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Abstract. In this paper we define and explore the analytic spread `(I) of a filtration
in a local ring. We show that, especially for divisorial and symbolic filtrations, some
basic properties of the analytic spread of an ideal extend to filtrations, even when the
filtration is non Noetherian. We also illustrate some significant differences between the
analytic spread of a filtration and the analytic spread of an ideal with examples.

In the case of an ideal I, we have the classical bounds ht(I) ≤ `(I) ≤ dimR. The
upper bound `(I) ≤ dimR is true for filtrations I, but the lower bound is not true
for all filtrations. We show that for the filtration I of symbolic powers of a height two
prime ideal p in a regular local ring of dimension three (a space curve singularity), so
that ht(I) = 2 and dimR = 3, we have that 0 ≤ `(I) ≤ 2 and all values of 0,1 and 2
can occur. In the cases of analytic spread 0 and 1 the symbolic algebra is necessarily
non-Noetherian. The symbolic algebra is non-Noetherian if and only if `(p(n)) = 3 for
all symbolic powers of p and if and only if `(Ia) = 3 for all truncations Ia of I.

1. Introduction

The analytic spread of an ideal I in a (Noetherian) local ring R is defined to be

(1) `(I) = dimR[I]/mRR[I]

where R[I] =
⊕

n≥0 I
n is the Rees algebra of I.

We recall some basic properties of analytic spread from [17] and [25]. We have that
upper semicontinuity of fiber dimension holds, that is

(2) `(IP ) ≤ `(IP ′) if P ⊂ P ′ are prime ideals containing I.

This follows for instance by [13, (IV.13.1.5)].
We have inequalities ([17, page 115] and [25, Corollary 8.3.9])

(3) `(I) ≤ dimR

and

(4) ht(I) ≤ `(I).

The lower bound (4) follows from (2) since at a minimal prime Q of I, we have that
`(IQ) = ht(Q) ≥ ht(I) since IQ is QQ-primary.

An ideal I in a local ring R for which the equality ht(I) = `(I) holds is called equimul-
tiple. I is equimultiple if and and only if all fibers of π0 : Proj(R[I]/IR[I])→ Spec(R/I)
have the same dimension. This follows since if I is equimultiple and P is a prime ideal of
R which contains I, then by (4) and (2),

ht(I) ≤ ht(IP ) ≤ `(IP ) ≤ `(I) = ht(I).
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In particular, if I is an equimultiple ideal, then

(5) `(IP ) = ht(IP )

for all prime ideals P containing I. For the other direction, we consider a minimal prime
P of I such that ht(I) = ht(P ). If all fibers of π0 have the same dimension then we have
ht(I) = ht(IP ) = `(IP ) = `(I).

We have the following fundamental theorem.

Theorem 1.1. ([19], [25, Theorem 5.4.6]) Let R be a formally equidimensional local ring
and I be an ideal in R. Then mR ∈ Ass(R/In) for some n if and only if `(I) = dimR.

In this paper we extend the analytic spread of an ideal in a local ring to (not neces-
sarily Noetherian) filtrations, and explore generalizations of the above results to general
filtrations, divisorial filtrations and filtrations of symbolic powers.

Let I = {In} be a filtration on a local ring R. The Rees ring of the filtration is
R[I] = ⊕n≥0In. Analogously to the case of ideals, we define the analytic spread of the
filtration to be

(6) `(I) = dimR[I]/mRR[I].

We show in Lemma 3.6, that the upper bound (3) holds for filtrations I, that is,

`(I) ≤ dimR.

For an arbitrary filtration, we have that
√
In =

√
I1 for all n (equation (7)) and we define

the height of a filtration I to be
ht(I) = ht(I1).

We may call a filtration I equimultiple if ht(I) = `(I).
A simple example of a filtration for which the lower bound (4) is not true is the following.

Example 1.2. Let R be a local ring of dimension greater than zero. Let I = {In} where
In = mR for n ≥ 1. Then `(I) = 0 < ht(I) = dimR.

In Example 1.2, all ideals In and all truncations (Noetherian approximations) Ia of I
are equimultiple even though I is not. This example shows that the “only if” direction of
Theorem 1.1 can fail for filtrations.

In the case that I is a Noetherian filtration, the lower bound ht(I) ≤ `(I) always holds
(Proposition 3.7), so that the inequality (4) for ideals continues to hold for Noetherian
filtrations.

The condition that a filtration has analytic spread zero has a simple ideal theoretic
interpretation (Lemma 3.8). Suppose that I = {In} is a filtration in a local ring R. Then
the analytic spread `(I) = 0 if and only if

For all n > 0 and f ∈ In, there exists m > 0 such that fm ∈ mRImn.

We consider (integral) divisorial filtrations and s-divisorial filtrations in Section 4. Di-
visorial and s-divisorial filtrations are defined at the beginning of this section. One of the
fundamental properties about an mR-primary ideal I is that `(I) = dimR. We saw in
Example 1.2 that this property fails for general filtrations. However, it is true for diviso-
rial filtrations of mR-primary ideals (0-divisorial filtrations). The following theorem shows
that the “only if” direction of Theorem 1.1 holds for divisorial filtrations of mR-primary
ideals.

Theorem 1.3. (Theorem 4.1) Suppose that R is a d-dimensional excellent local domain
and I is a divisorial filtration of mR-primary ideals on R. Then `(I) = d.
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Further, the “if” statement of Theorem 1.1 is true for divisorial filtrations.

Theorem 1.4. (Theorem 4.7) Suppose that R is a local domain and I = {In} is a
divisorial filtration on R. Let In = I(ν1)a1n ∩ · · · ∩ I(νr)arn for n ≥ 1, some valuations
νi and some a1, . . . , ar ∈ Z>0. Suppose that `(I) = dimR. Then for some νi, the center
mνi ∩ R = {f ∈ R | νi(f) > 0} is mR. There exists a positive integer n0 such that mR is
an associated prime of In = In for all n ≥ n0.

Suppose that I = {In} is a filtration in R and p is a prime ideal in R. Then the
localization of I at p is the filtration Ip = {(In)p} in Rp. In a filtration I = {In}, the
ideals In have the same minimal primes for all n ≥ 1.

Corollary 1.5. (Corollary 4.10) Suppose that R is a local domain and I = {In} is an
s-divisorial filtration on R (a divisorial filtration consisting of ideals which are equidimen-
sional of dimension s and have no embedded components). Then `(IQ) < dim(RQ) for all
prime ideals Q of R which are not minimal primes of I1.

The a-the truncation of a filtration I is the Noetherian approximation of I generated
by the first a terms of I. A formal definition of a truncation is given in Definition 3.2.
Knowledge of the analytic spread of the truncations of a filtration can give some informa-
tion about the analytic spread of the filtration, as is illustrated in the following corollary
to Theorem 4.7.

Corollary 1.6. (Corollary 4.13) Let R be a local domain and I = {In} be a divisorial
filtration in R where In =

⋂r
i=1 I(νi)nai for all n ≥ 1. Suppose I1 = ∩ri=1I(νi)ai is a

minimal primary decomposition of I1 and `(Ia) < dimR for some a ≥ 1 where Ia is the
a-th truncated filtration of I. Then `(I) < dimR.

We turn to symbolic algebras in Section 5. Let I be an ideal in a local ring R. For n a
positive integer, the n-th symbolic power I(n) of I is

I(n) = ∩p∈Ass(R/I)(I
nRp ∩R).

Symbolic algebras and filtrations have been extensively studied. A survey of some recent
progress is given in [10].

We consider in Section 5 the filtration of symbolic powers {I(n)} where I = P1∩· · ·∩Pr
is an intersection of prime ideals of a common height in an excellent local ring. If P is a
prime ideal in a regular local ring R, then since RP is a regular local ring, the PP -adic
order on RP defines a discrete valuation ν of the quotient field of R such that the valuation
ideals I(ν)n of R are the symbolic powers I(ν)n = P (n). Thus the symbolic filtrations in
a regular local ring are divisorial filtrations.

There are examples of height two prime ideals P in an excellent regular local ring R of
dimension three (space curve singularities) such that the symbolic algebra of P , ⊕n≥0P (n),
is not a finitely generated R-algebra [24], and even when P is analytically irreducible [12]
and [15].

We have a simple characterization of when a symbolic filtration is Noetherian in terms
of analytic spread. Suppose that I ⊂ J are proper ideals in a local ring R. Define
SJ(I) = ⊕k≥0Ik : J∞ where Ik : J∞ = ∪∞i=1I

k :R J i. Let J be the intersection of all

asymptotic prime divisors of I which are not minimal primes. Then I(n) = In : J∞ and
the symbolic algebra ⊕n≥0I(n) = SJ(I). In the case that I = P is the ideal of a space

curve singularity, the symbolic algebra is ⊕n≥0P (n) = SmR(P ).
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Theorem 1.7. ([8, Theorem 2.6], Theorem 5.1) Let (R,m) be an excellent domain, and
let I and J be proper ideals of R. Then the following conditions are equivalent:

(a) SJ(I) is finitely generated.
(b) There exists an integer r > 0 such that `((Ir : J∞)P ) < dimRP for all P ∈ V (J).

A related result for ordinary symbolic powers was proven by Katz and Ratliff in Theorem
A and Corollary 1 of [14].

We have the following immediate corollary.

Corollary 1.8. (Corollary 5.2) Suppose that R is an excellent local domain of dimension
d and I = P1∩· · ·∩Pr is an intersection of prime ideals Pi of R of a common height. Then
the ring

⊕
n≥0 I

(n) is a finitely generated R-algebra if and only if there exists n ∈ Z>0 such

that the analytic spread `(I
(n)
Q ) < ht(Q) for all prime ideals Q of R which contain I and

are not one of the minimal primes Pi of I.

With our assumption that R is an excellent local ring of dimension d and I = P1∩· · ·∩Pr
is an intersection of prime ideals Pi of R of a common height in Corollary 1.8, we have

that `(I
(n)
Pi

) = ht(Pi) = ht(I) for the minimal primes Pi of I.

Corollary 1.9. (Corollary 5.3) Suppose that R is an excellent local domain of dimension
d and I = P1 ∩ · · · ∩ Pr is an intersection of prime ideals Pi of R of a common height. If
I(n) is equimultiple for some n then the symbolic algebra ⊕n≥0I(n) is a finitely generated
R-algebra.

