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ABSTRACT. In this paper we prove that a classical theorem by McAdam about the
analytic spread of an ideal in a Noetherian local ring continues to be true for divisorial
filtrations on a two dimensional normal excellent local ring R, and that the Hilbert
polynomial of the fiber cone of a divisorial filtration on R has a Hilbert function which
is the sum of a linear polynomial and a bounded function. We prove these theorems
by first studying asymptotic properties of divisors on a resolution of singularities of the
spectrum of R. The filtration of the symbolic powers of an ideal is an example of a
divisorial filtration. Divisorial filtrations are often not Noetherian, giving a significant
difference in the classical case of filtrations of powers of ideals and divisorial filtrations.

1. INTRODUCTION

Divisorial filtrations on two dimensional normal excellent local rings have excellent
properties, as we show in this article.

1.1. Filtrations of powers of ideals and Analytic Spread. In this subsection we
give an outline of how the classical theory of the analytic spread of an ideal admits a
simple geometric interpretation in the case of an ideal in a normal excellent local ring.
The generalization of analytic spread to divisorial filtrations can then be seen as a natural
extension of this theory.

Expositions of the theory of complete ideals, integral closure of ideals and their relation
to valuation ideals, Rees valuations, analytic spread and birational morphisms can be
found, from different perspectives, in [37], [33], [23] and [25]. The book [33] and the article
[25] contain references to original work in this subject. Concepts in this introduction
which are not defined in this section or in these references can be found in Section 2 of
this paper. A survey of recent work on symbolic algebras is given in [15]. A different
notion of analytic spread for families of ideals is given in [16]. A recent paper exploring
ideal theory in two dimensional normal local domains using geometric methods is [31].

Let R be a normal excellent local ring with maximal ideal mp and I be an ideal in R.
Let m: X — Spec(R) be projective and birational (so that 7 is the blow up of an ideal)
and such that X is normal and /Ox is an invertible sheaf. Let /Ox = Ox(—D) where D
is an effective and anti-nef divisor (the intersection product (D - E) < 0 for all exceptional
curves E of X). Then I'(X,Ox(—nD)) = I", the integral closure of I", for all n € N.
Write D = a1 Fy + - -- + asFs where the F; are prime divisors. The local rings Ox g, are
discrete (rank 1) valuation rings. Let vg, be the associated valuations. We have that the
integral closure of I™ is

I" =T(X,0x(—nD)) = I(Vr)na, N - N L(VE, )na,
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where
I(vr)o ={f € R|vr(f) = b}

are the valuation ideals in R associated to vg,. The center of vy, on R is the prime ideal
I(vF;)1. The Rees valuations of I are those vg; such that In £ Nizi L (VE, )na;- Let Y be
the normalization of the blow up B(I) of I and let IOy = Oy (—B). Then Y — Spec(R)
is projective (since R is universally Nagata). The divisor —B is ample on Y and so the
Rees valuations of I are exactly the prime components of B. By the universal property
of blowing up, 7 factors through B(I) and since X is normal, 7 factors through Y. Let
@ : X — Y be the induced morphism. Let F' be a prime component of D, with associated
valuation vp. Then v is a Rees valuation of I if and only if ¢ does not contract F', in
which case ¢(F) = E is a prime component of B and we have that Ox r = Oyg.

In the case that dim R = 2, the prime divisor F' is contracted by ¢ if and only if F' is
exceptional (7(F') = mpg) and (D - F) = 0. Thus the Rees valuations of I are precisely
the valuations associated to prime divisors F' of X such that either vr has center a height
one prime of R or F is exceptional for 7w (the center of vr on R is mp) and (D - F) < 0.

Let us return to not having any restrictions on the dimension of R. We have an associ-
ated graded ring R[It] =}, -, I"t" (the Rees algebra of I). The integral closure of R[/t]

in R[t] is the graded algebra R[It] = ano T™t", which is a finite extension of R[It] (since R
is universally Nagata). The blow up of I is B(I) = Proj(R[[t]) and Y = Proj(R[It]) is the
normalization of the blow up of I, which was introduced earlier. Let ¢ : B(I) — Spec(R)
be the projection.

The blowup B(I) has the important subschemes

¢ ~H(V(I)) = Proj(gr;(R)) and ¢~" (mp) = Proj(R[It]/mrR[I1]).

The R-algebra gr;(R) = >, <0 I"/I" " is the associated graded ring of I and the R-
algebra R[It]/mprR[It] is the fiber cone of I.

Since Proj(R[It]) — Spec(R) and Proj(R[It]) — Spec(R) are birational, the dimen-
sions of Proj(R[It]) and Proj(R[It]) are the same as the dimension of R. Further, since
Proj(gr;(R)) is a Cartier divisor on Proj(R[It]), we have that dim(Proj(gr;(R)) = dim R—
1. Now, since I C mp, we have that Proj(R[[t]/mprR[It]) is a subscheme of Proj(gr;(R)),
so we have dim(Proj(R[[t]/mrR[It])) < dim R — 1.

Let 1o : Proj(gr;(R)) — Spec(R/I) be the projective morphism induced by 1. Let
P be a minimum prime of /. Then dim wo_l(P) = dim Rp — 1 since I, is primary for
the maximal ideal of Rp. We have that dim¢~!(mpg) = dimy ' (mg) > dimeg ' (P) by
upper semi-continuity of fiber dimension ([19, Corollary IV.13.1.5]). Thus

ht(I) < dimvy~(mg) + 1.
The analytic spread of I is defined to be
((I) = dim R[It]/mgR|[It].

Since the dimension of the Proj of a graded ring is one less than the dimension of the
ring, we have established in our case of normal excellent local rings the following theorems.

Theorem 1.1. (]33, Proposition 5.1.6 and Corollary 8.3.9]) Let R be a Noetherian local
ring and I be an ideal in R. Then

ht(I) < ¢(I) < dimgr;(R) = dim R.
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Theorem 1.2. ([33, Proposition 5.4.8]) Let R be a Noetherian formally equidimensional
local ring and let I be an ideal in R. For every minimal prime ideal P of gr;(R),
dim(gr;(R)/P) = dim R.
We return to the case that R is a normal excellent local ring of arbitrary dimension.
We have that ¢(I) = dim R if and only if dim¢~!(mpg) = dim R — 1. Since
Y = Proj(R[It]) — B(I) = Proj(R[It])
is finite, dim ! (mpg) = dim R —1 if and only if there exists a prime divisor F on Y which
contracts to mp; that is, the center of vg on R is mp. Writing
10y = Oy (—b1Fy — -+ - — bsFy)
where F; are prime divisors and b; > 0, we have that
I = I(vp np, O N I(VE, )b,
where vp, is the discrete rank 1 valuation associated to the valuation ring Oy r,. Since
—b1Fy — -+ — byFy is ample on Y, we have that I" # Nizjl(vE,) for all j and n > 0 (so
that vp,...,vr, are the Rees valuations of I). Thus dim~!(mpg) = dim R — 1 holds if

and only if mp € Ass(R/I") for some n.
We have established the following theorem in our case of normal excellent local rings.

Theorem 1.3. ([27], [33, Theorem 5.4.6]) Let R be a formally equidimensional local ring
and I be an ideal in R. Then mp € Ass(R/I™) for some n if and only if £(I) = dim(R).

The assumption of being formally equidimensional is not required for the if direction of
Theorem 1.3 (this is Burch’s theorem, [6], [33, Proposition 5.4.7]).

Let k = R/mpg. Since R[It]/mprR[It] is a standard graded ring over k (finitely generated
in degree 1) it has a Hilbert polynomial P(n) which has degree d = ¢(I) — 1; there exists
a positive integer ng such that

(1) dimy I /mgI™ = P(n) for n > nyg.

As R[It]/mpgrR[It] is a finitely generated graded ring over k, there exists e € Zso and
polynomials Py, ..., P._1 of degree d = ¢(I) — 1 such that

(2) dimy, I /mgI™ = P;(n) for n > ng where i = n mod e.

1.2. Filtrations. Let Z = {I,,} be a filtration on a local ring R. The Rees algebra of the
filtration is R[Z] = @,>0l,. Analogously to the case of ideals, we define the fiber cone of
the filtration Z to be R[Z]/mprR[Z] and the analytic spread of the filtration of Z to be

(3) ¢(T) = dim R[Z]/mgR[T).

We have that ht([,) = ht(I;) for all n ([13, equation (7)]) so it is natural to define
ht(Z) = ht(I,).
We always have ([13, Lemma 3.6]) that

0(I) < dimR

so the second inequality of Theorem 1.1 always holds. However, the first inequality of

Theorem 1.1, ht(Z) < ¢(Z), fails spectacularly, even attaining the condition that ¢(Z) =0

([13, Example 1.2, Example 6.1 and Example 6.6]). The last two of these examples are

of symbolic algebras of space curves, which are divisorial filtrations. We give a further

example where the inequality fails in Example 7.3 of this paper. Example 7.3 is of a

symbolic algebra of an intersection of height 1 prime ideals in a two dimensional excellent
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normal local ring. In the case that 7 is a Noetherian filtration (R[Z] is a finitely generated
R-algebra), the lower bound ht(Z) < ¢(Z) always holds ([13, Proposition 3.7]), so that the
inequality of Theorem 1.1 for ideals continues to hold for Noetherian filtrations.

The condition that a filtration has analytic spread zero has a simple ideal theoretic
interpretation ([13, Lemma 3.8]). Suppose that Z = {I,,} is a filtration in a local ring R.
Then the analytic spread ¢(Z) = 0 if and only if

For all n > 0 and f € I, there exists m > 0 such that f™ € mglnn,.

1.3. Divisorial Filtrations. Let R be a local domain of dimension d with quotient field
K. Let v be a discrete valuation of K with valuation ring V,, and maximal ideal m,,.
Suppose that R C V,,. Then for n € N, define valuation ideals

I(v)a = {f € R|v(f) 2n} =m] N R.

A divisorial valuation of R ([33, Definition 9.3.1]) is a valuation v of K such that if V,
is the valuation ring of v with maximal ideal m,, then R C V, and if p = m, N R then
trdeg, () #(v) = ht(p) — 1, where »(p) is the residue field of R, and s(v) is the residue
field of V,,. If v is divisorial valuation of R such that mr = m, N R, then v is called an
mp-valuation.

