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We consider the problem of finding a net that
supports prescribed point forces, yet avoids certain
obstacles, with all the elements of the net being
under compression (or all being under tension), and
being confined within a suitable bounding box. In
the case of masonry structures, when described
through the simple, no-tension constitutive model,
this consists, for instance, in finding a strut net
that supports the forces, is contained within the
physical structure, and avoids regions that may be
not accessible. We solve such a problem in the two-
dimensional case, where the prescribed forces are
applied at the vertices of a convex polygon, and we
treat the cases of both single and multiple obstacles.
By approximating the obstacles by polygonal regions,
the task reduces to identifying the feasible domain in a
linear programming problem. For a single obstacle we
show how the region I" available to the obstacle can
be enlarged as much as possible in the sense that there
is no other strut net, having a region I’ available to
the obstacle with I" C I'’. The case where some of the
forces are reactive is also treated.
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1. Introduction

The mechanical modelling of masonry structures is a rather complex task, due to the
heterogeneous nature of the material, its ordered or disordered subdivision in blocks and mortar
beds, and the peculiar sensitivity of masonry to fracture damage (see, e.g. [1-3] and references
therein). A simple model introduced by Heyman [4] describes the masonry as a compression-
only (or no-tension) homogeneous material, which exhibits infinite compression strength and is
not affected by failure modes due to the relative sliding between the blocks [4]. Such a model
does not account for shear failure, which is nevertheless of paramount importance in different
cases of technical interest [2,3]. It can be safely applied when rocking-type failure is expected to
anticipate shear failure [3]. According to Heyman’s model, a well-known ‘master safe’ theorem
states that the collapse of a masonry arch does not occur if a line of thrust of the given external
loads can be fit within the boundaries of the arch (see [4] and also [5-7]). The line of thrust
coincides with Hooke’s inverted chain of the given forces, as shown, e.g. by the Italian engineer
Poleni in a study dated back to 1784, which was aimed at assessing the stability of St. Peter’s
dome in the Vatican [8]. Such a construction has been the foundation of the beautiful work of the
Catalan architect Antoni Gaudi on funicular shapes of masonry structures [9,10]. An interesting
numerical procedure to construct the thrust line of a masonry arch that is closest to the axis line
is given in [11], while the influence of settlements on the load-bearing capacity of masonry arches
and different masonry structures is studied in [12]. The use of truss networks within discrete
element approaches to no-compression or no-tension bodies is frequent in the literature (refer
to [13-17] and references therein). Truss models are convenient, e.g. to tackle the equilibrium
problem of masonry structures, described as no-tension bodies [18,19], and to assess the
compatibility of external loads through graphical constructions, numerical methods and hanging
models [15-17,20-22]. Polyhedral Airy stress functions have been employed in two-dimensional
problems, since such functions permit one to conveniently describe force networks through scalar
potentials [23,24]. It is worth remarking that the no-tension model does not account for buckling
analysis, since the material is supposed to behave rigidly up to collapse, and not to fail in
shear [4,25].

A recent study has investigated the existence problem of systems of tensile forces that support
given sets of nodal forces, coming to the conclusion that if such ‘cable webs’ exist then the given
forces are supported by the complete web connecting pairwise their points of application (see
[13], theorem 1.1). In two dimensions, and with forces at the vertices of a convex polygon, the
use of polyhedral Airy stress functions shows alternatively that if such ‘cable webs’ exist then the
given forces can be supported by an open web with no internal loops (see [14], theorem 1, and
figure 1).

The present work generalizes the above problem to the case of compression-only force
networks (or ‘strut nets’) in two dimensions, which support given sets of nodal forces, and are
able to avoid ‘obstacles’ representing regions not accessible to the force network (e.g. holes or
inclusions). We begin by deriving a result showing that a strut net supporting q forces located
strictly inside the convex hull of the points where forces are applied and avoiding p obstacles
can be replaced by a strut net with at most p + g elementary loops (§2). From then onwards we
restrict our attention to sets of forces at the vertices of a convex polygon (g = 0). In §3, we provide
a condition for the non-existence of strut nets that avoid a given obstacle, when such an obstacle
intersects the open strut net associated with the given forces, and extends outside the convex hull
of their points of application. We also provide an algorithm to establish if there exists a strut net
avoiding multiple obstacles, and if so to construct one. Additionally, for a single obstacle, we show
how the region available to the obstacle can be enlarged as much as possible (in a sense to be made
more precise). Section 4 treats the case of multiple obstacles with the inclusion of reactive forces.
Numerical applications are then presented in §5, by first dealing with a test problem characterized
by a single active force, and then by treating a series of examples that analyse strut nets associated
with the statics of masonry arches. We end in §6 by drawing concluding remarks and directions
for future work.
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Figure 1. As proved in [13], a strut net that supports forces applied at the vertices of a convex polygon, such as the forces
depicted in red in (a), is the one connecting pairwise their points of application. Such a strut net, represented in black, is not
the only one. For example there always exists an open net, shown in (b), that supports such a set of forces with no internal
loops.

2. Reducing the complexity of a strut net avoiding a given set of obstacles

To begin, we consider a set of points xq,X, ..., X, at the vertices of a convex polygon £2, with
external forces ty, to, . . ., t; acting on them. We assume that the points are numbered anticlockwise
and we adopt the following convention: for any i > n, x; := x;_, and xp := x;. Letting

0 -1
R, =

denote the matrix for a 90° rotation, we assume that, for all j with 1 <j<n and for all i with
j<i<j+n-—-1,

> (% = x)) - [Rit] > 0. 2.1)
=j

This assumption ensures that there exists a truss structure supporting these forces with all
the struts in the truss structure under compression [14]. The constraint (2.1) has a physical
interpretation: the net anticlockwise torque around the point x; of the forces t; summed over
any number of consecutive points clockwise past the point x; is non-positive. If (2.1) is satisfied,
the forces are supported by an open strut net with no internal loops, in other words, there are no
polygons whose edges are the struts of the net. A more general condition, applicable to any set
of forces, either in two dimensions or three dimensions, is that if a strut net exists supporting the
forces, then they will also be supported by a strut net connecting pairwise the points at which
the forces are applied [13]. This leads to a linear programming problem for determining if a set of
forces can be supported.

