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Abstract—Recent advances in remote sensing technologies
have led to the fast proliferation of massive and often imbalanced
datasets. Direct classification in these datasets becomes difficult,
because of the high dimensionality, and the fact that minority
classes are overlapped and dwarfed by majority classes. Deep
learning is the state-of-the-art in image classification, with
applications in face- and text detection, text recognition, as well
as voice classification. However, deep learning requires a
favorable ratio between dimensionality and sample size. To
address high dimensional yet imbalanced datasets, in this paper,
we propose the integration of data augmentation, to a deep
learning classifier of a high dimensional and highly imbalanced
photo-thermal infrared hyperspectral dataset of chemical
substances. First, we apply a basic deep machine learning
approach using a convolutional neural network (CNN) on the
original dataset. Second, we apply principal component analysis
(PCA) to reduce dimensionality before applying CNN. Third, we
prepend an offline data augmentation step to increase dataset
size before applying CNN. After that, we evaluate the
performance by calculating the probability of detection (POD),
and recall based on true positive (TP), false negative (FN), false
positive (FP), and true negative (TN).

Keywords—deep learning; convolutional neural networks,
hyperspectral classification; principal component analysis; data
augmentation

I. INTRODUCTION

Machine learning is among the most frequent topics of
research in recent publications. Image-based machine learning
and deep learning in particular has recently shown expert-level
accuracy in medical image classification. In [1], deep
convolutional neural networks (CNNs) show potential for
classification of skin cancer with a level of competence
comparable to dermatologists. Moreover, [2] presented a deep
learning algorithm for detecting referable diabetic retinopathy.
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It is evident that deep learning is the current state-of-the-art
classification technique with applications ranging from
medicine to remote sensing to text and voice recognition [3]. In
view of numerous feature selection approaches in hyperspectral
imagery classification [4]-[12], applicability of deep machine
learning algorithms to high dimensional and highly imbalance
hyperspectral images in classification remains an unexplored
field. There are two ways to reduce this unfavorable ratio
between dimensionality and imbalanced datasets: 1) reduce the
number of dimensions or features and 2) increase the number
of samples. Regarding point 1, above, dimensionality reduction
presents a possible solution to reduce the high number of
feature vectors. To this end, Principal Component Analysis
(PCA) is one of the most commonplace tools [13]. Moreover,
in [12] the authors present yet another approach to deal with
the imbalanced hyperspectral datasets by adaptively extracting
features based on their local and global characteristics. On
point 2 above, Data Augmentation presents a well-known
technique to expand the number of training samples from the

limited number of labelled samples [14]. It has been
implemented successfully in many fields from image
processing [15] to molecular modelling [16]. Data

augmentation thus proves a promising option to deal with high
dimensional and highly-imbalanced datasets in deep learning
models. The goal of this paper is to explore Data Augmentation
before Deep Convolutional Neural Network and to evaluate its
classification accuracy.

The remainder of this paper is organized as follows. In
Section 2, the high dimensional and highly imbalanced data set
is described. In Section 3, the proposed methodology is
presented. Principal component analysis (PCA), Data
augmentation (DA) and Convolutional Neural Network (CNN)
are described. In Section 4, the analysis and results of are
presented. In Section 5, the conclusions are given.
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II. DATASET

In this paper, an experimental dataset is used to evaluate the
proposed approach. This dataset was initially presented in [17],
which was acquired by a Photo-Thermal Infrared Imaging
Spectroscopy (PT-IRIS) technique which consists of two main
components: 1) A quantum cascade laser that causes the
substance or analyte to be illuminated and 2) an infrared
camera that collects hundreds of images corresponding to
different wavelength channels or intensities of light. We called
this large collection of images a hyperspectral cube because it
basically gathers intensities from across the entire
electromagnetic spectrum [18]. Certain analytes and substrates
leave a unique fingerprint or spectral signature, which uniquely
characterizes the underlying material or element.

When we are in the presence of pure pixels, (i.e., pixels
with one single underlying material), classification of the
material is achieved by simply matching their signatures. But
when the resolution of the infrared camera is not fine enough to
separate different substances, one single pixel can capture two
or more signatures, and the resulting spectra will be a
composite or mixture of their individual pure signatures. The
rows are the features and the columns are the instances or
samples. It contains a total of eight overlapped of classes, four
chemical analytes and four substrates. Since our main objective
is to detect analytes, we are going to group all classes into two
main groups. Hence our problem becomes a binary
classification problem. More details about this dataset can be
found in [6]. This hyperspectral dataset showcases high
dimensionality and a highly imbalanced sample size.

III. METHODOLOGY

The methodology is divided into four parts: Principal
Component Analysis (PCA), Data Augmentation (DA),
Convolutional Neural Network (CNN) and performance
analysis. The main goal of our experiments is to
comprehensively measure classification accuracy for CNN,
PCA+CNN and DA+CNN. In this section we will describe
these approaches.