By [33, Theorem 9.3.2], the valuation ring of every divisorial valuation v is Noetherian,
hence is a discrete valuation. Suppose that R is an excellent local domain. Then a
valuation v of the quotient field K of R which is nonnegative on R is a divisorial valuation
of R if and only if the valuation ring V,, of v is essentially of finite type over R ([12, Lemma
5.1]).

In general, the filtration Z(v) = {I(v),} is not Noetherian; that is, the graded R-
algebra > -, I(v),t" is not a finitely generated R-algebra. In a two dimensional normal
local ring R, the condition that the filtration of valuation ideals Z(v) is Noetherian for
all mp-valuations v dominating R is the condition (N) of Muhly and Sakuma [29]. It is
proven in [9] that a complete normal local ring of dimension two satisfies condition (N) if
and only if its divisor class group is a torsion group.

An integral divisorial filtration of R (which we will refer to as a divisorial filtration in
this paper) is a filtration Z = {I,,,} such that there exist divisorial valuations vy,...,vs
and aq,...,as € Z>o such that for all m € N,

Ly = I(V1)may O N I(Vs)ma, -

7 is called an R-divisorial filtration if aq,...,as € Rsg and Z is called a Q-divisorial
filtration if a,...,as € Q. If a; € Ry, then

I(Vi)na; == {f € R|vi(f) = nai}t = I(Vi) fpay]s

where [z] is the round up of a real number.

Given an ideal I in R, the filtration {I"} is an example of a divisorial filtration of R.
The filtration {I"} is Noetherian if R is universally Nagata.

It is shown in [13, Theorem 4.5 | that the “if” statement of Theorem 1.3 is true for
divisorial filtrations of a local domain R.

Theorem 1.4. ([13, Theorem 4.5]) Suppose that R is a local domain and T = {I,} is
a divisorial filtration on R such that £(I) = dim R. Then mp € Ass(R/I") for infinitely
many n.
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An interesting question is if the converse of Theorem 1.3 is also true for divisorial
filtrations of a local ring R. We prove this for two dimensional excellent normal local rings
in this paper (Theorem 7.1, also stated in Theorem 1.5 of this introduction).

1.4. Divisorial filtrations on normal excellent local rings. Let R be a normal ex-
cellent local ring. Let Z = {I,,,} where

Ly = I(1)may O N 1(Vs)ma, -

for some divisorial valuations vq,...,vs on R be an R-divisorial filtration on a normal
excellent local ring R, with aj,...,as € Rsg. Then there exists a projective birational
morphism ¢ : X — Spec(R) such that there exist prime divisors Fi,..., Fs; on X such
that V,, = Ox g, for 1 <i <s. Let D = a1 F1 + --- + asF}, an effective R-divisor. Define
[D] = [a1]F1 + -+ + [as| Fs, an integral divisor. We have coherent sheaves Ox(—[nD])
on X such that

(4) I(X,0x(~[nDY)) = I,

for n € N. If X is nonsingular then Ox(—[nD]) is invertible. The formula (4) is indepen-
dent of choice of X. Further, even on a particular X, there are generally many different
choices of effective R-divisors G on X such that I'(X, Ox(—[nG])) = I, for all n € N.
Any choice of a divisor G on such an X for which the formula I'(X, Ox (—[nG])) = I, for
all n € N holds will be called a representation of the filtration Z.

Given an R-divisor D = a1 Fy + - -+ 4+ asFs on X we have a divisorial filtration Z(D) =
{I(D)y} where

I(D), =T(X,0x(=[nD])) = I(Vl)[naﬂ n---N I(”S)(nas] = I(V1)may N N I(Vs)ma,-
We write R[D] = R[Z(D)].

1.5. Summary of principal results in this paper. Let R be an excellent two dimen-
sional normal excellent local ring with maximal ideal mp.

All possible analytic spreads ¢(Z(D)) = 0,1,2 can occur for Q-divisors D on R. An
example where ¢(Z(D)) = 0 < ht(Z(D)) = 1 is given in Example 7.3. This example is
of a symbolic filtration Z(D) = {an) N an) N an)} where Q1,Q2, Q3 are height one
prime ideals in a two dimensional normal excellent local ring R. In contrast, since the
filtration Z(D) is not Noetherian, we have (by [13, Corollary 1.9]) that for every a € Z~y,
the analytic spread of the ideal an) N an) N Qéa) is K(an) N le) N Q:(ga)) = 2, the largest
possible.

We prove that the conclusions of Theorem 1.3 hold for QQ-divisorial filtrations on R in
Theorem 7.1.

Theorem 1.5. (Theorem 7.1) Let R be a two dimensional normal excellent local ring.
The following are equivalent for a Q-divisorial filtration Z(D) on R.

1) The analytic spread ¢(Z(D)) = dim R[D]/mgrR[D] = 2.

2) mp € Ass(R/I(nD)) for some n.

3) There exists ng € Zsq such that mp € Ass(R/I(nD)) for all n > nyg.

We generalize the formula on Hilbert functions of filtrations of powers of ideals in (1)
and (2) to Q-divisorial filtrations on R in Theorem 8.1.
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Theorem 1.6. (Theorem 8.1) Suppose that R is a two dimensional normal excellent local
ring and Z(D) is a Q-divisorial filtration on R. Then there exist a nonnegative rational
number a and a bounded function o : N — Q such that

(r(I(nD)/mrI(nD)) = (r((R[D]/mrR[D])n) = na+ o(n)
forn € N. The constant « is positive if and only if dim(R[D]/mgrR[D]) = 2.

It is unlikely that the function o(n) will always be eventually periodic. It is shown in
[14, Theorem 9] that if D has exceptional support then the Hilbert function of gr7(R) =
> nso L(nD)/I((n +1)D)t" has an expression

Cr(I(nD)/I((n+1)D)) =nf +7(n)

where § € Q and 7(n) is a bounded function. If R has equicharacteristic zero then it is
shown in [14, Theorem 9] that 7(n) is eventually periodic, and [14, Example 5] gives an
example where R has equicharacteristic p > 0 and 7(n) is not eventually periodic.

Suppose that A is an excellent normal local ring of dimension 3. Let Z — Spec(A) be
a resolution of singularities and D be an effective divisor on Z, all of whose components
contract to the maximal ideal m 4. Then the Hilbert polynomial h(n) = £4(I(nD)/I((n+
1)D)) may be far from being polynomial like. The examples ([14, Example 6] and [10,
Theorem 1.4]) have the property that

lim @

n—oo n
is an irrational number. These examples are in three dimensional equicharacteristic rings
A of any characteristic. The reason for this irrational behavior in dimension three is
because of the lack of existence of Zariski decompositions in dimension three.

We now give an outline of the proof of Theorem 7.1. Let m : X — Spec(R) be a
resolution of singularities such that D is represented on X. Let Ey,..., E, be the prime
exceptional divisors of 7. An R-divisor A on X is anti-nef if (£ - A) < 0 for all prime
exceptional divisors F¥ on X. Since X has dimension two, D has a Zariski decomposition,
A = D + B where A is an anti-nef divisor and B is an effective divisor with exceptional
support such that

I(nD) = I'(X,0x(=[nD])) = I'(X, Ox (= [nA])) = I(nA)
for all n € N. This decomposition does not exist in higher dimensions, even after blowing

up ([8], [30, Section IV.2.10], [21, Section 2.3]).

Proposition 1.7. (Corollary 6.5) Suppose that A is an effective anti-nef Q-divisor on X.
Then the following are equivalent.

1) There exists n such that mp € Ass(R/I1(nA)).
2) There exists ng such that mp € Ass(R/I(nA)) for all n > nyg.
3) There exists j such that E; is exceptional and (A - E;) < 0.

Let E; be an exceptional divisor of 7 and
P = PT(X,0x(~[nA] - Ey))
n>0

for 1 < j <r. Pjis a prime ideal in R[A] = R[D]. In Proposition 6.7 it is shown that

mrR[A] = NI_, P,.
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The following proposition computes the dimension of R[A]/P; in terms of the intersection
theory of X.

Proposition 1.8. (Proposition 6.9) Suppose that A is an effective anti-nef Q-divisor on
X and Ej is a prime exceptional divisor for m : X — Spec(R). Then

1) dim R[A]/P; =2 if (A- Ej) <0.

2) dim R[A]/P; <1 if (A-Ej) =0.

Since \/mprR[A] = NI_ P;, we deduce Theorem 7.1 from Propositions 6.5 and 6.9.

The theory of Zariski decomposition was created and developed by Zariski in [35] for
projective surfaces over an algebraically closed field. In Section 4, we give the relative
version of this theory, over a two dimensional excellent normal local ring, and in Section 5,
we extend some results in [35] for numerically effective divisors on a nonsingular projective
surface to our situation of a resolution of singularities of a two dimensional normal excellent
local ring. We prove the main results of this paper on asymptotic properties of divisors
on a resolution of singularities of a two dimensional normal excellent local ring in Section
6. We prove Theorem 7.1 in Section 7 and Theorem 8.1 in Section 8.

1.6. Notation. We will denote the nonnegative integers by N and the positive integers
by Zq, the set of nonnegative rational numbers by Q¢ and the positive rational numbers
by Q. We will denote the set of nonnegative real numbers by R>( and the positive real
numbers by Rsg. If 2 € R, then [z] is the smallest integer which is greater than or equal
to x.

The maximal ideal of a local ring R will be denoted by mpr. We will denote the length
of an R-module M by ¢r(M). [18, Scholie IV.7.8.3] gives a list of good properties of
excellent local rings which we will assume.

2. DIVISORS ON A RESOLUTION OF SINGULARITIES OF A TWO DIM. LOCAL RING

Throughout this paper R will be a two dimensional excellent normal local ring with
quotient field K, maximal ideal mp and residue field k = R/mp.

From this section through Section 6, 7 : X — Spec(R) will be a resolution of singulari-
ties such that « is projective and all exceptional prime divisors of 7 are nonsingular. Such
a resolution of singularities exists by [24] or [7]. Let Ei,..., E, be the exceptional prime
divisors for w. A divisor is exceptional if all its prime components map to mpg by m. We
will further assume that 7 is not an isomorphism.

Remark 2.1. Suppose that F is a coherent sheaf on X. Then H°(X,F) is a finitely
generated R-module, H' (X, F) is an R module of finite length and H?*(X,F) = 0.