Condition (2.1) is derived using Airy stress functions. Indeed, for two-dimensional elasticity it
is well known that, in the absence of body forces in a simply-connected region §2, the divergence-
free stress field o (x) can be represented in terms of the Airy stress function ¢(x):

92¢(x) ¥2¢(x)
32x3 - 9x10%2 -
= =RTVV¢(x)R,, 2.2
o(x) Pon) o) TVVex)RL (2.2)

Cavdxr, 9232
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in which RJT_ = —R is the transpose of R . Since ¢ (x) is negative semidefinite for all x, we see
that VV¢(x) is negative semidefinite for all x. This implies that ¢(x) is a concave function in any
simply-connected two-dimensional region under compression, that may have subregions with
zero stress [18]. Note that, when o (x) is zero in a region, as it is between the struts in a net, then
VV¢(x) =0 which by (2.2) implies the Airy stress function is a linear function of x in this region.
Thus, any strut net under compression that supports forces at the vertices of a convex polygon will
have an associated Airy stress function whose graph is a concave polyhedron. The magnitudes of
the slope discontinuities can be connected to the compression in the associated struts [24,26].

If the strut net associated with a concave polyhedron has internal loops, we can replace the
latter by a simpler concave polyhedron (supporting the same forces), by using the tangent planes
to the Airy stress function at the boundary of the polygon £2 [14]. The strut net associated with
this latter concave polyhedron will be an open strut net with no internal loops. To prove this, let
us start by noticing that, since the strut net supports under compression the forces t; at the points
X;, it can support, for some € > 0, the same forces at points

X; =x; — €t;, (2.3)

the convex hull of which we call 2. To do this, one extends the strut net by attaching n short
struts of length € > 0 between x; and x;, i =1,2, ..., n. The first step is to determine the Airy stress
function ¢(x) in the polygonal ring bounded on one side by the polygon joining the points x;, and
on the other side by the polygon joining the points X;. When ¢ is sufficiently small there are no
struts inside the quadrilateral §2; with vertices X;_1, X;_1, X;, X; and since the stress vanishes there,
the Airy stress function ¢(x) inside that quadrilateral must be a linear function L;(x). Due to the
stress in the wires (see, for example, [14]), these satisfy

Ri(VLiy1 —VL)=—t, i=12,...,n, (2.4)

and, for all ,j,
L;> L]' on £2;. (2.5)

Equation (2.4) and the constraints
Li(xi) = Liz1(xi) (2.6)

determine the sequence (L;)!"_; up to the addition of a global linear function. Uniqueness can be
ensured by assuming, for instance, that L1(x) = 0. The condition (2.5) is equivalent to (2.1) [14].

The stress measure o (x) associated with the Airy function ¢(x), that is defined in the sense of
distributions by (2.2), is non-positive, concentrated along a finite union of segments, divergence-
free on 2 and, owing to the construction of (L;)_;, the divergence in the sense of distributions,
div(o|), coincides with the discrete measure 27:1 t;8x, on 982. Let us introduce the following
definition:

Definition 2.1. A ‘strut net function” is a concave piecewise linear function ¢(x) on Q
coinciding with L;(x) on each £2;.

We see that, in particular, the envelope of the tangent planes,
$o(x) = miin Li(x), (2.7)

is a strut net function: we call it the ‘open strut net function” as it is associated with a strut net
having no loops. Note also that concavity implies that any strut net function ¢(x) satisfies, for all
i, ¢(x) < L;(x), and hence that ¢(x) < ¢g(x).

(a) Forces at points inside the convex hull of all application points and multiple obstacles

Consider a strut net containing a convex elementary polygonal loop within which there are
no obstacles. By elementary we mean a loop with no interior struts. Then, the net forces (due
to adjoining struts or imposed forces) act on the vertices of the loop as in figure 24, and the
polygonal loop can be replaced by an open strut net, as in figure 2b. In this way, if there are
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Figure 2. Here (a) is a convex polygonal loop, possibly lying within a strut net that may contain many loops. The arrows denote
the net forces acting on each vertex. Provided there are no obstacles inside the loop, it can be replaced by the open strut net as
in (b), thus reducing the number of loops in the whole strut net by one.

(@)
Figure 3. An obstacle may lie partly outside the convex hull of where the forces are applied, but outside the open strut net, as

in (a). However, if the obstacle lies partly outside the convex hull of where the forces are applied and intersects the open strut
net, as in (b), then there is no strut net that avoids the obstacle.

many internal loops in the strut net, we decrease the number of elementary loops by one. This
reduction can be continued until any remaining elementary loop encloses one or more obstacles
or has an imposed force acting outwards from a vertex of the polygonal loop, so that the loop is
not convex.

Then, using the fact that any obstacle intersecting the boundary of the convex hull of all points
where forces are applied can never have a loop of struts under compression surrounding it, we
establish:

Theorem 2.2. A strut net that has q imposed forces at points that lie strictly inside the convex hull
of all points where forces are applied and that avoids p obstacles, py of which intersect the boundary of
this convex hull, can be replaced by a strut net, supporting the same forces, that has at most q + p — po
elementary loops.

This generalizes the result in [13] that used a similar argument to treat the case where p =py =0
(q7#0).