A. Principal Component Analysis

Principal Component Analysis (PCA) has been widely used
to translate highly-dimensional data into a new feature space
with lower dimensionality [13]. The goal of this translation is
to reduce the number of dimensions (or feature vectors) while
maintaining all relevant information and variability of the data
[19]. The first principal component, PCA1, aims to capture the
majority of the variability of the data. The second principal
component, PCA2, aims to capture the majority of the
remaining variability of the data. PCA2, however, has to be
orthogonal to PCA1. Likewise, the third principal component,
PCA3, has to be orthogonal to both PCA1 and PCA2 while
further capturing the majority of any remaining variability of
the data. One of the appeals of PCA is that it tends to find the
most significant patterns in the data. Another very appealing
characteristic of PCA is that it often results in a small number
of dimensions. Thirdly, PCA’s transformation also brings yet
another benefit: it removes some of the noise from the data
[20]. Mathematically, we start by defining the dataset as a
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matrix D[n][m], where n is the number of samples and m is the
number of features. Then we define the covariance Cov as the
expected value of d;*d; where the mean is equal to zero. The
result is R[#][k], where k is the number of new features and & <
m and usually &k < n.

B. Data Augmentation

Data augmentation has been shown to produce promising
ways to increase the accuracy of image classification tasks
[15]. It also provides a solution to small datasets by generating
derived samples using different mathematical transformations.
In image classification, common transformations for data
augmentation consist of using a combination of mathematical
manipulations to modify the training data [62]. For each image,
we generate a derived image that is stretched shrunk, zoomed
in/out, flipped, rotated, or colored with a different intensity.
The two images (original and derived) are fed into the
classification model. Basic transformations are depicted in
Fig. 1.

Fig. 1. Data Augmentation: Basic Transformations

However, these transformations cannot be directly applied
to spectral images [21], because any stretching, shrinking, or
flipping of the original spectra image would result in a spectral
or signature that corresponds to a different element or material.
Our proposed data augmentation technique is therefore to
randomly add Gaussian noise to the spectral dimension. The
motivation for this technique comes from signal processing and
digital communications domains. Optimal detection under this
condition has been proved in the field of wireless
communications [22]. In any advanced communication system
the received signal is equal to the sent or original signal plus a
Gaussian white noise as shown in Equation 1. Both the
received signal x(¢) and the original signal y(¢) are considered
random variables and the white Gaussian noise n(f) follows a
Gaussian (Normal) distribution with a probability density
function presented in Equation 2. Our white noise will follow a
Gaussian Normal distribution N(p,0) where mu is zero and
sigma is 0.0001.
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C. Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a type of deep
machine learning in which a model learns to perform
classification tasks directly from the data. The term “deep”
refers to the number of layers, hence, the more layers, the
deeper learning. Image-based machine learning and deep
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learning in particular has recently shown expert-level accuracy
in medical image classification [18]. Figure 2 details the layers
of our CNN.
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Fig. 2. Deep CNN for Binary Classification

In the experiments, a sequential CNN classifier was used
with the following layers:

Conv2D(75, (1,15), input_shape=(1,1254,1))
LeakyReLU(alpha=0.1)
MaxPooling2D(pool_size=(1,6), padding='same')
Conv2D(150, kernel size=(1,15), activation='linear")
LeakyReLU(alpha=0.1)
MaxPooling2D(pool_size=(1,6), padding='same")
Conv2D(150, kernel size=(1,15), activation="linear")
LeakyReLU(alpha=0.1)

MaxPooling2D(pool _size=(1,6), padding='same")
Flatten()

Dense(300, activation="linear"))
LeakyReLU(alpha=0.1)

Dense(units = 1, activation="sigmoid')

D. Performance Analysis and Tabular Comparison

To evaluate the performance and compare their accuracy of
PCA+CNN versus DA+CNN, we employed the confusion
matrix depict in Table I and the classification report to
calculate their accuracy.

TABLE L Confusion Matrix
Predicted Class
True Class Danger No Danger
Danger TP: True Positive FN: False Negative
No Danger FP: False Positive TN: True Negative

As per Table I, we obtain the values of TP, FN, FP and TN,
and calculate Error rate, Recall, Sensitivity or Hit rate,
Precision, Specificity and False alarm rate. The equations used
to compare all approaches are as follows:

o Probability of Detection is equal to true positives over (true
positives plus false negatives).

False Alarm Rate is equal to false positives over (false
positives plus true negatives).

Precision is true positives over (true positives plus false
positives).

Recall is true positives over (true positives plus false
negatives).