Proof. By [20, Theorem IIL1.5.2], H°(X,F) is a finitely generated R-module. By |20,
Theorem I11.5.2 and Corollary 111.11.2], H!(X, F) is an R module of finite length and by
[20, Corollary I11.11.2], H?(X, F) = 0 since dim 7~ (mpg) = 1. O

An element of the free abelian group Div(X) on the prime divisors of X is called a
divisor. Elements of Div(X) ® Q are called Q-divisors and elements of Div(X) ® R are
called R-divisors. We will sometimes refer to a divisor as an integral divisor if we want
to emphasize this fact. If D; and D9y are R-divisors then write Dy > D1 if Dy — D1 is
an effective divisor. The degree deg(L) for £ an invertible sheaf on a projective curve is
defined in Section 3.
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We use the intersection theory on X developed in [23, Sections 12 and 13]. The inter-
section theory on X is determined by the formula (D - E) = deg(Ox (D) ® Og) if D is a
divisor on X and F is a prime exceptional divisor on X.

An R-divisor D is numerically effective (nef) if (E' - D) > 0 for all prime exceptional
divisors F of X. An R-divisor D on X is anti-effective or anti-nef if —D is respectively
effective or nef. A Q-divisor D is anti-ample if —D is ample and an (integral) divisor D
is anti-very ample if —D is very ample.

Let F' be a prime divisor on X. Then Ox r is a (rank 1) discrete valuation ring. Let
vr be the associated valuation. For 0 # f € K the divisor of f on X is (f) =Y vr(f)F
where the sum is over all the prime divisors F' of X. Two divisors D; and D, are linearly
equivalent, written D; ~ Ds if there exists f € K such that (f) = Dy — D;. Two
divisors D; and Ds which are linearly equivalent are also numerically equivalent; that is,
(E - D9) = (E - Dy) for all prime exceptional divisors E of 7.

Let D = ) b;F; be an integral divisor on X. There is an associated invertible sheaf
Ox (D) on X which is determined by the property that if U is an affine open subset of
X and h € K is such that h = 0 is a local equation of D in U, then Ox(D) | U = +Oy.
Thus

I'(X,0x(D)) ={f € R|(f) + D = 0}.
Since R is a subset of I'(X,Ox) in K and R is normal we have that I'(X,Ox) = R by
Remark 2.1, and so if D is an effective divisor then I'(X, Ox(—D)) is an ideal in R.
Let [a] denote the smallest integer that is greater than or equal to a real number a. If
D =3%"7 | a;F; with a; € R is an R-divisor, let [F| = [a;]F;.
Let F' be a prime divisor on X. For a € R>( define valuation ideals in R by

I(vp)a ={f € R|vp(f) > a}.

We necessarily have that I(vr)a = I(vF)[a-
For an effective R-divisor D = a1 F1 + --- + asFs, where F,..., Fs are prime divisors
on X and a; € R>(, we have an associated ideal in R

I(D) :==1(vr)a NN I(WVE)ay = I(VF ) [a,1 N - N I(VE ) [a,] = T(X, Ox(=[D])).

Let D be a divisor on X. Then I'(X,Ox (D)) # 0. The fixed component of D is the
largest effective divisor F' on X such that

For n € N, let B,, be the fixed component of nD and let
M; = {n € N| E; is not a component of By}.

M; is a numerical semigroup, so if M; is nonzero, there exists h; € Zsg such that for
n > 0, n € M; if and only if h; divides n.

The global sections I'(X,Ox (D)) of Ox (D) generate Ox(D) at a point ¢ € X if
Ox (D) = I'(X,0x(D))Ox 4. The points ¢ € X where Ox (D) is generated by global
sections are necessarily disjoint from the support of the fixed component of D.

Lemma 2.2. Let D be an effective divisor on X and let F be a prime divisor in the
support of the fized component of —D. Then the support of F' is exceptional.

Proof. Write D = Z§:1 a; F; where the F; are distinct prime divisors on X and a; € N.
Suppose that Fj is not exceptional for w. Let g; = m(F}), a height one prime ideal in R.
8



Since 7 is an isomorphism over Spec(R) \ mg, we have that R,, = Ox r;, s0

OX(_D)F]' = (q;bj)qg‘ = (I(Vj)aj)Qj - F(Xa OX(_D))%'
= I'(X,0x(-D))Ox.-
Thus F; is not in the support of F. O

The intersection matrix of the exceptional curves of 7 is the r x r matrix ((E; - Ej))
which is negative definite ([23, Lemma 14.1]).

Proposition 2.3. Let D be a Q-divisor on X. Then D is ample if and only if (D-E) > 0
for all prime exceptional divisors E on X.

This is proved in [23, Theorem 12.1]. As commented in the proof of [23, Theorem 12.1],
the additional assumption there that H'(X, Ox) = 0 is not necessary for this conclusion.

Lemma 2.4. The support of a nonzero effective anti-nef R-divisor D on X contains all
exceptional prime divisors.

Proof. Let S be the set of exceptional prime divisors which are in the support of D. Write
D = B+ ). ,a;E; where B is an effective divisor which contains no exceptional prime
divisors in its support and all a; > 0. For all Ej, we have that

0> (D-Ej)=(B-E)+ Y ai(E;- Ej) + a;(E?),

i#j

and so

(5) —a;(E}) > (B-Ej)+ Y _ai(E;- Ej) > 0.
1#£]

If B is nonzero, then there exists £ such that (E;-B) > 0 and thus a; > 0 and so E; € S.
If B = 0 then there exists £ such that (F; - D) < 0 since D # 0 and the intersection
matrix ((E; - E;)) is nonsingular. Thus S is nonempty. If E; € S and Ej; is such that
(E; - Ejr) > 0 then E; € S by (5). The exceptional fiber 7! (mpg) is connected as R is
normal and 7 is birational (by [20, Corollary II1.11.4]). Thus S is the set of all exceptional
prime divisors of X. O

Lemma 2.5. X is the blowup of an mpg-primary ideal.

Proof. Since the intersection matrix ((E; - E}j)) is negative definite, there exists an effective
anti-ample Q-divisor A on X with exceptional support (by Proposition 2.3). Thus —dA is
very ample for some d € Zg. Let I = T'(X,Ox(—dA)). The ideal I is mp-primary since
the support of A is exceptional. The integral closure of ) -, I"t" in R[t] is

D Tt =) T(X,0x(—ndA))t".

n>0 n>0

Since R is excellent, ano I"t" is a finitely generated graded R-algebra. Thus after

replacing d with a higher power of d we may assume that I" = I" = I'(X, Ox(—ndA)) for
all n € Z~q (as follows from [4, Proposition III.3.2 and Proposition I11.3.3 on pages 158
and 159]).

Let Y = Proj(®n>0l"), which is normal since @,>0l" is integrally closed. Since
Ox(—dA) is generated by global sections we have that IOx = Ox(—dA). By the univer-
sal property of blowing up (|20, Proposition 11.7.14]), there exists a unique R-morphism
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¢ : X — Y such that ¢*Oy (1) =2 Ox(—dA). ¢ is a birational morphism which is an iso-
morphism away from the preimage of mp. ¢ is of finite type since X — Spec(R) is. Since
(—A-E) > 0 for all exceptional curves of X we have that ¢ does not contract any curves of
X and thus ¢ is quasi-finite. Let p € X and ¢ = ¢(p). Let A = Oy, and B = Ox . The
birational extension A — B satisfies m4 B is mp-primary since ¢ is quasi-finite. Since A
is normal and excellent it is analytically irreducible by [18, Scholie IV.7.8.3(vii)]. Thus by
Zariski’s main theorem [1, (10.7) page 240] or [11, Proposition 21.53], we have that A = B
and so ¢ is an isomorphism and X is the blowup of the mg-primary ideal I. O

Lemma 2.6. Let A be a universally Nagata domain and I be an ideal in A. Let Y =
Proj(@D,, >0 I")- Then the graded ring @, (Y, I"Oy) is a finite €P,,5 1" -module and

there exists ng € Zsq such that T(Y,I"Oy) = I"™ for n > nyg.

Proof. This follows from the proof on the last two lines of page 122 through the first half
of page 123 of [20, Theorem I1.5.19], along with the fact (observed in [20, Remark 5.19.2])
that the integral closure of a Nagata domain in its quotient field is a finite extension (by
[26, Proposition 31.B]). O

3. RIEMANN-ROCH THEOREMS FOR CURVES

We summarize the famous Riemann-Roch theorems for curves. The following theorems
are standard over algebraically closed fields. A reference where they are proven over an
arbitrary field k is [22, Section 7.3]. The results that we need are stated in [22, Remark
7.3.33].

Let E be an integral regular projective curve over a field k. For F a coherent sheaf on
E define h'(F) = dimy H'(E, F).

Let D = > a;p; be a divisor on E, where p; are prime divisors on E (closed points) and
a; € Z. We have an associated invertible sheaf Ox (D). Define

deg(D) = deg(Op(D)) = Zai[oEi,pi/mpi t kJ.
The Riemann-Roch formula is
(6) X(Og(D)) := h°(Op(D)) — h'(Og(D)) = deg(D) + 1 — pa(E)

where p,(F) is the arithmetic genus of E.
We further have Serre duality,

(7) H'(E,0p(D)) = H'(E,Op(K — D))
where K = Kg is a canonical divisor on E. As a consequence, we have
(8) deg D > 2p,(F) — 2 = deg(K) implies H'(E, Op(D)) = 0.

We have the following well known consequence of these formulas, which we record for
future reference.

Lemma 3.1. Let E be an integral regular projective curve over a field k. Let {Dy,}n>0 be
an infinite sequence of divisors on E such that deg(D,,) is bounded from below and let Z
be a divisor on E. Then there exists s € Z~q such that

W' (Op(Dy + Z)) < s for alln € N.
Proof. There exists an integer ¢ such that deg(D,,) > ¢ for all n. Let U be an effective
divisor on E of degree larger than 2p,(E) — 2 + ¢. By Serre duality (7),

W (Op(Dy, + Z)) = h°(Op(K — (D, + Z))
10



where K is a cononical divisor on . We have
deg(K — (Z + Dy)) < deg(K — Z) —c.

If deg(K — Z) — ¢ < 0, then certainly h®(Op(K — (D, + Z)) = 0. If deg(K — Z) — ¢ > 0,
then h!'(Op(K — (D, + Z) + U) = 0 by (8) and so

WO(OR(K — (Dt 2)) < W(Os(K — (D + Z) + V)
= deg(K — (Dp+Z))+deg(U) +1—pu(E)
< deg(K — Z) —c+deg(U) + 1 — pa(E).

O

If £ is an invertible sheaf on E then £ = Og(D) for some divisor D on E, and we may
define deg(L) = deg(Ox (D)) = deg(D).