However, there exist ideals I such that the symbolic algebra ⊕n≥0I(n) is a finitely

generated R-algebra but no symbolic power I(n) is equimultiple (Example 5.4).
In contrast to the conclusions of Corollary 5.2, we have that inequality of analytic spread

and height `(IQ) < ht(Q) holds at all non minimal primes for symbolic filtrations, irre-
gardless of whether their symbolic algebra is a finitely generated R-algebra. The following
proposition follows from Corollary 4.10.

Proposition 1.10. (Proposition 5.5) Suppose that R is a local domain of dimension d
and I = P1 ∩ · · · ∩ Pr is an intersection of prime ideals Pi of R of a common height.
Suppose RPi is a regular local ring for 1 ≤ i ≤ r. Let I = {I(n)} be the symbolic filtration
of I. Then the analytic spread `(IQ) < ht(Q) for all prime ideals Q of R which contain I
and are not one of the minimal primes Pi of I and `(IPi) = ht(Pi) = ht(I) for all minimal
primes Pi of I.

The following theorem shows that in the case of the symbolic algebra of a height two
prime ideal in a three dimensional local ring, the analytic spread of the symbolic filtration
is bounded above by the height, which is 2, and all analytic spreads ≤ 2 occur. Thus the
inequality of (4) for ideals is reversed! In contrast, even for non Noetherian divisorial fil-
trations of mR-valuations in an excellent local domain, the analytic spread of the filtration
must be equal to dimension R by Theorem 1.3.

Theorem 1.11. (Theorem 5.8) Suppose that R is a regular local ring of dimension 3,

and p is a height two prime ideal of R. Let I = {p(n)} be the symbolic filtration. Then
`(I) ≤ 2 and all values `(I) = 0, 1, 2 can occur.

In Section 6 we construct examples illustrating this theorem with `(I) = 0 and 1. A
simple example with `(I) = 2 is given in the proof of Theorem 1.11.
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We have the following ideal theoretic interpretation of analytic spread zero for a symbolic
filtration I = {p(n)} . We have (by Lemma 3.8) that

`(I) = 0 if and only if for all n and f ∈ p(n), there exists m > 0 such that fm ∈ mRp
(mn).

In Theorem 5.8, we necessarily have that the symbolic algebra is not finitely generated
if `(I) < 2 (by Proposition 3.7). A simple example of a symbolic algebra achieving the
maximum analytic spread `(I) = 2 may be constructed by taking p to be a regular prime
ideal in R (p = (x, y) where x, y, z is a regular system of parameters in R). We do not
know of an example such that `(I) = 2 but the symbolic algebra is not finitely generated.

If `(I) < 2, then by Corollary 5.2, the analytic spread `(p(n)) = 3 for all n > 0 and by
Proposition 5.7, we have that `(Ia) = 3 for all truncations Ia of I.

We look a little more closely at the most dramatic case of the theorem, when `(I) = 0.
The analytic spread `(I) being zero has the following interpretation in the geometry
of the canonical projection ϕ : Proj(R[I]) → Spec(R). We have that ϕ−1(p) = P1

κ(p),

where κ(p) = (R/p)p, since Proj(⊕n≥0pnp ) is the blow up of the maximal ideal pp in the

two dimensional regular local ring Rp, so that dimϕ−1(p) = 1, but ϕ−1(mR) = ∅ since
`(I) = 0. In particular, the theorem on upper semicontinuity of fiber dimension (2) for
ideals fails spectacularly in this non Noetherian situation.

2. Notation

We will denote the nonnegative integers by N and the positive integers by Z>0, the set
of nonnegative rational numbers by Q≥0 and the positive rational numbers by Q>0. We
will denote the set of nonnegative real numbers by R≥0 and the positive real numbers by
R>0.

A local ring is assumed to be Noetherian. The maximal ideal of a local ring R will be
denoted by mR. Excellent local rings have many excellent properties which are enumerated
in [13, Scholie IV.7.8.3]. We will make use of some of these properties without further
reference.

3. The analytic spread of a filtration

A filtration I = {In}n∈N of ideals on a ring R is a descending chain

R = I0 ⊃ I1 ⊃ I2 ⊃ · · ·
of ideals such that IiIj ⊂ Ii+j for all i, j ∈ N. A filtration I = {In} of ideals on a local
ring (R,mR) is a filtration of R by mR-primary ideals if In is mR-primary for n ≥ 1. A
filtration I = {In}n∈N of ideals on a ring R is called a Noetherian filtration if

⊕
n≥0 In is

a finitely generated R-algebra.
If I ⊂ R is an ideal, then V (I) = {p ∈ Spec(R) | I ⊂ p}.
For any filtration I = {In} and p ∈ SpecR, let Ip denote the filtration Ip = {InRp}.
Let R be a local ring and I = {In} be a filtration of R. We define the graded R-algebra

R[I] =
∑

m≥0 Imt
m.

For the rest of this section , suppose that R is a local ring. Let I = {In} be a filtration
of ideals of R. Then, [9, Lemma 3.1],

(7) For all n ≥ 1, V (I1) = V (In) and dimR/I1 = dimR/In.

Definition 3.1. Let R be a local ring and I = {In} be a filtration of ideals of R. We
define the dimension of the filtration I to be s(I) = dimR/In (for any n ≥ 1), and define
the height ht(I) of I to be ht(I) = ht(In) (for any n ≥ 1).
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The dimension s(I) and height ht(I) are well-defined by equation (7). In the case of
the trivial filtration I = {In}, where In = R for all n, we have that s(I) = −1.

Suppose that I = {In} is a filtration of a local ring R. Then the associated graded rings

R[I] =
∑
n≥0

Int
n and S[I] = R[I][t−1]

are subrings of the graded ring R[t, t−1]. We have a graded ring

TI := R[I]/mRR[I].

Definition 3.2. Suppose that I = {Ii} is a filtration of ideals on a local ring R. Fix
a ∈ Z>0. The a-th truncated filtration Ia = {Ia,n} of I is defined by

Ia,n =


In if n ≤ a∑
i,j>0
i+j=n

Ia,iIa,j if n > a.

Let Ia be the a-th truncation of I. Then R[I] = ∪a≥0R[Ia] and S[I] = ∪a≥0S[Ia].
The following remark follows from Proposition III.3.2 and Proposition III.3.3 on pages

158 and 159 of [1].

Remark 3.3. Suppose that I is a Noetherian filtration. There exists e > 0 such that
for all m ≥ 1, R[I] is a finitely generated R[Imet

me]-module. In particular, dimR[I] =
dimR[Imet

me].

Lemma 3.4. Let A be an N or Z-graded ring. Suppose {Aa}a≥1 is a collection of Noe-
therian graded rings with the same grading as A, max{dimAa : a ≥ 1} < ∞, Aa,n = An
for all n ≤ a and for each a ≥ 1 there is a graded ring homomorphism ϕa : Aa → A such
that ϕa(x) = x for all homogeneous elements of Aa of degree less than or equal to a. Then
dimA ≤ max{dimAa : a ≥ 1}.

Proof. Let P0 ⊂ P1 ⊂ · · · ⊂ Pr be a chain of distinct prime ideals in A. There exist
fi ∈ Pi \ Pi−1 for 1 ≤ i ≤ r. Let a ∈ Z>0 be such that f1, . . . , fr ∈ Aa. Then the prime
ideals in the chain of prime ideals in Aa,

ϕ−1a (P0) ⊂ ϕ−1a (P1) ⊂ · · · ⊂ ϕ−1a (Pr)

are all distinct. Thus r ≤ dimAa. �

Lemma 3.5. For any filtration (possibly nonnoetherian) of ideals I in R, dimR[I] ≤
dimR + 1, dimTI ≤ dimR and dimS[I] ≤ dimR + 1. In particular, if R is a domain of
dimension greater than zero and I1 6= 0, then dimR[I] = dimR+1, dimS[I] = dimR+1.

Proof. Let Ia denote the a-th truncated filtration of I for all a ≥ 1. Since Ia is Noetherian
for all a ≥ 1, there exists da ≥ 0 such that R[Ia] is a finitely generated R[Ia,dat

da ]-module

by Remark 3.3. Thus dimR[Ia,dat
da ] ≤ dimR + 1 and dimTIa ≤ dimR (formula (1) on

page 94 of [25], [25, Proposition 5.1.6]).
Further, by Remark 3.3, there exists d ≥ 0 such that S[Ia] is a finitely generated

R[Ia,dt
d, t−d]-module. By formula (2) on page 94 of [25], dimR[Ia,dt

d, t−d] ≤ dimR + 1.
Thus dimS[Ia] ≤ dimR+ 1.

Since for all a ≥ 1, we have maps ϕa : R[Ia] → R[I] defined by ϕa(xt
n) = xtn for all

homogeneous x ∈ R[Ia] of degree n ∈ N, ψa : S[Ia]→ S[I] defined by ψa(xt
n) = xtn for all

homogeneous x ∈ S[Ia] of degree n ∈ Z, and χa : TIa → TI defined by χa(x+mRIa,n) =
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x + mRIn for all homogeneous x ∈ TIa of degree n ∈ N, we get dimR[I] ≤ dimR + 1,
dimTI ≤ dimR and dimS[I] ≤ dimR+ 1 by Lemma 3.4.

Suppose R is domain. Consider the ideal P =
∑

n>1 Int
n ⊂ R[I]. Then heightP ≥ 1.

Since R[I]/P ∼= R, we have P is a prime ideal in R[I]. Therefore dimR[I] ≥ dimR + 1.
Since

dimS[I] ≥ dimS[I]t−1 = dimR[t, t−1] = dimR+ 1,

we have dimS[I] ≥ dimR+ 1. �

This allows us to define the analytic spread `(I) of a filtration I by

(8) `(I) = dimTI .

This generalizes the classical definition of analytic spread of an ideal I, `(I) = dimTI
where TI = R[It]/mRR[It], since if I is the I-adic filtration I = {In}, then TI = TI , so
`(I) = `(I).

From Lemma 3.5 we obtain the following lemma.

Lemma 3.6. Suppose that I is an arbitrary filtration of a local ring R. Then

`(I) ≤ dimR,

in agreement with the classical bound for ideals I, `(I) ≤ dimR.

Suppose that I is an ideal in a local ring. Then we have the inequalities

(9) ht(I) ≤ `(I) ≤ dimR.

(proven for instance in [25, Corollary 8.3.9]). An ideal for which the equality ht(I) = `(I)
holds is called equimultiple. The inequalities (9) continue to hold for Noetherian filtrations.

