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Abstract

Objective. The force that an electrocorticography (ECoG) array exerts on the brain manifests when
it bends to match the curvature of the skull and cerebral cortex. This force can negatively impact
both short-term and long-term patient outcomes. Here we provide a mechanical characterization
of a novel liquid crystal polymer (LCP) ECoG array prototype to demonstrate that its thinner
geometry reduces the force potentially applied to the cortex of the brain. Approach. We built a
low-force flexural testing machine to measure ECoG array bending forces, calculate their effective
flexural moduli, and approximate the maximum force they could exerted on the human brain.
Main results. The LCP ECoG prototype was found to have a maximal force less than 20% that of
any commercially available ECoG arrays that were tested. However, as a material, LCP was
measured to be as much as 24 x more rigid than silicone, which is traditionally used in ECoG
arrays. This suggests that the lower maximal force resulted from the prototype’s thinner profile
(2.9%x-3.25x). Significance. While decreasing material stiffness can lower the force an ECoG array
exhibits, our LCP ECoG array prototype demonstrated that flexible circuit manufacturing
techniques can also lower these forces by decreasing ECoG array thickness. Flexural tests of ECoG
arrays are necessary to accurately assess these forces, as material properties for polymers and
laminates are often scale dependent. As the polymers used are anisotropic, elastic modulus cannot
be used to predict ECoG flexural behavior. Accounting for these factors, we used our four-point
flexure testing procedure to quantify the forces exerted on the brain by ECoG array bending. With
this experimental method, ECoG arrays can be designed to minimize force exerted on the brain,
potentially improving both acute and chronic clinical utility.

1. Introduction valuable for studies of uniquely human brain func-

tions that cannot be directly studied in animals,

A subdural electrocorticography (ECoG) array is a
grid of neuroelectrodes that is used to monitor brain
activity [1-4]. Clinically, ECoG is used to determ-
ine the origins of epileptiform activity, map func-
tional regions of the brain, and monitor brain func-
tion during neurosurgery. ECoG is also used to
research cognitive brain functions, and is particularly

such as those supporting speech and language [5-8].
The signal quality and resolution of ECoG arrays is
much higher than conventional extracranial electro-
encephalography and reflects the activity of neurons
recorded nearby the electrode [9]. However, ECoG
placement requires invasive procedures, involving a
craniotomy, where a portion of the skull is removed,

© 2022 IOP Publishing Ltd


https://doi.org/10.1088/1741-2552/ac8452
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ac8452&domain=pdf&date_stamp=2022-8-17
https://orcid.org/0000-0002-6469-4991
https://orcid.org/0000-0001-6216-5888
https://orcid.org/0000-0002-0865-8929
https://orcid.org/0000-0002-0193-5057
https://orcid.org/0000-0002-4010-1266
https://orcid.org/0000-0002-2283-0529
https://orcid.org/0000-0003-2554-1850
https://orcid.org/0000-0003-1068-1797
https://orcid.org/0000-0003-4116-0038
https://orcid.org/0000-0001-6054-0541
https://orcid.org/0000-0002-8309-9610
mailto:florian.solzbacher@utah.edu
http://doi.org/10.1088/1741-2552/ac8452

J. Neural Eng. 19 (2022) 046041

Figure 1. Samples tested. From left to right, top-down the
samples are (a) Blackrock Microsystem’s NeuroCoG,

(b) Ad-Tech’s ECoG array, (c) LCP TF ECoG array
mechanical prototype, (d) silicone, (e) LCP film,

(f) silicone-LCP, (g) copper film (CF) fingers, (h) CF lace,
and (i) CF uncut. In terms of orientation, 0° represents
flexure along the vertical axis in this figure.

and a durotomy, where the dura mater is resected to
give access to the cortical surface [10, 11].