We will apply the above formulas in the case that F is a prime exceptional divisor for
a resolution of singularities 7 : X — Spec(R) as in Section 2. We take k = R/mpr. We
have that E is projective over k = R/mp, and E is a nonsingular (by assumption) integral
curve. Let D be a divisor on X. Then deg(Ox (D) ® Og) = (D - E).

4. ZARISKI DECOMPOSITION

In this section we present a relative form of the Zariski decomposition defined for pro-
jective surfaces over an algebraically closed field in [35]. Lemma 4.1 in the case that D is
exceptional follows directly from [35] or [3, Theorem 3.3].

We continue with our ongoing assumptions that R is a two dimensional excellent normal
local ring with quotient field K, maximal ideal mp and residue field &k = R/mp and
m: X — Spec(R) is a resolution of singularities such that the exceptional prime divisors
FE4, ..., E, are nonsingular.

The proof of the following lemma is a modification of the proof of [3, Theorem 3.3].

Lemma 4.1. Let D be an effective R-divisor on X. Then there exist unique effective
R-divisors A and B on X such that the following 1) and 2) hold.

1) A = D + B is anti-nef and B has exceptional support.
2) (A-E)=0if E is a component of B.
Further,
3) A is the unique minimal effective anti-nef R-divisor such that A — D is effective

with exceptional support.
4) If D is a Q-divisor then A and B are Q-divisors.

The decomposition A = D + B of the conclusions of Lemma 4.1 is called the Zariski
decomposition of D.

Proof. For x = (x1,...,z,) € R", consider the inequalities
9) O0<z;forl<i<r
and

(10) ((D + szEz) . Ej> <0Ofor1<j<r.
i=1

Since the matrix ((E; - Ej)) is negative definite and by Proposition 2.3, there exists an
anti-ample, effective divisor A = Y7 ; a;E; on X. Thus a; > 0 for all ¢ (by Lemma 2.4)
11



and after possibly replacing A with a positive multiple of A, x = a = (a1, ..., a,) satisfies
(9) and (10). Let

(11) S ={x e R"|z; <a; for all i and the 2r inequalities (9) and (10) are satisfied}.

The set S is nonempty and compact. Thus there is at least one point in S such that
> iy x; is minimized on S. Let b = (b1, ...,b,) be such a point. Let B = b1 Ey +- - -+ b, E,
and A = D + B. Then A is an effective, anti-nef R-divisor and B is an effective R-
divisor with exceptional support. Let E; be a component of B. Since b minimizes ) | z;,
B — ¢FE; is effective and A — €FEj; is not anti-nef for all ¢ > 0 sufficiently small. But
((A—¢€Ej)-E;) <0 for all ¢ # j so we must have that ((A —¢Ej)-E;) > 0 for all
positive € and thus (A - Ej) = 0 since A is anti-nef. Thus the decomposition A = D + B
satisfies 1) and 2).
For b= (by,...,b,), b = (b},...,b.) € R", define

min(b,b") = (min(by, b)), ..., min(b,,b..)).

If b and b’ satisfy (9) and (10) then min(b, ') also satisfies (9) and (10), as we now show.
For a fixed j, we may assume that min(b;, b;) = b; (after possibly interchanging b and b').
Then since (E; - E;) > 0 if i # j, we have that

(D + " min(b;, b)) E;) - Bj) < (D + > b Ey) - Ej) < 0.

Suppose that B = > b;E; and B’ = )" b, E; are effective R-divisors such that A = D+ B
and A’ = D = B’ satisfy both 1) and 2). We will show that B = B’ and so A = A’. Let
min(B, B") = Y, min(b;, b;) E;. There exist x; > 0 such that min(B, B") = B — Y, z; E;.
Since D + min(B, B’) is anti-nef, for each element E; of the support of B we have

0> ((D+min(B,B")) - E;) = <(A — Z:UE) - Ej> =— Zx(E - Ej).

Thus ), x;(E; - ;) > 0 and so

Q@B - (Y wiEy) | =) > wiwj(Bi- Ej) >0,
i J i
Since the matrix ((E;- Ej)) is negative definite, we have that x; = 0 for all 4. Thus
B = min(B, B’). Similarily, B’ = min(B, B’) and so B = B’. Thus there is a unique
effective R-divisor B with exceptional support such that B and A = D 4 B satisfy 1) and
2).

We now show that A is the unique minimal effective and anti-nef R-divisor on X such
that A— D is effective with exceptional support. Let U be an effective anti-nef R-divisor on
X such that U — D is effective with exceptional support. Let U’ = D+min(A—D,U — D).
As shown earlier in the proof, U’ > D is effective and anti-nef. Write U' — D = Y u, E;
and B=A—-D=> bE;. We have > u; <> b; <> a;s0 U — D € S (defined in (11)).
Since Y b; is the minimum of Y  z; on S, we have that u; = b; for all i and so U’ = A.
Thus A < U.

Now suppose that D is an effective Q-divisor on X. Let A = D + B be the Zariski
decomposition of D. After possibly reindexing the E1q,..., E., we may assume that the
support of B is By U---U E, for some s with 1 < s < r. Expand D = F + >\ | ¢;E;
where F' is an effective Q-divisor whose support does not contain any prime exceptional
divisor and ¢1,...,¢ € Q>p. Then A = F + %7 | d;E; with ¢; < d; for all ¢ and d; = ¢;
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for s +1 < i < r. Further, for 1 < j <s, we have 0 = (A - E;) = >0, di(E; - Ej) + g;

where g; = (F- Ej) + 3 0i_ ;.1 ¢i(E; - Ej) € Q. Since the s x s matrix ((E; - Ej)),<; i<, I8
negative definite, and thus is nonsingular, we have that di,...,ds € Q. Thus A and B are
Q-divisors. O

Remark 4.2. From 3) of the conclusions of Lemma 4.1, we deduce that if D1 < Dy are
effective R-divisors such that Do — D1 has exceptional support and the respective anti-nef
parts of their Zariski decompositions are Ay and Ao, then A1 < As.

Lemma 4.3. Suppose that D is an effective R-divisor on X and A = D+ B is the Zariski
decomposition of D. Then for alln € N,

I'(X, Ox(=[nD])) = T'(X, Ox (= [nAl)).

Proof. Suppose that f € I'(X,Ox(—[nAl)). Then (f) — [nA] > 0. Writing nA =
[nA] — G with G > 0, we have —nA = G — [nA]. From

—nD = —nA+nB = —[nA] + (G+nB)

and the fact that G +nB > 0, we have that (f) —nD > 0 so that f € I'(X, Ox(—[nD])).
Let S be the set of prime divisors in the support of B. Suppose that

f e (X, 0x(=[nD])).

Then (f) —nD > 0. Write (f) —nD = A+ C where A and C are effective R-divisors
on X, no components of A are in S and all components of C' are in S. We have that

(f) —nA=A+(C—nB). If E €S then
(E-(A+(C—nB))) = (E-((f) —nA)) =0

which implies (E-(C —nB)) = —(E-A) < 0. The intersection matrix of the curves in S is
negative definite since it is so for the set of all exceptional curves, so C —nB > 0 (by [35,
Lemma 7.1]). Thus (f) —nA > 0 which implies (f) — [nA] > 0 since (f) is an integral
divisor. Thus f € I'(X, Ox(—[nAl)). O

5. NEF DIVISORS

In this section we extend to our relative situation X — Spec(R) some theorems proven
by Zariski in [35] for projective surfaces over an algebraically closed field. We stay as close
as possible to Zariski’s original proof, although some parts require modification. In [21],
and the references in that book, a theory of nef divisors on nonsingular projective varieties
of arbitrary dimension over an algebraically closed field of characteristic zero is derived.
Much of this theory can be extended to the relative situation, over Spec(A), where the
local ring A is normal and essentially of finite type over an algebraically closed field of
characteristic zero, or even of positive characteristic.

We continue with our ongoing assumptions that R is a two dimensional excellent normal
local ring with quotient field K, maximal ideal mg and residue field k£, and that 7 : X —
Spec(R) is a resolution of singularities such that the exceptional prime divisors Ey, ..., E,
of 7 are all nonsingular.

Proposition 5.1. Let A be an effective anti-nef divisor on X. For n >0, let B, be the
fized component of —nA. Suppose that E is a prime divisor which is in the support of
the fized component B, of —n/A for infinitely many n. Then E is exceptional for m and
(A-E)=0.
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Proof. By Lemma 2.2, E is exceptional. We will assume that (A - E) < 0 and derive a
contradiction. Since I'(X,Ox(—A)) # 0 there exists an effective divisor D on X such
that D ~ —A. Write D = U + F} + --- + Fs where U is an effective divisor with no
exceptional divisors in its support and F} = F, Fy, ..., Fy are prime exceptional divisors.
Let A, =U+F+---+ F;for 0 <i<s.

We have short exact sequences

0— O)((TLD — Ao) — Ox(nD) — O)((nD) X OAO — 0.

There exists a very ample effective divisor H on X which contains no exceptional prime
divisors in its support and whose support is disjoint from Ay by [20, Theorem III1.5.2]
since A intersects 77! (mp) in only a finite number of closed points and so Ag is a closed
subscheme of the affine scheme X \ V(H) and thus Ay is an affine scheme. We thus have
that H'(Ag, Ox(—nD) ® Oa,) = 0 for all n and so

(12) Y (Ox(nD)) < W' (Ox(nD — Ay))

for all n € N.
For i < s and n € N, we have short exact sequences

0— Ox(’rlD —A; — Fi+1) — Ox(nD — Al) — Ox(TLD — Al) & OFi+1 — 0.
Thus
h(Ox(nD — A;)) < WY (Ox(nD — Ajy1) + h' (Fi1,0x(nD — A;) ® Op,,., ).

(D-F;1) = (—A- F;y1) > 0 implies that there exists o; > 0 such that h'(F;.1,Ox(nD —
A;) ® Op,,,) < o; for all n € N by Lemma 3.1, so

(13) hl(OX(nD — AZ)) < hl(OX(TZD — Ai+1)) + o;

for all i > 0 and n € N.
Now consider the exact sequences

0— Ox(nD — Ay — F1) - Ox(nD — Ag) = Ox(nD — Ag) @ O, — 0

for n € N. Since (Fy - D) = (Fy - —A) > 0 we have that H'(Fy,Ox(nD — A;) ® Op,) =0
for n > 0 by (8). From the natural inclusion Ox(nD — Ag) — Ox(nD) we deduce that
Fy is in the support of the fixed locus of nD — Ag if F} is in the support of the fixed locus
of —mA. Thus for n such that F} is a component of the base locus B,, of —nA, the image
of H(X,Ox(nD — Ag)) in H*(Fy,Ox(nD — A;) ® OF,) is zero. Thus

Y Ox(nD — Ag)) = K (Ox(nD — Ag — F1)) — x(Op, (nD — Ag) @ Op,)
so that by the Riemann Roch theorem (6),
(14) hl((’)X(nD — Ao)) = hl((’)X(nD — AO — Fl)) + n(A . Fl) + (AO . Fl) —|—pa(F1) — 1.