If aloop contains an obstacle it may be possible to replace that loop by the associated open strut
net provided that open strut net does not collide with the obstacle. In the g = 0 case it follows that,
if a net exists that avoids a single obstacle, then there is a net with none or one loop that also
avoids the obstacle. Specifically, the zero loop case corresponds to the open strut net, and if there
is one loop that cannot be reduced, then that loop contains the obstacle. Note that, as the struts
in the loop are under compression, the loop cannot extend outside the convex hull of the points
where the forces are applied. Thus, if an obstacle intersects the open strut net and extends outside
the convex hull of the points where the forces are applied, then there is no strut net that avoids
the obstacle (see figure 3).
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3. Solution for the obstacle problem with forces at the boundary
of a convex polygon

Our objective is to find an algorithm for determining if a strut net exists that avoids a given set of
simply connected obstacles and which supports a given set of forces at the boundary of a convex
polygon. We will first assume that there is just one obstacle and we will enlarge the region it can
occupy. Here by enlargement we use the following definitions:

Definition 3.1. Given a strut net avoiding an obstacle O, the region I" available to O is the
interior of the strut loop, having no internal struts, that contains O.

Definition 3.2. Given a region I" available to O for some strut net, then I’ is an enlargement
of it if I"’ is available to O for some strutnetand I’ D I'.

Thus, if the obstacle is in a region I', then it is surely in the enlarged region I'’: O C I" implies
O C I'". While the procedure will be illustrated by figures in which there are only four applied
forces, the analysis holds when there are any number of forces applied at the vertices of a convex

polygon.
Given a strut net, and associated strut net function y(x), we can modify the strut net to try to

accommodate, or better accommodate, an obstacle O by replacing v (x) with
¢(x) =min{y, L}, with L(xx) > Li(x;) forallk, 3.1

where L(x) is a linear function to be chosen so that ¢(x) = L(x) on O. Thus, ¥ (x) > L(x) on O. We
call L(x) the cleaving plane. Now, if for any x,

L(x) <y (x), (5.2)

then surely because v/ (x) < ¢o(x), one has that

L(x) < ¢ (%) (3.3)

Thus, the region I" available to the obstacle is enlarged if the cleaving plane cleaves the open strut
net function rather than any other strut net function supporting the forces (see figure 4a-d).

Hence, the existence of a strut net avoiding the obstacle O is equivalent to the existence of a
linear function L(x) satisfying

L(x;) > Li(x;) and L(x)<Li(x) on O foralli. (3.4)

(@) One or more obstacles which are convex polygons, or which can be approximated
by convex polygons

Note that, for any cleaving plane L(x), the set {x:¢(x) > L(x)} is a convex set because of the
concavity of the open strut net function ¢o(x). Hence, there is no loss of generality by assuming
that the obstacle O is convex. Therefore, consider the case when the obstacle O is a convex polygon
or is approximated by a convex polygon containing the obstacle O. Lety,,p=1,2,...,m be the
vertices of this polygon. Then, (3.4) will hold if L(x) satisfies

L(xi)zai=do(x;) and L(y,) <bp=do(y,) forallip. (3.5)

Now, L(x) can be written as L(x) = v - x 4+ ¢ and we are looking for v and ¢ so that the inequalities
(3.5) are satisfied, that is, for all i and p,

v-x;+c>a; and v~yp+c§bp. (3.6)

The question becomes whether there is a feasible domain of (v, ¢) pairs satisfying this system of
linear inequalities: this is a standard problem in linear programming theory.
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Figure 4. Here (a) shows the cleaving (dot-dash line) of a strut net function (solid and dashed lines), resulting in the strut net
(b). If instead as in (c) one cleaves, with the same cleaving plane, the open strut net function, one enlarges the region that the
obstacle can occupy, and the corresponding strut net (d) has a single elementary internal loop. Finally, by moving the cleaving
plane downwards keeping the same orientation until it touches one of points L (x¢), as in (e), one further enlarges the region
that the obstacle can occupy, asin (f).

Note that this is easily generalized to the case of multiple inclusions Oy, 4=1,2,...,s, with
associated cleaving planes L (x). Then, (3.4) is replaced with

L@ >Li(x) and L@ <L; L@ <L on Oy, foralli,q,r. 3.7)

Treating each inclusion O, as convex or approximating it by a convex polygon containing O,, we

let yp ,p=1,2,...,m(q) be its vertices. Then (3.7) will hold if the cleaving planes L@(x) satisfy for
alli,p,r

LD(x;) > a; = go(x;) = Li(x), (3.8)
and
LDy <b? = go(y) and LD(y?) < 1Oy, (3.9)

Writing L@ (x) as L@ (x) = v(? - x + () we arrive at the linear system of inequalities

VO x4 @ >, V@ y;jf) £ < bff)

@ v@ @

(3.10)
and v Yy + cr Yy + >0,

which must hold for all 7, g and r. This is again a standard problem of determining if there is a non-
empty feasible domain in the 3s dimensional space consisting of s pairs (v?,c®)g=1,2,...,s. If
it is non-empty, then associated with a (v(‘7), C(q)) g=1,2,...,s in the feasible domain are cleaving
planes L@(x), g=1,2,...,s and when ¢p(x) is cleaved by them we obtain the strut net avoiding
the obstacles.

(b) Enlarging as much as possible the region available to the obstacle

Let us return to the case where there is a single obstacle and assume that the feasible domain
associated with (3.6) is non-empty. While the feasible domain allows us to identify all strut nets
with one strut loop that contains the obstacle O, it does not identify those strut nets with as
much room as possible around the obstacle O. By this we mean that the region I" available to the
obstacle O is maximal, in the sense that if "’ is the region available to the obstacle O in another
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Figure 5. Various configurations, (a), (c), (e), (g,/) and (k) of the cleaving plane, denoted by dashed lines, that cleave ¢po(x),
denoted by solid lines. The associated strut nets are below each of these subfigures. The procedure of tilting and then rotating
the cleaving plane follows that described in the text.

strut net and I" C I'’, then I'” = I'. Note that I” is not necessarily unique, and a different I" may
have less room around the obstacle on one side and more on another side. Here, we will show
that if the obstacle O lies in a maximal I" then

L(x) = L(xx) and  L(x¢) = Le(xe), (3.11)

for some k and ¢.
If, for any x, (3.3) holds then surely

L'(x) <po(x) withL' =L — min(L(x;) — a;), a;=Li(x;), (3.12)

because L'(x) <L(x). In other words, the cleaving plane can be lowered while keeping its
orientation fixed, expanding the region I" that can be occupied by the obstacle. This can be
continued until this cleaving plane L’ first touches a point A = Li(xx), where i =k attains the
equality in (3.12) (see figure 3).

