ANALYTIC SPREAD OF FILTRATIONS AND SYMBOLIC ALGEBRAS
STEVEN DALE CUTKOSKY AND PARANGAMA SARKAR

ABSTRACT. In this paper we define and explore the analytic spread £(Z) of a filtration
in a local ring. We show that, especially for divisorial and symbolic filtrations, some
basic properties of the analytic spread of an ideal extend to filtrations, even when the
filtration is non Noetherian. We also illustrate some significant differences between the
analytic spread of a filtration and the analytic spread of an ideal with examples.

In the case of an ideal I, we have the classical bounds ht(I) < ¢(I) < dim R. The
upper bound ¢(Z) < dim R is true for filtrations Z, but the lower bound is not true
for all filtrations. We show that for the filtration 7 of symbolic powers of a height two
prime ideal p in a regular local ring of dimension three (a space curve singularity), so
that ht(Z) = 2 and dim R = 3, we have that 0 < £(Z) < 2 and all values of 0,1 and 2
can occur. In the cases of analytic spread 0 and 1 the symbolic algebra is necessarily
non-Noetherian. The symbolic algebra is non-Noetherian if and only if E(pm)) = 3 for
all symbolic powers of p and if and only if ¢(Z,) = 3 for all truncations Z, of Z.

1. INTRODUCTION
The analytic spread of an ideal I in a (Noetherian) local ring R is defined to be
(1) (1) =dim R[I]/mrR[I]

where R[I] = D,,5( I" is the Rees algebra of I.

We recall some basic properties of analytic spread from [17] and [25]. We have that
upper semicontinuity of fiber dimension holds, that is
(2) U(Ip) < {(Ip/) if P C P’ are prime ideals containing I.

This follows for instance by [13, (IV.13.1.5)].
We have inequalities ([17, page 115] and [25, Corollary 8.3.9])

(3) ((I) < dimR
and
(4) ht(I) < £(1).

The lower bound (4) follows from (2) since at a minimal prime @ of I, we have that
((Ig) = ht(Q) > ht(I) since Ig is Qg-primary.

An ideal [ in a local ring R for which the equality ht(I) = ¢(I) holds is called equimul-
tiple. I is equimultiple if and and only if all fibers of 7 : Proj(R[I]/IR[I]) — Spec(R/I)
have the same dimension. This follows since if I is equimultiple and P is a prime ideal of
R which contains I, then by (4) and (2),

ht(I) < ht(Ip) < ((Ip) < £(I) = ht(D).
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In particular, if I is an equimultiple ideal, then
(5) ¢(Ip) = ht(Ip)
for all prime ideals P containing I. For the other direction, we consider a minimal prime
P of I such that ht(I) = ht(P). If all fibers of 7y have the same dimension then we have
ht(1) = ht(Ip) = (Ip) = ¢(I).

We have the following fundamental theorem.

Theorem 1.1. ([19], [25, Theorem 5.4.6]) Let R be a formally equidimensional local ring
and I be an ideal in R. Then mg € Ass(R/I™) for some n if and only if £(I) = dim R.

In this paper we extend the analytic spread of an ideal in a local ring to (not neces-
sarily Noetherian) filtrations, and explore generalizations of the above results to general
filtrations, divisorial filtrations and filtrations of symbolic powers.

Let T = {I,} be a filtration on a local ring R. The Rees ring of the filtration is
R[I] = ®p>0ln. Analogously to the case of ideals, we define the analytic spread of the
filtration to be

(6) ¢(Z) = dim R[Z]/mgrR[Z].
We show in Lemma 3.6, that the upper bound (3) holds for filtrations Z, that is,
UZ) < dim R.

For an arbitrary filtration, we have that /T, = /I; for all n (equation (7)) and we define
the height of a filtration Z to be
ht(Z) = ht(1y).
We may call a filtration Z equimultiple if ht(Z) = ¢(Z).
A simple example of a filtration for which the lower bound (4) is not true is the following.

Example 1.2. Let R be a local ring of dimension greater than zero. Let T = {I,} where
I, =mp forn>1. Then {(Z) =0 < ht(Z) = dim R.

In Example 1.2, all ideals I, and all truncations (Noetherian approximations) Z, of Z
are equimultiple even though 7 is not. This example shows that the “only if” direction of
Theorem 1.1 can fail for filtrations.

In the case that Z is a Noetherian filtration, the lower bound ht(Z) < ¢(Z) always holds
(Proposition 3.7), so that the inequality (4) for ideals continues to hold for Noetherian
filtrations.

The condition that a filtration has analytic spread zero has a simple ideal theoretic
interpretation (Lemma 3.8). Suppose that Z = {I,,} is a filtration in a local ring R. Then
the analytic spread ¢(Z) = 0 if and only if

For all n > 0 and f € I,,, there exists m > 0 such that f™ € mgrlm,.

We consider (integral) divisorial filtrations and s-divisorial filtrations in Section 4. Di-
visorial and s-divisorial filtrations are defined at the beginning of this section. One of the
fundamental properties about an mpg-primary ideal [ is that ¢(/) = dim R. We saw in
Example 1.2 that this property fails for general filtrations. However, it is true for diviso-
rial filtrations of mg-primary ideals (0-divisorial filtrations). The following theorem shows
that the “only if” direction of Theorem 1.1 holds for divisorial filtrations of mpg-primary
ideals.

Theorem 1.3. (Theorem 4.1) Suppose that R is a d-dimensional excellent local domain
and T is a divisorial filtration of mp-primary ideals on R. Then ((Z) = d.
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Further, the “if” statement of Theorem 1.1 is true for divisorial filtrations.

Theorem 1.4. (Theorem 4.7) Suppose that R is a local domain and T = {I,} is a
divisorial filtration on R. Let I, = I(1)ayn N -+ N I(Vp)g.m for n > 1, some valuations
v; and some ay,...,a, € ZLsg. Suppose that {(Z) = dim R. Then for some v;, the center
my, NR={f € R|vi(f) >0} is mr. There exists a positive integer ng such that mpg is
an associated prime of I, = I,, for all n > ng.

Suppose that Z = {I,} is a filtration in R and p is a prime ideal in R. Then the
localization of Z at p is the filtration Z, = {(I,)p} in Rp. In a filtration Z = {I,}, the
ideals I,, have the same minimal primes for all n > 1.

Corollary 1.5. (Corollary 4.10) Suppose that R is a local domain and T = {I,} is an
s-divisorial filtration on R (a divisorial filtration consisting of ideals which are equidimen-
sional of dimension s and have no embedded components). Then ¢(Ig) < dim(Rq) for all
prime ideals Q of R which are not minimal primes of I.

The a-the truncation of a filtration Z is the Noetherian approximation of Z generated
by the first a terms of Z. A formal definition of a truncation is given in Definition 3.2.
Knowledge of the analytic spread of the truncations of a filtration can give some informa-
tion about the analytic spread of the filtration, as is illustrated in the following corollary
to Theorem 4.7.

Corollary 1.6. (Corollary 4.13) Let R be a local domain and I = {I,,} be a divisorial
filtration in R where I, = (\i_; I(Vi)na, for all n > 1. Suppose Iy = NI_11(v;)q, is a
minimal primary decomposition of Iy and ((Z,) < dim R for some a > 1 where Z, is the
a-th truncated filtration of Z. Then ¢(Z) < dim R.

We turn to symbolic algebras in Section 5. Let I be an ideal in a local ring R. For n a
positive integer, the n-th symbolic power I(™ of T is

1M = NocAsscryny"Be N R).

Symbolic algebras and filtrations have been extensively studied. A survey of some recent
progress is given in [10].

We consider in Section 5 the filtration of symbolic powers {I(™} where I = P,N---N P,
is an intersection of prime ideals of a common height in an excellent local ring. If P is a
prime ideal in a regular local ring R, then since Rp is a regular local ring, the Pp-adic
order on Rp defines a discrete valuation v of the quotient field of R such that the valuation
ideals I(v), of R are the symbolic powers I(v), = P™. Thus the symbolic filtrations in
a regular local ring are divisorial filtrations.

There are examples of height two prime ideals P in an excellent regular local ring R of
dimension three (space curve singularities) such that the symbolic algebra of P, @HZOP(”),
is not a finitely generated R-algebra [24], and even when P is analytically irreducible [12]
and [15].

We have a simple characterization of when a symbolic filtration is Noetherian in terms
of analytic spread. Suppose that I C J are proper ideals in a local ring R. Define
Sy(I) = @kzolk : J™ where IF : J® = U;’illk :r J'. Let J be the intersection of all
asymptotic prime divisors of I which are not minimal primes. Then ™) = ™ : J°° and
the symbolic algebra @,>0I™ = S;(I). In the case that I = P is the ideal of a space
curve singularity, the symbolic algebra is EBnZOP(") = Sy (P).
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Theorem 1.7. (I8, Theorem 2.6], Theorem 5.1) Let (R, m) be an excellent domain, and
let I and J be proper ideals of R. Then the following conditions are equivalent:

(a) Sy(I) is finitely generated.

(b) There exists an integer r > 0 such that £((I" : J®)p) < dim Rp for all P € V(J).