In addition to the surgical risks that come with
a craniotomy and durotomy, placing an ECoG array
on the brain, such as those seen in figure 1, exerts a
force on the brain due to the array’s bending stiffness
[1, 12—16]. Previous work has shown that increas-
ing pressure (force divided by contact area) on neur-
ons beyond 0.1 MPa has short-term effects that can
manifest within a fraction of a second to as much as
2 h after a stimulus, depending on its duration and
frequency. This pressure increase is correlated with
decreased action potential amplitude and conduction
velocity [17, 18]. If the pressure is too large, then
immediate cellular damage can also occur [19]. Smal-
ler increases in brain pressure can also lead to cortical
cell death, as intracranial pressure must be less than
systemic blood pressure for nutrients to diffuse from
blood [20]. For example, in the Cushing response, the
brain stem experiences hypoxia because the cerebral
perfusion pressure drops below 15 mmHg (2.00 kPa).
To compensate, the body raises blood pressure and
decreases pulse rate. If left untreated, this can lead to
brain ischemia, herniation, or hemorrhage [17, 19].
While increased localized pressure is less dire than
systemic intracranial pressure changes, these effects
are still present, and headaches and other short-term
changes in patient comfort can manifest soon after
placement of less flexible ECoG arrays. Furthermore,
local pressure may lead to stasis in cortical veins lead-
ing to thrombosis, edema and hemorrhage [21, 22].
The effects can be characterized from the measure-
ment of midline shift on post-operative CT/MRI
scans [23].
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In addition to persistent short-term effects, long-
term issues relating to the placement of ECoG arrays
can also manifest days or weeks after the implantation
surgery. Previous work has shown that a long-term
foreign body response within the central nervous sys-
tem is triggered by devices exerting a pressure greater
than 100 Pa [24]. Due to this phenomenon, as well as
the risks associated with neurosurgery, many modern
devices have been designed with flexible components
to decrease the risk of longer-term interaction with
the nervous system and brain tissue [25, 26].

To create a chronically implantable ECoG array
that conforms to the gyri of the brain with fewer
adverse effects, a highly flexible liquid crystal poly-
mer (LCP) thin-film (TF) ECoG array mechanical
prototype was designed and produced (figure 1(c)).
The novel LCP ECoG array was composed of an
LCP-TF circuit molded in silicone to create a low-
profile, highly flexible device [16, 27-30]. LCP is an
optimal material for flexible ECoG arrays. LCP has
water permeability <25x that of polyimide, another
commonly used TF substrate [31], and in vitro accel-
erated aging tests have demonstrated an implantable
lifetime of >5 years at body temperature [16]. Litho-
graphic patterning of metal layers on the LCP sub-
strate enables the design of micro-ECoG (uECoG)
arrays, thus greatly increasing the resolution of neural
recordings in comparison to current clinical standard
devices. LCP ECoG arrays have been used to record
in animal and human subjects to acquire fine details
of the spatial dynamics of cortical activity [30].

Because all final devices will have gold traces
that are only 3-8 um thick and 20 pum wide, it
was assumed that the contribution of these traces to
flexural bending force would be insignificant com-
pared to the LCP [32]. The LCP and silicone phases
together are 5x to 70x thicker than the wire traces
and are more than 99% of the bulk volume. There-
fore, the mechanical prototype was tested without
metal traces, due to the anticipated minimal impact
on mechanical stiffness. To quantitatively validate the
efficacy of this ECoG device and others, we con-
structed a custom low-force material testing machine
along with a corresponding evaluation procedure
to conduct our four point flexural bending tests
[12, 13,33-35].

