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Abstract—Advances in photo-thermal infrared imaging
spectroscopy technologies have come a long way. These advances
include the development of quantum cascade laser (QCL) which
greatly improves the measurement of infrared absorption.
Despite the progress made, a few fundamental limitations of
infrared spectroscopy have prevented its processing in deep
learning models. Direct application of convolutional neural
networks becomes difficult, because of the high dimensionality,
and low number of samples. To overcome these limitations, in
this paper, we explore the applicability of data augmentation
techniques to photo-thermal infrared imaging data. First, we
establish a baseline using the raw data and a convolutional
neural network (CNN). Second, we apply principal component
analysis (PCA) and proceed to applying CNN. Third, we employ
different data augmentation techniques before applying CNN.
After that, we estimate the performance of our models by using
k-fold cross-validation and calculating the confusion matrix and
classification accuracy. Our GDAC+CNN model achieved an
average of 99% accuracy.

Keywords— deep learning; convolutional neural networks;
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L

Deep learning featured by deep structured learning is a
technique that enables a system to automatically discover the
features needed for feature detection or classification from raw
data. A deep neural network (DNN) is a type of artificial neural
network (ANN) with deep structured layers between the input
and output layers. DNNs have the ability to model complex
non-linear relationships. The network will be trained to express
an object as a layered composition of primitives. The extra
layers enable composition of features from lower layers,
potentially modeling complex data with fewer units than a
similarly performing shallow network. In deep learning, a
convolutional neural network (CNN) is a class of deep neural
networks, which has provided evidence of superior
performance in the applications of image classification, image
and video recognition, and medical image processing, analysis
and visualization. Data augmentation has shown promising
results, especially coupled with deep learning models in
achieving higher degree of accuracy of image classification
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tasks [1]. It has provided a solution to small datasets by
generating new, derived samples using different mathematical
transformations, such as affine transformations and Pixel-wise
transformations. However, affine transformations cannot be
directly applied to photo-thermal infrared images [2], because
any flipping, rotating, or shifting of the original image would
result in a different signature that corresponds to a different
material. Pixel-wise transformations present an option to data
augmentation for photo-thermal infrared images, because a
change in the level of noise, blur and contrast will not directly
impact the signature of the image. Yet unbound, arbitrary
pixel-wise changes may distort the underlining image to the
point of chaos.

In this paper, we study how different data augmentation
techniques impacts for the performance of a CNN for photo-
thermal infrared images. We also propose a new data
augmentation technique that integrates signal-to-noise ratio
(SNR) with an additive white Gaussian noise (AWGN) to
generate derived data samples suited for multiclass
classification in convolutional neural networks. The rest of this
paper is organized as follows. In Section 2, the photo-thermal
infrared imaging spectroscope technique and the CNN
architecture are introduced. In Section 3, the methodology is
described, from principal component analysis (PCA) to data
augmentation (DA), from convolutional neural networks
(CNN) to our proposed Gaussian data augmentation (GDA)
technique. In Section 4, the experimental results are presented.
In Section 5, the conclusions are given.

II. BACKGROUND

A.  Photo-thermal IR Imaging Spectroscopy Data Set

In the photo-thermal IR imaging spectroscopy (PT-IRIS)
approach, a desired number of infrared (IR) quantum cascade
lasers are adapted to strong absorption bands in the analytes
while an IR focal plane array is used to image the reflecting
thermal radiations. An IR laser instantly illuminates the
surface that may be contaminated by targeted analytes. The
total PT-IRIS signal is approximated as a linear combination
of the particle signal and substrate signal [3]. The temporal
behavior of the signal indicates the thermal properties of the
substrate [4]. Spatial (pixel to pixel) variations in the PT-IRIS
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images can help distinguish particles from substrate [5]. The
feature vectors for the PT-IRIS signals can be retrieved from
the temperature increase during each laser pulse as a
normalized power of the laser pulse [6].

B. CNN Architecture

The CNN is usually designed to imitate human visual
processing. Compared with fully connected neural networks,
CNN has fewer parameters and is easier to escape from
vanishing gradients problem [7]. The CNN contains three
different layers: convolution layer, pooling layer, and fully
connected layer. Convolution layer is the most important layer
of a CNN. Such architecture makes network concentrate on
low-level features in the previous layer and assemble low-level
feature into high-level features in the latter layers [8]. The goal
of pooling layers is to subsample the feature maps. This will
reduce the computation burden. Convolution and pooling
layers are used for feature exaction. Fully connect layer is used
for classification like the situation in multilayer perceptron.