A related result for ordinary symbolic powers was proven by Katz and Ratliff in Theorem
A and Corollary 1 of [14].
We have the following immediate corollary.

Corollary 1.8. (Corollary 5.2) Suppose that R is an excellent local domain of dimension
d and I = PiN---NP, is an intersection of prime ideals P; of R of a common height. Then
the ring ®n20 I s q finitely generated R-algebra if and only if there exists n € Zsq such

that the analytic spread ﬁ([é;)) < ht(Q) for all prime ideals Q of R which contain I and
are not one of the minimal primes P; of I.

With our assumption that R is an excellent local ring of dimension d and I = Py N---NP;
is an intersection of prime ideals P; of R of a common height in Corollary 1.8, we have

that £(I5)) = ht(P;) = ht(I) for the minimal primes P, of .

Corollary 1.9. (Corollary 5.3) Suppose that R is an excellent local domain of dimension
dand I =P N---N P, is an intersection of prime ideals P; of R of a common height. If
IM s equimultiple for some n then the symbolic algebra @nzol(n) is a finitely generated
R-algebra.

However, there exist ideals I such that the symbolic algebra @,>0f (") is a finitely
generated R-algebra but no symbolic power I (n) is equimultiple (Example 5.4).

In contrast to the conclusions of Corollary 5.2, we have that inequality of analytic spread
and height ¢(Zg) < ht(Q) holds at all non minimal primes for symbolic filtrations, irre-
gardless of whether their symbolic algebra is a finitely generated R-algebra. The following
proposition follows from Corollary 4.10.

Proposition 1.10. (Proposition 5.5) Suppose that R is a local domain of dimension d
and I = Py N ---N P, is an intersection of prime ideals P; of R of a common height.
Suppose Rp, is a reqular local ring for 1 <i <r. LetT = {I(”)} be the symbolic filtration
of I. Then the analytic spread {(Zg) < ht(Q) for all prime ideals Q of R which contain I
and are not one of the minimal primes P; of I and {(Zp,) = ht(P;) = ht(I) for all minimal
primes P; of I.

The following theorem shows that in the case of the symbolic algebra of a height two
prime ideal in a three dimensional local ring, the analytic spread of the symbolic filtration
is bounded above by the height, which is 2, and all analytic spreads < 2 occur. Thus the
inequality of (4) for ideals is reversed! In contrast, even for non Noetherian divisorial fil-
trations of mp-valuations in an excellent local domain, the analytic spread of the filtration
must be equal to dimension R by Theorem 1.3.

Theorem 1.11. (Theorem 5.8) Suppose that R is a regular local ring of dimension 3,
and p is a height two prime ideal of R. Let T = {p(”)} be the symbolic filtration. Then
(T) <2 and all values ¢(Z) = 0,1,2 can occur.

In Section 6 we construct examples illustrating this theorem with ¢(Z) = 0 and 1. A
simple example with ¢(Z) = 2 is given in the proof of Theorem 1.11.
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We have the following ideal theoretic interpretation of analytic spread zero for a symbolic
filtration Z = {p(™} . We have (by Lemma 3.8) that

¢(Z) =0 if and only if for all n and f € p(™) there exists m > 0 such that f™ € mpp(™™).

In Theorem 5.8, we necessarily have that the symbolic algebra is not finitely generated
if /(Z) < 2 (by Proposition 3.7). A simple example of a symbolic algebra achieving the
maximum analytic spread ¢(Z) = 2 may be constructed by taking p to be a regular prime
ideal in R (p = (z,y) where z,y, z is a regular system of parameters in R). We do not
know of an example such that ¢(Z) = 2 but the symbolic algebra is not finitely generated.

If ¢(T) < 2, then by Corollary 5.2, the analytic spread £(p(™) = 3 for all n > 0 and by
Proposition 5.7, we have that ¢(Z,) = 3 for all truncations Z, of Z.

We look a little more closely at the most dramatic case of the theorem, when ¢(Z) = 0.
The analytic spread ¢(Z) being zero has the following interpretation in the geometry
of the canonical projection ¢ : Proj(R[Z]) — Spec(R). We have that o~ 1(p) = P}{(p),
where »(p) = (R/p)y, since Proj(©nxopy) is the blow up of the maximal ideal py in the
two dimensional regular local ring Ry, so that dim¢~t(p) = 1, but ¢! (mg) = 0 since
¢(Z) = 0. In particular, the theorem on upper semicontinuity of fiber dimension (2) for
ideals fails spectacularly in this non Noetherian situation.

2. NOTATION

We will denote the nonnegative integers by N and the positive integers by Z~q, the set
of nonnegative rational numbers by Q>¢ and the positive rational numbers by Q~g. We
will denote the set of nonnegative real numbers by R>g and the positive real numbers by
R<o.

A local ring is assumed to be Noetherian. The maximal ideal of a local ring R will be
denoted by mp. Excellent local rings have many excellent properties which are enumerated
in [13, Scholie IV.7.8.3]. We will make use of some of these properties without further
reference.

3. THE ANALYTIC SPREAD OF A FILTRATION

A filtration Z = {I,, } nen of ideals on a ring R is a descending chain
R=1Iy,>oL1>L>---

of ideals such that I;I; C I;y; for all 4,5 € N. A filtration Z = {I,,} of ideals on a local
ring (R, mp) is a filtration of R by mpg-primary ideals if I,, is mp-primary for n > 1. A
filtration Z = {I,, }nen of ideals on a ring R is called a Noetherian filtration if @, In is
a finitely generated R-algebra. B

If I C R is an ideal, then V(I) = {p € Spec(R) | I C p}.

For any filtration Z = {I,,} and p € Spec R, let Z, denote the filtration Z, = {I,, R, }.

Let R be alocal ring and Z = {I,,} be a filtration of R. We define the graded R-algebra
RZ] =", 50 Imt™.

For the rest of this section , suppose that R is a local ring. Let Z = {I,,} be a filtration
of ideals of R. Then, [9, Lemma 3.1],

(7) For all n > 1, V(I;) = V(I,) and dim R/, = dim R/I,.

Definition 3.1. Let R be a local ring and T = {I,} be a filtration of ideals of R. We
define the dimension of the filtration T to be s(Z) = dim R/I,, (for any n > 1), and define
the height ht(Z) of Z to be ht(Z) = ht(1y,) (for anyn > 1).
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The dimension s(Z) and height ht(Z) are well-defined by equation (7). In the case of
the trivial filtration Z = {I,,}, where I,, = R for all n, we have that s(Z) = —1.
Suppose that Z = {I,,} is a filtration of a local ring R. Then the associated graded rings

R[Z) =) I,t" and S[I] = R[Z][t""]
n>0
are subrings of the graded ring R[t,t~!]. We have a graded ring
Tr := R[Z]/mRrR[Z].

Definition 3.2. Suppose that T = {I;} is a filtration of ideals on a local ring R. Fix
a € Zso. The a-th truncated filtration Lo, = {Ion} of I is defined by

I, ifn<a
Ia,n - Z Ia,iIa,j an > a.

4,7>0

i+j=n

Let Z, be the a-th truncation of Z. Then R[Z] = Uy>oR[Z,] and S[Z] = Uy>0S5[Za).
The following remark follows from Proposition I11.3.2 and Proposition I11.3.3 on pages
158 and 159 of [1].

Remark 3.3. Suppose that T is a Noetherian filtration. There exists e > 0 such that
for all m > 1, R[Z] is a finitely generated R[Ipt"¢]-module. In particular, dim R[Z] =
dim R[I,et™c].

Lemma 3.4. Let A be an N or Z-graded ring. Suppose {As}a>1 is a collection of Noe-
therian graded rings with the same grading as A, max{dim A, : a > 1} < 00, Agn = Ay
for all n < a and for each a > 1 there is a graded ring homomorphism ¢, : Ay — A such
that po(z) = x for all homogeneous elements of A, of degree less than or equal to a. Then
dim A < max{dim A4, : a > 1}.

Proof. Let Py C P, C --- C P, be a chain of distinct prime ideals in A. There exist
fi € Pi\ Pi—q for 1 <i <7r. Let a € Z~¢ be such that fi,..., f, € A,. Then the prime
ideals in the chain of prime ideals in Aj,

0o (Po) C o, ' (P1) C -+ C o' (Pr)
are all distinct. Thus r» < dim A,. O

Lemma 3.5. For any filtration (possibly nonnoetherian) of ideals T in R, dim R[Z] <
dimR+ 1, dim 77 < dim R and dim S[Z] < dim R + 1. In particular, if R is a domain of
dimension greater than zero and Iy # 0, then dim R[Z] = dim R+ 1, dim S[Z] = dim R+1.

Proof. Let Z, denote the a-th truncated filtration of Z for all a > 1. Since Z, is Noetherian
for all a > 1, there exists d, > 0 such that R[Z,] is a finitely generated R[], 4,t%]-module
by Remark 3.3. Thus dim R[l, 4,t%] < dim R+ 1 and dim 7z, < dim R (formula (1) on
page 94 of [25], [25, Proposition 5.1.6]).