With our custom-made setup, we performed a
four-point flexural bending test on our mechanical
prototype (LCP-TF), two United States Food and
Drug Administration (FDA) approved ECoG arrays,
copper film (CF) laminated LCP made by Dyconex
cut in different patterns, and samples of LCP and sil-
icone (figure 1). The two FDA approved devices tested
are Blackrock Microsystems’ NeuroCoG [36, 37] and
Ad-Tech’s (FG64C-SP10X-000) [38, 39]; they both
utilize a silicone substrate and have 64 evenly distrib-
uted electrodes in an 8 x 8 pattern. These devices
will be referenced as Blackrock and Ad-Tech from this
point forward.
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To evaluate orientation specific response, each
sample was tested at three different orientations (0°,
45°, and 90°). The convention of these orientations
indicates the rotation of bending axis in respect to the
vertical axis in figure 1 (i.e. 0° means bending along
the vertical axis). Both LCP and silicone samples were
tested by themselves to determine the individual con-
tributions of the proposed materials. To test the max-
imum impact of selective pattern excision, we cut dif-
ferent patterns into the CF samples to determine how
different patterns could affect the flexural bending
force.

2. Methods

2.1. Mechanical testing setup design, construction,
and function

We constructed our mechanical bend testing setup
using mechanical components from Robotzone
LLC (ServoCity®), a National Instruments https://
blackrockneurotech.com/research/neuroscience-rese
arch-products/low-noise-ephys-electrodes/blackrock
-electrode-concepts/ myDAQ data acquisition sys-
tem (DAQ), an INA122 instrumentation amplifier,
and MLT1030/d force sensor from ADInstruments
Dunedin, New Zealand (figure 2). These compon-
ents allowed for the construction of an assembly that
could measure with high accuracy the force that an
array configuration material generates under flexion.

The maximum myDAQ analogue input is 10 V
[40] and the maximum force sensor output is 150 mV
[41-44]. To prevent a voltage pull down or up by
DAQ’s analogue voltage measurement and to remove
common mode noise, we used an instrumentation
amplifier. In order to maximize the force resolution
without saturation, a 4 k{2 resistor was used to set a
gain (G) of 55 across the instrumentation amplifier.

As the motor turns the lead screw, the drive
nut lowers the loading assembly. Once the loading
rods contact the sample, they transmit force vertic-
ally to the stainless-steel cantilever blade(s). The force
sensor uses these cantilever blade(s) to amplify the
force transmitted to two silicon semiconductor strain
gauges (top and bottom), which are connected in a
Wheatstone bridge configuration. This creates a sub-
stantial electric signal for small forces. The myDAQ’s
analogue input resolution is 0.1 mV [40] and with one
blade the force sensor’s data sheet indicates that it out-
puts 9 mV gf ! [41], so the force resolution of the sys-
tem (with a gain of 55) was predicted to be 0.202 mgs
or 1.98 uN.

With the motor’s maximum speed of 105 RPM,
the worm gear’s ratio of 1:27, and the 1.33 mm pitch
of the drive screw, the maximum speed of actuation
is 5.17 mm min~!. We considered this slow rate to be
quasistatic loading for soft tissues such as the brain
and is representative of strain rates seen during ECoG
array positioning and use.

N S Witham et al

Figure 2. Low-force material testing machine. Machine can
be varied in construction to accommodate various types of
low force material tests. Key components are as follows:
force sensor (A), cantilever blade (B), pulley system (C),
lead screw actuator (D), metric ruler (E), worm gear (F),
DC motor (G), 90° aluminum mounting brackets (H),
support rods (I), loading rods (J), additional blades (K),
loading assembly (L), and counterbalance (M). The inset in
the top left depicts the cantilever blade’s (B) deflection that
is used to amplify forces on the sensor. The inset in the top
right depicts the four-point flexural bending test of the CF
lace sample in the 0° orientation.

The machine was calibrated by changing the mass
of the counterbalance in 5 g increments ranging from
35gt0 95 g. At each unique mass, the deflection of the
cantilever blade was measured with a pair of EZCal
calipers and the DAQ recorded the voltage. Known
stainless steel rod diameters and lengths ranging from
0.01 mm to 100 mm were used to evaluate the accur-
acy of the calipers with no notable errors. The res-
ults of this calibration can be found in the supple-
mentary information. Once calibrated, the loading
assembly was counterbalanced with a mass of 65 g.
This produced the same deflection and voltage as the
unweighted cantilever blade.