[II. METHODOLOGY

The methodology is divided into four parts. We first review
the principal component analysis technique. Second, we
describe data augmentation techniques that use affine
transformations, such as, flipping, rotating, and shifting as well
as apply pixel-wise transformations, such as, blur, noise, and
contrast. Third, we describe our proposed a Gaussian data
augmentation (GDA). And fourth, we define a convolutional
neural network for multiclass classification.

A. Principal Component Analysis

Principal Component Analysis is among the most
commonly used approach for dimensionality reduction and
data representation [9] and it has been widely used to translate
highly-dimensional data into a new feature space with lower
dimensionality in a vast range of fields. The goal of this
translation is to reduce the number of dimensions (or feature
vectors) while maintaining all relevant information and
variability of the data [10]. Another great benefit is that PCA’s
transformation also removes anomalies and outliers from the
raw data [11].

B.  Data Augmentation

Data augmentation has shown promising results, especially
coupled with deep learning models in achieving higher degree
of accuracy of image classification tasks [1]. It also provides a
solution to small datasets by generating new, derived samples
using different ~mathematical
transformations. Some of these
transformations consist of using
a combination of mathematical
equations or kernels to modify
the original images [12]. For
instance, affine transformations
generate a derived image by
flipping, rotating or shifting the

original image.  Pixel-wise
Fig 1. Data Augmentation transformations produce derived
Transformations images by adding noise,

increasing the contrast or/and
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blur on the original image. All original and derived images are
fed into the classification model. Basic transformations are
depicted in Fig. 1. On the top left corner with have the original
image. The other eight images in this figure are generated by
different data augmentation techniques.

C. Affine Transformations

Affine transformations also called linear transformations
are mathematically mapping methods that are used in image
processing to correct deformations. Translation, rotation,
isotropic scaling and shearing are among the most common
affine transformations. Fig. 1 depicts, on the top and middle
rows, how these transformations will alter a regular image.

D. Pixel-wise Transformations

Pixel-wise transformations are based on the idea of
transforming each pixel in the image using a point or pixel
operator. Point operators produces each new output pixel
value based on its corresponding input pixel value. Some of
these pixel-wise transformations use global/local parameters
while others are based on exclusively on the input pixel value.
For example, the blurring effect can be achieved by
convoluting the original image Img with a moving average
denoted by a kernel K, as shown in Equation 1.

Blurry Image =Img = K (N

E.  Gaussian Data Augmentation

Our proposed data augmentation technique uses an
Additive white Gaussian noise (AWGN) to produce derived
images. The motivation for this technique comes from
information theory and signal processing and its applications to
digital communication systems. In communication system, the
received signal is equal to the sent or original signal plus the
effect of the channel [13] as shown in Equation 2. Both the
received signal Y(¢) and the original signal X(¢) are considered
random variables and the effect of the channel N(7) follows a
Gaussian distribution with a probability density function
presented in Equation 3. Our random noise will follow a
Gaussian Normal distribution N(u,0) where W is zero and o is
determined from the signal-to-noise ratio (SNR) formula
presented in Equation 4. We target a SNR of 60 dB to obtain
an AWGN that is not apparent.
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F.  Convolutional Neural Networks

Deep machine learning is a model that learns to perform
classification tasks directly from the data. Convolutional
Neural Networks (CNN) is one type of deep learning model.
The term “deep” refers to the number of layers.

Fig. 2 depicts the layers of our CNN. All experiments were
conducted using the model presented in Fig. 2. Input data will
be resized and augmented before adding to the network. The
actions of data augmentation can be randomly flipping the
pictures and randomly cropping the pictures, which force
CNN to learn more essential feature.
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Fig 2. CNN Model Overview

Fig. 2 depicts the layers of our CNN. All experiments were
conducted using the model presented in Fig. 2. Input data will
be resized and augmented before adding to the network. The
actions of data augmentation can be randomly flipping the
pictures and randomly cropping the pictures, which force
CNN to learn more essential feature.