Proposition 3.7. Suppose that I is a Noetherian filtration in a local ring R. Then there
exists e > 0 such that `(Iem) = `(I) for all m > 0. In particular, ht(I) ≤ `(I). Further,
ht(I) ≤ `(I) ≤ dimR.

Proof. Let e > 0 be such that the conclusions of Remark 3.3 hold. Then

mRR[I] ∩R[Iemt
em] = mRR[Iemtem],

so
R[Iemt

em]/mRR[Iemt
em] ⊂ R[I]/mRR[I]

is a finite inclusion of Noetherian rings, so

dimTIem = dimR[Iemt
em]/mRR[Iemt

em] = dimTI .

�

The condition of analytic spread zero has a simple ideal theoretic interpretation.

Lemma 3.8. Suppose that I = {In} is a filtration in a local ring R. Then the analytic
spread `(I) = 0 if and only if

(10) For all n > 0 and f ∈ In, there exists m > 0 such that fm ∈ mRImn.

Proof. Let A = R[I]. We have that `(I) = 0 if and only if dimA/mRA = 0 which holds
if and only if all minimal prime ideals of mRA are maximal ideals of A. Since mRA is
a homogeneous ideal, all minimal prime ideals of mRA are homogeneous ([27, Lemma 3,
page 153]). The only graded maximal ideal of A is mR ⊕ I1 ⊕ I2 ⊕ · · · . Thus `(I) = 0
if and only if

√
mRA = mR ⊕ I1 ⊕ I2 ⊕ · · · , which holds if and only if the condition (10)

holds. �
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4. Divisorial filtrations

Let R be a local domain of dimension d with quotient field K. Let ν be a discrete
valuation of K with valuation ring Oν and maximal ideal mν . Suppose that R ⊂ Oν .
Then for n ∈ N, define valuation ideals

I(ν)n = {f ∈ R | ν(f) ≥ n} = mn
ν ∩R.

A divisorial valuation of R ([25, Definition 9.3.1]) is a valuation ν of K such that if Oν
is the valuation ring of ν with maximal ideal mν , then R ⊂ Oν and if p = mν ∩ R then
trdegκ(p)κ(ν) = ht(p) − 1, where κ(p) is the residue field of Rp and κ(ν) is the residue
field of Oν . If ν is a divisorial valuation of R such that mR = mν ∩R, then ν is called an
mR-valuation.

By [25, Theorem 9.3.2], the valuation ring of every divisorial valuation ν is Noetherian,
hence is a discrete valuation. Suppose that R is an excellent local domain. Then a
valuation ν of the quotient field K of R which is nonnegative on R is a divisorial valuation
of R if and only if the valuation ring Oν is essentially of finite type over R ([9, Lemma
6.1]).

Suppose that s ∈ N. An s-valuation of R is a divisorial valuation of R such that
dimR/p = s where p = mν ∩R.

An integral divisorial filtration of R (which we will refer to as a divisorial filtration in
this paper) is a filtration I = {Im} such that there exist divisorial valuations ν1, . . . , νr
and a1, . . . , ar ∈ Z≥0 such that for all m ∈ N,

Im = I(ν1)ma1 ∩ · · · ∩ I(νr)mar .

If I is a divisorial filtration, then the ideals Im = Im are integrally closed for all m ≥ 1.
In fact, the Rees algebra R[I] =

∑
n≥0 Int

n is integrally closed in R[t]. This is proven in

[7, Lemma 5.8]. [7, Lemma 5.8] is stated for divisorial mR-filtrations but the proof is valid
for arbitrary divisorial filtrations.

An integral s-divisorial filtration of R (which we will refer to as an s-divisorial filtration
in this paper) is a filtration I = {Im} such that there exist s-valuations ν1, . . . , νr and
a1, . . . , ar ∈ Z≥0 such that for all m ∈ N,

(11) Im = I(ν1)ma1 ∩ · · · ∩ I(νr)mar .

Theorem 4.1. Suppose that R is a d-dimensional excellent local domain and I = {In} is
a divisorial filtration of mR-primary ideals on R. Then `(I) = d.

Proof. There exist mR-valuations ν1, . . . , νt and a1, . . . , at ∈ Z>0 such that I = {In} where
In = I(ν1)a1n ∩ · · · ∩ I(νt)atn for n ≥ 0, with I(νi)m = {f ∈ R | νi(f) ≥ m}.

Let S be the normalization of R in the quotient field of R. Let m1, . . . ,mu be the
maximal ideals of S. Let J(νi)m = {f ∈ S | νi(f) ≥ m}. For each i, there exists σ(i) with
1 ≤ σ(i) ≤ u such that the ideals J(νi)m are mσ(i)-primary for all m, and J(νi)1 = mσ(i).
That is, νi is an mσ(i)-valuation. For n ∈ N, let

Jn = J(ν1)a1n ∩ · · · ∩ J(νt)atn

so that Jn ∩R = In.
Let π : X → Spec(S) be the blow up of an ideal K such that Kmi is a (mi)mi-primary

ideal for 1 ≤ i ≤ u, X is normal and there exist prime divisors Ei on X such that the
valuation rings Oνi = OX,Ei for 1 ≤ i ≤ t. Let A be the effective Cartier divisor on X such
that OX(−A) = KOX , so that −A is ample on X. Write A =

∑s
i=1 biEi where s ≥ t,

E1, . . . , Es are prime Weil divisors with Oνi = OX,Ei for 1 ≤ i ≤ t and bi ∈ Z>0 for all i.
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There exists a unique α ∈ Q>0 such that αbi ≥ ai for 1 ≤ i ≤ t and further, there exists
an index i0 such that αbi0 = ai0 . Write α = c

d with c, d ∈ Z>0. Then mcbiEi ≥ mdaiEi
for 1 ≤ i ≤ t and mcbi0Ei0 = mdai0Ei0 for all m ≥ 0. Thus

OX(−mcA) ⊂ OX(−
t∑
i=1

mdaiEi)

for m ≥ 0, so that Γ(X,OX(−mcA)) ⊂ Jmd for all m ∈ N.
Since X is normal and Ei0 has codimension 1 in X, there exists a closed point q ∈ Ei0

such that Ei0 is the only irreducible component of A which contains q in its support
and OX,q and OEi0

,q are regular local rings. Let x1 = 0 be a local equation of Ei0 at
q and extend x1 to a regular system of parameters x1, x2, . . . , xd in OX,q. Let Pj =
(x1, x2, . . . , xj) for 1 ≤ j ≤ d. Pj are regular primes in OX,q (that is, OX,q/Pj is a regular
local ring for all j). Thus the rule ωj(g) = ordPj (g) for g ∈ OX,q defines a discrete
valuation on the quotient field of R, which is a mσ(i0)-valuation (since Ei0 is contracted
to mσ(i0)). For 1 ≤ j ≤ d let J(ωj)n = {f ∈ S | ωj(f) ≥ n}. Then J(ωj)n = Pnj ∩ S for
all n ≥ 0. We have that ω1 is the valuation νi0 . Since x1, . . . , xd is a regular system of
parameters,

(12) Pm1 ∩ Pm+1
j = Pm1 Pj for all m ∈ N.

Let Zj be the closed subvariety of X such that its ideal sheaf satisfies (IZj )q = Pj for
1 ≤ j ≤ d. Then Z1 = Ei0 , Zd = q, dimZj = d − j for all j and π(Zj) = mσ(i) for all j.
For m ≥ 0 and 1 ≤ j ≤ d, we have

(IZj ⊗OX(−mcA))q = (IZj ⊗OX(−mcbi0Ei0))q = (IZj ⊗OX(−mdai0Ei0))q

= P
mdai0
1 Pj = P

mdai0
1 ∩ Pmdai0+1

j .

Observe that we have inclusions of sheaves

IZ1 ⊗OX(−mcA) ⊂ IZ2 ⊗OX(−mcA) ⊂ · · · ⊂ IZd
⊗OX(−mcA) ⊂ OX(−mcA) ⊂ OX .

Since −A is ample, for m � 0, IZj ⊗ OX(−mcA) is generated by global sections for
1 ≤ j ≤ d, so that

(13)
Γ(X, IZj ⊗OX(−mcA))OX,q = P

mdai0
1 ∩ Pmdai0+1

j and

Γ(X,OX(−mcA))OX,q = P
mdai0
1 .

We have inclusions

Γ(X, IZ1 ⊗OX(−mcA)) ⊂ Γ(X, IZ2 ⊗OX(−mcA)) ⊂
· · · ⊂ Γ(X, IZd

⊗OX(−mcA)) ⊂ Γ(X,OX(−mcA)) ⊂ Jmd.
By (13), for 1 ≤ j ≤ d − 1, there exists fj ∈ Γ(X, IZj+1 ⊗ OX(−mcA)) ⊂ Jmd such that

fj ∈ P
mdai0+1

j+1 but fj 6∈ P
mdai0+1

j , so that fj ∈ P
mdai0+1

j+1 ∩ Jmd = J(ωj+1)mdai0+1 ∩ Jmd,
but fj 6∈ P

mdai0+1

j ∩ Jmd = J(ωj)mdai0+1 ∩ Jmd and there exists fd ∈ Jdm such that

fd 6∈ J(ωd)mdai0+1 ∩ Jdm.
Let B = ⊕n≥0Jn, which is a graded ring. Let

Cj = ⊕m≥0J(ωj+1)ai0m+1 ∩ Jm
for 0 ≤ j ≤ d− 1 and

Cd = mσ(i0) ⊕ J1 ⊕ J2 ⊕ · · · .
We will now show that the ideals Cj are prime ideals in B. First observe that none of the
Cj are equal to B since Cj ∩S = J(ωj+1)1 = mσ(i0) for 1 ≤ j ≤ d− 1 and Cd ∩S = mσ(i0).
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Suppose 1 ≤ j ≤ d − 1 and f ∈ Jm, g ∈ Jn are such that fg ∈ J(ωj+1)ai0 (m+n)+1.

Then ωj+1(fg) ≥ ai0(m + n) + 1. We have that Jm ⊂ J(νi0)ai0m ⊂ J(ωj+1)ai0m so

that ωj+1(f) ≥ ai0m. Similarly, ωj+1(g) ≥ ai0n. Thus either ωj+1(f) ≥ ai0m + 1 or
ωj+1(g) ≥ ai0n+ 1, so that f ∈ J(ωj+1)ai0m+1 ∩ Jm or g ∈ J(ωj+1)ai0n+1 ∩ Jn. Thus the
Cj are prime ideals.