Now we tilt the cleaving plane about the line through A and another point B € L N Ly with
B # A. This line is where L'(x) and L (x) intersect. This gives a new cleaving plane

L"=L"+a(l’ - L), witha>0. (3.13)
We can continue this tilting by increasing o until

o —mi L (X]) — L](X])

when L”(x) first touches another point C = Ly(x,) in which j = ¢ achieves the equality in (3.14). It
also touches A. Note that if for any x the first inequality in (3.12) holds then surely

L"(x) = do(x), (8.15)

because that first inequality implies L'(x) < Ly(x) at that point. This implies that as the cleaving
plane is tilted until it touches B, the region I" that can be occupied by the obstacle enlarges further
(see figure 5a—d).
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One can subsequently rotate the cleaving plane about the line joining A with L¢(x,) until
the cleaving plane meets Lj(x;) for some h. In our example, rotation one way gives figure 5e
with Ly(x;) =D and the corresponding strut net figure 5f, while rotation the other way gives
figure 5¢ with Lj(x;) = E and the corresponding strut net figure 5i. However, this rotation does
not generally enlarge the region I" that can be occupied by the obstacle. The rotation tips the
cleaving plane up on one side of the line Li(xx) with L;(x¢) and down on the other side. The
region I", with the strut loop as its boundary, shrinks on the up side and expands on the down
side. The exception, as illustrated in figure 5i with the corresponding strut net figure 5;j is when
¢=k+1,ie. when L¢(xg) is on the same facet of ¢y(x) as Ly(xx). Then the region I" lies on one side
of the line joining x; with x; and, as illustrated in figure 5k we may rotate the cleaving plane about
the line so the plane tilts down on the side where I is located and touches D = Lj(x,), producing
the strut net of figure 5.

This analysis provides an algorithm to generate all maximal regions I". One starts with each
i=1,2,...,n and takes the cleaving plane through L;(x;), L;11(x;+1) and a third point L;(x;) (with
no points Ly(x;),h=1,2,...,nlying above the plane). One next rolls the cleaving plane, rotating it
about the line joining L;(x;) and L;(x;) until it first hits another point L(xk). Then one rolls it further
about the line joining L;(x;) and Ly (xx) until it first hits another point Ly (x). This is continued until
the rolling cleaving plane hits L;_1(x;_1). As the rolling progresses the region enclosed by the strut
net loop created by the cleaving plane is maximal and the region available to an obstacle placed
within it cannot be enlarged.

4. Including reactive forces with multiple obstacles

Let us suppose that a subset Z C {1,...,n} of the n forces are reactive, while the remaining ones
(corresponding to the subset of indices K :={1,...,n} \ Z) are given. That means that the forces
are not fixed at the points x; for i € Z but that any forces at these points are admissible as soon as
they balance through a strut net the forces t; applied at points x; for i € KC . The planes Ly are no
longer fixed by equations (2.4). When i € Z, these equations determine the reactive force t;:

ti=—-R, (VL1 — VL), iel (4.1)

and provide no constraints on the unknown L;;; and L; while, for the remaining i € IC, they
provide the constraints

Ry (VLiy1 — VL) =-t;, iek. (4.2)

Since we can add any linear function to the Airy stress function, we are free to assume, as before,
that

L1 =0. (4.3)
Continuity of the Airy function requires that, foralli e {1,2,...,n},
Liz1(xi) = Li(x)). (4.4)
Its concavity requires that, for all i #;jin {1,2,...,n},
Li(x;) = Li(x;)- (4.5)

As in (3.10), the existence of a strut net avoiding the s obstacles 01, O, ..., Os, each O, being
the convex hull of points (y‘i, yg, s, YZ( q))’ is equivalent to the existence, for all g € {0,1, ..., s}, of
linear functions LV, L®, ... LO satisfying, for any i in {0,1,...,n}, any g#rin {0,1,...,s} and
any pin {0,1,...,n(q)},

LO0) = Litx), L") =L@ and  LOGP) = 1@F). (4.6)

These results, which also generalize the results obtained in §3, can be summarized in the following
theorem:
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Theorem 4.1. The existence of a strut net balancing forces t; applied at points (x;);cxc with the help of
reacting points (x;)iez and avoiding obstacles O1, O, ..., Os, each Oy being the convex hull of points
(y'li, y;, ceey yZ( q)), is equivalent to the existence of linear functions (L), and (L(‘7))3:1 satisfying, for any
iinf{0,1,...,n},anyq#rin{0,1,...,s}andany pin {0,1,...,n(q)}, the constraints (4.2)—(4.6). Setting

Lix)=w;-x+d; and L9(x) =09 .x+c@, (4.7)

the existence of such a strut net is equivalent to the existence of a solution (w;, d;)._, and (0@, c(‘”);:1 of
the following linear programming problem

Ry (wit1 —w;)=—t;, foriek,

w1 =0, di1=0,

w1 X tdip=w;-x+d;, forl<i<n,
wj-xi+di>w;-xj+d;, fori#jin{l,... n}, (4.8)
0@ . x; + D >w; - x;+d;, forl<i<nl<g<s,

)

wi-y;,q)+d,-zv(‘7)»y$ +c@, fori<i<nl<g<s1<p<n(g)

and 2. y;,q) 4+ > 2@ y;,q) + @, forq#rin{l,... s}, 1<p<n(g).

Recall that, as soon as admissible quantities (w;, d;);! ; have been chosen, the reacting forces
are determined by (4.1).

