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Abstract. In this paper we prove that a classical theorem by McAdam about the
analytic spread of an ideal in a Noetherian local ring continues to be true for divisorial
filtrations on a two dimensional normal excellent local ring R, and that the Hilbert
polynomial of the fiber cone of a divisorial filtration on R has a Hilbert function which
is the sum of a linear polynomial and a bounded function. We prove these theorems
by first studying asymptotic properties of divisors on a resolution of singularities of the
spectrum of R. The filtration of the symbolic powers of an ideal is an example of a
divisorial filtration. Divisorial filtrations are often not Noetherian, giving a significant
difference in the classical case of filtrations of powers of ideals and divisorial filtrations.

1. Introduction

Divisorial filtrations on two dimensional normal excellent local rings have excellent
properties, as we show in this article.

1.1. Filtrations of powers of ideals and Analytic Spread. In this subsection we
give an outline of how the classical theory of the analytic spread of an ideal admits a
simple geometric interpretation in the case of an ideal in a normal excellent local ring.
The generalization of analytic spread to divisorial filtrations can then be seen as a natural
extension of this theory.

Expositions of the theory of complete ideals, integral closure of ideals and their relation
to valuation ideals, Rees valuations, analytic spread and birational morphisms can be
found, from different perspectives, in [37], [33], [23] and [25]. The book [33] and the article
[25] contain references to original work in this subject. Concepts in this introduction
which are not defined in this section or in these references can be found in Section 2 of
this paper. A survey of recent work on symbolic algebras is given in [15]. A different
notion of analytic spread for families of ideals is given in [16]. A recent paper exploring
ideal theory in two dimensional normal local domains using geometric methods is [31].

Let R be a normal excellent local ring with maximal ideal mR and I be an ideal in R.
Let π : X → Spec(R) be projective and birational (so that π is the blow up of an ideal)
and such that X is normal and IOX is an invertible sheaf. Let IOX = OX(−D) where D
is an effective and anti-nef divisor (the intersection product (D ·E) ≤ 0 for all exceptional
curves E of X). Then Γ(X,OX(−nD)) = In, the integral closure of In, for all n ∈ N.
Write D = a1F1 + · · · + asFs where the Fi are prime divisors. The local rings OX,Fi are
discrete (rank 1) valuation rings. Let νFi be the associated valuations. We have that the
integral closure of In is

In = Γ(X,OX(−nD)) = I(νF1)na1 ∩ · · · ∩ I(νFs)nas
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where

I(νFi)b = {f ∈ R | νFi(f) ≥ b}
are the valuation ideals in R associated to νFi . The center of νFi on R is the prime ideal
I(νFi)1. The Rees valuations of I are those νFj such that In 6= ∩i6=jI(νFi)nai . Let Y be
the normalization of the blow up B(I) of I and let IOY = OY (−B). Then Y → Spec(R)
is projective (since R is universally Nagata). The divisor −B is ample on Y and so the
Rees valuations of I are exactly the prime components of B. By the universal property
of blowing up, π factors through B(I) and since X is normal, π factors through Y . Let
ϕ : X → Y be the induced morphism. Let F be a prime component of D, with associated
valuation νF . Then νF is a Rees valuation of I if and only if ϕ does not contract F , in
which case ϕ(F ) = E is a prime component of B and we have that OX,F = OY,E .

In the case that dimR = 2, the prime divisor F is contracted by ϕ if and only if F is
exceptional (π(F ) = mR) and (D · F ) = 0. Thus the Rees valuations of I are precisely
the valuations associated to prime divisors F of X such that either νF has center a height
one prime of R or F is exceptional for π (the center of νF on R is mR) and (D · F ) < 0.

Let us return to not having any restrictions on the dimension of R. We have an associ-
ated graded ring R[It] =

∑
n≥0 I

ntn (the Rees algebra of I). The integral closure of R[It]

in R[t] is the graded algebra R[It] =
∑

n≥0 I
ntn, which is a finite extension of R[It] (since R

is universally Nagata). The blow up of I is B(I) = Proj(R[It]) and Y = Proj(R[It]) is the
normalization of the blow up of I, which was introduced earlier. Let ψ : B(I)→ Spec(R)
be the projection.

The blowup B(I) has the important subschemes

ψ−1(V (I)) = Proj(grI(R)) and ψ−1(mR) = Proj(R[It]/mRR[It]).

The R-algebra grI(R) =
∑

n≥0 I
n/In+1tn is the associated graded ring of I and the R-

algebra R[It]/mRR[It] is the fiber cone of I.

Since Proj(R[It]) → Spec(R) and Proj(R[It]) → Spec(R) are birational, the dimen-

sions of Proj(R[It]) and Proj(R[It]) are the same as the dimension of R. Further, since
Proj(grI(R)) is a Cartier divisor on Proj(R[It]), we have that dim(Proj(grI(R)) = dimR−
1. Now, since I ⊂ mR, we have that Proj(R[It]/mRR[It]) is a subscheme of Proj(grI(R)),
so we have dim(Proj(R[It]/mRR[It])) ≤ dimR− 1.