We found fj ∈ Cj \ Cj−1 for 1 ≤ j ≤ d. Thus

C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cd
is a chain of distinct prime ideals in B.

There is a natural inclusion of graded rings R[I] = ⊕n≥0In ⊂ B = ⊕n≥0Jn. We will
now show that B is integral over R[I]. For a ∈ Z>0, let R[I]a be the a-th truncation
of R[I] and Ba be the a-th truncation of B, so that R[I]a is the subalgebra of R[I]
generated by ⊕n≤aIn and Ba is the subalgebra of B generated by ⊕n≤aJn. It suffices to
show that homogeneous elements of B are integral over R[I]. Suppose that f ∈ Ja for
some a. Then f ∈ Ba. Let 0 6= x be in the conductor of S over R. Then xJn ⊂ In for
all n since In = Jn ∩ R. Thus xBa ⊂ R[I]a, so f i ∈ 1

xR[I]a for all i ∈ N, and so the

algebra R[I]a[f ] ⊂ 1
xR[I]a. Since 1

xR[I]a is a finitely generated R[I]a-module and R[I]a
is a Noetherian ring, the ring R[I]a[f ] is a finitely generated R[I]a-module, so that f is
integral over R[I]a.

We have a chain of prime ideals

Q0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qd
in R[I] where Qi := Ci∩R[I]. The Qi are all distinct since the Ci are all distinct and B is
integral over R[I] (by [2, Theorem A.6 (b)]). It remains to show thatmRR[I] ⊂ Q0, so that
dimR[I]/mRR[I] ≥ d. Since this is the maximum possible dimension of R[I]/mRR[I] by
Lemma 3.5, we have that `(I) = d.

We now show that mRR[I] ⊂ Q0. First we observe that if g ∈ mR then νi0(g) ≥ 1
since νi0 is an mR-valuation. Suppose that f ∈ mRIn. Then f =

∑
gkfk with gk ∈ mR

and fk ∈ In. Thus νi0(gjfj) ≥ nai0 + 1 for all j so that f ∈ I(νi0)nai0+1 and thus

f ∈ I(νi0)nai0+1 ∩ In. Since ω1 is the valuation νi0 , we have mRR[I] ⊂ Q0.
�

Proposition 4.2. Let R be a local domain and I = {In} be a divisorial filtration in R
where In =

⋂r
i=1 I(νi)nai for all n ≥ 1. Let mR ∈ Ass(R/I1). Then mR ∈ Ass(R/Ia,n)

for all a, n ≥ 1 where Ia = {Ia,n} is the a-th truncated filtration of I. In particular,
mR ∈ Ass(R/In) for all n ≥ 1.

Proof. Suppose Ass(R/I1) = {mR}. Since Min Ass(R/I1) = Min Ass(R/Ia,n) for all a, n ≥
1, we have mR ∈ Ass(R/Ia,n) for all a, n ≥ 1.

Suppose the cardinality of Ass(R/I1) is greater than one and mR ∈ Ass(R/I1). Without
loss of generality let us assume that the centers I(νi)1 of νi on R are mR for 1 ≤ i ≤ c
and the centers I(νi)1 are not mR for i > c.

Fix a. Since mR ∈ Ass(R/I1), there exists y ∈ R \ I1 such that mRy ∈ I1. Therefore

y ∈ I1 : m∞R =

r⋂
j>c

I(νj)aj .

Thus y /∈ ∩ci=1I(νi)ai . Hence yn ∈
⋂r
j>c I(νj)naj \ ∩ci=1I(νi)nai for all n ≥ 1. Therefore

yn /∈ In for all n ≥ 1. Since Ia,n ⊂ In = In, we have yn /∈ Ia,n for all n ≥ 1.
10



Let v ∈ mb
R where b = a1 + · · · + ac. Then νi(yv) ≥ ai for all 1 ≤ i ≤ c. Thus

yv ∈ ∩ci=1I(νi)ai . Since y ∈
⋂r
j>c I(νj)aj , we have yv ∈ I1 and hence for all n ≥ 1,

ynmnb
R ⊂ In1 = Ina,1 ⊂ Ia,n ⊂ Ia,n.

Let m ≥ 1 be an integer such that ynmm
R ⊆ Ia,n and ynmm−1

R * Ia,n. Let x ∈ mm−1
R \mm

R

such that ynx /∈ Ia,n. Then mR = (Ia,n :R ynx). Therefore mR ∈ Ass(R/Ia,n) for all
n ≥ 1. �

Lemma 4.3. Suppose that R is a local domain and I = {In} is a divisorial filtration on
R. Suppose that P is a prime ideal of R and there exists t ∈ Z>0 such that P ∈ Ass(R/It).
Then there exists n0 ∈ Z>0 such that P ∈ Ass(R/In) for all n ≥ n0.

Proof. Let In = I(ν1)a1n ∩ · · · ∩ I(νr)arn for n ∈ N. By Lemma 3, page 343 of Zariski
Samuel Vol. II, for all m ∈ Z>0, the ideal I(νi)m is Pi-primary, where the prime ideal
Pi = I(νi)1 is the center of νi on R. Let P1, . . . , Ps be the distinct centers of the νi on R
for 1 ≤ i ≤ r. For k with 1 ≤ k ≤ s and n ∈ Z>0, let

Q(k)n =
⋂

I(νi)1=Pk

I(νi)ain,

which is a Pk-primary ideal. Thus for all 1 ≤ k ≤ s, Pk ∈ Ass(R/In) if and only if
In 6=

⋂
1≤i≤s
i6=k

Q(i)n.

Suppose that P ∈ Ass(R/It). Then P = Pk for some k. After reindexing the νi, there
exists c > 0 such that the centers I(νi)1 = P if 1 ≤ i ≤ c and I(νi)1 6= P if c < i.

Thus there exists f ∈ ∩i>cI(νi)ait \ It. Therefore νi(f) ≥ ait for i > c and there exists
j with 1 ≤ j ≤ c such that νj(f) ≤ ajt− 1. Let 0 6= g ∈ I1 be arbitrary. Then νi(g) ≥ ai
for all i. Let β = νj(g) ≥ aj .

Let n ∈ N. Write n = mt+ s with m ∈ N and 0 ≤ s < t. νi(f
mgs) ≥ nai for i > c and

νj(f
mgs) ≤ m(ajt− 1) + sβ = (mt+ s)aj + s(β − aj)−m = naj + s(β − aj)−m < naj

for m > s(β − aj). Thus for m > s(β − aj), we have that fmgs ∈ ∩i>cI(νi)ain \ In which
implies that P ∈ Ass(R/In). �

Suppose that R is a local domain and I = {In} is a divisorial filtration of R where
In = I(ν1)a1n ∩ · · · ∩ I(νr)arn.

Let S = S[I]. Let In = R for n ≤ 0. Then for r ∈ Z>0.

(14) t−rS =
∑
n∈Z

In+rt
n.

Lemma 4.4. Let K be an ideal in R such that I1 ⊂ K. Suppose that n ∈ N. Then there
exists r ∈ Z>0 such that (In+1)

r ⊂ KIrn. In particular the ideal ⊕n≥0In+1t
n ⊂

√
KR[I].

Proof. For all r ∈ Z>0, I
r
n+1 = In+1I

r−1
n+1 ⊂ KIr−1n+1. Note that Ir−1n+1 ⊂ I(n+1)(r−1). Thus if

r ≥ n+ 1, then Ir−1n+1 ⊂ Irn. �

Lemma 4.5. Let R be a local domain and I = {In} be a divisorial filtration of ideals in
R, where In = I(ν1)a1n ∩ · · · ∩ I(νr)arn. For 1 ≤ i ≤ r, let

Pi =
∑
n∈Z

I(νi)ain+1 ∩ Intn.
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Then Pi is a prime ideal in S = S[I]. Let

Qi =
∑
n∈Z

I(νi)ai(n+1) ∩ Intn.

Then Qi is Pi-primary for 1 ≤ i ≤ r and

t−1S = Q1 ∩ · · · ∩Qr.

Proof. Observe that if n ≤ 0, then the valuation ideal I(νi)n = R, and so In = R for
n ≤ 0. Since Pi is a graded R-module, to show that it is an ideal in S, it suffices to show
that if f ∈ I(νi)aia+1 ∩ Ia and g ∈ Ib then fg ∈ I(νi)ai(a+b)+1 ∩ Ia+b. This follows since
νi(fg) = νi(f)+νi(g) ≥ (aia+1)+aib ≥ ai(a+ b)+1 so fg ∈ I(νi)ai(a+b)+1. Pi 6= R since
R∩Pi = I(νi)1 (which is a prime ideal). Since Pi is graded, to show that Pi is a prime ideal,
it suffices to show that if f ∈ Ia and g ∈ Ib are such that fg ∈ I(νi)ai(a+b)+1 ∩ Ia+b, then
either f ∈ I(νi)aia+1 ∩ Ia or g ∈ I(ν)aib+1 ∩ Ib. This follows since νi(f) ≥ aia, νi(g) ≥ aib
and νi(fg) = νi(f) + νi(g) ≥ ai(a+ b) + 1 so either νi(f) ≥ aia+ 1 or νi(g) ≥ aib+ 1.

We now show that Qi is a primary ideal. It suffices to show that if f ∈ Ia, g ∈ Ib,
fg ∈ I(νi)ai(a+b+1) ∩ Ia+b and f 6∈ I(νi)ai(a+1) ∩ Ia, then there exists an m > 0 such
that gm ∈ I(νi)ai(mb+1) ∩ Imb. With these assumptions we have that νi(f) < ai(a + 1)
and νi(fg) ≥ ai(a + b + 1) so that νi(g) > aib, and thus νi(g) = aib + c for some c > 0.
There exists m > 0 such that mc ≥ ai. Thus νi(g

m) = maib + mc ≥ ai(mb + 1) so that
gm ∈ I(νi)ai(mb+1) ∩ Imb.

We now show that
√
Qi = Pi. Qi ⊂ Pi since ai(n+ 1) ≥ ain+ 1 for all i and n ≥ 0. We

then have that
√
Qi = Pi since f ∈ I(νi)ain+1 ∩ In implies fm ∈ I(νi)ai(mn+1) ∩ Imn for

m ≥ ai.
By (14), t−1S =

∑
n∈Z In+1t

n = Q1 ∩ · · · ∩Qr. �

Remark 4.6. With slight modification, Lemma 4.3, Lemma 4.5 and Theorem 4.6 are true
for R divisorial filtrations.