We must emphasize the fact that, when a solution exists for the previous linear programming
problem, generally an infinity of solutions exists. Indeed we have not fixed any objective function
to minimize. We can fix in very different ways such a linear objective function. But even when it
is given uniqueness is not guaranteed. This fact is clearly illustrated by the following example.
Assume that all bars in the strut net have a thickness proportional to the force they carry, in
such a way that the stress remains constant in the whole structure. Then the total volume V of
the structure is proportional to the integral over £2 of the Laplacian of the strut net function (a
negative measure). This linear function of the unknowns, which from here onwards we will call
the total weight of the structure, seems to be a good candidate for the objective function. However,
one can note that, using the divergence theorem, V can be computed from the normal derivative
of the strut net function on the boundary of the domain. Therefore, it does not involve the L@
functions: its minimization can help fix the L; functions, that is the reactive forces, but it cannot
entirely determine a unique strut net.

We can also treat the case when a subset 7 € Z of the points at which the reactive forces act,
rather than being fixed, are confined to some line segments. These segments, for example, could
be sections of supporting walls or ground. Then, there are the constraints

xj-(Rrg)=2z and 8 =% -8 Sg;', forjeJ, (4.9)

where the unit vectors g; and constants z;, 8 and g;r are given, but only defined for j € J. These
segments should be such that the x;,i=1,2,...,n are still the vertices, going anticlockwise, of a
convex polygon for all choices of points x;,j € 7 anywhere on the line segments. Now we need
to add the x;j,j € J to the unknowns. Then, those equations in (4.8) that involve x;,j € J provide
quadratic (and non-convex) constraints on the unknowns, and we are left with determining the
feasible domain associated with a quadratic programming problem, involving (4.8) and (4.9),
again a standard problem.

It could be the case that reactive forces act at, say, a pair of neighbouring points x; and x;;1
withie J and i + 1 € J and share the same line segment. Then,

8 =8y, Zi=zil, & =81 and g =g, (4.10)
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and to maintain the anticlockwise order of points (4.9) needs to be electronic supplementary
material, supplemented by the additional constraint that

(xi —xi+1) -8 >0, (4.11)

by, if necessary, reversing the direction of g;, the signs of z;, §; and g, and reversing the
inequalities in (4.9), while maintaining (4.10). The generalization to the case of more reactive forces
acting at neighbouring points sharing the same interval is straightforward.

There is an alternative to allowing the points x;,j € J to range along these line segments: one
can distribute along each line segments sufficiently many additional fixed points x; at which
reactive forces act. This has the advantage of replacing the quadratic programming problem with
a linear one, generally at the sacrifice of having more unknowns. This is what has been done in
the numerical examples in §5¢ where 200 points with reactive forces have been distributed along
two supporting segments.

5. Numerical results

The first part of this section deals with some numerical applications of theorem 2.2 of §2, the
second part treats the issue of enlarging the region where the obstacle can be placed, while the last
part discusses numerical examples of the linear programming procedure described in theorem
4.1 of §4. Specifically, in §5a, we consider two examples in which the internal loops of a strut net
that avoids an obstacle are simplified into open strut nets, up to a certain number of irreducible
elementary loops. Indeed, according to theorem 2.2 in §2, the number of loops that cannot further
be simplified depends on the number of points of application of the forces that lie inside the
convex hull and on the position of these forces and the obstacle itself. In §5b, we implement the
algorithm, presented at the end of §3, that allows one to enlarge the area available to place an
obstacle. Finally, in §5c¢, strut nets are generated that support sets of active applied forces at given
points and reactive forces at other given points that act in response to the applied forces. The
first example gives a strut net with two triangular cells that supports a single active force and
avoids four obstacles. Four subsequent examples examine strut net models for masonry arches
modelled as rigid no-tension bodies [4,17], which are subject to different loading conditions and
are required to avoid various obstacles. In all the examples of sections from §5a to 5¢(i), we use
abstract units for lengths and forces. We omit the indication of such units for ease of notation.
The final examples of §5c(ii) deal with a real case of a masonry structure described through the
no-tension model. Such examples analyse the triumphal arch of a basilica church studied in [27],
both in correspondence of the real configuration of the structure, and also in correspondence of
a modified configuration that exhibits additional holes/obstacles applied to the side abutments.
We wish to remark that all the results given in the previous sections are scale invariant. Indeed,
historically the stability of masonry arches was assessed by building scaled models and testing
their stability (see, e.g, [10]). The numerical results presented hereafter are illustrative examples
of the algorithm given in section §4, which works also for more complicated problems.

(a) Loop reduction

(i) Reduction to a funicular arch strut net

Let us consider strut net models of a semicircular masonry arch with horizontal span of the
extrados equal to 18, a rise at the intrados of 7.6 and a thickness of 1.4 (in abstract units, see figure 6
for a graphical illustration of the current example). The arch is loaded by a set of nine active forces
with unit magnitude directed downwards, uniformly distributed at equal angles of /20 along
the extrados, and two reactive forces acting at the ends of the arch. Reactive forces in equilibrium
with the assigned active loads, and an initial strut net featuring ¢ = 13 closed loops were obtained
by employing the numerical procedure presented in [28] (a unique material was assigned to all
the struts, cf. figure 6a). Such a strut net was next reduced to an open strut net (¢ = 0), employing
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Figure 6. Simplification of an arched strut net that supports nine vertical forces (in green) of equal magnitude acting
downwards along the extrados of the masonry arch, here represented in orange, with the help of two supporting reactive
forces (marked in red) acting at the endpoints of the arch. In order for the strut net to be contained in the masonry structure,
it has to avoid the half disk represented in grey. () The initial strut net exhibiting £ =13 closed loops. In (b—f), the loop
reduction procedure presented in [13] is applied to reduce each closed loop so that the final strut net is an open net, as
shown in (f). In each panel the open net replacing a closed loop is highlighted in a shade of purple. Note that the reactive
forces at the endpoints of the arch have been scaled by a factor of 0.2. See also movie S1in the electronic supplementary
material.