2.2. Sample fabrication

In addition to the two FDA-approved clinical devices
(figures 1(a) and (b)), we tested seven different cus-
tom prototypes to characterize the flexural proper-
ties of various designs and combinations of LCP,
copper foil, and silicone. All silicone was prepared
in a 1:10 ratio of curing agent to elastomer base
using the MDX4-4210 product from Dow Corn-
ing, a USP Class VI material. Adhesion was ensured
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between LCP and silicone using Nusil Technologies
MED1-161 silicone primer, a USP Class VI mater-
ial which has passed ISO 10993-5 cytotoxicity test-
ing. LCP samples were cut using a Silhouette Curio
paper cutting machine to create various 2D pat-
terns. Silicone molding was achieved using custom
milled metal stencils. We tested a mechanical proto-
type of the novel LCP ECoG array which included
four 9 x 40 mm strips of 50 pm thick LCP molded
together with silicone to a total thickness of 200 pum
(figure 1(c)). While no metal traces or contacts are
included in this prototype, the LCP and silicone com-
prise the bulk of material in this device and there-
fore are the focus of mechanical testing, as justified
in the introduction. We also tested a sheet of 600 m
thickssilicone (figure 1(d)), a sheet of 50 psm thick LCP
film (figure 1(e)), and a combined uniform sheet of
LCP and silicone molded together to a total thickness
of 410 pm (figure 1(f)). CF-laminated LCP sheets of
60 pm total thickness were cut in various patterns, all
of which could accommodate an arrangement of con-
tacts and wiring to match the silicone FDA approved
clinical devices (figures 1(g)—(i)). Additional details
regarding LCP device fabrication and design can be
found in Chiang et al [30].

2.3. Flexural testing

Using calipers, all samples were physically measured
in width, length, and thickness 12 times. The residual
mass of the loading assembly was then digitally tared
by the LabView VI, so that the sensor read 0.0000 g;.
To tare, the program recorded the baseline reading
2500 times at a 0.6 Hz sampling frequency.

Once tared, the sample was positioned horizont-
ally along two stainless steel round support rods that
were 26.94 mm apart. The two stainless steel loading
rods (9.78 mm apart) were lowered 2 mm to nearly
contact the sample. If gravity caused the sample to
warp, the force sensor would output a non-zero read-
ing and horizontal support would then be added next
to the support rods to prevent premature flexure of
the sample. The loading assembly was then lowered
an additional 5 mm to flex the sample. Note that for
this method to yield accurate data the materials meas-
ured must have linear mechanical behavior.

Once the sensor’s output was recorded, the load-
ing rods were raised by 7 mm, so the sample could
be rotated or removed. The program reduces meas-
urement noise by outputting a running average of the
last 25 sensor measurements. To control for distance
measurement errors generated by the Hall effect rel-
ative quadrature encoder, all displacement measure-
ments were additionally verified with a 90° aluminum
bracket and metric ruler fixed to the measurement
assembly.

2.4. Data analysis
Based on the force measured by the sensor (Fpeqs)
equations (1)—(6) are used to derive flexural modulus

N S Witham et al

=

Figure 3. Three point and four point flexural bending tests.
The sample is placed across two support rods and loading
rod(s) that displace (d) to cause the sample to bend in a
radius (r); deflecting its center (D). The sample exerts a
force (F) upwards proportional to sample height (h),
sample width (w), and gap span (L). Height, width, and
radius are unlabeled. Please note that the shown bending,
position, and orientation of the samples is valid for the
mechanical testing only. During surgeries the bending
amplitude, position and orientation of the samples is
different.