Theorem 4.7. Suppose that R is a local domain and I = {In} is a divisorial filtration on
R. Let In = I(ν1)a1n ∩ · · · ∩ I(νr)arn for n ≥ 1, some valuations νi and some a1, . . . , ar ∈
Z>0. Suppose that `(I) = dimR. Then for some νi, the center mνi ∩ R = {f ∈ R |
νi(f) > 0} is mR. There exists a positive integer n0 such that mR is an associated prime
of In = In for all n ≥ n0.

Proof. Let S = S[I] and let notation be as in Lemma 4.5. Let J be the graded ideal

(15) J =
∑
n≥0

In+1t
n ⊂ R[I].

By assumption, there exists a prime ideal U of TI such that dimTI/U = dimR. We have
isomorphisms of graded R-algebras

A := S/(t−1S +mRS) ∼=
∑
n≥0

In/(In+1 +mRIn)tn ∼= R[I]/(J +mRR[I]).

By Lemma 4.4, the nilradical of R[I]/(J + mRR[I]) is
√
mRR[I]/(J + mRR[I]). Thus

the quotient of TI by its nilradical is isomorphic as a graded R-algebra to the quotient of
A by its nilradical, and so there exists a prime ideal U ′ of A such that dimA/U ′ = dimR.
Let U be the preimage of U ′ in S. We have that t−1S + mRS ⊂ U and t−1 6= 0 in the
domain S so that ht(U) ≥ 1. Since dimS/U = dimR, we have that

1 + dimR ≤ dimS/U + ht(U) ≤ dimS ≤ dimR+ 1
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by Lemma 3.5 so dimS = dimR + 1 and ht(U) = 1. We further have that U ∩ R = mR,

since mRS ⊂ U . Now
√
t−1S = ∩ri=1Pi ⊂ U so that Pi ⊂ U for some i. Thus Pi = U since

ht(U) = 1, and so mR = Pi ∩R = I(νi)1 = mνi ∩R is the center of νi on R.
We will now show that mR is an associated prime of some In. Suppose that mR is

not an associated prime of any In. We will derive a contradiction. After reindexing, we
may suppose that, for some s, νi is an mR-valuation for i ≤ s and νi is not an mR-
valuation for i > s. Since mR is not an associated prime of In for all n, we thus have that
In = I(νs+1)as+1n ∩ · · · ∩ I(νr)arn for all n. Since none of νs+1, . . . , νr is an mR-valuation,
we have that `(I) < dimR by the first part of this proof, a contradiction. Thus there
is some positive integer n0 such that mR is an associated prime of In0 . Thus mR is an
associated prime of In for all n� 0 by Lemma 4.3.

�

Remark 4.8. Theorem 4.7 shows that if `(I) = dimR then one of the prime ideals Pi of
Lemma 4.5 is a height one prime ideal in S[I] such that Pi ∩R = mR.

Remark 4.9. The proofs of Lemma 4.5 and 4.7 prove the following more general state-
ment. Let R be a local ring and J (i) = {J(i)n}n∈N be filtrations of ideals in R with
J(i)1 ( R for all 1 ≤ i ≤ r. Suppose

⋂
n≥1 J(i)n = 0 and Gi =

⊕
n≥0 J(i)n/J(i)n+1 are

domains for all 1 ≤ i ≤ r.
Consider the filtration J = {Jn = J(1)a1n ∩ · · · ∩ J(r)arn} for some fixed a1, . . . , ar ∈

Z>0. For 1 ≤ i ≤ r, let Pi =
∑

n∈Z J(i)ain+1 ∩ Jntn. Then Pi is a prime ideal in S[J ].
Let Qi =

∑
n∈Z J(i)ai(n+1) ∩ Jntn. Then Qi is Pi-primary for 1 ≤ i ≤ r, and

t−1S[J ] = Q1 ∩ · · · ∩Qr.
Suppose that `(J ) = dimR. Then there exists a prime ideal Pi =

∑
n∈Z J(i)ain+1 ∩ Jntn

in S[J ] for some i ∈ {1, . . . , r} such that heightPi = 1 and Pi ∩R = mR.

Corollary 4.10. Suppose that R is a local domain and I = {In} is an s-divisorial filtration
on R. Then `(IQ) < dim(RQ) for all prime ideals Q of R which are not minimal primes
of I1.

Corollary 4.11. Suppose that R is a local domain and I is an s-divisorial filtration on
R with s ≥ 1. Then `(I) < dimR.

Corollary 4.12. Let R be a local domain and I = {In} be a divisorial filtration in R
where In =

⋂r
i=1 I(νi)nai for all n ≥ 1. Suppose mR ∈ Ass(R/I1). Then `(Ia) = dimR

for all a-th truncated filtration of I and hence `(I) ≤ `(Ia) for all a ≥ 1.

Proof. By Proposition 4.2, mR ∈ Ass(R/Ia,n) for all n, a ≥ 1. Since Ia is a Noetherian
filtration, there exists an integer m such that `(Ia) = `(Ia,m). Therefore by [19] ,[25,
Theorem 5.4.6], Theorem 1.1, we have `(Ia) = dimR. �

Corollary 4.13. Let R be a local domain and I = {In} be a divisorial filtration in R
where In =

⋂r
i=1 I(νi)nai for all n ≥ 1. Suppose I1 = ∩ri=1I(νi)ai is a minimal primary

decomposition of I1 and `(Ia) < dimR for some a ≥ 1 where Ia is the a-th truncated
filtration of I. Then `(I) < dimR.

Proof. If `(I) = dimR then by Theorem 4.7, mνi ∩ R = mR for some i. Thus mR ∈
Ass(R/I1). Therefore by Corollary 4.12, we get `(Ia) = dimR which is a contradiction. �

Let R be a local ring and I an ideal in R. In [3] Brodmann proved that `(I) ≤
dimR − liminfn depthR/In where I = {In}. If R has infinite residue field then Burch
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improved the result of Brodmann for the filtration I = {In} and proved that `(I) ≤
dimR− liminfn depthR/In [5]. This result was generalized to the filtration I = {I(n)} if
the Symbolic Rees algebra of I is finitely generated [4]. We generalize Burch’s result for
divisorial filtrations under some extra conditions.

Corollary 4.14. (Burch’s inequality for divisorial filtration) Suppose R is a local domain
and I = {In} is a divisorial filtration in R. Suppose one of the following holds.

(i) mR ∈ Ass(R/It) for some t ≥ 1.
(ii) The filtration I is an 1-divisorial filtration.

Then `(I) ≤ dimR− liminfn depthR/In.

Proof. (i) By Lemma 4.3, there exists a positive integer n0 such that mR ∈ Ass(R/In) for
all n ≥ n0. Thus liminfn depthR/In = 0. Now by Lemma 3.5, `(I) ≤ dimR.

(ii) If dimR ≤ 1 then In = 0 for all n ≥ 1 and hence 0 = `(I) ≤ dimR−liminfn depthR/In.
Suppose dimR ≥ 2. Then by Corollary 4.11, we have `(I) ≤ dimR − 1. Since I is a 1-
divisorial filtration, we have depthR/In ≥ 1 and dimR/In = 1 for all n ≥ 1. Thus
depthR/In = 1 for all n ≥ 1. Therefore `(I) ≤ dimR− liminfn depthR/In. �

5. Symbolic Algebras

Suppose that I ⊂ J are proper ideals in a local ring R. Define SJ(I) = ⊕k≥0Ik : J∞

where Ik : J∞ = ∪∞i=1I
k :R J

i.

Theorem 5.1. ([8, Theorem 2.6]) Let (R,m) be an excellent domain, and let I and J be
proper ideals of R. Then the following conditions are equivalent:

(a) SJ(I) is finitely generated.
(b) There exists an integer r > 0 such that `((Ir : J∞)P ) < dimRP for all P ∈ V (J).

A related result was proven by Katz and Ratliff in Theorem A and Corollary 1 of [14].

Let I be an ideal in a local ring R. For n ∈ Z>0, the n-the symbolic power I(n) of I is

I(n) = ∩p∈Ass(R/I)(I
nRp ∩R).

Let J be the intersection of all asymptotic prime divisors of I which are not minimal
primes. Then I(n) = In : J∞ and the symbolic algebra ⊕n≥0I(n) = SJ(I).

Corollary 5.2. Suppose that R is an excellent local domain of dimension d and I =
P1 ∩ · · · ∩Pr is an intersection of prime ideals Pi of R of a common height. Then the ring⊕

n≥0 I
(n) is a finitely generated R-algebra if and only if there exists n ∈ Z>0 such that

the analytic spread `(I
(n)
Q ) < ht(Q) for all prime ideals Q of R which contain I and are

not one of the minimal primes Pi of I.

With our assumption that R is a local ring of dimension d and I = P1 ∩ · · · ∩ Pr is an
intersection of prime ideals Pi of R of a common height in Corollary 5.2, we have that

`(I
(n)
Pi

) = ht(Pi) = ht(I) for the minimal primes Pi of I.

Corollary 5.3. Suppose that R is an excellent local domain of dimension d and I =
P1 ∩ · · · ∩ Pr is an intersection of prime ideals Pi of R of a common height. If I(n)

is equimultiple for some n then the symbolic algebra ⊕n≥0I(n) is a finitely generated R-
algebra.
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Proof. If I(n) is equimultiple, then by (5), `(I
(n)
Q ) = ht(I

(n)
Q ) for all prime ideals Q contain-

ing I, so that if Q is not a minimal prime of I, we have that `(I
(n)
Q ) = ht(IQ) < dimRQ,

and so I(n) satisfies the criterion of Corollary 5.2. �

However, there exist ideals I such that the symbolic algebra ⊕n≥0I(n) is a finitely

generatedR-algebra but no symbolic power I(n) is equimultiple, as is shown in the following
example.

Example 5.4. ([9, Example 8.4]) There exists a height one prime ideal P in a normal,
excellent 3 dimensional local ring R such that no symbolic power of P is equimultiple but
the symbolic algebra ⊕n≥0P (n) is a finitely generated R-algebra.

In contrast to the conclusions of Corollary 5.2, we have that inequality of analytic spread
and height `(IQ) < ht(Q) holds at all non minimal primes for symbolic filtrations, irre-
gardless of whether their symbolic algebra is a finitely generated R-algebra. The following
proposition follows from Corollary 4.10.