Further, by Remark 3.3, there exists d > 0 such that S[Z,] is a finitely generated
R[I,4t% t~9-module. By formula (2) on page 94 of [25], dim R[I, 4t%,t~%] < dim R + 1.
Thus dim S[Z,] < dim R + 1.

Since for all @ > 1, we have maps ¢, : R[Z,] — R[Z] defined by ¢, (xt™) = xt" for all
homogeneous x € R[Z,] of degree n € N, v, : S[Z,] — S[Z] defined by ), (xt™) = xt™ for all
homogeneous = € S[Z,] of degree n € Z, and x, : Tz, — T defined by xq(z + mrlen) =
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x + mpgl, for all homogeneous x € T7, of degree n € N, we get dim R[Z] < dim R + 1,
dim 77 < dim R and dim S[Z] < dim R + 1 by Lemma 3.4.

Suppose R is domain. Consider the ideal P = }_ -, I,t" C R[Z]. Then height P > 1.
Since R[Z]/P = R, we have P is a prime ideal in R[Z]. Therefore dim R[Z] > dim R + 1.
Since

dim S[Z] > dim S[Z],-1 = dim R[t,t "] = dim R+ 1,
we have dim S[Z] > dim R + 1. O

This allows us to define the analytic spread ¢(Z) of a filtration Z by

(8) UZ)=dimTxr.

This generalizes the classical definition of analytic spread of an ideal I, ¢(I) = dim 77
where T7 = R[It]/mprR|[It], since if 7 is the I-adic filtration Z = {I"}, then Tr = T}, so
0Z) =L(I).

From Lemma 3.5 we obtain the following lemma.

Lemma 3.6. Suppose that L is an arbitrary filtration of a local ring R. Then
((7) < dim R,
in agreement with the classical bound for ideals I, ¢(I) < dim R.
Suppose that I is an ideal in a local ring. Then we have the inequalities
(9) ht(I) < ¢(I) < dim R.

(proven for instance in [25, Corollary 8.3.9]). An ideal for which the equality ht(/) = ¢(I)
holds is called equimultiple. The inequalities (9) continue to hold for Noetherian filtrations.

Proposition 3.7. Suppose that I is a Noetherian filtration in a local ring R. Then there
exists e > 0 such that {(Iem) = U(Z) for all m > 0. In particular, ht(Z) < (Z). Further,
ht(Z) < ¢(Z) < dim R.

Proof. Let e > 0 be such that the conclusions of Remark 3.3 hold. Then
mrRIZ] N R[Ient®"] = mpR[Zemnt®"],
SO
R[Iemt™™]/mpR[Iemt“™] C R[Z]/mpR[I]
is a finite inclusion of Noetherian rings, so
dim 77, = dim R[Iept“"]/mpR[Iemt"] = dim T7.

The condition of analytic spread zero has a simple ideal theoretic interpretation.

Lemma 3.8. Suppose that T = {I,,} is a filtration in a local ring R. Then the analytic
spread £(Z) = 0 if and only if

(10) For allm > 0 and f € I,,, there exists m > 0 such that f™ € mplnn.

Proof. Let A = R[Z]. We have that ¢(Z) = 0 if and only if dim A/mgrA = 0 which holds

if and only if all minimal prime ideals of mrA are maximal ideals of A. Since mpgA is

a homogeneous ideal, all minimal prime ideals of mrA are homogeneous ([27, Lemma 3,

page 153]). The only graded maximal ideal of A is mr @ I; @ [o @ ---. Thus 4(Z) = 0

if and only if ymrA =mpr ® I & Io @ ---, which holds if and only if the condition (10)

holds. 0
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4. DIVISORIAL FILTRATIONS

Let R be a local domain of dimension d with quotient field K. Let v be a discrete
valuation of K with valuation ring O, and maximal ideal m,. Suppose that R C O,.
Then for n € N, define valuation ideals

I(v)o = {f € R|v(f) 2n} =m] N R.

A divisorial valuation of R ([25, Definition 9.3.1]) is a valuation v of K such that if O,
is the valuation ring of v with maximal ideal m,, then R C O, and if p = m, N R then
trdeg, ;) >(v) = ht(p) — 1, where s(p) is the residue field of R}, and s(v) is the residue
field of O,,. If v is a divisorial valuation of R such that mr = m, N R, then v is called an
mp-valuation.

By [25, Theorem 9.3.2], the valuation ring of every divisorial valuation v is Noetherian,
hence is a discrete valuation. Suppose that R is an excellent local domain. Then a
valuation v of the quotient field K of R which is nonnegative on R is a divisorial valuation
of R if and only if the valuation ring O, is essentially of finite type over R ([9, Lemma
6.1]).

Suppose that s € N. An s-valuation of R is a divisorial valuation of R such that
dim R/p = s where p = m,, N R.

An integral divisorial filtration of R (which we will refer to as a divisorial filtration in
this paper) is a filtration Z = {I,,} such that there exist divisorial valuations vy,..., v,
and ay,...,a, € Z>q such that for all m € N,

Im — I(Vl)m(n n---N I(VT)mar'

If 7 is a divisorial filtration, then the ideals I,, = I,,, are integrally closed for all m > 1.
In fact, the Rees algebra R[Z] =) ., Int" is integrally closed in R[t]. This is proven in
[7, Lemma 5.8]. [7, Lemma 5.8] is stated for divisorial m g-filtrations but the proof is valid
for arbitrary divisorial filtrations.

An integral s-divisorial filtration of R (which we will refer to as an s-divisorial filtration

in this paper) is a filtration Z = {I,;,} such that there exist s-valuations vy, ...,v, and
ai,...,a, € Z>o such that for all m € N,
(11) I, :I(Vl)mal m"'mI(Vr)mar-

Theorem 4.1. Suppose that R is a d-dimensional excellent local domain and T = {I,} is
a divisorial filtration of mp-primary ideals on R. Then ¢(Z) = d.

Proof. There exist mp-valuations vy, ...,y and aq,...,a; € Zsg such that Z = {I,,} where
I, =1(1)an N - N I(1)gum for n >0, with I(v;)m = {f € R | vi(f) > m}.

Let S be the normalization of R in the quotient field of R. Let my,..., m, be the
maximal ideals of S. Let J(v;)m = {f € S | vi(f) > m}. For each i, there exists o (i) with
1 < o(i) < usuch that the ideals J(v;),, are m,(;-primary for all m, and J(v;)1 = my(;).
That is, v; is an m,(;)-valuation. For n € N, let

In = J(W1)an O 0 I (W)arm

so that J, N R = 1I,.

Let m: X — Spec(S) be the blow up of an ideal K such that Ky, is a (m;)m,-primary
ideal for 1 < ¢ < u, X is normal and there exist prime divisors F; on X such that the
valuation rings O,, = Ox g, for 1 <i <t. Let A be the effective Cartier divisor on X such
that Ox(—A) = KOx, so that —A is ample on X. Write A = Y7 | b;E; where s > t,
Eq, ..., E, are prime Weil divisors with O,, = Ox g, for 1 <i <t and b; € Z~ for all 7.
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There exists a unique a € Q¢ such that ab; > a; for 1 <4 <t and further, there exists
an index 7o such that ab;, = a;,. Write a = 5 with ¢,d € Z~q. Then mcb;E; > mda; E;
for 1 <17 <t and mcb;, E;, = mda;,E;, for all m > 0. Thus

for m > 0, so that I'(X, Ox(—mcA)) C Jpq for all m € N.

Since X is normal and E;, has codimension 1 in X, there exists a closed point ¢ € Ej,
such that FEj;, is the only irreducible component of A which contains ¢ in its support
and Ox 4 and OEio,q are regular local rings. Let z; = 0 be a local equation of Ej;, at
q and extend x; to a regular system of parameters x1,z2,...,24 in Ox 4. Let P; =
(x1,22,...,2;) for 1 < j < d. Pj are regular primes in Ox 4 (that is, Ox 4/P; is a regular
local ring for all j). Thus the rule w;(g) = ordp,(g) for g € Ox, defines a discrete
valuation on the quotient field of R, which is a m;)-valuation (since Ej, is contracted
t0 My (i) For 1 < j < dlet J(wj)n = {f € S| wj(f) = n}. Then J(wj), = P/ NS for

all n > 0. We have that w; is the valuation v;,. Since z1,...,z4 is a regular system of
parameters,
(12) P" 0 P = P Pj for all m € N.

Let Z; be the closed subvariety of X such that its ideal sheaf satisfies (Zz,), = P; for
1 <j<d Then Zy = E;, Zg=q, dimZ; = d — j for all j and 7(Z )—m (i) for all]
For m >0 and 1 < j <d, we have

(Zz; ® Ox(—mcA))y = (Iz,® Ox(— meloElo))q = (Zz; ® Ox(—mda;,Ey,))q

. mda20 md “10 mdaio—l—l
= P P; =P Pj .