the loop reduction procedure presented in [13] (see figure 6b-e and electronic supplementary
material, movie S1). Since the active and reactive external forces of the current example are
applied at the vertices of a convex polygon (7 =0), it is easily observed that £ <g+p — pp, in
agreement with theorem 2.2 of §2. It is easy to show that the open strut net coincides with the
funicular polygon of the active forces, which passes through the endpoints of the arch and has
the initial and final segments parallel to the lines of the reactive forces [29] (see also [11]). Note
that the open strut net function ¢o(x) for this example, plotted in figure 7a for L1 =0, provides
the open strut net in figure 7b, which coincides with the one represented in figure 6f, obtained
through loop reduction.
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Figure 7. (a) Here is the open strut net function ¢b(x), defined in (2.7), associated with the example considered in figure 6.
By definition, ¢y (x) is the envelope of the tangent planes L;(x) (herei =1, . . ., 11), represented by the 11 coloured regions in
the picture. Here, L; = 0. The intersection between the 11 planes provides the associated open strut net, as shown in (b). As
expected, the latter coincides with the one depicted in figure 6f, obtained via loop reduction. Note that the reactive forces at
the endpoints of the arch have been scaled by a factor of 0.5.

(ii) Loop reduction for a strut net with an internal force and that avoids an obstacle

Here, we consider the example depicted in figure 84, in which one of the forces, f4 = (0.874,0.574),
is applied inside the polygon formed by the remaining forces. Indeed, the point x4 = (5,5), lies
inside the polygon formed by x; = (10, 0), x2 = (0, 0), x3 = (=5, 10) and x5 = (12, 7) where the forces
f) = (2.751,-2.319), f, = (—3.415, ~1.933), f3 = (—3.149,1.786) and f5 = (2.938,1.891) are applied.
According to the theory presented in [13], a strut net supporting such forces with all the elements
under compression exists. An example is provided by the strut net connecting all the points
pairwise as showed in figure 8. Now suppose that an obstacle is placed inside one of the loops
of the strut net. As stated by theorem 2.2 in §2, in which g=1, p=1 and pg =0, we can replace
the strut net connecting the points pairwise by one that has at most g 4 p — po =2 elementary
loops, as shown in electronic supplementary material, movie S2. The result of the loop reduction
is portrayed in figure 8b, where the two remaining elementary loops cannot be reduced further.

(b) Enlarging the region available to the obstacle

In this section, we provide a numerical example that illustrates the algorithm presented at the
end of §3 to enlarge the region available to the obstacle. We start with seven forces, f; = (—1, —4),
fp =(-3,-1), f3=(-2,2), f4 =(-3,5), 5 =(1,1), fs = (6,2) and f; = (2, —5), applied, respectively,
at the points x; = (0,0), xo =(—16,7), x3 = (—13,16), x4 = (2,20), x5 = (12, 19), x¢ = (12, 13) and x; =
(10, 0) of the Cartesian frame illustrated in figure 9. The open strut net function for this example is
shown in figure 94, and the associated open strut net is represented in figure 9b. In order to find the
maximal regions I", we start with point x; and consider the cleaving plane passing through L1 (x1),
La(x2) and L3(x3), see figure 9¢, which provides the region I" depicted in black in figure 94. Then,
we roll the cleaving plane about the line connecting L;(x;) and L3(x3), until the plane touches
the point L4(xg), figure 9¢,f, and this is continued until the plane touches Ly(x7), as showed in
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Figure 8. (a) A strut net, in black, that supports the applied forces, in red, and avoids the obstacle (here represented by the
grey circle) is the one connecting the points pairwise. By applying loop reduction, as illustrated step-by-step in movie 52 in
the electronic supplementary material, it is possible to reduce the number of elementary loops with at mostg + p — pp =2
remaining loops, as illustrated in (b). Note that the two remaining loops cannot be simplified further due to the presence of
the obstacle, on the one hand, and the force applied at the point x4, which lies inside the convex hull of the forces, on the
other hand.

figure 9¢,h. Movie S3 in the electronic supplementary material shows the rolling of the plane from
the initial configuration figure 9¢ to the final configuration figure 9%: as the rolling occurs, the
region in which the obstacle can be placed is maximal.

() Construction of strut nets avoiding obstacles

(i) Astrutnetavoiding triangular and square inclusions

Let us search for a strut net that supports a single active vertical force (pointing downward)
applied to the point with coordinates (0,4), with respect to the Cartesian frame illustrated in
figure 10. We examine two supporting segments delimited by the points (—4, 0) and (3, 4) (segment
1) and the points (3, 0) and (4, 0) (segment 2), which are placed on the opposite extremities of the
strut net. Each of such segments is composed of 100 fixed reaction points uniformly spaced along
the span of the segment. The searched strut net needs to avoid four obstacles, which are formed
by three triangles (T'1, T2 and T3) and one rectangle (R). The coordinates of the vertices of such
polygons are defined as follows

— T11[(1,2);(3,2);(3,3)]; T2[(0,1.3); (0.2, 3.5); (—0.2, 3.5)]; T3 [(—2.5, 0.5); (—1, 0.5); (—1, 2)];
— R[(-2,1.2); (=2,3); (-3, 3); (-3, 1.2)].