Proposition 5.5. Suppose that R is a local domain of dimension d and I = P1 ∩ · · · ∩Pr
is an intersection of prime ideals Pi of R of a common positive height. Suppose RPi is a

regular local ring for 1 ≤ i ≤ r. Let I = {I(n)} be the symbolic filtration of I. Then the
analytic spread `(IQ) < ht(Q) for all prime ideals Q of R which contain I and are not one
of the minimal primes Pi of I and `(IPi) = ht(Pi) = ht(I) for all minimal primes Pi of I.

Proposition 5.6. Let R be a local domain of positive dimension. Let p be a prime ideal
in R such that ht(p) = dimR − 1 (so that dimR/p = 1). Let d ∈ Z>0. If the p(d)-adic

filtration {(p(d))n}n∈N is a 1-divisorial filtration then p(d) is equimultiple.

Proof. We have that

dimR− 1 = ht(p(d)) ≤ `(p(d)) ≤ dimR

and `(p(d)) 6= dimR by [19] or [25, Theorem 5.4.6] (or by Theorem 4.7 above). �

Proposition 5.7. Let R be a normal, excellent local domain of dimension three with
an isolated singularity and I be an intersection of (a finite number of) height two prime

ideals of R. Let I = {I(m)} be the filtration of symbolic powers of I, so that I is a 1-
divisorial filtration of R. Then I is not Noetherian if and only if the a-th truncation Ia
of I (Definition 3.2) satisfies

`(Ia) = 3 for all a ∈ Z>0.

Proof. We have that `(I) ≤ 2 by Corollary 4.11. If I is a Noetherian filtration, then
R[Ia] = R[I] for all a sufficiently large, so that, by Proposition 3.7, 2 = ht(I) ≤ `(Ia) =
`(I) ≤ 2.

Suppose that I is not Noetherian. We will show that `(Ia) = 3 for all a > 0. We will
prove this statement, by assuming that `(Ia) = 2 for some a, and deriving a contradiction.
Write I = p1 ∩ · · · ∩ pr where p1, . . . , pr are height two prime ideals in R. Let νi be

the pipi-adic valuation of Rpi . Then I(νi)n = p
(n)
i for 1 ≤ i ≤ r and all n ∈ N, and

I(n) = I(ν1)n ∩ · · · ∩ I(νr)n for all n ∈ N.
Let Ia = {Ia,n}, the filtration of integral closures of the ideals in Ia. Then R[Ia] is

finite over R[Ia]. There exists d > 0 such that Ia,nd = (Ia,d)
n for all n ≥ 0, `(Ia) = `(Ia,d)

and `(Ia) = `(Ia,d) by Remark 3.3 and Proposition 3.7. Thus `(Ia,d) = 2.
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Let π : X = Proj(R[Ia,d])→ Spec(R) be the blow up of Ia,d. X is normal since the ring

R[Ia,d] =
∑

n≥0 Ia,dnt
n is integrally closed. Since `(Ia,d) = 2, dimπ−1(mR) = 1 and so

there are no prime divisors on X which contract to mR. Thus Ia,dOX = OX(−dE) where
E = E1 + · · ·+Er is the sum of prime divisors Ei on X such that the valuation νEi = νi.
Since X and R are normal, we have that

π∗OX(−nE) = I(ν1)n ∩ · · · ∩ I(νr)n = p
(n)
1 ∩ · · · ∩ p(n)r = I(n)

for all n ∈ N.
There exists a graded exact sequence

0→ K → R[x0, . . . , xm]→ R[Ia,d]→ 0,

which gives a closed embedding of X into PmR , such that OPm
R

(1)⊗OX ∼= OX(−dE).
Sheafify this sequence to get short exact sequences

0→ K(n)→ OPm
R

(n)→ OX(−ndE)→ 0

and take global sections to get an exact sequence ofR-algebras (by [16, Proposition II.5.13])

R[x0, . . . , xm] = ⊕n≥0H0(PmR ,OPm
R

(n))→
∑
n≥0

I(nd) → ⊕n≥0H1(PmR ,K(n)).

We have that⊕n≥0H1(PmR ,K(n)) is a finitely generatedR-module by [16, Theorem III.5.2(b)].

Thus A := ⊕n≥0I(nd) is a finitely generated R-algebra.
Since OX(−dE) is an invertible sheaf, for i, n ∈ Z, the reflexive rank 1 sheaf of the

Weil divisor −(i+ nd)E is OX(−(i+ nd)E) ∼= OX(−iE)⊗OX(−ndE). By [16, Corollary
II.5.18], for i > 0, there is a short exact sequence of coherent OX -modules

(16) 0→ L→
s∑
j=1

OX(−njdE)→ OX(−iE)→ 0.

with nj ∈ Z. After possibly replacing i with a smaller integer which is equivalent to i
modulo d, we may assume that all nj are positive. Now for all j, Jj := ⊕n≥0 π∗(OX(−(nj+
n)dE)) is a graded ideal in A, so it is a finitely generated A-module. From (16) we obtain
a short exact sequence of A-modules

s∑
j=1

Jj →
∑
n≥0

I(i+nd) →M.

where M =
∑

n≥0H
1(X,L⊗OX(−ndE)) is a finitely generated R-module (again by [16,

Theorem III.5.2(b)]). Thus
∑

n≥0 I
(i+nd) is a finitely generated A-module, and so ⊕n≥0I(n)

is a finitely generated R-algebra, in contradiction to our assumption. �

We have the following theorem, that uses examples which will be constructed in Section
6.

Theorem 5.8. Suppose that R is a regular local ring of dimension 3, and p is a height
two prime ideal of R. Let I = {p(n)} be the symbolic filtration of p. Then `(I) ≤ 2 and
all values `(I) = 0, 1, 2 can occur.

Proof. The bound `(I) ≤ 2 follows from Corollary 4.11. Examples 6.1 and 6.6 have
analytic spread 0 and 1 respectively. A prime ideal p = (x, y) where x, y are part of a
regular system of parameters in R gives an example with analytic spread 2. �
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We have (by Lemma 3.8) the following ideal theoretic interpretation of analytic spread

zero for a symbolic filtration I = {p(n)}. We have that

`(I) = 0 if and only if for all n and f ∈ p(n), there exists m > 0 such that fm ∈ mRp
(mn).

In Theorem 5.8, we necessarily have that the symbolic algebra is not finitely generated
if `(I) < 2 (by Proposition 3.7). A simple example of a symbolic algebra achieving the
maximum analytic spread `(I) = 2 may be constructed by taking p to be a regular prime
ideal in R (p = (x, y) where x, y, z is a regular system of parameters in R). We do not
know of an example such that `(I) = 2 but the symbolic algebra is not finitely generated.

We look a little more closely at the most dramatic case of the theorem, when `(I) = 0.
By Proposition 5.7, we have that `(Ib) = 3 for all truncations Ib of I. The analytic
spread `(I) being zero has the following interpretation in the geometry of the canonical
projection ϕ : Proj(R[I])→ Spec(R). We have that ϕ−1(p) = P1

κ(p), where κ(p) = (R/p)p,

since Proj(⊕n≥0pnp ) is the blow up of the maximal ideal pp in the two dimensional regular

local ring Rp, so that dimϕ−1(p) = 1, but ϕ−1(mR) = ∅ since `(I) = 0. In particular,
the theorem on upper semicontinuity of fiber dimension (2) for ideals fails in this non
Noetherian situation.

Theorem 5.8 shows that the inequality (4) for ideals fails for symbolic filtrations, as we
see by taking p in Theorem 5.8 such that `(I) < 2, so that 2 = ht(I) > `(I).

6. Some Examples of Symbolic Algebras

In this section we use famous examples by Nagata and Zariski to compute the analytic
spread of some space curve singularities and some related examples.

Example 6.1. Suppose that a ≥ 0. Then there exists a prime ideal Q of height 2 + a in
a regular local ring A of dimension 3 + a such that `(J ) = a, where J = {Q(n)} is the
1-divisorial filtration on A of symbolic powers of Q.

We make use of a famous example of Nagata. Let s be a positive integer with s ≥ 4,
and r = s2. Let α1, . . . , αr ∈ P2

C be independent generic points of P2 over Q.
Let Iαi be the ideal sheaf of αi in P2 and let H ′ be a linear hyperplane section of P2.
The difficult statement of Theorem 6.2 is proven by Nagata in [21] and in Proposition

1 of Chapter 3, page 18 of [22].

Theorem 6.2. (Nagata) Let notation be as above.

1) Suppose that d,m1, . . . ,mr ∈ N and H0(P2,OP2(dH ′)⊗Im1
α1
⊗· · ·⊗Imr

αr
) 6= 0. Then

d >
1√
r

r∑
i=1

mi.

2) Suppose that r′ is a real number such that r′ >
√
r. Then there exist d,m ∈ Z>0

such that r′ > d
m >

√
r and H0(P2,OP2(dH ′)⊗ Imα1

⊗ · · · ⊗ Imαr
) 6= 0.

Let Λ : X → P2 be the blow up of the points α1, . . . , αr with exceptional lines E1, . . . , Er.
Let H = Λ∗(H ′). Since Λ is the blowup of the points α1, . . . , αr on the nonsingular surface
P2, we have that for all d,m1, . . . ,mr ≥ 0,

H0(X,OX(dH −m1E1 − · · · −mrEr)) = H0(P2,OP2(dH ′)⊗ Im1
α1
⊗ · · · ⊗ Imr

αr
).

Let E = E1 + · · ·+ Er. The canonical divisor KX on X is KX = −3H + E.

Lemma 6.3. Let notation be as above.
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1) Let C be an irreducible reduced curve on X with C 6= Ei for any i. Then C ∼
dH −

∑
miEi for some d,mi ∈ N with d > 0.

2) Let dH −mE be a divisor with d ≥ −2. Then H2(X,OX(dH −mE)) = 0.
3) Let L = dH −mE with d,m ∈ Z>0. Then L is ample if d

m >
√
r.

4) Let L = dH − mE with d,m ∈ Z>0. Then H1(X,OX(dH − mE)) = 0 if d >√
rm+ (

√
r − 3).

5) Suppose that d,m ≥ 0. Then

H0(X,OX(dH −mE)) = H0(X,OX(H))H0(X,OX((d− 1)H −mE))

if d ≥
√
rm+

√
r.