As explained before the statement of Lemma 2.2, there exists a positive integer h such
that for n > 0, F} is a component of By, if h fn.
By (12) and (13), there exists a constant ¢ > 0 such that

h'(Ox(nD)) < h'(Ox((n—1)D)) +c
for all n € Z~( and for all n > 0 such that h fn we have by (12), (13) and (14) that
hH(Ox(nD)) < W' (Ox((n —1)D) + n(A - Fy) + .

Thus we have h'(Ox(nD)) < 0 for n > 0 since we have assumed that (A - Fy) < 0. But
this is impossible, giving a contradiction and so (A - F) = 0. O
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Proposition 5.2. Let I be an effective divisor on X such that —I' has no fized component.
Then

1) Ox(—nT) is generated by global sections for all n >> 0.
2) There exists s € Z~q such that h'(X,Ox(—nT)) < s for all n € N.

Proof. The set of base points
Q= {pe X |Ox(-T), is not generated by global sections}

of I'(X,Ox(-T)) is a finite set of closed points, which are necessarily contained in the
exceptional fiber of m. Let C' > 0 be an effective divisor on X such that —C' is very ample
for 7. There exists an integer m > 0 such that there exists an effective divisor H ~ —mC
with no exceptional components in its support and such that € is disjoint from its support
(by [20, Theorem II1.5.2]). After replacing C' with this multiple mC we may assume that
H ~ —C. Let f € K, the quotient field of R, be such that (f) — C = H. We may regard
the effective divisor H as a closed subscheme of X.
We have a short exact sequence

0 0x(C) L Ox = On =0

and tensoring with Ox (—iI' — jC) we have short exact sequences

(15) 0= Ox(—il — (j — 1)C) L Ox (=il — jC) = Ox (=il — jC) ® Oy — 0.
For i,5 > 0, let A; ; be the natural image of I'(X, Ox (—iI' — jC)) in
I'(H,Ox (=il - jC) ® On),

upon taking global sections of (15). Since the base points of I'(X, Ox(—iI' — jC)) are
a subset of 2 and so are disjoint from H, we have that, for all 7,5 > 0, A; ;0p, =
Ox (—il' = jC), for all g € H.

There exists n € Zsg such that there exists an effective divisor G on X such that
G ~ —nC, the support of G contains no exceptional components of 7 and sup(H) N
sup(Q) Nsup(r~t(mg)) = 0 (by [20, Theorem I11.5.2]). We may regard G as a closed
subscheme of X. Thus H is a closed subscheme of the affine scheme X \ G and so H is
affine, say H = Spec(.S). The restriction of 7 to H is determined by a ring homomorphism
R — S. Now S = I'(H,Op) is a finitely generated R-module since 7 is a projective
morphism (by [20, Corollary I1.5.20]). As explained in [20, Corollary II.5.5], since S is
Noetherian, the functor M — M gives an equivalence of categories between the category of
finitely generated S-modules and the category of coherent OSpec( S)—modules, with inverse
F — I'(Spec(S), F).

In particular, letting B; ; = I'(H,Ox(—il' — jC) ® Op) for i,j > 0, we have that
Ox(—il' — jC) ® Oy = /B:/] We also have that B;; is the tensor product over S of ¢
copies of Bi o and j copies of By ([20, Proposition I1.5.2]).

We have that the ring Ao is a quotient of I'(X, Ox) = R since 7 is proper birational
and R is normal. Let Agg[ti,t2] be a polynomial ring over Ago, which is bigraded by
specifying that deg(a) = (0,0) if a € Ag, deg(t1) = (1,0) and deg(t2) = (0,1). Let M be
the bigraded A -subalgebra M := 3, .~ A; jtith of Agglt1,ta]. Similarly, let B be the
bigraded S-subalgebra B := P, ;5 B; jtit) of S[t1,ta].

We have a natural inclusion of graded rings M — B.

Since H is disjoint from {2 we have that

ZLOA%JSQ = Aiqu = Ox(—’ir — ]A) ® OH,q = (Bi,j)q
15



for all g € H and 4,5 > 0. Thus
(16) AiLOA%’lS = B, j for all 4,5 > 0.

Let A be the bigraded Ag-subalgebra A := Ago[A10t1, Ao 1t2] of M. Now we have
a natural surjection A§70A671 ®@r S — B;j for all i,j > 0 by (16). Thus the natural
homomorphism A ®r S — B is surjective. Since S is a finitely generated R-module, we
have that B is a finitely generated bigraded A-module. Since A C M C B and A is
Noetherian, we have that M is also a finitely generated A-module.

By [35, Lemma 4.3], since A is generated in bidegrees (1,0) and (0,1), and M is a
finitely generated bigraded R-module, there exists N € Zg such that

(17) A;j = A; j—1A0,1 whenever j > N and ¢ > 0 is arbitrary
and
(18) A;j = Ai_1,A1,0 whenever ¢ > N and j > 0 is arbitrary.

Thus taking global sections in the short exact sequences (15), and applying (18), we have
that if 4 > N and j > 0, then

(19)

[(X, Ox(-il'—jC)) = T'(X, Ox (=il = (j=1)C)) f+T'(X, Ox (= (i—1)I'—jC))[(X, Ox (=T)).

Since —C' is ample, for fixed i, Ox(—il' — jC') is generated by global sections for all j > 0
(by [20, Theorem I1.5.17]). Let i be a fixed integer > N and let j > 0 be such that
Ox(—il' — jO) is generated by global sections.

The only points ¢ € X where it is possible for Ox (—iI'— (7 —1)C'), to not be generated
by global sections are the points of 2. Suppose that ¢ € €2. Thus ¢ is not in the support of
H = (f)—C, and so f =0 is a local equation of C at ¢ and fOx , = Ox(—C),. Further,
since ¢ € Q, I'(X, Ox (-I"))Ox g C myOx(—TI') where m, is the maximal ideal of Oy 4,
equation (19) and Nakayama’s lemma show that

Ox (=il — jC)y = D(X,0x(—il — jC))Ox.q
= I'(X,0x(=il' = (j —1)C)) fOx 4
+I(X, Ox(—=(i = DI = jC)Ox (—v)mq
= T(X,0x(—il' = (j — 1)C))Ox(=C)y,.

Thus I'(X, Ox (—il' — (j — 1)C))Ox 4 = Ox(—il' — (j — 1)C)4, and since this is true for
all g € Q, Ox(—il' — (j — 1)C) is generated by global sections.

By descending induction on j, we obtain that Ox (—il") is generated by global sections
for all i > N.

We now prove the second statement of the proposition. Let go, ..., g, € I'(X,Ox(—NT))
generate I'(X, Ox(—NT))) as an R-module. Then g, ..., g, induce a proper R-morphism
¢+ X — Py such that ¢*Opr (1) 2 Ox(=NT) (by [20, Theorem IL.7.1, Corollary I1.4.8]).
In fact, ¢ is projective, by [17, Proposition I1.5.5 (v)] or [34, Lemma 29.43.15, Tag 01W7]
and [34, Lemma 29.43.16 (1), Tag 01W7|. Let Z be the image of ¢ in P%, (which is closed
since ¢ is proper) and let Oz(1) = Opr (1) ® Oz. Let 3 : X — Z be the induced projec-
tive R-morphism. By [20, Corollary I11.11.2], for s € Z, the support of R'% % Ox(—sI') is
contained in the finite set of closed points of Z which are the images of curves contracted
by @ (the prime exceptional divisors E of 7w such that (E - —I') = 0). By [20, Theorem
11.5.19], I'(Z, R'@ * Ox(—sI)) is a finitely generated R-module. Since it’s support is the
maximal ideal of R, the length of I'(Z, R'g * Ox(—sI')) as an R-module is finite.
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From the Leray spectral sequence we obtain exact sequences ([32, Theorem 11.2]) for
m € 7,

0— HYZ,3,0x(—ml)) = H'(X,Ox(—mI')) — H*(Z, R*'3,0x(—mT)).

For m € N, write m = nN + s with 0 < s < N. Then Ox(—mI') 2 3*Oz(n) ® Ox(—sI").
Then by the projection formula ([20, Exercise I11.8.3]), we obtain exact sequences for
n,s €7

0— Hl(Z, Oz<n) ®¢*(’)X(—3F)) — Hl(X, Q*Oz<n) ® O)((—SF))

(20) — HY(Z, (R'$,0x(—sI)) ® Oz(n)).

Let

s1 = max{{r[(Z, R'3,0x(—s")) |0 < s < N}.
We have that H'(Z,0z(n)®@%,0x(—sI')) = 0 for all 0 < s < N and n > 0 ([20, Theorem
I11.5.2]). Let

so = max{{rH (Z,0z(n) @ 3,0x(—sI')) |0 < s < N and n € N}

s9 is finite by [20, Proposition II1.8.5, III.Theorem 8.8, Corollary I11.11.2]. By (20), we
have that {rH' (X, Ox(—mI')) < s1 + s for all m € N. O

Proposition 5.3. Let A be an effective anti-nef divisor on X. For n > 0, let B, be the
fized component of —mA. Then there exists an effective exceptional divisor G on X such
that By, < G for alln € Z~y.

Proof. To prove the proposition, it suffices to prove it for it for some positive multiple d
of A, since for n € N, writing n = md + s with 0 < s < d, we have B, < B,,q + Bs.
Write —A = Zle a; F;. Let

M; = {n € N | F; is not a component of B, }.

M; is a numerical semigroup, so if M; is nonzero, there exists h; € Z~g such that for
n > 0, n € M; if and only if h; divides n. Let

B(D) = {F; | F; is a component of B, for infinitely many n}.