Figure 10 illustrates four strut nets obtained through the linear programming algorithm of §4
using different objective functions. The result in figure 102 was obtained by minimizing the total
weight of the structure, i.e. the integral over the boundary of the domain of the normal derivative
of the strut net function. In this case, the optimal strut net is composed of seven struts and two
elementary loops. The strut nets in figure 10b-d were instead obtained by minimizing the heights
of the cleaving planes of the obstacles T1, T2 and T3 at their centres of mass, respectively. By
minimizing one of such functions, the goal is to enlarge the room available to the corresponding
obstacle. It does not always achieve this goal because the minimization can tilt the cleaving
plane, or move the surrounding facets of the Airy stress function. The strut net in figure 100 is
again composed of seven struts and two elementary loops, as that in figure 10a. The strut net in
figure 10c is instead formed by five struts and one loop, while that in figure 104 shows ten struts
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Figure 9. (a) The open strut net function ¢y (x), which by its definition, given by equation (2.7), represents the envelope of the
tangentplanes.;(x) (herei =1, . . ., 7), represented by the seven coloured regions in the picture. Here, L; = 0. The intersection
between the seven planes provides the associated open strut net, as shown in (b). In (c), a cleaving plane (represented in black)
passing through the points L;(x;), L(x;) and L3 (x3), intersects ¢ (x) to create a region displayed in blackin (d) where an obstacle
can be placed. Indeed, one can replace the open strut net in (b) with a strut net containing a loop represented by the sides of
the black polygon in (d) and place an obstacle in such a loop. We roll, then, the cleaving plane about the line connecting ;(x;)
and L3(x3), until the plane touches the point L(x,), see (e). The rolling of the cleaving plane will identify a new strut net with
a closed loop represented by the side of the black region in (f) where one can place an obstacle. At this point, we let the plane
roll about the line connecting L;(x;) and Ly(x,), until it reaches the point Lg(xs). Lastly, we let the cleaving plane roll about
the line connecting L;(x;) and Lg(xs) until it touches L;(x;), as shown in (g). The corresponding strut net with a closed loop
is represented in (h). The rolling of the plane is illustrated step by step in movie S3 in the electronic supplementary material.
Note that, by applying this procedure to the remaining pointsx;,i =2, . . ., 7, we can find the maximal feasible areas that an
obstacle can occupy.

and two loops. Observe that in most directions more space is available to obstacle 3 in figure 10c
rather than figure 10d. Solutions like those in figure 10c, where there are no struts separating two
obstacles, can be enforced, if possible, by treating the two obstacles as a single obstacle.

(i) Arched strut nets avoiding openings and inclusions

The concluding examples that we examine in the present study deal with the real case of
a masonry structure modelled through the no-tension approach by Heyman. We analyse the
triumphal arch of the San Ippolisto Martire basilica church (Atripalda, Italy, 1584-1612), which
was previously studied in [27] through a finite element approach. The triumphal arch under
consideration forms the bottom part of the fagade of the church, which is overhung by a
triangular tympanum (not modelled). We study such a structure both in correspondence of the
real configuration of the arch, and also in correspondence of modified (virtual) configurations that
exhibit additional holes/obstacles within the side abutments. The masonry structure that contains
the strut nets as ‘thrust lines’ (or internal resisting structures) [4] is coloured light brown in the
figures that follow. The obstacles are labelled with a number in brackets (in different colours),
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Figure 10. Strut nets resulting from the linear programming problem: a single active vertical force (marked in green) is
supported by the shown strut net (blue in colour) with the help of 200 reacting points uniformly spaced along the lengths
of the two supporting segments marked in red (100 points for each segment). The net must avoid four regions (marked in grey).
The strut netin (a) minimizes the total weight of the structure, while those in (b—d) minimize the heights of the cleaving planes
of the obstacles 1, T2 and T3 at their centres of mass, respectively.

placed at their centres of mass. All the strut nets of the examples presented hereafter have been
obtained through the linear programming algorithm of §4, by minimizing the total weight of the
structure. Such strut nets lie within the masonry, which implies that the analysed structures are
stable under the examined loading conditions, according to the no-tension limit analysis approach
by Heyman [4]. The first example illustrated in figure 11 considers the action of a uniformly
distributed vertical load g acting on top of the arch, which is lumped in correspondence of 21
points of a discretized version of the boundary of the arch (all the dimensions shown in figure 11
are measured in metres). The load g corresponds to the self-weight of the structure, and has
been set equal to 123.79 kN m! following [27]. The arch stands above a central opening (in grey:
obstacle (1) in figure 11) and is constrained with two supporting segments formed by three points
each at the bases of the side abutments. Figure 11 shows in blue the feasible strut net composed
of two arched structures and a collection of vertical and diagonal struts, which has been obtained
through the algorithm of §4.

As a second example, we study a modified (virtual) configuration of the triumphal arch of
the San Ippolisto Martire church that exhibits an elliptical portal on top of the right abutment
(figure 12). Such an “obstacle” exhibits horizontal major axis equal to 1.20 m and vertical minor axis
equal to 0.60 m. It was approximated by a 22-sided polygon. The structure under consideration is
studied by augmenting the same vertical forces analysed in the previous example with horizontal
forces obtained by lumping a uniform horizontal load distribution p in correspondence to 20
vertices of a discretized version of the right side of the right abutment. The points where p has
been lumped consist of 15 equally spaced points placed along the vertical side of the right side of
the right abutment, and six equally spaced points placed along the oblique part of the same right
side. We set p =0.1g, since such a loading condition was shown to be safe (without the elliptical
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Figure 11. The triumphal arch of a basilica church featuring a central opening modelled as an obstacle (represented in grey;
dimensions in metres). The arch support 21 vertical forces acting downwards on the top (in green), which have been obtained
by lumping a uniform vertical load acting on top of the arch in correspondence of six equally spaced points placed along the top-
oblique segments of the boundary of the structure, and 10 equally spaced points placed in correspondence of the top-horizontal
segment of such a boundary. Two supporting segments (in red) have been inserted at the bases of the side abutments. Such
segments have been discretized into three potential reactive points, denoted by red spots in the figure. More reactive points
could easily be added but three suffice and adding more makes the strut need more sensitive to variations in the applied forces.
The half disk on top of obstacle (1) has been approximated by a 98-sided polygon. The feasible strut net marked in blue, which
has been obtained through our linear programming formulation, is supported by only two active reaction points within each
abutment.

porthole) in the finite-element study presented in [27]. The arch is supported in correspondence
of four equally spaced points placed at the bases of the side abutments. It is seen that the feasible
strut net shown in figure 12 exhibits four arches and a collection of vertical and diagonal struts.