TABLE L CNN PARAMETERS IN SIMULATION
Hyper-parameter Value

Filter of 1st Convolution Layer [2,2,32,32]

Filter of 2nd Convolution Layer [2,2, 64, 64]

Strides of Convolution Layer [3,3]

Padding same

Activation ReLU

Strides of Pooling Layer [2,2]

Fully Connected Layer Size 3104x12352% 4

In the simulation, the hyper-parameters of the CNN is
shown in Table I. The numbers of convolution layer filter
parameters stand for [filter height, filter width, input channels,
output channels], respectively [14]. The activation for all layers
is ReLU. The strides of the two pooling layers are the same.
The CNN structure has three fully connected layers, the number
of neurons in these three layers is [3104, 12352, flatten,
4]. The value of flatten varies for CNN and PCA+CNN
because it is derived from the input shape, that is the number of
input features or principal components. Implementation was
done using Keras [15] and TensorFlow. Runs consisted of 20
Epochs with batch size of 10. Runtime platform was a Tesla
k80 GPU, with 2496 CUDA cores, 12GB GDDRS5 VRAM.

G. Performacne Metrics

The confusion matrix was computed for each data
augmentation technique to compare overall accuracy. Fig. 3 is
a representation of the data partition for a five-fold cross-
validation, where 20% of the entire dataset is used for testing
and 80% is used for training. To help reduce the effects of
overfitting, a different 20% is used for testing for each
fold/iteration in a round robin fashion. For Deep Learning
training, datasets are divided into 3 parts: training (60%),
validation (20%) and test (20%). Training and validation sets
are used during the fitness phase while only test samples are
used in the prediction phase.
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Fig 3. Five-fold Cross-Validation Partitions

IV. EXPERIMENTAL RESULTS

We start with the results of our baseline, namely, CNN and
PCA+CNN. Then we present a comparison between different
data augmentation techniques. Three affine transformations
and three pixel-wise transformations are evaluated. We then
end with a presentation of the results of our Gaussian Data
Augmentation technique GDA+CNN for different multipliers.
The main goal of our experiments is to comprehensively
measure multiclass classification accuracy for different data
augmentation techniques. To this end, 20-fold cross-validation
was performed for each data augmentation technique.

A. Convolutional Neural Network (CNN and PCA+CNN)

In this subsection, a baseline is established for CNN with
and without PCA. Fig. 4 shows the accuracy (left column) and
loss (right column) as functions of the number of epochs for
training samples in blue and validation samples in green.

Table II presents the testing averages for Precision, Recall,
Fl-score and Support. CNN and PCA+CNN were evaluated
using 20-fold cross-validation.

Madel ac Modal loss

= s % % i ao

Fig 4. Accuracy & Loss of CNN without preprocessing (top row), and
PCA+CNN (bottom row)

TABLE I CLASSIFCATION REPORT FOR CNN
Classes Precision Recall Fl-score Support
Convolutional Neural Network

AN 1.00 0.57 0.73 7

RDX 0.44 1.00 0.62 4

Sucrose 1.00 0.83 091 6

TNT 1.00 0.88 0.93 8

Principal Component

AN 1.00 0.67 0.80 6

RDX 0.78 0.88 0.82 8

Sucrose 1.00 1.00 1.00 8

TNT 0.50 0.67 0.57 3
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Fig. 5 presents the Confusion Matrix for CNN and
PCA+CNN. Ground truth is on the Y-axis and the predicted
labels on the X-axis. Lighter shades of green represent less
number of samples accurately detected. Hence, a darker main
diagonal means a better prediction.

Fig 5. Confusion Matrix for CNN (left),
and PCA+CNN (right)

B.  DA+CNN using Affine Transforamtions

In this subsection, Data Augmentation is evaluated for
three different Affine Transformations. Flipping, rotation and
translation are used to derive additional samples. Fig. 6 shows
the accuracy and loss over the number of epochs for each
transformation.
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Fig 6. Accufécy & Loss of DA+CNN ﬁsiné Flippihug (tiop),ﬂ
Translation (center) and Rotation (bottom)

Table III presents the testing averages for Precision,
Recall, Fl-score and Support. Three variants of DA+CNN
were evaluated, flipping, rotation and translation. Results were
compiled from our cross-validation.