Observe that we have inclusions of sheaves
Tz, ® Ox(—mcA) C Lz, @ Ox(—mcA) C -+ C Iz, ® Ox(—mcA) C Ox(—mcA) C Ox.
Since —A is ample, for m > 0, Iz, ® Ox(—mcA) is generated by global sections for
1 <5 <d, so that

mda10+1

(13) ['(X,Zz7, ® Ox(—mcA))Ox, = led% aps and
(X, 0x(—mcA))Ox.q = pio,

We have inclusions
I'NX,Zz ® Ox(—mcA)) C I'(X,Zz, ® Ox(—mcA)) C
- C F(X,Izd (%9 Ox(—mCA)) C F(X, Ox(—mCA)) C Jmd-

By (13), for 1 < j < d — 1, there exists f; € ['(X,Zz, , ® Ox(—mcA)) C Jyq such that

mda;,+1 mdal +1 mdaz +1
fi € Pj+1 " but f; & P 0, so that f; € P O N I = J(wj+1)mdai0+1 N Jnd,
da;, +1 .
but f; & Pm %ot Jmd = J(Wj)mdai0+1 N Jomd and there exists fg € Jgn such that

fd ¢ J(wd)mdaloJrl N Jdm-

Let B = ©,>0Jn, which is a graded ring. Let

Cj = Om>0J (Wj+1)aigm+1 N JIm
for0<j<d-1and
Ci=myi) 1D 2B .
We will now show that the ideals C; are prime ideals in B. First observe that none of the
Cj are equal to B since C;NS = J(wj1)1 = My for 1 < j <d—1and CgNS =my
9
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Suppose 1 < j < d—1and f € J,, g € J, are such that fg € J(Wj+1)ai0(m+n)+1.
Then wji1(fg) aij,(m 4+ n) + 1. We have that J,, C J(Vio)aiom C J(Wj+1)ai0m S0
that w;y1(f) > aj,m. Similarly, wjy1(g) > ain. Thus either wjii(f) > ajym + 1 or
wjt1(g9) > ai;n + 1, so that f € J(wj+1)ai0m+1 NJyorge J(wj+1)ai0n+1 N J,. Thus the
C; are prime ideals.

We found f; € C;\ Cj_; for 1 < j <d. Thus

CocCicCycC---CCy

<
>

is a chain of distinct prime ideals in B.

There is a natural inclusion of graded rings R[Z] = ®p>0l, C B = ©p>0Jp. We will
now show that B is integral over R[Z]. For a € Zy, let R[Z], be the a-th truncation
of R[Z] and B, be the a-th truncation of B, so that R[Z], is the subalgebra of R[Z]
generated by @®,<ql, and B, is the subalgebra of B generated by ©,<.J,. It suffices to
show that homogeneous elements of B are integral over R[Z]. Suppose that f € J, for
some a. Then f € B,. Let 0 # = be in the conductor of S over R. Then zJ, C I, for
all n since I, = J, N R. Thus 2B, C R[I],, so f* € IR[T], for all i € N, and so the
algebra R[T],[f] C 1R[T],. Since 1R[Z], is a finitely generated R[Z],-module and R[Z],
is a Noetherian ring, the ring R[Z],[f] is a finitely generated R[Z],-module, so that f is
integral over R[Z],.

We have a chain of prime ideals

QoCQRQ1CQ2C--CQq

in R[Z] where Q; := C;N R[Z]. The Q; are all distinct since the C; are all distinct and B is
integral over R[Z] (by [2, Theorem A.6 (b)]). It remains to show that mrR[Z] C Qo, so that
dim R[Z]/mprR[Z] > d. Since this is the maximum possible dimension of R[Z]/mrR[Z] by
Lemma 3.5, we have that ¢(Z) = d.

We now show that mgrR[Z] C Q. First we observe that if g € mp then v;,(g) > 1
since v;, is an mp-valuation. Suppose that f € mgl,. Then f = > grfr with g, € mp
and f, € I,. Thus v (g;fj) > nai, +1 for all j so that f € I(vj)na;+1 and thus
fe I(Vio)nai0+1 N I,,. Since wy is the valuation v;,, we have mrR[Z] C Q.

O

Proposition 4.2. Let R be a local domain and T = {I,,} be a divisorial filtration in R
where I, = (Vi L(Vi)na; for all n > 1. Let mpr € Ass(R/I1). Then mp € Ass(R/I,)
for all a,n > 1 where I, = {I,,} is the a-th truncated filtration of Z. In particular,
mp € Ass(R/1,) for allm > 1.

Proof. Suppose Ass(R/I;) = {mp}. Since Min Ass(R/I1) = Min Ass(R/I, ) for all a,n >
1, we have mp € Ass(R/1,,,) for all a,n > 1.

Suppose the cardinality of Ass(R/I) is greater than one and mp € Ass(R/I;). Without
loss of generality let us assume that the centers I(v;); of v; on R are mp for 1 < i < ¢
and the centers I(v;); are not mp for i > c.

Fix a. Since mp € Ass(R/I;), there exists y € R\ I such that mgry € I;. Therefore

T
yel: m%o = mI(Vj)aj'
j>c
Thus y & N7_11(Vi)a;- Hence y™ € (Vio . 1(Vj)na; \ Nf_11(Vi)ng, for all m > 1. Therefore
y" ¢ I, for all n > 1. Since I, C I,, = I,,, we have y" ¢ I, ,, for all n > 1.
10




Let v € ml}% where b = a1 + -+ + ac. Then v;i(yv) > a; for all 1 < ¢ < ¢. Thus

yv € NS_11(v;)q,- Since y € ;- 1(V))a,, we have yv € I and hence for all n > 1,
y'my C It =171 CIopn C Iop.

Let m > 1 be an integer such that y"m’ C I, , and y"m% " € I, . Let x € miy '\ m’
such that y"z ¢ I,,. Then mgr = (Ion :r y"z). Therefore mr € Ass(R/I,,) for all
n > 1. O

Lemma 4.3. Suppose that R is a local domain and T = {I,} is a divisorial filtration on
R. Suppose that P is a prime ideal of R and there exists t € Z~g such that P € Ass(R/I}).
Then there exists ng € Zsq such that P € Ass(R/I,) for all n > ny.

Proof. Let I, = I(v1)ayn N -+ N I(Vyp)gm for n € N. By Lemma 3, page 343 of Zariski
Samuel Vol. II, for all m € Zo, the ideal I(v;),, is P-primary, where the prime ideal
P; = I(v;)1 is the center of v; on R. Let Pj, ..., Ps be the distinct centers of the v; on R
for 1 <i<r. For k with 1 <k <sandn € Zg, let

Q(k)n = ﬂ I(Vi)aina

I(l/i)lzpk
which is a Pg-primary ideal. Thus for all 1 < k < s, P, € Ass(R/I,) if and only if
In# 1 Qi)n.
1<i<s
itk

Suppose that P € Ass(R/I;). Then P = P for some k. After reindexing the v;, there
exists ¢ > 0 such that the centers I(v;); = Pif 1 <i<cand I(v;); # P if c <.

Thus there exists f € Niscd(Vi)q;e \ It- Therefore v;(f) > a;t for i > ¢ and there exists
j with 1 < j < ¢ such that vj(f) < ajt —1. Let 0 # g € I; be arbitrary. Then v;(g) > a;
for all i. Let 8 =v;(g) > a;.

Let n € N. Write n = mt + s with m € Nand 0 < s <t. v(f™g°) > na; for i > ¢ and

vi(f™g®) <mlajt — 1)+ sp = (mt + s)a; + s(8 — aj) —m =na; + s(8 — a;) — m < na;
for m > s(8 — a;). Thus for m > s(8 — a;), we have that f"¢° € Ni>cI(Vi)a;n \ In which
implies that P € Ass(R/I,). O

Suppose that R is a local domain and Z = {I,,} is a divisorial filtration of R where
I, =I(t1)an N NIV aym-
Let S = S[Z]. Let I,, = R for n < 0. Then for r € Z~o.

(14) TS = Z Ipirt™.

neEL
Lemma 4.4. Let K be an ideal in R such that Iy C K. Suppose that n € N. Then there
exists 7 € Zsqo such that (I,41)" C KIry. In particular the ideal ©p>0ln+1t" C /K R[Z].

Proof. For all v € Zso, Il = Iny1l) ] C KIo 1. Note that I C Ijq1y(—1)- Thus if

r>n+1,then I'"{ C L. O

Lemma 4.5. Let R be a local domain and I = {I,,} be a divisorial filtration of ideals in
R, where I, = I(V1)ayn N -~ NI (V) aum. For 1 <i<r, let

P = Z I(Vi)ain—s—l NI, t".
neZ
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Then P; is a prime ideal in S = S[Z]. Let

neL
Then Q; is P;-primary for 1 <i <r and

t1S=0Q:n---NQ,.

Proof. Observe that if n < 0, then the valuation ideal I(v;), = R, and so I, = R for
n < 0. Since P; is a graded R-module, to show that it is an ideal in .S, it suffices to show
that if f € I(vi)aa+1 N Lo and g € I then fg € 1(Vi)q,(atb)+1 N Lats- This follows since
vi(fg) = vi(f)+vi(g) = (@ia+1)+ab > ai(a+b)+1so fg € I(Vi)g,(atp)+1- i # R since
RNP; = I(v;)1 (which is a prime ideal). Since P; is graded, to show that P, is a prime ideal,
it suffices to show that if f € I, and g € I, are such that fg € I(vi)a,(a+b)+1 N Lats, then
either f € I(Vj)a;a+1 N1 O g € I(V)g;p+1 N Ip. This follows since v;(f) > a;a, vi(g) > a;b
and v;(fg) = vi(f) + vi(g) > ai(a+b) + 1 so either v;(f) > a;a+ 1 or v;(g) > a;b+ 1.