The final example shown in figure 13 is obtained by “perturbing’ the configuration in figure 12
through the introduction of a walkway at the base of the left abutment (refer to figure 13 for
a detailed description of this ‘obstacle’). Upon considering the same loading condition of the
previous example, the linear programming algorithm of §4 returns a feasible strut net that is
again formed by four arched structures and a collection of vertical and diagonal struts, as in the
example illustrated in figure 12. The feasible strut net is supported only at extremities of the left
abutment in the present case, so as to avoid obstacles (2) and (3).

6. Conclusion

Given a two-dimensional set of forces at the vertices of a convex polygon, some of which
are prescribed forces and the remainder reactive forces, our main goal was to determine if a
strut net exists avoiding a given set of obstacles, and if so, to construct one such strut net. By
approximating each obstacle by a convex polygon, possibly with many sides, we successfully
devised an algorithm for doing this. It reduced to a linear programming procedure and was
based on finding a suitable concave polyhedral Airy stress function associated with the strut net
when all struts are under compression. Additionally, under the assumption that there is just one
obstacle, we devised an algorithm for generating regions that provide the maximum amount of
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Figure 12. Modified configuration of the arch studied in figure 11, obtained adding an elliptical porthole on top of the right
abutment (dimensions in metres), approximated by a 22-sided polygon. Such a configuration is analysed under the combined
action of vertical forces acting on top of the arch and horizontal forces acting in correspondence of the side boundary of the right
abutment. The resultant of the horizontal forces is set equal to 1/10 of the resultant of the vertical forces [27]. For simplicity, four
equally spaced (potential) restraint points have been placed at the bases of the side abutments. The feasible strut net in blue is
formed by three arched structures connected to vertical and diagonal struts.

space available to the obstacle, as shown in figure 9 and electronic supplementary material, movie
S3. By this we mean that the region available to the obstacle cannot be enlarged in the sense of
definitions 3.2 and 3.1. We also obtained partial results (theorem 2.2) in the case where there are g
forces strictly inside the convex hull of all points where forces are applied. We established that a
strut net supporting these forces, while avoiding p obstacles, pg of which intersect this convex hull,
can be replaced by a strut net, supporting the same forces and avoiding the same obstacles, that
has at most g + p — po elementary loops. In figure 6 and electronic supplementary material, movie
S1,q=0,and p = po =1 and the number of loops can be reduced until one obtains a final structure
that is an open strut net. In figure 8 and electronic supplementary material, movie S2, instead,
g=p=1, and pg =0, and the final net presents two elementary loops. Our work can be used to
determine if a given masonry structure (modelled as an incompressible, no-tension body [4]) can
support, under compression, one or more families of given forces (and convex combinations of
them). For example, the masonry arch coloured light brown in figures 11-13 can support different
families of vertical and horizontal forces (and convex combinations of them), while avoiding
various rectangular, semicircular and elliptical obstacles. Alternatively, we may use the strut nets
that support the desired families of forces to efficiently design the masonry structures themselves,
eliminating unnecessary regions. Constraints on the boundary of the masonry structure can be
imposed by introducing appropriate obstacles such as, for instance, those in figures 11-13. Our
analysis also applies to structures built from unreinforced concrete since it supports compression
but not tension. It can be easily generalized to the problem of finding cable webs under tension
that avoid given obstacles and support prescribed nodal forces [13,14].

We address the following generalization of the present study in future work: given a force set
t=(t;,t,...,t;) and a vector set f = (f1,fp, ..., f;), determine the extreme values of A such that a
strut net avoiding the obstacles supports both t and t + Af. Here f could represent an additional
forcing, say, e.g. due to an earthquake [7,30].
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Figure 13. Perturbed configuration of the arch studied in figure 12, obtained by adding a walkway at the base of the left
abutment (obstacle 3, dimensions in metres). Such an opening is formed by a rectangular region with 2 m width and 4 m height,
which is overhung by an arch with 1 m radius. The latter is approximated with a 22-sided polygon. The present configuration is
analysed under the same loading condition of the example in figure 12, and in the presence of an equal number and distribution
of (potential) reaction points at the base of the abutments. The feasible strut netin blue is again formed by four arched structures
connected to vertical and diagonal struts, as in the example in figure 12. In the present case, however, such a strut net shows
only two active reaction points at the bottom of the left abutment.

There are many other avenues that have not been explored in the present paper. An extension
of the results to three dimensions would obviously be important, but perhaps very difficult. The
stress does have a matrix valued function, the Beltrami stress function, that is analogous to the
two-dimensional Airy stress function. However, it is difficult to interpret the constraints on the
Beltrami stress function imposed by a negative semidefinite stress field. Another extension is to
find a way of generating strut nets supporting g forces strictly inside the convex hull of all points
where forces are applied, while avoiding p obstacles, without assuming one starts with a strut
net achieving these goals. Further goals are outlined in [31]. One, with or without obstacles, is
to allow for some elasticity in the struts, and to determine the possible sets of displacements
up, uy, ..., uy at the vertices xq, X, . .., x; when a force set f1, fp, ..., f; is applied. (Assuming the
force set is such that at least one strut net supporting the forces, yet avoiding any obstacles, exists.)
Another is to allow for finite deformations, with or without obstacles. That is, given moving
points x1(f), x2(t), . . ., xx(t) and balanced forces f1(t), f2(t), . . ., £,(t) that are dependent on time t,
when does there exist a single strut net under tension that supports these forces and avoids any
obstacles for some given interval of t? Here, single strut net means a strut net wherein the angles
between struts change with t but the topology and strut lengths do not; all struts also remain
under compression and do not collide. An even more challenging problem results if some of the
struts collide as t changes.

Data accessibility. Three movies are provided as electronic supplementary material. Electronic supplementary
material, movie S1 illustrates the step-by-step loop reduction procedure for the example depicted in figure 6,
whereas electronic supplementary material, movie S2 treats the loop reduction of the strut net represented
in figure 8. Finally, electronic supplementary material, movie S3 illustrates the rolling of the cleaving plane
to create maximal regions where the obstacle can be placed, as illustrated in figures 9 and 10. The authors
confirm that the data supporting the findings of this study are available within the article and its electronic
supplementary material [32].
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