TABLE III. CLASSIFCATION REPORT FOR DA+CNN USING AFFINE
TRANSFORMATION
Classes Precision Recall F1-score Support
Flipping transformation

AN 0.00 0.00 0.00 5
RDX 1.00 0.25 0.40 4
Sucrose 0.75 0.43 0.55 7
TNT 1.00 0.44 0.62 9

Translation or Shifting transformation
AN 1.00 0.56 0.71 9
RDX 1.00 0.50 0.67 4
Sucrose 1.00 0.33 0.50 6
TNT 1.00 0.67 0.80 6
Rotating transformation

AN 0.42 1.00 0.59 5
RDX 1.00 0.60 0.75 5
Sucrose 1.00 0.43 0.60 7
TNT 0.80 0.50 0.62 8

Fig. 7 presents the corresponding Confusion Matrix for
DA+CNN using flipping, translation and rotation as its affine
transformations of choice. Ground truth is on the vertical axis
and the predicted labels are on the horizontal axis. Note that
lighter shades of red represent fewer number of samples and
darker shades of red represent larger number of samples.
Hence, a darker diagonal means a better prediction. The
darker red regions under the main diagonal indicate that
presence of false positive while the darker regions above the
main diagonal indicate the presence of false negatives.

Fig 7. Confusion Matrix for DA+CNN using Flipping (left),
Translation (middle) and Rotation (right)

From the Confusion Matrix, it is clear that the model was
not able to determine the class for a significant number of
samples. All three affine transformations decrease the overall
accuracy of our CNN model. For instance, flipping decreases
the model’s accuracy to 30% on test samples.

C. DA+CNN using Pixel-wise Transforamtions

In this subsection, Data Augmentation is evaluated for
three pixel-wise transformations. Contrast, Noise and Blur are
used to derive additional samples and in conjunction with the
original samples our CNN model is trained and validated.
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Fig 8. Accuracy & Loss of DA+CNN using Contrast (top),
Noise (center) and Blur (bottom)

Fig. 8 shows the accuracy (left column) and loss (right
column) as functions of epochs for the training set in blue and
validation set in green.

Table IV presents the testing averages for Precision,
Recall, Fl-score and Support. Using only pixel-wise
transformations, DA+CNN was evaluated. Results indicate
that pixel-wise transformations are suitable for our type of
data. Furthermore, results from a 20-fold cross-validation
experimental setting suggest that noise is the better option in
term of the weighted average for precision and recall.

TABLE IV. CLASSIFCATION REPORT FOR DA+CNN USING PIXEL-
WISE TRANSFORMATIONS
Classes Precision Recall Fl-score Support
Contrast variation

AN 0.75 1.00 0.86 6

RDX 1.00 0.44 0.62 9

Sucrose 1.00 0.75 0.80 8

TNT 1.00 0.50 0.67 2
Noise variation

AN 0.86 0.86 0.86 7

RDX 1.00 0.75 0.86 8

Sucrose 0.67 0.80 0.73 5

TNT 1.00 1.00 1.00 5
Blur variation

AN 0.57 1.00 0.73 4

RDX 1.00 0.80 0.89 5

Sucrose 1.00 0.62 0.77 8

TNT 1.00 0.88 0.93 8

Fig. 9 presents the corresponding Confusion Matrix for
DA+CNN using pixel-wise transformations. Again, ground
truth is on the vertical axis and predicted labels are on the
horizontal axis. Note that lighter shades of purple represent
fewer number of samples and darker shades of purple
represent larger number of samples. The presence of darker
regions under or above the main diagonal means a poor
prediction.

In the Confusion Matrix comparison in Fig. 9, there are no
large darker regions outside the main diagonal; only soft
shades of purple are visible under the main diagonal.

Fig 9. Confusion Matrix for DA+CNN using Contrast (left), Noise (middle)
and Blur (right)
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This suggests that pixel-wise transformations achieve
average levels of accuracy but with a number of false positives
predictions. One crucial point is that by using noise our CNN
model is able to predict with a very promising level of
accuracy. In our experiments the weighted average for
precision and recall on test samples was of 84%. Therefore,
noise was further explored and evaluated.