We now show that ); is a primary ideal. It suffices to show that if f € I, g € I,
f9 € 1(Vi)a;atb1) N Lavp and f & I(Vi)a,(a+1) N Lo, then there exists an m > 0 such
that g™ € I(Vi)a;(mbt1) N Imp- With these assumptions we have that v;(f) < a;(a + 1)
and v;(fg) > ai(a + b+ 1) so that v;(g) > a;b, and thus v;(g) = a;b + ¢ for some ¢ > 0.
There exists m > 0 such that me > a;. Thus v;(¢™) = ma;b + me > a;(mb + 1) so that
gm e I(Vi)ai(mb-‘rl) N Ipp-

We now show that /Q; = P;. Q; C P; since a;(n+1) > a;n+1 for all i and n > 0. We
then have that /Q; = P; since f € I(¥i)a;n1 N I, implies f™ € I()q,(mnt1) N Imn for
m > a;.

By (14), t’lS:Z%ZInHt” =@Q1N---NQ,. O

Remark 4.6. With slight modification, Lemma 4.3, Lemma 4.5 and Theorem 4.6 are true
for R divisorial filtrations.

Theorem 4.7. Suppose that R is a local domain and T = {I,,} is a divisorial filtration on
R. Let I, = I(v1)ayn N+ - NI (V) g for n > 1, some valuations v; and some ay,...,a, €
Zsq. Suppose that ¢(Z) = dim R. Then for some v;, the center m,, "R = {f € R |
vi(f) > g} 1s mr. There exists a positive integer ng such that mpg is an associated prime
of I, = I, for all n > ng.
Proof. Let S = S[Z] and let notation be as in Lemma 4.5. Let J be the graded ideal
(15) J =) It" C RI].

n>0
By assumption, there exists a prime ideal U of Tr such that dim 77 /U = dim R. We have

isomorphisms of graded R-algebras

A= S/(t7'S +mpS) 2> In/(Int1 + mply)t" = R[Z]/(J + mpRIT)).
n>0

By Lemma 4.4, the nilradical of R[Z]/(J + mrR[Z]) is /mgrR[Z]/(J + mrR[Z]). Thus
the quotient of T7 by its nilradical is isomorphic as a graded R-algebra to the quotient of
A by its nilradical, and so there exists a prime ideal U’ of A such that dim A/U’ = dim R.
Let U be the preimage of U’ in S. We have that t='S + mgrS C U and t~! # 0 in the
domain S so that ht(U) > 1. Since dim S/U = dim R, we have that

1+ dim R < dim S/U + ht(U) < dim § < dim R + 1
12



by Lemma 3.5 so dim S = dim R + 1 and ht(U) = 1. We further have that U N R = mg,
since mpS C U. Now Vt=1S =nNI_, P, C U so that P; C U for some i. Thus P; = U since
ht(U) =1, and so mg = P,N R = I(v;)1 = my, N R is the center of v; on R.

We will now show that mp is an associated prime of some I,. Suppose that mpg is
not an associated prime of any I,,. We will derive a contradiction. After reindexing, we
may suppose that, for some s, v; is an mp-valuation for ¢ < s and v; is not an mg-
valuation for ¢ > s. Since mp is not an associated prime of I, for all n, we thus have that
Iy = I(Vs41)agiin N -~ NI (Vr)q,n for all n. Since none of vs11,..., v, is an mg-valuation,
we have that ¢(Z) < dim R by the first part of this proof, a contradiction. Thus there
is some positive integer ng such that mpg is an associated prime of I,,,. Thus mp is an
associated prime of I, for all n > 0 by Lemma 4.3.

d

Remark 4.8. Theorem 4.7 shows that if ¢(Z) = dim R then one of the prime ideals P; of
Lemma 4.5 is a height one prime ideal in S[Z] such that P, R = mpg.

Remark 4.9. The proofs of Lemma 4.5 and 4.7 prove the following more general state-
ment. Let R be a local ring and J(i) = {J(i)n}tnen be filtrations of ideals in R with
J(i)1 € R for all 1 < i < 7. Suppose ()51 J(1)n = 0 and G; = @,,~0 J(0)n/J (1) nt1 are
domains for all 1 <i <. B -

Consider the filtration J = {J, = J(D)ayn N+ O J(r)a.n} for some fized ai,... ,a, €
Zso. For 1 <i <, let Pp =73 7 J(@)ans1 N Jnt". Then P; is a prime ideal in S| J].
Let Qi = Y e J()a;me1) N Int". Then Q; is Pi-primary for 1 <i <, and

ST =Qin---NQ,.

Suppose that £(J) = dim R. Then there exists a prime ideal P; = 3 7 J(i)amns1 N Jnt"
in S[J] for some i € {1,...,r} such that height P, =1 and P, N R = mpg.

Corollary 4.10. Suppose that R is a local domain and Z = {I,,} is an s-divisorial filtration
on R. Then {(Zg) < dim(Rq) for all prime ideals Q of R which are not minimal primes
Of Il .

Corollary 4.11. Suppose that R is a local domain and T is an s-divisorial filtration on
R with s > 1. Then ¢(Z) < dim R.

Corollary 4.12. Let R be a local domain and T = {I,} be a divisorial filtration in R
where I, = (\i_; I(Vi)na, for all n > 1. Suppose mpr € Ass(R/I1). Then {(Z,) = dim R
for all a-th truncated filtration of T and hence (I) < {(Z,) for all a > 1.

Proof. By Proposition 4.2, mgr € Ass(R/I,,) for all n,a > 1. Since Z, is a Noetherian
filtration, there exists an integer m such that ¢(Z,) = ¢(I,,). Therefore by [19] ,[25,
Theorem 5.4.6], Theorem 1.1, we have ¢(Z,) = dim R. O

Corollary 4.13. Let R be a local domain and I = {I,} be a divisorial filtration in R
where I, = (Vi1 I(Vi)na; for all n > 1. Suppose Iy = N/_1(v;)a, is a minimal primary
decomposition of I and {(Z,) < dim R for some a > 1 where I, is the a-th truncated
filtration of . Then ¢(T) < dim R.

Proof. If £(Z) = dim R then by Theorem 4.7, m,, N R = mp for some i. Thus mp €
Ass(R/Ih). Therefore by Corollary 4.12, we get £(Z,) = dim R which is a contradiction. [

Let R be a local ring and I an ideal in R. In [3] Brodmann proved that ¢(Z) <
dim R — liminf,, depth R/I"™ where Z = {I™}. If R has infinite residue field then Burch
13



improved the result of Brodmann for the filtration Z = {I"} and proved that /(Z) <
dim R — liminf,, depth R/T™ [5]. This result was generalized to the filtration Z = {1} if
the Symbolic Rees algebra of I is finitely generated [4]. We generalize Burch’s result for
divisorial filtrations under some extra conditions.

Corollary 4.14. (Burch’s inequality for divisorial filtration) Suppose R is a local domain
and T = {I,,} is a divisorial filtration in R. Suppose one of the following holds.

(1) mp € Ass(R/1;) for somet > 1.

(ii) The filtration T is an 1-divisorial filtration.

Then ¢(Z) < dim R — liminf,, depth R/I,,.

Proof. (i) By Lemma 4.3, there exists a positive integer ng such that mg € Ass(R/I,,) for
all n > ng. Thus liminf,, depth R/I,, = 0. Now by Lemma 3.5, ¢(Z) < dim R.

(79) If dim R < 1 then [, = 0 for alln > 1 and hence 0 = ¢(Z) < dim R—liminf,, depth R/I,.
Suppose dim R > 2. Then by Corollary 4.11, we have ¢(Z) < dim R — 1. Since 7 is a 1-
divisorial filtration, we have depth R/I,, > 1 and dim R/I, = 1 for all n > 1. Thus
depth R/I,, =1 for all n > 1. Therefore ¢(Z) < dim R — liminf,, depth R/I,. O

5. SYMBOLIC ALGEBRAS

Suppose that I C J are proper ideals in a local ring R. Define S;(I) = ®p>ol* : J>®
where 1% : J® = uUX I¥ 5 J&

Theorem 5.1. ([8, Theorem 2.6]) Let (R, m) be an excellent domain, and let I and J be
proper ideals of R. Then the following conditions are equivalent:

(a) Sy(I) is finitely generated.

(b) There exists an integer r > 0 such that £((I" : J®)p) < dim Rp for all P € V(J).

A related result was proven by Katz and Ratliff in Theorem A and Corollary 1 of [14].
Let I be an ideal in a local ring R. For n € Zg, the n-the symbolic power I of T is

1™ =N Ass(ryn(I" Ry N R).

Let J be the intersection of all asymptotic prime divisors of I which are not minimal
primes. Then 1™ = I : J* and the symbolic algebra ®,>0l™ = S;(I).