Accuracy is equal to (true positives plus true negatives)
over (true positives plus false positives plus false negatives
plus true negatives).
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K-fold cross validation is also used. Figure 3 is a
representation of the data partition for 10-fold cross validation,
where 10 % of the total data is used for testing and 90% of the
data is used for training the model.

[] Training set Bl Validation set

Round 1 Round 2 Round 3 Round

10
Fig. 3. K-fold Cross Validation Partitions

IV. EXPERIMENTAL RESULTS

In this section all experimental results are presented. We
start with a basic convolutional neural network CNN model,
then we present the results of using a principal component
analysis PCA together with CNN, and then we present the
results of our data augmentation-assisted convolutional neural
network (DA+CNN) model. We end this section with a tabular
comparison of all three models.

A. Basic Convolutional Neural Network (CNN)

During this round of experiments all 1254 features were
used. The 123 samples were divided into three sets. For testing
20%, about 25 samples, were used. The remaining 80% was
further divided into 60% for training data, about 74 samples
and 20% for validation data, about 24 samples, as shown in
Fig. 6. From the confusion matrix presented in Table II, we can
say that the overall accuracy of CNN on the testing data was
84%. This accuracy was calculated by adding the number of
correctly predicted classes (19+2) and dividing it by the total
number of testing samples (25).

TABLE II. Confusion Matrix for CNN
Predicted Class
True Class Detected Not Detected
Detected 19 0
[Not Detected 4 2

From the classification report presented in Table III, we see
that the average precision, recall and fl-scores are 84%. Here
precision is a measurement of how often a data sample that was
predicted as positive is actually positive. This is a ratio
between the number of correctly predicted positive instances
and the number of instances predicted as positive instances.
Recall is a measurement of how often a positive class instance
in the data set was predicted as a positive class instance by the
model. This is a ratio between the number of correctly
predicted positive instances and the number of truly positive
instances. The fl-scores measures the accuracy of the classifier
in classifying the data points in a particular class compared to
all other classes. The support is the number of samples of the
true response that lie in that class.

Authorized licensed use limited to: Univ of the District of Columbia. Downloaded on April 08,2023 at 20:33:37 UTC from IEEE Xplore. Restrictions apply.



TABLE IIL Classification Report for CNN
Precision | Recall | Fl-score | Support
0 0.83 1.00 0.90 19
1 1.00 0.33 0.50 6
micro avg 0.84 0.84 0.84 25
macro avg 0.91 0.67 0.70 25
sveighted | g7 084 | 081 25

Figure 4 depicts the loss and Figure 5 shows the accuracy
of the CNN over 50 epochs. The figures present the results for
training data in blue, the results for validation data in orange
and the results for testing in green color. In Fig. 4, we observe
that the loss of CNN decreases as the model learns. However, it
reaches a plateau after 50 epochs.
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Fig. 5. Model Accuracy of CNN at 50 Epoch

In Fig. 5, we observe that the accuracy of CNN increases as
the model learns from the training set. This is typical of any
deep learning model. Our CNN model reaches a top precision
of 91% on validation data. But it converges at an average value
of 84% accuracy on testing data.

B. Principal Component Analysis (PCA+CNN)

In this variant, during the preprocessing stage, Principal
Component Analysis (PCA) was applied. Since Scree Plots are
an easy way to depict the ratio of the total variance in the data
points in terms of principal components, a Scree Plot was
employed to determine the number of components to use. From
the Scree Plot in Fig. 6, we observed that 16 principal

components were enough to represent over 99.99% of the data
variability.
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Fig. 6. Scree Plot

During this round of experiments all 16 PCA were used.
Similar to the previous round of experiments the 123 samples
were divided into three sets, 60% for training, 20% for
validation and 20% for testing, 20%. For this variant, CNN was
adapted to be able to receive a 16-feature input. No other
changes were applied to the original CNN. After running the
experiments for PCA+CNN and compiling all cross validation
results into a tabular form, the average accuracy of PCA+CNN
on our imbalanced dataset was 80%. This accuracy was
calculated using the confusion matrix presented in Table IV by
adding the number of correctly predicted classes (18+2) and
dividing it by the total number of testing samples (25).

TABLE IV. Confusion Matrix for PCA+CNN
Predicted Class
True Class Detected Not Detected
Detected 18 1
[Not Detected 4 2

From the classification report presented in Table V, we see
that the average precision, recall and fl-scores are 80%. In
adding PCA to our basic CNN, the overall performance
decreased by 4%. PCA usually performs well in case of high
dimensionality. In the presence of imbalanced datasets
however, it suffers from the lack of data samples. Deep
learning approaches greatly depend on training/learning from
massive amount of data samples. PCA+CNN on an imbalanced
hyperspectral dataset only achieved average accuracy, which is
not desirable for any critical decision making. Since in this
paper, we are targeting highly dimensional and imbalanced
datasets, the results presented in Table V suggest that
PCA+CNN is not the optimal approach.