D. GDA+CNN using different multipliers

This subsection explores and evaluates Gaussian noise as a
Data augmentation technique. In particular, additive white
Gaussian noise (AWGN) is tested with different multiplier.
Fig. 10 shows the model’s accuracy and loss, left and right
columns correspondingly, as functions of the number of
epochs for training and validation sets. The top row depicts
the results when a multiplier m=1 is used; the middle row
m=10, and in the bottom row m=100.
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Fig 10. Accuracy & Loss of GDAI+CNN (top row) GDAX+CNN (center
row) and GDAC+CNN (bottom row)

Table V presents the testing averages for Precision, Recall,
Fl-score and Support for three variants of our GDA+CNN
approach. Results were compiled from our 20-fold cross-
validation experiments.

TABLE V. CLASSIFCATION REPORT FOR GDA+CNN
Classes Precision Recall Fl-score Support
GDAI+CNN (~84% Accuracy)
AN 1.00 0.67 0.80 6
RDX 0.78 0.88 0.82 8
Sucrose 1.00 1.00 1.00 8
TNT 0.50 0.67 0.57 3
GDAX+CNN (~96% Accuracy)
AN 1.00 1.00 1.00 6
RDX 0.86 1.00 0.92 6
Sucrose 1.00 1.00 1.00 5
TNT 1.00 0.88 0.93 8
GDAC+CNN (~99% Accuracy)
AN 1.00 1.00 1.00 5
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RDX 1.00 1.00 1.00 6
Sucrose 1.00 1.00 1.00 6
TNT 1.00 1.00 1.00 8

Fig. 11 presents a comparison between different variant of
our Gaussian Data Augmentation, namely, GDAI+CNN
which uses a multiplier of m=1, GDAX+CNN which uses a
multiplier of m=10 and GDAC+CNN which uses a multiplier
of m=100. As before, ground truth is placed on the vertical
axis and the predicted labels are placed on the horizontal axis.
Note there almost no shades of blue under or above the main
diagonal. This indicates that classification accuracy is very
high. Our GDAC+CNN variant achieve 99% accuracy on test
data. Cross-validation was applied to rule out overfitting. In
our experiments the weighted average for precision and recall
on test samples went from 84% for GDAI to 96% for GDAX
to 99% for GDAC.

‘ "Fig. 11. Confusion Ma.trix for GDAI+CNN (leff);
GDAX+CNN (middle) and GDAC+CNN (right)

Table VI presents the consolidated results of our
experiments. In our multiclass classification problem, the goal
is to maximize accuracy using limited training samples.
Accuracy was averaged and the standard deviation was used
to measure relative error. The results of the experiments
performed on the PT-IRIS data suggest that our Gaussian Data
Augmentation technique provides a potential solution to the
problem of limited labeled samples.

TABLE VL ACCURACY COMPARISON SUMMARY
Technique Accuracy (%)
Raw CNN 80.7 =+ 9.1
PCA+CNN 752 £ 11
Flip+CNN 294 + 12
Rotation+CNN 66.2 =+ 8.8
TranslationtCNN 504 =+ 15
Blur+CNN 80.0 =+ 10
Noise+CNN 834 =+ 8.1
ContrasttCNN 67.8 =+ 10
GDAI+CNN 84.0 =+ 6.5
GDAX+CNN 96.4 + 5.0
GDAC+CNN 99.0 + 2.9
CONCLUSION

Different data augmentation techniques in deep learning
using a convolutional neural network were explored on a
photo-thermal infrared imaging dataset. PCA and DA methods
were used to preprocess multiclass classification input and
predict with a high degree of accuracy. Initially, a three layer
CNN was designed and performance was measured in terms of
accuracy. Then PCA was applied to the dataset as a
preprocessing step to the CNN model. CNN and PCA+CNN
were used as baselines. Then DA was also applied as a second
preprocessing step using different affine and pixel-wise
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transformations. Our Gaussian DA (GDA) was evaluated for
different multipliers. For PCA+CNN, the overall performance
decreased by 5% accuracy as compared to CNN alone. For
DA+CNN using affine transformations, the overall
performance was in average 50% accuracy. For DA+CNN
using pixel-wise transformations, the performance was in
average 77% accuracy. In this set of techniques, adding
random noise improved the classification accuracy by 4% as
compared to alone. Furthermore, when evaluating GDA+CNN,
the overall accuracy increased to 99% accuracy.

Our results suggest that GDA+CNN is the better approach
to multiclass classification of the PT-IRIS data. In the future,
GDA should be further explored on different types of datasets,
including CT scans, MRI images, and remote sensing datasets.
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