Corollary 5.2. Suppose that R is an excellent local domain of dimension d and I =
PiN---N P, is an intersection of prime ideals P; of R of a common height. Then the ring
®n20 I™M s a finitely generated R-algebra if and only if there exists n € Zq such that

the analytic spread E(I(E?n)) < ht(Q) for all prime ideals Q@ of R which contain I and are
not one of the minimal primes P; of I.

With our assumption that R is a local ring of dimension d and I = Py N ---N P, is an
intersection of prime ideals P; of R of a common height in Corollary 5.2, we have that

K(I](;Z ) = ht(P;) = ht(I) for the minimal primes P; of I.

Corollary 5.3. Suppose that R is an excellent local domain of dimension d and I =
PiN---N P, is an intersection of prime ideals P; of R of a common height. If I
1s equimultiple for some n then the symbolic algebra EBnZOI(”) is a finitely generated R-
algebra.
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Proof. If I™ is equimultiple, then by (5), £(I, g)) = ht([c(gn)) for all prime ideals () contain-
ing I, so that if () is not a minimal prime of I, we have that E(Igl)) = ht(Ig) < dim Ry,
and so I(™ satisfies the criterion of Corollary 5.2. O

However, there exist ideals I such that the symbolic algebra @®,>0f (") is a finitely
generated R-algebra but no symbolic power I(™ is equimultiple, as is shown in the following
example.

Example 5.4. ([9, Example 8.4]) There exists a height one prime ideal P in a normal,
excellent 8 dimensional local ring R such that no symbolic power of P is equimultiple but
the symbolic algebra EBnZOP(”) s a finitely generated R-algebra.

In contrast to the conclusions of Corollary 5.2, we have that inequality of analytic spread
and height ¢(Zg) < ht(Q) holds at all non minimal primes for symbolic filtrations, irre-
gardless of whether their symbolic algebra is a finitely generated R-algebra. The following
proposition follows from Corollary 4.10.

Proposition 5.5. Suppose that R is a local domain of dimension d and I = Py N---N P,
is an intersection of prime ideals P; of R of a common positive height. Suppose Rp, is a
reqular local Ting for 1 < i <7r. Let T = {I(”)} be the symbolic filtration of I. Then the
analytic spread £(Zg) < ht(Q) for all prime ideals Q of R which contain I and are not one
of the minimal primes P; of I and ¢(Zp,) = ht(P;) = ht(I) for all minimal primes P; of I.

Proposition 5.6. Let R be a local domain of positive dimension. Let p be a prime ideal
in R such that ht(p) = dim R — 1 (so that dim R/p = 1). Let d € Zwq. If the p'D-adic
filtration {(p\D)"}pen is a 1-divisorial filtration then pD is equimultiple.

Proof. We have that
dim R — 1 = ht(p?) < £(p¥) < dim R
and £(p?) # dim R by [19] or [25, Theorem 5.4.6] (or by Theorem 4.7 above). O

Proposition 5.7. Let R be a normal, excellent local domain of dimension three with
an isolated singularity and I be an intersection of (a finite number of) height two prime
ideals of R. Let T = {I(m)} be the filtration of symbolic powers of I, so that T is a 1-
divisorial filtration of R. Then T is not Noetherian if and only if the a-th truncation Z,
of T (Definition 3.2) satisfies

UZ,) =3 for all a € Zy.

Proof. We have that ¢(Z) < 2 by Corollary 4.11. If Z is a Noetherian filtration, then
R[Z,] = R[Z] for all a sufficiently large, so that, by Proposition 3.7, 2 = ht(I) < ¢(Z,) =
7)) <2.

Suppose that Z is not Noetherian. We will show that ¢(Z,) = 3 for all a > 0. We will
prove this statement, by assuming that ¢(Z,) = 2 for some a, and deriving a contradiction.
Write I = py N --- N p, where p1,...,p, are height two prime ideals in R. Let v; be
the p;p,,-adic valuation of Ry,. Then I(v;), = pz(.n) for 1 < i < rand all n € N, and
I™ = I(v)),N---NI(1,), for all n € N.

Let Z, = {I, .}, the filtration of integral closures of the ideals in Z,. Then R[Z,] is
finite over R[Z,]. There exists d > 0 such that I, ,q = (I.4)" for all n > 0, ((Z,) = €(14.4)
and ¢(Z,) = £(I,4) by Remark 3.3 and Proposition 3.7. Thus £(1, 4) = 2.

15




Let 7 : X = Proj(R[I,,4)) — Spec(R) be the blow up of I, 4. X is normal since the ring
RlIyd) = >,50 la.ant™ is integrally closed. Since ¢(I,4) = 2, dim7 '(mg) = 1 and so
there are no prime divisors on X which contract to mg. Thus m(’) x = Ox(—dE) where
E = FE| +---+ E, is the sum of prime divisors E; on X such that the valuation vg, = v;.
Since X and R are normal, we have that

1 Ox(—nE) = I(w)n N N I () =p™ A0 p) = 1)

for all n € N.
There exists a graded exact sequence

0 — K — Rlxo,...,Tm| = R[Zsq4] =0,

which gives a closed embedding of X into P%, such that Opr (1) ® Ox = Ox(—dE).
Sheafify this sequence to get short exact sequences

0 — K(n) = Opp(n) = Ox(—ndE) — 0
and take global sections to get an exact sequence of R-algebras (by [16, Proposition I1.5.13])

R[:Co, ce .%'m] = @nonO(Pan, O]Pwéz (n)) — Z 1) — @nonl (]Pﬂ]g, lC(n))
n>0
We have that &,,>0H* (P, K(n)) is a finitely generated R-module by [16, Theorem II1.5.2(b)].
Thus A := ©p>o0l (nd) i3 a finitely generated R-algebra.
Since Ox(—dE) is an invertible sheaf, for i,n € Z, the reflexive rank 1 sheaf of the
Weil divisor —(i + nd)E is Ox(—(i+nd)E) = Ox(—iE) @ Ox(—ndE). By [16, Corollary
I1.5.18], for i > 0, there is a short exact sequence of coherent Ox-modules

S
(16) 0— L— Y Ox(-n;dE) — Ox(—iE) — 0.
j=1
with n; € Z. After possibly replacing ¢ with a smaller integer which is equivalent to i
modulo d, we may assume that all n; are positive. Now for all j, J; := @p>0 m(Ox (—(n;+
n)dE)) is a graded ideal in A, so it is a finitely generated A-module. From (16) we obtain
a short exact sequence of A-modules

S o gp =y 1D
7j=1 n>0
where M =3 -, HY(X,L® Ox(—ndE)) is a finitely generated R-module (again by [16,

Theorem IT1.5.2(b)]). Thus 3", <, I is a finitely generated A-module, and so @y,>0I™
is a finitely generated R-algebra, in contradiction to our assumption. 0

We have the following theorem, that uses examples which will be constructed in Section
6.

Theorem 5.8. Suppose that R is a reqular local ring of dimension 3, and p is a height
two prime ideal of R. Let T = {p(")} be the symbolic filtration of p. Then £(Z) < 2 and
all values ¢(T) = 0,1,2 can occur.

Proof. The bound ¢(Z) < 2 follows from Corollary 4.11. Examples 6.1 and 6.6 have

analytic spread 0 and 1 respectively. A prime ideal p = (z,y) where x,y are part of a

regular system of parameters in R gives an example with analytic spread 2. U
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We have (by Lemma 3.8) the following ideal theoretic interpretation of analytic spread
zero for a symbolic filtration Z = {p(™}. We have that

¢(T) = 0 if and only if for all n and f € p(™, there exists m > 0 such that f™ € mpp(™™).

In Theorem 5.8, we necessarily have that the symbolic algebra is not finitely generated
if /(Z) < 2 (by Proposition 3.7). A simple example of a symbolic algebra achieving the
maximum analytic spread ¢(Z) = 2 may be constructed by taking p to be a regular prime
ideal in R (p = (z,y) where z,y, z is a regular system of parameters in R). We do not
know of an example such that ¢(Z) = 2 but the symbolic algebra is not finitely generated.

We look a little more closely at the most dramatic case of the theorem, when ¢(Z) = 0.
By Proposition 5.7, we have that ¢(Z,) = 3 for all truncations Z;, of Z. The analytic
spread ¢(Z) being zero has the following interpretation in the geometry of the canonical
projection ¢ : Proj(R[Z]) — Spec(R). We have that o ~1(p) = ]P’}{(p), where s(p) = (R/p)y,
since Proj(®y,>0py) is the blow up of the maximal ideal py in the two dimensional regular
local ring Ry, so that dim¢~'(p) = 1, but ¢~ (mpg) = 0 since {(Z) = 0. In particular,
the theorem on upper semicontinuity of fiber dimension (2) for ideals fails in this non
Noetherian situation.

Theorem 5.8 shows that the inequality (4) for ideals fails for symbolic filtrations, as we
see by taking p in Theorem 5.8 such that ¢(Z) < 2, so that 2 = ht(Z) > ¢(Z).

6. SOME EXAMPLES OF SYMBOLIC ALGEBRAS

In this section we use famous examples by Nagata and Zariski to compute the analytic
spread of some space curve singularities and some related examples.