Proof. 1). C ∼ dH −
∑
miEi for some d,mi ∈ Z. We have (H · C) = d ≥ 0 since the

complete linear system |H| is base point free. Further, (Ei · C) = mi ≥ 0 for 1 ≤ i ≤ r.
There exists e > 0 such that eH −E is ample. If d = 0, so that C ∼

∑
−miEi with some

mi > 0, then ((eH − E) · C) = −
∑
mi < 0, which is impossible.

2). By Serre duality

H2(X,OX(dH−mE)) ∼= H0(X,OX(mE−dH+KX) = H0(X,OX(−(d+3)H+(m+1)E)).

The complete linear system |H| is base point free on X and

(H · (mE − dH +KX)) = −(d+ 3) < 0 for d ≥ −2,

so H0(X,OX(mE − dH +KX) = 0.
3). Suppose that C is an irreducible reduced curve on X. Then by 1) and Theorem 6.2,

C is linear equivalent to eH −
∑
niEi with e, n1, . . . , nr ∈ N and e > 1√

r

∑r
i=1 ni. Hence

(C · L) = de−m
∑r

i=1 ni > 0. Further (L2) = d2 −m2r > 0, so L is ample by the Nakai
Moishezon criterion ([16, Theorem V.1.10]).

4). The divisor (dH −mE)−KX is ample if d >
√
rm+ (

√
r − 3) by 3). Thus, by the

Kodaira vanishing theorem ([16, Remark III.7.15]),

H1(X,OX(dH −mE)) = H1(X,OX((dH −mE −KX) +KX)) = 0

if d >
√
rm+ (

√
r − 3).

5). The statements 2) and 4) imply that OX(−mE) is d-regular if d >
√
rm+(

√
r−2);

that is, H i(X,OX(−mE) ⊗ OX((d − i)H)) = 0 for i = 1, 2. Thus the conclusions of 5)
hold by page 99 [20] (also proven in [6, Theorem 17.35]). �

Let S = C[x1, x2, x3] be the homogeneous coordinate ring of P2 and m be the graded
maximal ideal of S. Let Pi be the height two prime ideal in S of the point αi for 1 ≤ i ≤ r.
Then

S = ⊕d≥0H0(P2,OP2(dH ′)) = ⊕d≥0H0(X,OX(dH))

and

m = ⊕d>0H
0(P2,OP2(dH ′)) = ⊕d>0H

0(X,OX(dH)).

For d, n1, . . . , nr ∈ N,

H0(P2,OP2(dH ′)⊗ In1
α1
⊗ · · · ⊗ Inr

αr
)

= {F ∈ S | F is homogeneous of degree d and F ∈ Pn1
1 ∩ · · · ∩ Pnr

r }

and
Pn1
1 ∩ · · · ∩ Pnr

r =
⊕

d>0H
0(P2,OP2(dH ′)⊗ In1

α1
⊗ · · · ⊗ Inr

αr
)

=
⊕

d>0H
0(X,OX(dH − n1E1 − · · · − nrEr).
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In particular,

Pn1 ∩ · · · ∩ Pnr =
⊕
d>0

H0(X,OX(dH − nE)).

Recall that s =
√
r ∈ Z+ (with s ≥ 4).

Proposition 6.4. Given n ∈ Z>0,

(Pn1 ∩ · · · ∩ Pnr )s ⊂ m (P sn1 ∩ · · · ∩ P snr ) .

Proof. Since S is graded and Noetherian, it suffices to show that if 0 6= f ∈ H0(X,OX(dH−
nE)), then fs ∈ H0(X,OX(H))H0(X,OX(sd−1)H−snE). We have that d > sn by The-
orem 6.2. The statement then follows from 5) of Lemma 6.3, since f s ∈ H0(X,OX(sdH−
snE)) and sd ≥ s(ns+ 1) = s(sn) + s. �

Let R = Sm, a three dimensional regular local ring, with maximal ideal mR = mSm.
Let pi = (Pi)m for 1 ≤ i ≤ r. The ideals pi are height two prime ideals in R. Let I = {In}
where In = pn1 ∩ · · · ∩ pnr . The filtration I is the 1-divisorial filtration on R, consisting of

the symbolic powers In = I(n) of I = I1. Thus ht(I) = ht(I) = 2.
By Proposition 6.4, we have that for all n > 0,

(17) (I(n))s = (pn1 ∩ · · · ∩ pnr )s ⊂ mR (psn1 ∩ · · · ∩ psnr ) = mRI
(sn).

We will first construct the example when a = 0. In [24], a height two prime ideal p in

R = C[x1, x2, x3](x1,x2,x3) and a continuous C-algebra isomorphism ϕ : R̂ → R̂ such that

ϕ(Î(n)) = p̂(n) for all n ≥ 0 are constructed, where I is the ideal defined before (17). Let

s =
√
r ∈ Z>0 be the integer defined before Theorem 6.2. By (17), (I(n))s ⊂ mRI

(ns) for

all n > 0. Thus (Î(n))s ⊂ mR̂Î
(ns), so applying ϕ, we obtain

(̂p(n))s = (p̂(n))s ⊂ mR̂p̂
(ns) = m̂Rp(ns).

Since R→ R̂ is faithfully flat, we obtain that for all n > 0, we have that

(18)
(
p(n)

)s
⊂ mRp

(sn).

Let ν be the pp-adic valuation of Rp, which is the discrete valuation of K := C(x1, x2, x3)

such that the valuation ideals of ν in R are I(ν)n = p(n) for all n ≥ 0.
Let A = C[x1, x2, x3, y1, . . . , ya](x1,x2,x3,y1,...,ya), the polynomial ring over C in the vari-

ables x1, x2, x3, y1, . . . , ya, and Q = pA + (y1, . . . , ya), a prime ideal of height 2 + a in A.
Let ω be the Gauss valuation of L := C(x1, x2, x3, y1, . . . , ya), defined by

ω(f) = min{ν(bi1,...,ia) + i1 + · · ·+ ia}

if f =
∑
bi1,...,iay

i1
1 · · · yiaa ∈ K[y1, . . . , ya] with bi1,...,ia ∈ K for all i1, . . . , ia. The valuation

ω is a discrete valuation of L which dominates AQ. Since

AQ = (Rp[y1, . . . , ya])QRp[y1,...,ya]
,

we have that ω is the Q-adic valuation of AQ. Thus the valuation ideals of ω in A are

I(ω)n = Q(n) for n ≥ 0. Let J = {Q(n)}. The filtration J is a 1-divisorial filtration on A.

Proposition 6.5. Let N =
√
mAA[J ] be the radical of mAA[J ] in A[J ]. Let y1, . . . ya

be the respective classes of y1t, . . . , yat in A[J ]/N . Then

A[J ]/N = C[y1, . . . , ya]

is a standard graded polynomial ring in the variables y1, . . . , ya over C.
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Proof. For n > 0,

Q(n) = I(ω)n = (y1, . . . , ya)
n + (y1, . . . , ya)

n−1p + (y1, . . . , ya)
n−2p(2) + · · ·+ p(n)A.

We first show that A[J ]/N is generated by y1, . . . , ya as a C-algebra. Since N is graded,

it suffices to show that if f ∈ p(d) with d > 0 and yi11 · · · yiaa is such that i1, . . . , ia ∈ N and

i1 + · · ·+ ia = n− d, then (yi11 · · · yiaa )sfs ∈ mAQ
(sn). Since (i1 + · · ·+ ia)s = (n− d)s, it

suffices to show that fs ∈ mRp
(sd), which follows from (18).

We now show that the standard graded C-algebra C[y1, . . . , ya] is a polynomial ring
over C. Suppose otherwise. We will find a contradiction. Then for some n > 0, there is a
relation ∑

i1+···+ia=n
λi1,...,iay

i1
1 · · · y

i1
a = 0

for some λi1,...,ia ∈ C not all zero. Let G =
∑

i1+···+ia=n λi1,...,iay
i1
1 · · · yiaa ∈ Q(n). Since

G ∈ N , there exists m > 0 such that Gm ∈ mAQ
(mn). Now Gm has mA-order mn, and

every element of mAQ
(mn) has mA-order ≥ mn + 1. Thus G = 0, a contradiction to the

assumption that some λi1,...,ia 6= 0. �

Example 6.1 thus has analytic spread `(J ) = a.

Example 6.6. There exists a prime ideal p of height 2 in a regular local ring R of dimen-
sion 3 such that `(J ) = 1, where J = {p(n)} is the 1-divisorial filtration on R of symbolic
powers of p.

We make use of a famous example of Zariski [26], expositions of which can be found
in [18, Section 2.3] and [6, Theorem 20.14]. Let α1, . . . , α12 ∈ P2

C be independent generic
points of an elliptic curve E′ of P2 over Q. The curve E′ is defined by the vanishing of an
irreducible cubic form G ∈ C[x1, x2, x3].

Let Iαi be the ideal sheaf of αi in P2 and let H ′ be a linear hyperplane section of P2.
Let Λ : X → P2 be the blow up of the points α1, . . . , α12 with exceptional lines

F1, . . . , F12. Let H = Λ∗(H ′). Since Λ is the blowup of the points α1, . . . , α12 on the
nonsingular surface P2, we have that for all d,m1, . . . ,mr ≥ 0,

H0(X,OX(dH −m1F1 − · · · −m12F12)) = H0(P2,OP2(dH ′)⊗ Im1
α1
⊗ · · · ⊗ Imr

αr
).

Let F = F1 + · · · + F12. The canonical divisor KX on X is KX = −3H + F . Let E be
the strict transform of E′ on X. We have that Λ∗(E′) = E + F , where E is an elliptic
curve on X which is isomorphic to E′, (E · E) = −3 and OX(H + E)⊗OE is a degree 0
invertible sheaf on X of infinite order, so that

(19) H0(E,OX(m(H + E))⊗OE) = 0 for all nonzero integers m.

Further, (F · F ) = −12.

Lemma 6.7. Let notation be as above.

1) Let C be an irreducible reduced curve on X with C 6= Fi for any i. Then C ∼
dH −

∑
miFi for some d,mi ∈ N with d > 0.

2) Let dH −mF be a divisor with d ≥ −2. Then H2(X,OX(dH −mF )) = 0.
3) Let L = dH −mF with m ∈ Z>0 and d > 4m. Then L is ample.
4) Let σ ∈ H0(X,OX(3H − F )) be the section whose divisor is E. Then

OX(3H − F ) = σOX
20



and H0(X,OX(3H − F )) = σC. Further,

H0(X,OX(3mH −mF )) = H0(X,OX(3H − F ))m

for all m ∈ Z>0.
5) Suppose that d ≥ 0, m ≥ 0 and d < 3m. then H0(X,OX(dH −mF )) = 0.
6) Let L = dH−mF with d,m ∈ Z>0. Then H1(X,OX(dH−mF )) = 0 if d > 4m+1.
7) Suppose that d,m ≥ 0. Then

H0(X,OX(dH −mF )) = H0(X,OX(H))H0(X,OX((d− 1)H −mF ))

if d ≥ 4m+ 4.