(Ef) from the following variables: known mass (g),
displacement of lead nut (z), sample height (h), canti-
lever deflection (k), displacement of loading rods (d),
radius of curvature (r), sample width (w), gap span
(L), tested deflection (D), force measured by sensor
(Fmeasured ), and true force experienced by sensor (Fe,)
[33—35, 44, 45]. These variables are illustrated in
figure 3. These equations are based on the assump-
tions that (a) the loading rods are spaced apart by
1/3rd the distance of the gap span, (b) the flexure
assembly bends the sample in a constant radius of
curvature, and (c) the change in L is negligible,

Freal = (Fneas + 0.432) /0.220 (1)
k=0.140 * Fy — 0.292 (2)
d=z+h—k (3)
2 (d I1*\°
=\l T (2—%> (4)
L2
Dy=r—y/1?— n (5)
E—021-F (6)
e WD,

The maximum force on the brain was calculated
assuming a worst-case scenario, where the skull acts
as two support points, and a single gyrus of the
brain acts as the only loading point or bending ful-
crum. Equation (7) below, utilizes the relationships
of variables used in a three-point flexural bending test
equation to determine the force that would be exerted

4
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Table 1. ECoG array flexural test values at 0° orientation.

N S Witham et al

Sample (thickness)

Total force (mN)

Sample deflection
(mm)

Flexural modulus (GPa)

Max force (mN)

CF uncut (60 pm)
CF lace (60 pm)
CF fingers (60 pum)
LCP film (40 pm)
LCP TF (200 pm)
Silicone (600 pum)

LCP & Silicone (410 pm)

Ad-Tech (850 pm)

410 £ 30" £ 0.02°
250 £ 40" £ 0.02°
64 + 9" +0.02°
25 4+ 3"+ 0.02°
55 £ 10" 4 0.02°
180 £ 20" 4 0.02°
120 £ 20" £+ 0.02°
200 £ 50" £ 0.02°
230 + 20" £ 0.02°

0.59 £+ 0.5" +0.3°
2.1+£0.6"+0.3°
4940.1"4+0.3°
5.5+ 0.05" +0.3°
524+ 0.2" +£0.3°
3.8+ 0.3" +£0.3°
4.4403"40.3°
3.6 £ 0.7 +£0.3°
2.8+0.3"4+0.3°

150 £ 100" £ 100°

27 £ 10"+ 10°

29405 +0.9°
344+05 +1°

0.11 4 0.03" £ 0.01°
0.011 £ 0.002" 4+ 0.001°
0.019 £ 0.005" & 0.002°
0.0047 4 0.002" £ 0.0004°
0.019 + 0.003" £ 0.002°

880 4 700" £ 400°
150 &+ 60" & 20°
16 £3"+£0.9°

5.7 +0.8"4+0.3°
13+4"+0.7°

58 + 10" + 4°
354 9" 4 2°

70 4 30" £+ 5°

100 £ 20" + 10°

Blackrock (580 pm)

r = random error.
s = systematic error.

if only one gyrus contacted the array if it was maxim-
ally flexed (Dy,). Dy, is equal to 1.5 mm as this flexion
bends the sample, so that it is radius is 60 mm. This
radius was determined to be the smallest of any cortex
of an MRI brain-scan of a Caucasian female 38 years
of age. This brain scan was obtained from the NIH 3D
Print Exchange as an STL file (Model 3DPX-000320).
Radius measurements were made in SOLIDWORKS
by making an arch through three points on the same
plane.

4EfWh3D

Gaussian error approximation was used to
determine the bounds of uncertainty [46].

3. Results

3.1. Physical measurement and bending force

To utilize equations (1)-(5), we needed to meas-
ure the dimensions of samples: thickness (h), width
(w), and length (/). The copper foil laminated LCP
samples, LCP film, and silicone-LCP were cut to have
the same surface area dimensions at 89.30 mm X
86.00 mm (w x I). Respectively, the measured thick-
nesses were 0.06 mm, 0.04 mm, and 0.85 mm. These
were similar in dimension to the Blackrock device
as it was 0.58 mm x 89.30 mm x 78.00 mm. The
dimensions of the LCP-TF prototype were 0.20 mm X
4550 mm x 48.30 mm. The silicone sample was
0.60mm x 78.67mm X 78.67 mm. The Ad-Tech
device was 0.58 mm x 79.65 mm X 80.00 mm. For all
iterations of physical measurement, no notable vari-
ations were observed with digital calipers (iGaging
IP54), which are rated to have a measurement resol-
ution of 0.01 mm and 0.03 mm repeatability.