Example 6.1. Suppose that a > 0. Then there exists a prime ideal Q) of height 2 4+ a in
a regular local ring A of dimension 3 + a such that {(J) = a, where J = {QM} is the
1-divisorial filtration on A of symbolic powers of Q.

We make use of a famous example of Nagata. Let s be a positive integer with s > 4,
and r = s2. Let aq,...,a, € IP’(% be independent generic points of P2 over Q.

Let Z,, be the ideal sheaf of o; in P? and let H' be a linear hyperplane section of P2.

The difficult statement of Theorem 6.2 is proven by Nagata in [21] and in Proposition
1 of Chapter 3, page 18 of [22].

Theorem 6.2. (Nagata) Let notation be as above.
1) Suppose that d,my, ..., m, € N and H°(P?, Op2(dH') QI @- - -®@L) # 0. Then

2) Suppose that 1" is a real number such that v’ > \/r. Then there exist d,m € Zg
such that v’ > L > \/r and HO(P?, Op2(dH') @ II' ® -+~ @ I ) # 0.

Let A : X — P? be the blow up of the points a1, . . ., a, with exceptional lines F, ..., E,.

Let H = A*(H’). Since A is the blowup of the points a1, ..., @, on the nonsingular surface
P?, we have that for all d,m1,...,m, >0,
HY(X,0x(dH —miEy — -+ —m, E,)) = H'(P?, Op2(dH')  ITI" @ - -- @ T1™™).

Let E = Fi+ ---+ E,. The canonical divisor Kx on X is Kx = —3H + F.

Lemma 6.3. Let notation be as above.
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1) Let C be an irreducible reduced curve on X with C # E; for any i. Then C ~
dH — > m;E; for some d,m; € N with d > 0.

2) Let dH — mE be a divisor with d > —2. Then H*(X,Ox(dH — mE)) = 0.

3) Let L = dH — mE with d,m € Z~o. Then L is ample if % > /T

4) Let L = dH — mE with d;m € Z~g. Then H'(X,Ox(dH — mE)) = 0 if d >
Vrm 4+ (y/r —3).

5) Suppose that d,m > 0. Then

HY(X,0x(dH —mE)) = H(X,0x(H))H*(X,Ox((d — 1)H — mE))

if d > /rm+/r.

Proof. 1). C ~ dH — > m;E; for some d,m; € Z. We have (H - C) = d > 0 since the
complete linear system |H| is base point free. Further, (E;-C) =m; > 0for 1 <i <r.
There exists e > 0 such that eH — F is ample. If d = 0, so that C' ~ ) —m,; E; with some
m; > 0, then ((eH — E) - C) = —>_m; <0, which is impossible.

2). By Serre duality

H*(X,0x(dH-mE)) = H(X,Ox(mE—-dH+Kx) = H (X, Ox(—(d+3)H+(m+1)E)).
The complete linear system |H| is base point free on X and
(H-(mE—dH+Kx))=—(d+3) <0 for d > —2,

so H(X,Ox(mE — dH + Kx) = 0.

3). Suppose that C'is an irreducible reduced curve on X. Then by 1) and Theorem 6.2,
C' is linear equivalent to eH — > n;E; with e,n1,...,n, € N and e > # > iy ni. Hence
(C-L)y=de—mY_ n; >0. Further (L?) = d?> — m?r > 0, so L is ample by the Nakai
Moishezon criterion ([16, Theorem V.1.10]).

4). The divisor (dH — mFE) — Kx is ample if d > \/rm + (y/r — 3) by 3). Thus, by the
Kodaira vanishing theorem ([16, Remark II1.7.15]),

HY(X,0x(dH —mE)) = HY(X,0x((dH —mF — Kx) + Kx)) =0
if d > /rm+ (/1 —3).
5). The statements 2) and 4) imply that Ox(—mFE) is d-regular if d > \/rm+ (/1 —2);

that is, H'(X,Ox(—-mE) ® Ox((d —i)H)) = 0 for i = 1,2. Thus the conclusions of 5)
hold by page 99 [20] (also proven in [6, Theorem 17.35]). O

Let S = Clx1, 22, 23] be the homogeneous coordinate ring of P? and m be the graded
maximal ideal of S. Let P; be the height two prime ideal in S of the point o; for 1 <1 < r.
Then

S = @40 H(P?, Op2(dH")) = ©as0 H (X, Ox (dH))
and
m = ©g=oH"(P?, Op2(dH')) = ©a0H (X, Ox (dH)).
For d,ni,...,n, € N,
HO(P?, Op2(dH') @ IM @ - -+ @ I77)
= {F € S | F is homogeneous of degree d and F € P"" N---N P}

and
PN NP = @y HOP? Ope(dH) @ It @ - @ Iy
= Do H(X, Ox(dH —mE1 — -+ —n, By).
18



In particular,
Prn---n P =P H(X,0x(dH - nE)).
d>0
Recall that s = \/r € Z (with s > 4).

Proposition 6.4. Given n € Z~q,

(Prn---NPH Ccm(P"N---NPT).
Proof. Since S is graded and Noetherian, it suffices to show that if 0 # f € H°(X, Ox(dH—
nE)), then ¥ € HY(X,Ox(H))H’(X,Ox(sd—1)H —snE). We have that d > sn by The-
orem 6.2. The statement then follows from 5) of Lemma 6.3, since f* € HY(X, Ox (sdH —
snE)) and sd > s(ns + 1) = s(sn) + s. O

Let R = Sn, a three dimensional regular local ring, with maximal ideal mr = mSy,.
Let p; = (P;)m for 1 <14 < r. The ideals p; are height two prime ideals in R. Let Z = {[,,}
where I, = p7' N ---Np;. The filtration Z is the 1-divisorial filtration on R, consisting of
the symbolic powers I,, = I(™ of I = I;. Thus ht(Z) = ht(I) = 2.

By Proposition 6.4, we have that for all n > 0,

(17) (I™) = (7 01 ) C g (B 0+ A p3T) = mpT Y.

We will first construct the example when a = 0. In [24], a height two prime ideal p in
R = Clr1, 2, ¥3](2, 15,25) and a continuous C-algebra isomorphism ¢ : R — R such that
e(I™M) = p(™) for all n > 0 are constructed, where I is the ideal defined before (17). Let
s = \/T € Z=q be the integer defined before Theorem 6.2. By (17), (I1™)* ¢ mpI™®) for
all n.> 0. Thus (I(")* € mzI("*), so applying ¢, we obtain

— —

(b)) = (p0)* C mgp(n) = mp(rs).
Since R — R is faithfully flat, we obtain that for all n > 0, we have that
(18) (b)) < maptem.

Let v be the py-adic valuation of Ry, which is the discrete valuation of K := C(z1, z2, x3)
such that the valuation ideals of v in R are I(v),, = p™ for all n > 0.

Let A = Clx1,%2, 73,1, - -, Yal (21,59,23,51,....ya)» the Polynomial ring over C in the vari-
ables x1,x2, 23,91, ...,Ya, and Q@ = pA+ (y1,...,Ya), a prime ideal of height 2 + a in A.
Let w be the Gauss valuation of L := C(z1, 22,23, Y1,- - -, Ya), defined by

w(f) = min{v(bi,,..i,) + i1+ +ia}

if f =S biy. iyt --yle € Klyi, ..., ya) with b, ;. € K for all iy, ..., i, The valuation
w is a discrete valuation of L which dominates Ag. Since
AQ = (RP [yla cee ’y“DQRp[yL--.,ya} 5

we have that w is the @-adic valuation of Ag. Thus the valuation ideals of w in A are
I(w), = Q™ for n > 0. Let J = {Q™}. The filtration 7 is a 1-divisorial filtration on A.

Proposition 6.5. Let N = \/maA[J]| be the radical of maA[J] in A[TJ]. Let yy,...7,
be the respective classes of yit,...,yqt in A[J|/N. Then
A[j]/N = C[@l? tee 7@0,]

s a standard graded polynomial ring in the variables yq,...,y, over C.
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Proof. For n > 0,

QM =TI = W1, ,9a)" + W1, %)™ 0+ (W1, va)" 2P -+ pMA

We first show that A[J]/N is generated by ¥,,...,y, as a C-algebra. Since N is graded,
it suffices to show that if f € p(® with d > 0 and ylf -yl is such that iq,...,i, € N and
i1 4 +ig =n —d, then (yi ---ya)*f* € maQE™. Since (iy 4 --- +iq)s = (n — d)s, it
suffices to show that f* € mpp?, which follows from (18).

We now show that the standard graded C-algebra Clyy,...,7,] is a polynomial ring
over C. Suppose otherwise. We will find a contradiction. Then for some n > 0, there is a

relation
Z Ailv“,iayil o y’lbll =
114+ig=n
for some A;; . ;, € C not all zero. Let G = Zi1+~~~+ia:n )\ih_,_,iayil R = Q™. Since
G € N, there exists m > 0 such that G™ € maQ™. Now G™ has m4-order mn, and

every element of m 4Q(™) has m4-order > mn + 1. Thus G = 0, a contradiction to the
assumption that some A;; ;. # 0. O

Example 6.1 thus has analytic spread ¢(J) = a.