By Proposition 5.1, F; € B(D) implies (F; - A) = 0 and F; is exceptional for 7. After
possibly reindexing that Fj, we may assume that the support of B(D) is U;_, Fj, for some
s < t. We have that M; =0 or h; > 1 for 1 < ¢ < s. Thus the support of B,, is Uj_, F; if
n > 0 and h; fn for all ¢ such that 1 <4 < s and M; is non zero.

If we replace A with ngA for some ng > 0, we have that the support of B; is B(D).
By Proposition 5.2, there exists sqg € N such that the effective divisor I' = A + Bj satisfies
the condition that h'(Ox(—nI")) < sq for all n > 1 since —I" has no fixed component.

For a given n € Z~¢, consider the following conditions on a divisor Z,.

a) nl' > Z, > nA
b) —Z, has no fixed component
C) hl(OX(—Zn)) < S0-

Let C), be a minimal element in the set of divisors satisfying a), b) and ¢). Let B], =
Cp, —nA. Then nBy > B}, > B, (since —nA = —nI' + nB; = —C,, + B}, and C,, < nI').
Thus it suffices to show that the B/, are bounded from above.

For 1 <i < s we have short exact sequences

0— Ox(—cn) — Ox(—cn + Fl) — Ox(—cn + FZ) X OFZ' — 0,
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giving exact sequences

0— H%X,0x(-Cp)) = HY(X,0x(=Cy, + F;)) = H(F;,Ox(—=Cp, + F}) ® O,)

— HYX,0x(-Cy)) - HYX,O0x(-Cy,, + F;)) = HY(F;,Ox(=Cy, + F;) ® Op,) — 0.
We will show that
(21) —(Cy - Fy) < max{sy — (F?) — 1+ pa(F), 2pa(F;) — 2 — (F?),0}

forallnand 1 <i <s.

First assume that F; is not a component of B),. Then (BJ, - F;) > 0. Since (F; - A) =0
by Proposition 5.1, we have that (C,, - F;) > 0 and so (21) holds.

Now assume that F; is a component of B],. We have that either

(22) HY(X,0x(-Cy + F,)) = H'(X,0x(—Cy))
(23) Y (Ox(~Cp + F;)) > so.

If (22) holds, then h°(Ox(—C, + F;) ® Op,) < so . Thus
so = h(Ox(=Cn + F) ® Op,) =2 ((=Cn + F}) - F;) + 1 — pa(F;)

by the Riemann-Roch formula (6), and so (21) holds.
Suppose that (23) holds. Then h!(F;, Ox(—C, + F;) ® Op,) > 0, and so

((_Cn + E) ’ Fz) < 2pa(Fi) -2
by (8). Thus (21) holds.

For i with 1 <i < s, let 0; = max{sp — (F?) — 1 + pa(F;), 2pa(F;) — 2 — (F?),0}. Since
(F; - A) =0 for 1 <i < s by Proposition 5.1, and by (21), we have that

(B, - F) = ((C, —nA) - F;) = (Cy, - ;) > —o0;.
In particular, o; > —(B], - F;).

Since the intersection matrix ((Fj - Fj)) for 1 <i,j < s is negative definite, and thus is
nonsingular, there exists a Q-divisor £ = ¢1F} + -+ - + ¢sFs such that (€ - F;) = —o; for
1 <i<s. Then

(E-B,) F)=—0i— (B, F)<0
for all ¢ implies & > BJ, by ([35, Lemma 7.1]), since the intersection matrix is negative
definite. Thus the B], are bounded from above. O

Corollary 5.4. Let A be an effective anti-nef Q-divisor on X. Let By, be the fixed com-
ponent of —[nAl; that is, the largest effective divisor on X such that

(X, Ox(=[nA])) =T'(X, Ox(=[nA] — By)).
Then

1) The integral divisor By, has exceptional support for all n € N and
2) There exists an effective integral divisor G with exceptional support such that By, <
G for all n € Z~y.

Proof. Statement 1) follows from Lemma 2.2. If A is an integral divisor then Statement
2) follows from Proposition 5.3.

Now assume that A is a Q-divisor. Write A = Z%Fi with d € Z~g and b; € N,
where the F; are distinct prime divisors on X. Since dA is an integral divisor, there
exists an effective integral divisor C' with exceptional support such that B,y < C for
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all n € N. Let n € N, and write n = md — ¢ with m € N and 0 < ¢ < d. Then
Ox(—[nA]) = Ox(—mdA + |cA]). Thus B, < Bjg+ [cA] < C + dA. O

Lemma 5.5. Let {D,} with n > 0 be an infinite sequence of divisors on X and Z be an
effective divisor on X. If the sequence h*(Ox(Dy,)) is bounded from above and if for each
prime exceptional component E of Z (Dy,- E) is bounded from below then h'(Ox (D, + Z))
18 bounded from above.

Proof. By induction on the number of components of Z, we may assume that h'(Ox (D, +
Z — F)) is bounded where F'is a prime component of Z. We have a short exact sequence

O%OX(—F)—)O)(%OF%O,
giving exact sequences
HYX,0x(Dp+ Z — F)) = HY(X,0x(D,, + Z)) = H'(F,Ox (D, + Z) ® OF).

If F is exceptional, there exists s € Z~q such that h'(F,Ox (D, + Z) ® Op) < s for all
n > 0 by Lemma 3.1, so h!(Ox (D, + Z)) is bounded from above. If F is not exceptional,
then F is affine and so H*(F,Ox (D, +2))®OFp) = 0 for all m, so again h*(Ox (D, + Z))
is bounded from above. O

Proposition 5.6. Let A be an effective anti-nef divisor on X. Then h'(Ox(—nA)) is
bounded for n € N.

Proof. Let Cy, be the effective divisors of the proof of Proposition 5.3, so that B], = C,,—nA
are effective divisors and there exists an effective divisor G with exceptional support such
that B), < G for all n € N. Since —A is nef, we have that (—C,, - E) is bounded from
below for each prime exceptional component E of G. Further, we have (by the proof of
Proposition 5.3) that h'(Ox(—C,,)) < sq for all n € N. For each effective divisor Z < G,
Proposition 5.5 gives us an upper bound for h'(Ox(—C,, + Z)) over n € N. The maximum
of these bounds is an upper bound for h'(Ox(—nA)) over n € N. O

Corollary 5.7. Let A be an effective anti-nef divisor on X and F be a coherent sheaf on
X. Then h'(Ox(—nA) ® F) is bounded for n € N.

Proof. There exists an effective anti-ample divisor A on X with exceptional support by
Proposition 2.3. There exists ng € Z~¢ such that F ® O(—ngA) is generated by global
sections, so there is a surjection O% — F ® Ox(—ngA) for some s, giving a short exact
sequence of coherent sheaves

0—=K—=Ox(ngld)> - F —0
and surjections
HY(X,0x(—nA 4+ ngA))* — H'(X,0x(—nlA) @ F).

Thus h!(Ox(—nA) @ F) is bounded above for n € N since —A is nef, and by Lemma 5.5
and Proposition 5.6. ]

6. ASYMPTOTIC PROPERTIES OF DIVISORS ON A RESOLUTION OF SINGULARITIES

We continue with the notation introduced in the introduction and in Section 2. We
assume that R is a two dimensional excellent normal local ring with quotient field K,
maximal ideal mp and residue field k, and that 7 : X — Spec(R) is a resolution of
singularities such that the exceptional prime divisors F1, ..., F,. of m are all nonsingular.
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As explained in the introduction, If F' is prime divisor on X and a € R>¢, then there
is a valuation ideal I(vp)o = {f € R mod vp(f) > a} of R, where v is the valuation of
the discrete (rank 1) valuation ring Ox p.

Proposition 6.1. Suppose that A1 C As are effective anti-nef Q-divisors on X such that
Ay # Ag. Then there exists ng € Zsq such that T'(X, Ox(—[nlz])) # I'(X, Ox(—[nA1]))
for all n > ny.

Proof. Write A1 = > a;F; and Ay = > b;F; where the F; are distinct prime divisors on
X. We have b; > a; for all 7 and b; > a; for some j. If F} is not exceptional then certainly
I'(X,0x(—[nAz])) # I'(X,Ox(—[nA1])) for n sufficiently large by Lemma 2.2.

Now suppose that Fj is exceptional. By 2) of Lemma 5.4, there exists an effective
exceptional divisor H = ) ¢; F; such that the fixed component B, of I'(X, Ox(—[nA1]))
satisfies B,, < H for all n € N. Observe that g € I'(X, Ox(—[nAz])) implies v;(g) >
[nb;]. By definition of By, for n € Z~g, there exists f, € I'(X, Ox(—[nA1])) such that
(fn) — [nA1] = A,, + By, where F; is not a component of the effective divisor A,. Thus

vi(fn) = [na;| + ¢ with § < ¢;. We have that n > bc]?j;j implies [na;| + 6 < [nb;]. Thus
vj(fn) < [nb;] so that f, & I'(X, Ox(—[nAz])). O
Corollary 6.2. Suppose that A1 C Ao are effective anti-nef Q-divisors on X. Then the
following are equivalent.
1) I'(X, Ox(=[nA1]))
2) T'(X, Ox(=[nA1]))
3) Ay = As.

I['(X,O0x(—[nAz])) for infinitely many n € Zo.
['(X,O0x(—[nAz])) for alln >0

Proof. Proposition 6.1 proves the essential implication 1) implies 3). The directions 3)
implies 2) and 2) implies 1) are immediate. O

Proposition 6.3. Let A =7 | a;F; be an effective anti-nef Q-divisor on X and E be a
prime exceptional divisor on X. Then E = F}; for some j with a; > 0. The following are
equivalent

1) There exists n € Zso such that
I(nA> = m?:ll(yFi)nai 7é mi;éjI(VFi)nai'
2) There exists ng € Z~q such that
I(nA) = 071 I(VE )na; # Nizi L (VF)na;-
for all n > ny.
3) (A-F) <0.

Proof. It follows from Lemma 2.4 that E = F} for some j with a; > 0.

Let D; = Z#j a; F;, so that D1 < A. Let Ay = D + By be the Zariski decomposition
of Di. We have that Ay < A by Remark 4.2, and so 0 < A — Ay = a;F; — By so that
0< B Saij. Thus Ay :A—)\Fj WithOS)\Saj.