TABLE V. Classification Report for PCA+CNN
Precision Recall | Fl-score | Support
0 0.82 0.95 0.88 19
1 0.67 0.33 0.50 6
micro avg 0.80 0.80 0.80 25
macro avg 0.74 0.64 0.66 25
oeighted | 75 080 | 077 25
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Figures 7 and 8 further show the implications of having
imbalanced data in terms of model’s loss and the model’s
accuracy over 50 epochs correspondingly. The figures present
the results for training data in blue, the results for validation
data in orange and the results for testing in green color.
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Fig. 8. Model Accuracy of CNN at 50 Epoch

In Fig. 7, we observe that the loss of PCA+CNN decreases
as the model learns. However, there is performance
degradation on validation and testing data. In Fig. 8, we
observe that the accuracy of PCA+CNN increases as the
model learns from the training set. But it quickly levels out at
76% on validation data and testing data.

C. Data Augmentation (DA+CNN)

In this variant, during the preprocessing stage, offline Data
Augmentation was applied. We achieve this by adding a small
random white noise to our hyperspectral dataset. To generate
multiple noisy additional samples, we add a Gaussian Normal
(mean=0, variance=0.0001) to the spectral features. The idea
is to add a small distortion which will help us train our deep
learning model with a larger number of samples (original
samples + noisy samples) and at the same time it will produce
a more robust classifier. The following tables and figures
present the experimental results of DA+CNN.

The confusion matrix presented in Table VI, suggests that
the average accuracy of DA+CNN on our highly-imbalanced
dataset is 90% on testing set. This accuracy was calculated by
adding the number of correctly predicted classes (24+4) and
dividing it by the total number of testing samples (31). Note
that in this case there are more testing instances due to the fact
that the original dataset was augmented.

TABLE VL Confusion Matrix for DA+CNN
Predicted Class
True Class Detected Not Detected
Detected 24 0
[Not Detected 3 4

In Table VII, the classification report for DA+CNN is
presented, we observe that the average precision, recall and f1-
scores are 94%., 79% and 83%. After the incorporation of our
data augmentation approach to CNN, the overall performance
in terms of accuracy increased by 10%. Note that traditional
data augmentation techniques, shown in Fig. 4, were not used
here since they cannot be directly applied to spectral images.
Data augmentation usually improves resistance to noise. And
more importantly to our research, offline data augmentation
can also be used to increase the sample size. Deep learning
approaches can favorably benefit from more data. Our results
indicate that in fact DA+CNN outperform both basic CNN and
PCA+CNN.

TABLE VII.  Classification Report for DA+CNN
Precision | Recall | Fl-score | Support
0 0.89 1.00 0.90 24
1 1.00 0.57 0.73 7
micro avg 0.90 0.90 0.90 31
macro avg 0.94 0.79 0.83 31
1\‘,[‘; ::Elhsts;in 0.91 0.90 0.89 31

Figure 9 and Figure 10 depict the DA+CNN’s loss and
accuracy over 20 epochs correspondingly. The figures present
the results for training data in blue, the results for validation
data in orange color. In Fig. 9, we observe that the loss of
DA+CNN decreases as the model learns more and more from
the noisy data. Also, there is performance improvement on
validation data. In Fig. 10, we observe that the accuracy of
DA+CNN increases as the model learns from the training set.
After 15 epochs it slowly improves and by 20 epochs it reaches
a top accuracy of 93% and an average of 90%on testing data.
Note that both figures follow a logarithm curve.
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Fig. 9. Model Loss of DA+CNN
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By looking at these curves, we observe that DA+CNN
quickly reaches and passes the results of CNN and PCA+CNN.
Another observation is that the curves for DA+CNN, as is
shown in Fig. 9 and Fig. 10, are significantly smoother and less
jerky than the curves for CNN and PCA+CNN. This suggests
that DA+CNN is a more robust against noise since it learned
from noisy data.

CONCLUSIONS

Data augmentation-assisted deep learning using a
convolutional neural network (DA+CNN) was explored on a
hyperspectral dataset. Both PCA and Data augmentation
methods were used to preprocess classification input and
predict with a comparable degree of accuracy. Initially, a
three-layer CNN was designed and performance was measured
in terms of accuracy. Then this was compared to output
generated with PCA together with CNN, or DA together with
CNN. For PCA+CNN, the overall performance decreased by
4% as compared to CNN alone. For DA+CNN, the overall
performance in terms of accuracy increased by 10%. In this last
approach, the hyperspectral images were preprocessed using
offline data augmentation and it was analyzed with a confusion
matrix and the average accuracy (90%) was comparable to
results in [6]. In the future, deep learning and hyperspectral
images should be further explored paying particular attention
to online data augmentation, spectral adaptive filtering and
recurrent neural networks.
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