The forces measured during the four-point flex-
ural bending experiment are presented in table I.
These forces represent the samples physical resistance
to a possible flexion of 5 mm. Meaning, the displace-
ment and force required to cause the flexion were gen-
erated by the drive nut of the lead screw linear actu-
ator lowering by 5 mm.

The values in table 1, were corrected using the
sensor calibration. Both the calibration curves and the
raw data for table 1 can be found in the supplement-
ary information. Utilizing Gaussian error propaga-
tion, we calculated the errors associated with sample
deflection, flexural modulus, and maximum force.

4., Discussion

4.1. Comparing material and mechanical
properties

The LCP TF samples and ECoG prototypes demon-
strated that they would likely exert 5x to 32x lower
force on the brain than the commercially available
ECoG arrays tested. The range in this metric depends
on which samples and bending directions are being
compared (figure 4) despite the LCP film having a
larger flexural modulus than the silicone contain-
ing samples. The measured flexural modulus on its
own is not indicative of the maximum force each
sample could exert, as this also depends on the sample
geometry.

All materials measured, other than silicone, are
known to be linear elastic materials [ 14, 45-47]. In the
supplementary materials, we verified the linearity of
similar silicone and LCP TF containing samples with
a rheometer (Kinexus Pro+, Netzsch). Additionally,
the measured elastic moduli for silicone sheet, LCP
film, and CF samples are within the range of literat-
ure values for such samples [14, 45-47]. As TF flex-
ural bending is not a standard protocol for non-rigid
materials, these measured materials were used in lieu
of standard materials to validate the equipment. It was
ultimately decided that tensile and compressive tests
of these materials would not be able to further test the
veracity of the equipment better than our calibration
protocol as these tests are known to exhibit different
elastic moduli due to anisotropy [34].

4.2. Controlling flexure with orientation and
physical patterning

All samples other than silicone seemed to exhibit
some level of anisotropy, dependent on bending ori-
entation, in either flexural modulus or maximum
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Figure 4. Flexural moduli and maximum forces on the brain. LCP without metal laminate (LCP film), shaped silicone sample
(silicone), LCP TF ECoG array mechanical prototype (LCP TF), silicone covered LCP, and commercial Ad-Tech ECoG and
Blackrock NeuroCoG grid arrays. Each sample was tested at 0° (red), 45° (yellow), and 90° (blue) orientations. Error bars
represent one standard deviation away from the mean. Black error bars represent statistical error, while blue error bars represent
systematic error. Some confidence intervals are too small to display error bars meaningfully at the scales shown.

force on the brain. (figure 4). While some samples
did not have any wires/fibers that would explain
their anisotropy (CF uncut, LCP film, LCP-TFE, and
silicone-LCP), the measured anisotropy should not
be fully discounted as inconsequential as it may have
resulted from the test setup (e.g. gravity or friction)
or direction dependent tooling (e.g. film drawing/
extrusion direction, tensioned film storage on a spool,
or edge effective zone stress hardening during sample
patterning.). However, when normalizing for differ-
ences in scale, the homogenous samples (LCP film
and silicone) did indeed have the lowest levels of
anisotropy and the samples with stiff metal wiring
(Ad-Tech and Blackrock) had the largest anisotropy.
The flexural modulus and maximum force on the
brain were reduced due to the excision of material
from the CF samples (figure 5). The large force meas-
ured for 45° CF uncut indicates miniscule flexion of
the sample, so the error is very large. Flexural aniso-
tropy was modulated based on pattern chosen. The 0°
and 45° orientations of the CF fingers were lower than
their CF lace counterparts for both flexural modulus
and maximum force, while the 90° orientations over-
lapped. The CF lace and CF fingers both exhibited sig-
nificantly lower flexural moduli and maximum forces
than the 0° CF uncut. This indicates that the rigid
portions of an ECoG can be patterned to not only
reduce cortical forces and effective flexural moduli