If A1 # A then A > 0, and so

(24) (Fy - A) = (Fy - Ar) + A(F2) < 0.
If A = A then By = a;Fj. Since a; > 0, we have that
(25) 0=(A1-Fj) = (A-Fp).

by 2) of Lemma 4.1.
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Suppose that 1) holds. Then A; # A so that (Fj - A) < 0 by (24), so that 1) implies
3) holds. Certainly 2) implies 1) is true, so we are reduced to proving 3) implies 2). Now
3) implies A; # A by (24) and (25). If 2) doesn’t hold then there exist infinitely many
n € Zso such that I'(X, Ox (—[nA])) = I'(X, Ox(—[nA1])) so that A; = Ay by Corollary
6.2, giving a contradiction. O

Corollary 6.4. Let A =Y 7 | a;F; be an effective anti-nef Q-divisor on X and E be a
prime exceptional divisor on X so that E' = F; for some j with a; > 0. The following are
equivalent

1) I(nA) = N_ I(VE)na; = NiziI(VE )na; for all n € Zsy.

2) (A-F;)=0.
Corollary 6.5. Suppose that A is an effective anti-nef Q-divisor on X. Then the following
are equivalent.

1) There exists n such that mp € Ass(R/I1(nA)).
2) There exists ng such that mp € Ass(R/I(nA)) for all n > nyg.
3) There exists a prime exceptional divisor E for m such that (A - E) < 0.

Proof. Write A =Y"7 | a;F;, so that I(nA) = N{_,I(VF, )na;- For a fixed n, we have that
mpg € Ass(R/ N{_y I(VF,)nq,;) if and only if
Mi=11(VF)na; # O, which are not exceptionall (VF;)na;
which occurs if and only if there exists j such that Fj is exceptional and
=1L (VF )na; # Nizti L (VE, Jna,
Thus by Proposition 6.3, the three conditions of the corollary are equivalent. O
Let A = Y7 | a;F; be an effective and anti-nef Q-divisor on X. By Lemma 2.4, all

prime exeptional divisors Fi,..., E,. are in the support of A. After permuting the F;, we
may assume that F; = F; and a; > 0 for 1 <14 <r. We have that

€£)I‘)( Clx é}}rw 1I VF na;+

n>0 n>0
Let Pj =D, (X, Ox(—[nA] — Ej)) for 1 < j <r. We have that
(26) I'(X,Ox(-Ej)) ={f € R|vg,(f) > 0} =mgr

for 1 < j <. for all j. Suppose that f € I'(X,Ox(—[mAl])) and g € I'(X, Ox(—[nAl))
are such that fg € I'(X, Ox(—[(m + n)A| — Ej;). Then
ve,(f) +ve,(9) = ve,(fg) = (m+n)a; +1
implies v, (f) > ma; + 1 or vg;(g) > na; + 1 so that f € I'(X,Ox(—[mA] — Ej) or
g € I'(X,O0x(—[nA] — Ej). Thus Pj is a prime ideal in R[A].
If f € mpg, then VEj(f) > 1 for 1 S] < r so that

(27) mgrR[A] C P;.
We have exact sequences
0 — P; — RIA] — P T(E;, Ox(~[nA]) @ Og,).
n>0

Remark 6.6. Suppose that A is an effective anti-nef Q-divisor on X. Then dim R[A]/P; =
0 if and only if R[A]/P; = R/mpg.
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Proof. Suppose that for some m > 0 there exists f € I'(X,Ox(—[mA])) such that it’s
class f in I'(X, Ox(—[mA]))/T(X,Ox(—[mA] — Ej;)) is nonzero. Then

Ftm e ST (X, Ox (~ [nA]) /T (X, Ox (~ [nA] — Ep)t" = RIA]/P,
n=0
is nonzero. The element ft™ is not a unit since it is homogeneous of positive degree and
it is not nilpotent since R[A]/P; is an integral domain. Thus dim R[A]/P; > 0. Thus by
(26), dim R[A]/P; = 0 implies R[A]/P; = R/mp. O

Proposition 6.7. Suppose that A is an effective anti-nef Q-divisor on X. Then
mprR[A] =N;_ P;.

Proof. We have that \/mgrR[A] C NI_,P; by (27).

Let h € NI_; P;. We will show that h™ € mrR[A] for some n € Z~g, which will establish

the proposition. We may assume that h is homogeneous, so that
hen_I'X,O0x(—[aA] — E;)) =T'(X,0x(—[aA] — E1 —--- — E})
for some a € N. We must show that h” € mpI'(X, Ox(—[anAl])) for some n € Z.

First suppose that a = 0. We have that I'(X,Ox(—FE, —--- — E,) = mp so we already
have that h € mRF(X, Ox) = mpg.

Now suppose that a > 0. After replacing A with a positive multiple of A and h with a
power of h we may assume that A is an integral divisor and h € T'(X, Ox(—A=>"7_; E;)).
By Lemma 2.5, there exists an mg-primary ideal I in R such that X is the blowup of I,
so that X = Proj(€P,,~, ") and IOx = Ox(—C) is very ample, where C is an effective
divisor whose support is the union of all exceptional prime divisors E1, ..., E,.. The graded
ring @,,~,'(X,I"Ox) is a finite ,,~, I"-module and there exists ng € Z~o such that
the R-ideal I'(X,I"Ox) = I" for n > ng by Lemma 2.6. Since R and X are normal,
['(X,I"Ox) = I" for all n > 0.

After possibly replacing I with a positive power of I we may assume that T'(X, ["Ox) =
I™ for all n € N and that there exists an effective divisor H ~ —C on X with no exceptional
prime divisors in its support. Let f € T'(X,Ox(—C)) = I be such that (f) — C = H. We
have a short exact sequence

0 0x ()L 0x = OF = 0.

There exists a € Q< such that F' := Z;zl E; — aC > 0. There exists e € Z~q such that
eaC' is an integral divisor and so eF' is an integral divisor. Thus for n € Z~g, we have
that
h2e e T(X,Ox(—n2eA —n2e(> I, E;)) = I'(X,Ox(—n2eA — n2eaC — n2eF)
C I'(X,0x(—n2eA —n2ealC)) = T'(X, Ox(—n2e(A + §C) — n2e50C)).

Now the effective integral divisor 2e(A + §C') is anti-ample by Proposition 2.3, since A
is anti-nef. Thus there exists ng € Z-o such that Ox(—n2e(A + $C')) is generated by
global sections for all n > ng. Let I' = ng2e(A + §C). By the argument of the proof of
Proposition 5.2, applying (17), there exists N > 0 such that

[(X, Ox(-il'—jC)) = T'(X, Ox (=il - (j—1)O)I'(X, Ox (=C))+ [T(X, Ox (-il'-(j-1)C)
whenever j > N and i > 0. Since f € I'(X, Ox(—C)), we have that

[(X,0x(—il — jC)) = T(X,0x(—il — (j — 1)C)I(X, Ox(—C))
= IT(X,Ox(—iT — (j — 1)C)) C IT(X, Ox(—ing2eA)).
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Thus

2
K% € T(X, Ox (—nT— 2% 0)) ¢ IT(X, Ox (—nmno2eA)) € mpl(X, Ox (—nng2eA))
whenever n is so large that n > né\é < O

Corollary 6.8. Suppose that A is an effective anti-nef Q-divisor on X. Then
dim R[A]/mgrR[A] =0
if and only if the image of T'(X,Ox(—[nAl)) in T'(Ej, Ox(—[nA]) @ Og,) is zero for
1<j5<7r and for alln > 0.
Proof. By Proposition 6.7, we have that dim R[A]/mgR[A] = 0if and only if dim R[A]/P; =

0 for all j, and this second conditions holds if and only if R[A]/P; = R/mp for all j by
Remark 6.6. O

Proposition 6.9. Suppose that A is an effective anti-nef Q-divisor on X and Ej; is a
prime exceptional divisor for m: X — Spec(R). Then

1) dim R[A]/P; =2 if (A - Ej) < 0.
2) dim R[A]/P; <1 if (A-E;)=0.
Proof. Suppose that (A - E;) < 0. We have short exact sequences
0— Ox(— (nA} — Ej) — OX(—[TIAW) — Ox(— {TZA-D & OEj — 0.
Taking global sections we have short exact sequences
0= I'(X,0x(—[nA] — Ej)) = I'(X,Ox(—[nAl))
— T(E;, Ox (~[nA]) & Op,) — H'(X, Ox (~[nA] - Ej)).
There exists d € Z~¢q such that dA is an integral divisor. By Corollary 5.7, applied to dA
and the coherent sheaves Ox(—[sA] — E;) for 0 < s < d, we have that

h' (X, Ox(—[nA] — Ej))

is bounded for positive n. Since (—A - E;) > 0, we have (by the Riemann Roch theorem
(6)) that there exists ¢ > 0 such that

h(Ox(—[nA]) ® Og,) > cn
for n > 0. Thus there exists ¢ > 0 such that the image A, := Im(I'(X, Ox(—[nAl])) in
By, :=T(Ej, Ox(—[nAl]) ® Og,) satisfies
(28) (Rr(T(X,O0x(—[nAl))/T(X,Ox(—[nA] — Ej)) = lr(Ayn) = dimy A, > cn

for n > 0.

Let A = &,,>0A,. We have that By is a finite field extension of k = R/mp = Ag. Now
Ox(—dA) ® O, is ample on the projective curve Ej, so there exists e € Zxo which is
divisible by d such that Ox(—eA) ® O, is very ample and B = Dm>0Bme is a finitely
generated Bp-algebra which is generated by its terms of the lowest positive degree me
([20, Theorem 11.5.19 and Exercise 11.5.14]). Thus B is the coordinate ring of a projective
embedding of the curve F; in a projective space over By, determined by a By-basis of
[(Ej, Ox(—eA) ® Og,). Thus B has dimension two. Let A = D0 Ame-

By (28), for n > 0, there exists F' € Ay, such that 0 # F. The ring E(F) of elements
of degree zero in the localization Bp is such that Spec(B(py) is the affine variety Ej \
V(F), with maximal ideals in E( ) corresponding to height one homogeneous prime ideals
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in Proj(B) which do not contain F' (by [20, Proposition II.2.5]). Thus there exists a
homogeneous height one prime ideal Q = @©,,-0Qne in B which does not contain F.

Let P = ANQ, where P = @,~0Pye with Pre = Qpe N Ape. dim B/Q = 1 implies
that there exists d € Zs¢ such that dimg(Bpe/Qne) < d for all n (by [5, Theorem 4.1.3]).
Thus by (28) we have that P # 0. P is not the graded maximal ideal ©,>0An. of A since
F¢&P.