Example 6.6. There exists a prime ideal p of height 2 in a reqular local ring R of dimen-
sion 3 such that {(J) = 1, where J = {p™} is the 1-divisorial filtration on R of symbolic
powers of p.

We make use of a famous example of Zariski [26], expositions of which can be found
in [18, Section 2.3] and [6, Theorem 20.14]. Let a,...,a12 € P% be independent generic
points of an elliptic curve E’ of P2 over Q. The curve E’ is defined by the vanishing of an
irreducible cubic form G € Cxy, 2, x3].

Let Z,, be the ideal sheaf of o; in P? and let H' be a linear hyperplane section of P2

Let A : X — P2 be the blow up of the points ai,..., a2 with exceptional lines
Fi,...,Fi2. Let H = A*(H'). Since A is the blowup of the points aq,...,a12 on the
nonsingular surface P2, we have that for all d,m1,...,m, >0,

HO(X, Ox(dH - m1F1 — mlgFm)) = HO(]P’Z,O]}M(OZHI) ®IO7711 & - ®qu7:).

Let FF = F; + --- 4+ Fio. The canonical divisor Kx on X is Kx = —3H + F. Let E be
the strict transform of E' on X. We have that A*(E’') = E + F, where F is an elliptic
curve on X which is isomorphic to E’, (F- E) = -3 and Ox(H + FE) ® Op is a degree 0
invertible sheaf on X of infinite order, so that

(19) H°(E,Ox(m(H + F)) ® Og) = 0 for all nonzero integers m.
Further, (F - F) = —12.

Lemma 6.7. Let notation be as above.

1) Let C be an irreducible reduced curve on X with C # F; for any i. Then C ~
dH — > m;F; for some d,m; € N with d > 0.

2) Let dH — mF be a divisor with d > —2. Then H*(X,Ox(dH — mF)) = 0.

3) Let L =dH — mF with m € Z~o and d > 4m. Then L is ample.

4) Let 0 € H(X,0x(3H — F)) be the section whose divisor is E. Then

Ox(3H — F) = 0Oy
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and H*(X,Ox(3H — F)) = oC. Further,
H(X,0x(3mH —mF)) = H*(X,Ox(3H — F))™

for allm € Z-y.
5) Suppose that d >0, m > 0 and d < 3m. then H°(X,Ox(dH — mF)) = 0.
6) Let L = dH—mF withd,m € Z~g. Then H'(X,Ox(dH—mF)) =0 ifd > 4m+1.
7) Suppose that d,m > 0. Then

HY(X,0x(dH — mF)) = H(X,0x(H))H"(X,Ox((d — 1)H — mF))
if d > 4m + 4.

Proof. The proofs of 1) and 2) are the same as the proofs of 1) and 2) of Lemma 6.3.

3). Suppose C is an integral curve on X other than F; or E. Then (C' - E) > 0 and
(C-H) = (C-A*(H")) = (A(C)-H') > 0so (C-L) > 0, since L ~ mE+(d—3m)H. Further,
(L-E)=3d—12m >0 and (L - F;) =m > 0 for 1 <i < 12, so every irreducible curve of
X has positive intersection number with L. Finally, (L- L) = d?> —12m? > 4m? > 0, so L
is ample by the Nakai Moishezon criterion.

4). We have that mE ~ 3mH —mF. Suppose that D is an effective divisor on X which
is linearly equivalent to 3mH — mF. Then (FE - (3mH —mF)) = (E-mE) = —-3m <0 so
FE is in the support of D, so D — FE is effective. By induction on m, we obtain D = mFE.

5). Suppose there exists an effective divisor D such that D ~ dH — mF. We compute

(D-E)= ((dH —mF)-(3H — F)) = 3d — 12m < —3m.

Thus E is in the support of D, so D — E ~ (d — 3)H — (m — 1)F is effective, with
d—3 < 3(m—1). Continuing in this way, we obtain that (d —3m)H — 2mF is an effective
divisor, which is a contradiction to 1).
The proof of 6) is as the proof of 4) of Lemma 6.3, using 3) of this lemma.
The proof of 7) is as the proof of 5) of Lemma 6.3, using 6) and 2) of this lemma.
g

Lemma 6.8. Suppose that 0 < 3m < d < 4m. Then
1) HY(X,0x(dH — mF)) > 0.
2) H'(X,Ox(dH — mF)) = H*(X,Ox(3H — F))H*(X,Ox((d — 3)H — (m — 1)F)
where d —3 > 3(m —1).
3) H'(X,0x(dH — mF)) = H°(X,0x(3H — F))"HY(X,Ox(d'H — m'F)) where
r=4m—d+1,d =d—3r, m' =m —r satisfy d > 4m/.

Proof. 1). We have that dH —mF = m(3H — F)+ (d—3m)H ~ mE + (d — 3m)H, which
is a nonzero effective divisor.
2). Recall that o is a section of Ox(3H — F') whose divisor is E. Tensor

O%OX(—(BH—F)) i)(9)( —)OE—>O
with Ox(dH — mF) to get the exact sequence

0— H'(X,0x((d-3)H—(m—1)F)) % HY(X,Ox(dH—mF)) = H*(E, Ox(dH-mF)20g).

The rightmost vector space is zero since ((dH — mF') - E) = 3d — 12m < 0, and by (19).
3). For t € Q, we have that (d — 3t)H — (m — t)F satisfies d — 3t < 4(m —t) if and only
if t <4m — d. Now 3) follows from 1) and 2) of this lemma.
U
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Let S = Cl[xy, z2, 23] be the homogeneous coordinate ring of P? and m be the graded
maximal ideal of S. Let P; be the height two prime ideal in S of the point «; for 1 < ¢ < 12.
Then

S = @40 H"(P?, Op2(dH'")) = B0 H (X, Ox (dH)),
m = ®gsoH(P?, Op2(dH")) = ®g=0H (X, Ox (dH))
and for nq,...,n13 >0,

Plnl N---N P1n212 — ®d>0 HO(PQ, O]pz(dHl) ®Igll Q.- ®In12)

12

= ®d>0 HO(X’ OX(dH —n - = n12F12).
In particular,
PO -0 Py =D HY(X, Ox(dH — nF)).

d>0

By 5) of Lemma 6.7,

(20) Prn---nPh =@ H(X,0x(dH — nF)).
d>3n

The irreducible cubic form G defining £’ is in H*(X,Ox(3H — F)) and
(X, 0x(3nH —nF)) =1forn>0

by 4) of Lemma 6.7, so

(21) H(X,0x(n(3H — F)) = G"C for n > 0.

Proposition 6.9. Given n € Zsq, and h € H°(X,Ox(dH — nF)) with d > 3n, there
exists s € Z~q such that

hem(P"nNn---NPY).
Proof. First suppose that d > 4n. Then 4d > 4(4n) + 4 implies
HY(X,0x(4dH — 4nF)) = HY(X,Ox(H))H°(X,O0x(4d — 1)H — 4nF))

by 7) of Lemma 6.7. Thus h* € m (P N --- N PY).
Now suppose that 3n < d < 4n. Then by 3) of Lemma 6.8,

HY(X,0x(dH —nF)) = H(3H — F))"H*(X,Ox(d'H — m'F))
for suitable r,d’,m’ where d’ > 4m’ and n = m’ + r. By the first part of this proof,

ht € HYX,0x(H))H°(X,0x(3H — F))*H(X,0x((4d' — 1)H — 4m'F))
C m(Pf"n---nP.

O

Let R = Sn, a three dimensional regular local ring, with maximal ideal mp = mSy,. Let
pi = (P;)m for 1 < i < 12. The ideals p; are height two prime ideals in R. Let Z = {[,,}
where I, = p' N --- N pYy. The filtration 7 is the 1-divisorial filtration on R consisting of
the symbolic powers I,, = I(™ of I = I;. Thus ht(Z) = ht(I) = 2.

Proposition 6.10. Let N = \/mgrR[Z] be the radical of mpR[Z] in R[Z|. Then
R[Z]/N = C[Gt]

1$ a standard graded polynomial Ting.
22



Proof.

Sopta-nple )/ o [ S - npiye | = clat.

n>0 n>0
by (20), (21) and Proposition 6.9. O

By the method of [24], we construct a height two prime ideal p in R = C[z1, z2, x3]

(z1,x2,23)
and a contlnuous C-algebra isomorphism ¢ : R — R such that ¢(mp) = mpr and
ol (")) = p( n) for all n > 0, where I is the ideal defined before Proposition 6.10. We
have that (™ = p(®) and I = [ for all n, as explained in the proof of [24, Proposition
1].
Since the Rees algebras of all truncations of {p(™} are excellent, we have that

RyfmpRlpt,p @22, ... p@1e] = \[ig Rt 5O, ... p@rte]

for all a € Z~( and so

RyfmpR{pY) = /mp R Y.
We thus have that

/\

/v maR[{p™] ( {p™ 1/ v/meREp™ ) @ B = RI{p0Y]/\/inRl{p00)}]
NR[{I(”)}]/ mpR{ZM |2 (R[Z]//mrRI]) @5 R = RIZ)//mpRT

by Proposition 6.10. Thus J = {p(™} fulfills the conditions of the example.
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