but to also create anisotropy that maintains array
stiffness in a chosen direction to assist with its pos-
itioning during implantation. It is important to note
that decreasing an ECoG array’s stiffness to increase
its safety in vivo by reducing the force exerted on
the brain could decrease the ease of use in surgical
practice due to making the positioning more difficult.
Such trade-offs need to be considered when designing
corresponding ECoG devices and finding the optimal
working point for these two parameters will need to
be explored in future experiments. However, pattern-
ing the LCP-TF material offers an efficient way of
modifying the rigidity of the device and its anisotropy
and thus can support such studies.

It was unexpected that the Ad-Tech and Blackrock
samples exhibited strongly different flexure forces for
different orientations, as most of their volume con-
sists of silicone. As such an anisotropy is not found
in the simple silicone sample, an explanation could
be given by the embedded wires and their orientation
within the device. This explanation is further suppor-
ted by the Blackrock array having the lowest bend-
ing force in the 0° orientation, in which the wires
are bent the least. However, other explanations are
equally possible as an anisotropy could also be cre-
ated during potting/pouring of the silicone as it could
cure, cross-link, crystalize, and oxidize at different
rates.
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Figure 5. 2D patterning’s influence on flexural modulus and maximum force on the brain. LCP with continuous copper film
laminate (CF uncut), laced/perforated LCP with metal film (CF lace), and strips/fingers of LCP with metal film (CF fingers). Each
sample was tested at 0° (red), 45° (yellow), and 90° (blue) orientations. Error bars represent one standard deviation away from
the mean. Black error bars represent statistical error, while blue error bars represent systematic error. Some confidence intervals
are too small to meaningfully display error bars at the scales shown while the red arrow indicates an error bar that extends to
negative numbers. The 90° CF uncut is removed as the forces measured are physically impossible, as they indicate a negative
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4.3. Verification of testing setup

The data presented above (figure 4) indicates that our
testing assembly can perform flexural bending tests
on highly flexible ECoG arrays with a high degree
of accuracy and repeatability. Despite the sensor’s
output being lower than hypothesized, post-test cal-
ibration allowed for data correction with limited
error. This corrected data is presented in table 1
and figures 4 and 5. To improve the resolution of
future results, the gain of the instrumentation amp-
lifier could be increased, and a digital position meas-
urement system could be added.

We have shown that while our machine may be
comparatively simple, low cost and easy to build, it
is able to generate repeatable and accurate data that
has predictive power regarding ECoG flexural modu-
lus and the forces it exerts. By using mechanical char-
acterization equipment designed for highly compli-
ant materials, future work can be done to improve this
method’s ease of use and accuracy.

4.4. Maximum force exerted by experimental ECoG
array

Our calculations indicate that the maximum forces
exerted on the brain by the prototype LCP-TF grid
should be less than 20% of those produced by any
FDA-cleared ECoG array tested herein. Unfortu-
nately, the pressure created by this force is largely
dependent on the area of contact and how these forces
would be distributed. This local pressure determina-
tion would require additional material properties to
be gathered and for a patient specific finite element
model to be generated.

Adding LCP film does increase a composite’s
elastic modulus; however, its thinner profile and
dynamic patterning allow for significantly reduced
forces exerted on the brain compared to commercially
available ECoG arrays such as those currently made
by Ad-Tech and Blackrock. This novel TF production
method may enable high-density ECoG arrays to be

chronically implanted, which will open possibilities
of their use in brain computer interfaces and as long
term neuroprosthetic devices.