We have constructed a chain of distinct homogeneous prime ideals 0 C P C @, Ane
in A and thus A has dimension > 2. The extension A — A is integral so dim A > 2
by the going up theorem ([2, Theorem 5.11]). We have that mgI'(X,Ox(—[nA])) C
['(X,O0x(—[nA]—Ej)) for all n > 0 by (27). We thus have a surjection R[A]/mrR[A] —
A and so dim A < dim R[A]/mgR[A]. But dim R[A]/mrR[A] < 2 by [14, Lemma 3.6], so
that dim A = 2.

Now suppose that (A - Ej;) = 0. Let B, = I'(Ej, Ox(—[nA]) ® Op,) and A, be the
natural image of I'(X, Ox(—[nA])) in B,. We have that Ay = R/mpr = k and By is a
finite field extension of k. Let A =" ., A,t" where t is an indeterminate. We have that
A= RIA]/P,. -

By the Riemann-Roch Theorem (6) and Lemma 3.1, there exists d > 0 such that
dimg(B,) < d for all n € N.

For a € Zsg, define ;A = ) -;aAnt"™ to be the graded subring of A defined by
oA = Kk[At, Agt?, ..., Ayt%]. The ring ,A is a finitely generated graded k-algebra. For
fixed a, there exists e € Zw( such that ,A©) = Y om0 alent®™ is generated in degree e
(as follows from [4, Proposition I11.3.2 and Proposition I11.3.3 on pages 158 and 159]).
Since 4A is a finitely generated ,A(®)-module, we have that dim,A = dim,A(®). Since
dimg GAS) < d for all n € N, we have that dim,A < 1 for all a € Z~¢ by [5, Theorem
4.1.3]. Suppose that Qo C Q1 C -+ C Qs is a chain of distinct prime ideals in A. Since
Ua>0(aA) = A, for all a > 0, Qo N A C Q1 NGA C -+ C QsNgAis a chain of distinct
prime ideals in A. Thus dim A < 1. O

Corollary 6.10. Suppose that A is an effective anti-nef Q-divisor on X. Then
dim R[A]/mprR[A] = 2
if and only if there exists an exceptional prime divisor E of m such that (A -E) <0

Proof. This follows from Propositions 6.7 and 6.9. U

7. ANALYTIC SPREAD OF DIVISORIAL FILTRATIONS

Theorem 7.1 is a generalization to (not necessarily Noetherian) divisorial filtrations on
a two dimensional normal local ring of a theorem of McAdam, for filtrations of powers of
ideals, in [27] and [33, Theorem 5.4.6]. We recall the exact statement of McAdam’s theorem
in Theorem 1.3 of the introduction. The concept of a divisiorial filtration Z(D) = {I(nD)}
is defined in the introduction.

Theorem 7.1. Let R be a two dimensional normal excellent local ring. The following are
equivalent for a Q-divisorial filtration Z(D) on R.

1) The analytic spread ¢(Z(D)) = dim R[D]/mgrR[D] = 2.

2) mp € Ass(R/I(nD)) for some n.

3) There exists ng € Zsq such that mr € Ass(R/I(nD)) for all n > nyg.
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Proof. Let m : X — Spec(R) be a resolution of singularities such D =7, a;F; for some

prime divisors F; on X and the exceptional divisors Fj,..., E, of m are nonsingular. Let
A = D+ B be the Zariski decomposition of D on X, so that Z(D) = Z(A) and R[D] = R[A]
(by Lemma 4.3). Then this theorem follows from Corollary 6.10 and 6.5. O

Corollary 7.2. Let R be a two dimensional normal excellent local ring and Z(D) be a Q-
divisorial filtration on R. Then dim R[D]/mrR[D] < 1 if and only if there exist height one

prime ideals Q1,...,Qs in R and by, ..., b, € Qs such that I(nD) = anbmﬂ- . -ﬂanbSD
for all n € N.

Proof. We have that I(nD) = Q{1 n ... n Q" for all n € N if and only if mp ¢
Ass(R/I(nD)) for all n which holds if and only if dim R[D]/mrR[D] < 1 by Corollary
7.1. g

Example 7.3. There ezists a Q-divisorial filtration Z(D) on a two dimensional normal
excellent local ring R such that the analytic spread ¢(Z(D)) = 0 and height

W(Z(D)) = he(I(D)) = 1,
giving an example where ht(Z(D)) > £(Z(D)). The Rees algebra of the example is a Non

Noetherian symbolic algebra R[D] =" -, an) N Qén) N an) where Q1, Q2, Q3 are height
one prime ideals in R. ;

Proof. Let k be an algebraically closed field and F' be an irreducible cubic form in the
polynomial ring k[z,y, z] such that E = Proj(k[z,y,z]/(F)) is an elliptic curve. Let
R = k[[z,y, 2]]/(F), a complete, normal excellent local ring of dimension two with maximal
ideal mp = (x,y,2). Let m : X — Spec(R) be the blow up of the maximal ideal mp of
R. X is nonsingular with 7='(mpg) = E, mrOx = Ox(—F), Ox(—F) ® O = Op(1)
and (E?) = —3. We have that Ox(—E) ® Op = Og(q1 + g2 + g3) for some closed points
q1,q92,q93 € E. Let p1,p2,p3 € E be distinct closed points on E such that the degree 0
invertible sheaf £ = Og(q1 + ¢2 + g3 — p1 — p2 — p3) has infinite order in Pic®(X). Then
hO(L™) = 0 for all n € Z. In each regular local ring Ox p;» let u;,v; be a regular system
of parameters such that u; = 0 is a local equation of E at p;. Let F; be the Zariski
closure of v; = 0 in X, which is an integral curve. Let 7(F;) = Q; € Spec(R). R/Q; is
Henselian since it is complete, so by [28, Theorem 4.2 page 32], we have that E intersects
the integral curve F; only at the point p;. F; intersects E transversally at p; so that
(E-F;)) =1. Let D = F| + F5 + F3. The Zariski decomposition of D is A = D + E. We
have that Ox(—nA) ® O = L™ for all n. Thus I'(X, Ox(—nA — E)) = T'(X, Ox(—nA))
for all n € Z~¢, and so by Proposition 6.7,

R[A]/v/mpR[A] = T (X, Ox(—nA))/T(X,Ox(—nA - E)) = R/mp = k.
n>0
Thus
dim R[A]/mgrR[A] = dim R[A]/«/mrR[A] = 0.
Since 0 = ((Z(D)) < 1 = ht(Z(D)), we have that R[D] is Non Noetherian (by [13,
Proposition 3.7]). O

8. THE HILBERT FUNCTION OF R[D]/mpgR][D]

Theorem 8.1. Suppose that R is a two dimensional normal excellent local ring and Z(D)
is a Q-divisorial filtration on R. Then there exist a nonnegative rational number o and a
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bounded function o : N — Q such that
lr(I(nD)/mglI(nD)) = ¢r((R[D]/mgrR[D]),) = na+ o(n)
forn € N. The constant « is positive if and only if dim(R[D]/mgrR[D]) = 2.

The function ¢ is bounded from both above and below. The proof gives an explicit
calculation of the constant « in terms of the intersection theory of a suitable resolution of
singularities in equation (35). The constant « is a nonnegative integer if A is an integral
divisor in the Zariski decomposition D = A + B.

Proof. There exists a resolution of singularities 7 : X — Spec(R) such that D is an effective
Q-divisor on X, mrQx is invertible and the prime exceptional divisors F1, ..., F,. of X are
all nonsingular. Let G be the effective exceptional divisor such that mpOx = Ox(—G).
Let A = D + B be the Zariski decomposition of D on X. There exists d € Z~q such that
dA is an integral divisor.

Suppose that the ideal mpg is generated by f1,..., f,. We have an induced short exact
sequence of coherent sheaves on X

0= K— 0% = mrOx — 0.
Tensoring with Ox (—[nA]) and taking global sections, we have short exact sequences
0 — mgrl'(X, Ox(=[nA]) = T'(X,O0x (- [nA] — G)) = H (X, K ® Ox(—[nAl)).
Thus there exists ¢y € Z~q such that
(29) (r(D(X, Ox(~[nA] = G)) /mal (X, Ox(~[nA))) < e

for all n € N by Corollary 5.7, applied to the effective anti-nef divisor dA and the coherent
sheaves F = K ® Ox(—[sA]) for 0 < s < d. From the short exact sequences

0 — Ox(—=[nA]l — G) —» Ox(—[nA]) - Ox(=[nA]) @ Og — 0
we have inclusions for n € N
I'(X, Ox(=[nA])/T(X, Ox(=[nA] = G)) = I'(G, Ox (=[nA]) © Og)
and by Corollary 5.7, there exists co € Z~ such that
(30) [r(D(G, Ox(=[nA]) ® Og)) — Lr(T(X, 0)X(=[nA]))/T(X, Ox (=[nA])))] < ca.

We are reduced to computing h?(Ox(—[nA]) ® Og) for n € N. Write G = >°I_, a;E;
with a; € Zso.

Let e = Y., a;. There exists a function 7 : {1,...,e} — {1,...,r} such that letting
C1=E;q) and Cj41 = Cj + Erjyq) for 1 < j < e, we have that C. = G. We have short
exact sequences

(31) O%OX(—Cj)(X)OE —>O(jj+1 —>O(jj -0

T(j+1)

for 1 < j < e. The cohomology groups h!'(Ox(—[nA] — mE;) @ Op are bounded

~G4)
for 1 <j <eandn e N by Lemma 3.1. Let

f = max{r'(Ox(~[nA] - mE;) ® Ok, ;) | 1<j<eandn €N}

Tensoring the sequences (31) with Ox(—[nA]) and taking cohomology, we find that

(32)

(Ox (= [nA)@0c,.,) ~ H(Ox(~[nA]) & O,) — h(Ox(~[nA] - C))® O, )| < f
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for 1 < j < e and n € N. Setting Cy = 0, we have that there exists A € Z~¢ such that

(33)

e—1
°(X, Ox(~[nA]) @ Og) = > h(X,0x(—[nA] = Ci) ® O )] < A
i=0
for all n € N. Writing n = md + s with 0 < s < d, we have
ho((’)x(— ’—TLA—‘ — C]) (9 OET<j+1)) = hO(OX(—mdA — [$A~| — C]) ® OET<],+1)).

By Lemma 3.1 and the Riemann-Roch theorem (6), there exists g € Z~ such that

(34)

|h(Ox (—mdA — [sA] — C;) ® Op_,,,,)) — md(=A - Ej41))| < g

T(+1)

for 1 < j < e and m € N. Thus the theorem holds with

(35)

(1]

a=(-A-G).
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