Proof. The proofs of 1) and 2) are the same as the proofs of 1) and 2) of Lemma 6.3.
3). Suppose C is an integral curve on X other than Fi or E. Then (C · E) ≥ 0 and

(C ·H) = (C ·Λ∗(H ′)) = (Λ∗(C)·H ′) > 0 so (C ·L) > 0, since L ∼ mE+(d−3m)H. Further,
(L ·E) = 3d− 12m > 0 and (L · Fi) = m > 0 for 1 ≤ i ≤ 12, so every irreducible curve of
X has positive intersection number with L. Finally, (L ·L) = d2 − 12m2 > 4m2 > 0, so L
is ample by the Nakai Moishezon criterion.

4). We have that mE ∼ 3mH−mF . Suppose that D is an effective divisor on X which
is linearly equivalent to 3mH −mF . Then (E · (3mH −mF )) = (E ·mE) = −3m < 0 so
E is in the support of D, so D − E is effective. By induction on m, we obtain D = mE.

5). Suppose there exists an effective divisor D such that D ∼ dH −mF . We compute

(D · E) = ((dH −mF ) · (3H − F )) = 3d− 12m < −3m.

Thus E is in the support of D, so D − E ∼ (d − 3)H − (m − 1)F is effective, with
d− 3 < 3(m− 1). Continuing in this way, we obtain that (d− 3m)H − 2mF is an effective
divisor, which is a contradiction to 1).

The proof of 6) is as the proof of 4) of Lemma 6.3, using 3) of this lemma.
The proof of 7) is as the proof of 5) of Lemma 6.3, using 6) and 2) of this lemma.

�

Lemma 6.8. Suppose that 0 < 3m < d ≤ 4m. Then

1) H0(X,OX(dH −mF )) > 0.
2) H0(X,OX(dH −mF )) = H0(X,OX(3H − F ))H0(X,OX((d − 3)H − (m − 1)F )

where d− 3 > 3(m− 1).
3) H0(X,OX(dH − mF )) = H0(X,OX(3H − F ))rH0(X,OX(d′H − m′F )) where

r = 4m− d+ 1, d′ = d− 3r, m′ = m− r satisfy d′ > 4m′.

Proof. 1). We have that dH −mF = m(3H −F ) + (d− 3m)H ∼ mE+ (d− 3m)H, which
is a nonzero effective divisor.

2). Recall that σ is a section of OX(3H − F ) whose divisor is E. Tensor

0→ OX(−(3H − F ))
σ→ OX → OE → 0

with OX(dH −mF ) to get the exact sequence

0→ H0(X,OX((d−3)H−(m−1)F ))
σ→ H0(X,OX(dH−mF ))→ H0(E,OX(dH−mF )⊗OE).

The rightmost vector space is zero since ((dH −mF ) · E) = 3d− 12m ≤ 0, and by (19).
3). For t ∈ Q, we have that (d− 3t)H − (m− t)F satisfies d− 3t ≤ 4(m− t) if and only

if t ≤ 4m− d. Now 3) follows from 1) and 2) of this lemma.
�

21



Let S = C[x1, x2, x3] be the homogeneous coordinate ring of P2 and m be the graded
maximal ideal of S. Let Pi be the height two prime ideal in S of the point αi for 1 ≤ i ≤ 12.
Then

S = ⊕d≥0H0(P2,OP2(dH ′)) = ⊕d≥0H0(X,OX(dH)),

m = ⊕d>0H
0(P2,OP2(dH ′)) = ⊕d>0H

0(X,OX(dH))

and for n1, . . . , n12 ≥ 0,

Pn1
1 ∩ · · · ∩ P

n12
12 =

⊕
d>0H

0(P2,OP2(dH ′)⊗ In1
α1
⊗ · · · ⊗ In12

α12
)

=
⊕

d>0H
0(X,OX(dH − n1F1 − · · · − n12F12).

In particular,

Pn1 ∩ · · · ∩ Pn12 =
⊕
d>0

H0(X,OX(dH − nF )).

By 5) of Lemma 6.7,

(20) Pn1 ∩ · · · ∩ Pn12 =
⊕
d≥3n

H0(X,OX(dH − nF )).

The irreducible cubic form G defining E′ is in H0(X,OX(3H − F )) and

h0(X,OX(3nH − nF )) = 1 for n > 0

by 4) of Lemma 6.7, so

(21) H0(X,OX(n(3H − F )) = GnC for n > 0.

Proposition 6.9. Given n ∈ Z>0, and h ∈ H0(X,OX(dH − nF )) with d > 3n, there
exists s ∈ Z>0 such that

hs ∈ m (P sn1 ∩ · · · ∩ P sn12 ) .

Proof. First suppose that d > 4n. Then 4d ≥ 4(4n) + 4 implies

H0(X,OX(4dH − 4nF )) = H0(X,OX(H))H0(X,OX(4d− 1)H − 4nF ))

by 7) of Lemma 6.7. Thus h4 ∈ m
(
P 4n
1 ∩ · · · ∩ P 4n

12

)
.

Now suppose that 3n < d ≤ 4n. Then by 3) of Lemma 6.8,

H0(X,OX(dH − nF )) = H0(3H − F ))rH0(X,OX(d′H −m′F ))

for suitable r, d′,m′ where d′ > 4m′ and n = m′ + r. By the first part of this proof,

h4 ∈ H0(X,OX(H))H0(X,OX(3H − F ))4rH0(X,OX((4d′ − 1)H − 4m′F ))
⊂ m

(
P 4n
1 ∩ · · · ∩ P 4n

12

)
.

�

Let R = Sm, a three dimensional regular local ring, with maximal ideal mR = mSm. Let
pi = (Pi)m for 1 ≤ i ≤ 12. The ideals pi are height two prime ideals in R. Let I = {In}
where In = pn1 ∩ · · · ∩ pn12. The filtration I is the 1-divisorial filtration on R consisting of

the symbolic powers In = I(n) of I = I1. Thus ht(I) = ht(I) = 2.

Proposition 6.10. Let N =
√
mRR[I] be the radical of mRR[I] in R[I]. Then

R[I]/N ∼= C[Gt]

is a standard graded polynomial ring.
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Proof.

R[I]/N ∼=

∑
n≥0

p
(n)
1 ∩ · · · ∩ p

(n)
12 t

n

 /

√√√√√m

∑
n≥0

p
(n)
1 ∩ · · · ∩ p

(n)
12 t

n

 ∼= C[Gt].

by (20), (21) and Proposition 6.9. �

By the method of [24], we construct a height two prime ideal p inR = C[x1, x2, x3](x1,x2,x3)
and a continuous C-algebra isomorphism ϕ : R̂ → R̂ such that ϕ(m̂R) = m̂R and

ϕ(Î(n)) = p̂(n) for all n ≥ 0, where I is the ideal defined before Proposition 6.10. We

have that p̂(n) = p̂(n) and Î(n) = Î(n) for all n, as explained in the proof of [24, Proposition
1].

Since the Rees algebras of all truncations of {p(n)} are excellent, we have that

R̂
√
mRR[pt, p(2)t2, . . . , p(a)ta] =

√
m̂RR̂[p̂t, p̂(2)t2, . . . , p̂(a)ta]

for all a ∈ Z>0 and so

R̂
√
mRR[{p(n)}] =

√
m̂RR̂[{p̂(n)}].

We thus have that

R[{p(n)}]/
√
mRR[{p(n)}] ∼=

(
R[{p(n)}]/

√
mRR[{p(n)}]

)
⊗R R̂ ∼= R̂[{p̂(n)}]/

√
m̂RR̂[{p̂(n)}]

∼= R̂[{Î(n)}]/
√
m̂RR̂[{Î(n)}] ∼=

(
R[I]/

√
mRR[I]

)
⊗R R̂ ∼= R[I]/

√
mRR[I] ∼= C[t]

by Proposition 6.10. Thus J = {p(n)} fulfills the conditions of the example.
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Math. IHES 28 (1966).

[14] D. Katz and L.J. Ratliff, On the symbolic Rees ring of a primary ideal, Comm. Alg., 14 no.
5, (1986), 959–970.

23



[15] K. Kurano and K. Nishida, Infinitely generated symbolic Rees rings of space monomial curves
having negative curves, Michigan Math. J. 68 (2019), 409 - 445.

[16] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[17] J. Lipman, Equimultiplicity, reduction and blowing up, R.N. Draper (Ed), Commutative

Algebra, Lect. Notes Pure Appl. Math., Col 68, Marcel Dekker, New York (1982), 111 - 147.
[18] R. Lazarsfeld, Positivity in Algebraic Geometry I, Springer, 2004.
[19] S. McAdam, Asymptotic prime divisors and analytic spread, Proc. AMS 90 (1980), 555-559.
[20] D. Mumford, Lectures on Curves on an Algebraic Surface, Annals of Math. Studies no. 59,

Princeton University Press, 1966
[21] M. Nagata, On the 14-th problem of Hilbert, Amer. J. Math. 81 (1959), 766 - 772.
[22] M. Nagata, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental

Research, Bombay, 1965.
[23] J.L. Ratliff Jr., Locally quasi-unmixed Noetherian rings and ideals of the principal class,

Pacific J. Math. 52 (1974), 185-205.
[24] P. C. Roberts, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian”,

Proc. AMS 1985, 589-592.
[25] I. Swanson and C. Huneke, Integral Closure of Ideals, Rings and Modules, Cambridge Uni-

versity Press, 2006.
[26] O. Zariski, The theorem of Riemann Roch for high multiples of an effective divisor on an

algebraic surface, Ann. of Math. 76 (1962), 560 - 615.
[27] O. Zariski and P. Samuel, Commutative Algebra Volume II, Van Nostrand, 1960.

Steven Dale Cutkosky, Department of Mathematics, University of Missouri, Columbia,
MO 65211, USA

Email address: cutkoskys@missouri.edu

Parangama Sarkar, Department of Mathematics, Indian Institute of Technology, Palakkad,
India

Email address: parangama@iitpkd.ac.in

24


