI-score Support
AN 100% 100% 1.00 5
RDX 100% 100% 1.00 6
Sucrose 100% 100% 1.00 6
TNT 100% 100% 1.00 8

Table VII compiles a tabular comparison of the
classification accuracy for all deep learning models and
different preprocessing approaches Each value in the table is
the mean plus-minus standard deviation of the cross-validation
results. Our experimental results suggest that the addition of
PCA helps remove anomalies and outliers. Moreover, our
experimental results also suggest that the use of PCA coupled
with our GDA approach helps improve robustness to new
never-seen-before data.

TABLE VIIL. CLASSIFICATION ACCURACY COMPARISON
Technique MLP CNN LSTM
No preprocess 78.0 £ 9.0 80.7 £ 9.1 44.0 £ 9.2

PCA 776 = 6.9 84.0 + 6.5 60.0 + 6.7
PCA + GDA 93.6 + 4.7 99.0 £ 2.9 96.0 + 3.8

The ideal confusion matrix will only have nonzero values
on the main diagonal. Values greater than zero on the main
diagonal are true positives and true negatives. Any nonzero
value on the upper right corner is a false negative while any
nonzero value on the lower left corner is a false positive. Fig.
13 shows the Confusion Matrix for MLP (left hand side chart),
CNN (middle chart) and CNN+LSTM (right hand side chart).
It is clear that for all three models, the classification accuracy
showed an improvement with the integration of our
preprocessing PCA+GDA approach.

Confusion Matrix

Confusion Matrix

Confusion Matrix

" Fig. 13. Confusion Matrix for MLP, CNN and LSTM

V. CONCLUSION

Principal Component Analysis and our Gaussian Data
Augmentation in deep learning models were explored on a
highly dimensional and limited labeled dataset. Both PCA and
GPA methods were used to preprocess multiclass classification
input. Initially, three deep learning models were built. A
baseline was established for each model. Then PCA was
integrated to the models as a preprocessing step to reduce the
number of features. Then GDA was also integrated to the
models as a second preprocessing step to increase the number
of labeled samples.

The experimental results, presented in this paper, suggest
that our PCA+GDA approach has a positive impact in deep
learning classification, particularly in the presence of highly
dimensional, limited labeled data. Future works will focus on
further exploring different types and sizes of datasets,
including IBIS, MRIs, and Big Data sources.
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