The possible non-linearity of our samples should
be addressed, as it could be a source of error in
estimating maximum bending force. However, our
test method was designed to bend the sample near
to the point of maximum flexion to mitigate any
of these effects. That is in addition to all materials
tested linearly increasing in force during deflection
and no samples exhibited permanent deformation
when removed from the machine [14, 45-47]. There-
fore, the maximum bending force is a demonstrably
high accuracy interpolative calculation for the lower
stiffness samples tested.

While these bending forces are the first step in
predicting an ECoG array’s impact on the brain,
the actual pressures they would manifest and thus
physiological effects they would cause cannot be
estimated with force information alone due to the
complexity of the problem. First, effects that are cor-
related with mechanical pressure on the brain require
knowledge of both applied force and contact area.
Besides the bending forces of the array this requires,
and exact determination of the contact area and addi-
tionally the compression of the brain caused by the
thickness of the ECoG array. However, the results of
this analysis could vary significantly between patients
and on the placement of the ECoG arrays for three
reasons:

(a) The skull does not have a uniform radius of
curvature and the gyri of the brain cause an
uneven morphology (figure S3 in supplementary
materials).

(b) The mechanical behavior of the brain is not
homogeneous and has non-linear and transient
properties related to its fluid mechanics [48-51].

(c) The composition and morphology of the brain
changes from person to person [48-51].
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Therefore, this study focuses on maximum bend-
ing force of the ECoG arrays as it is a metric that is a
major factor that can induce a local pressure on the
brain and thus should directly correspond to the level
of physiological effects caused by the implantation of
an ECoG array relative to other ECoG arrays.

Please note that the presented data is only valid
for short term application of the devices. For chronic
application, the in vivo environment (ion containing
fluids, foreign body response) can alter the mater-
ial properties of the device over time [52]. Oxid-
ation and hydrolysis are factors that can accelerate
the degradation of polymers [52]. Additionally, body
temperature and water absorption can both make
the polymeric materials more flexible in vivo (com-
pared to the presented dry and room-temperature
data) [14, 15, 31]. While LCP is known to be resist-
ive to these kinds of influences, an understanding of
the in vivo aging of the presented devices will need to
be the subject of future studies [31, 50, 51].

Furthermore, a full assessment of the pressure
locally exerted on the brain by an ECoG array, will
require a detailed study including finite element ana-
lysis (FEA) that accounts for populational variations
in brain morphology and composition. This analysis
will also have to account for variations in surgical
practice for common ECoG implantation procedures.
Additionally, an in vivo study will then be necessary
to test the predictions of the FEA with the assistance
of medical imaging techniques and force transducers.
Such studies could, in the future, allow for the deriv-
ation of a generalized relationship between an ECoG
array’s maximum bending force, its geometry and
composition and the mechanical stress it will exert on
the brain.

5. Conclusion

With existing flexible circuit manufacturing methods,
we created an ECoG array that would exert much
lower forces on the brain than commercially available
ECoG arrays. To quantify this, we used readily avail-
able components to create a low-force, quasistatic
materials testing machine that could perform four-
point flexural bending tests on ECoG array samples.
The outcome of the mechanical testing confirmed
that: (a) the custom-made materials testing machine
had sufficient capabilities to characterize thin flex-
ible samples; (b) the developed LCP-TF prototype
device will exert lower forces on the brain than exist-
ing silicone grid devices by Ad-Tech or Blackrock
(c) Variations of thickness, implementation of fin-
ger structures or strips of LCP, and laced/perforated
films allow us to tune the flexible properties as well
as the isotropy of the mechanical properties with
a broad enough parameter space to meet surgeons’
needs. This information can be used to inform future
ECoG array design choices regarding device stiffness.
It can also be used to improve the preclinical testing

N S Witham et al

protocols currently used to evaluate ECoG safety and
efficacy. With both advances, ECoG array implant
efficacy can be potentially improved to decrease acute
and chronic side effects, which are positively associ-
ated with ECoG array stiffness.
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