Let ψ0 : Proj(grI(R)) → Spec(R/I) be the projective morphism induced by ψ. Let
P be a minimum prime of I. Then dimψ−1

0 (P ) = dimRP − 1 since Ip is primary for

the maximal ideal of RP . We have that dimψ−1(mR) = dimψ−1
0 (mR) ≥ dimψ−1

0 (P ) by
upper semi-continuity of fiber dimension ([19, Corollary IV.13.1.5]). Thus

ht(I) ≤ dimψ−1(mR) + 1.

The analytic spread of I is defined to be

`(I) = dimR[It]/mRR[It].

Since the dimension of the Proj of a graded ring is one less than the dimension of the
ring, we have established in our case of normal excellent local rings the following theorems.

Theorem 1.1. ([33, Proposition 5.1.6 and Corollary 8.3.9]) Let R be a Noetherian local
ring and I be an ideal in R. Then

ht(I) ≤ `(I) ≤ dim grI(R) = dimR.
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Theorem 1.2. ([33, Proposition 5.4.8]) Let R be a Noetherian formally equidimensional
local ring and let I be an ideal in R. For every minimal prime ideal P of grI(R),
dim(grI(R)/P ) = dimR.

We return to the case that R is a normal excellent local ring of arbitrary dimension.
We have that `(I) = dimR if and only if dimψ−1(mR) = dimR− 1. Since

Y = Proj(R[It])→ B(I) = Proj(R[It])

is finite, dimψ−1(mR) = dimR−1 if and only if there exists a prime divisor E on Y which
contracts to mR; that is, the center of νE on R is mR. Writing

IOY = OY (−b1F1 − · · · − bsFs)
where Fi are prime divisors and bi > 0, we have that

In = I(νF1)nb1 ∩ · · · ∩ I(νFs)nbs

where νFi is the discrete rank 1 valuation associated to the valuation ring OY,Fi . Since

−b1F1 − · · · − bsFs is ample on Y , we have that In 6= ∩i6=jI(νFi) for all j and n � 0 (so
that νF1 , . . . , νFs are the Rees valuations of I). Thus dimψ−1(mR) = dimR − 1 holds if
and only if mR ∈ Ass(R/In) for some n.

We have established the following theorem in our case of normal excellent local rings.

Theorem 1.3. ([27], [33, Theorem 5.4.6]) Let R be a formally equidimensional local ring
and I be an ideal in R. Then mR ∈ Ass(R/In) for some n if and only if `(I) = dim(R).

The assumption of being formally equidimensional is not required for the if direction of
Theorem 1.3 (this is Burch’s theorem, [6], [33, Proposition 5.4.7]).

Let k = R/mR. Since R[It]/mRR[It] is a standard graded ring over k (finitely generated
in degree 1) it has a Hilbert polynomial P(n) which has degree d = `(I)− 1; there exists
a positive integer n0 such that

(1) dimk I
n/mRI

n = P (n) for n ≥ n0.

As R[It]/mRR[It] is a finitely generated graded ring over k, there exists e ∈ Z>0 and
polynomials P0, . . . , Pe−1 of degree d = `(I)− 1 such that

(2) dimk In/mRIn = Pi(n) for n ≥ n0 where i ≡ n mod e.

1.2. Filtrations. Let I = {In} be a filtration on a local ring R. The Rees algebra of the
filtration is R[I] = ⊕n≥0In. Analogously to the case of ideals, we define the fiber cone of
the filtration I to be R[I]/mRR[I] and the analytic spread of the filtration of I to be

(3) `(I) = dimR[I]/mRR[I].

We have that ht(In) = ht(I1) for all n ([13, equation (7)]) so it is natural to define
ht(I) = ht(I1).

We always have ([13, Lemma 3.6]) that

`(I) ≤ dimR

so the second inequality of Theorem 1.1 always holds. However, the first inequality of
Theorem 1.1, ht(I) ≤ `(I), fails spectacularly, even attaining the condition that `(I) = 0
([13, Example 1.2, Example 6.1 and Example 6.6]). The last two of these examples are
of symbolic algebras of space curves, which are divisorial filtrations. We give a further
example where the inequality fails in Example 7.3 of this paper. Example 7.3 is of a
symbolic algebra of an intersection of height 1 prime ideals in a two dimensional excellent
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normal local ring. In the case that I is a Noetherian filtration (R[I] is a finitely generated
R-algebra), the lower bound ht(I) ≤ `(I) always holds ([13, Proposition 3.7]), so that the
inequality of Theorem 1.1 for ideals continues to hold for Noetherian filtrations.

The condition that a filtration has analytic spread zero has a simple ideal theoretic
interpretation ([13, Lemma 3.8]). Suppose that I = {In} is a filtration in a local ring R.
Then the analytic spread `(I) = 0 if and only if

For all n > 0 and f ∈ In, there exists m > 0 such that fm ∈ mRImn.

1.3. Divisorial Filtrations. Let R be a local domain of dimension d with quotient field
K. Let ν be a discrete valuation of K with valuation ring Vν and maximal ideal mν .
Suppose that R ⊂ Vν . Then for n ∈ N, define valuation ideals

I(ν)n = {f ∈ R | ν(f) ≥ n} = mn
ν ∩R.

A divisorial valuation of R ([33, Definition 9.3.1]) is a valuation ν of K such that if Vν
is the valuation ring of ν with maximal ideal mν , then R ⊂ Vν and if p = mν ∩ R then
trdegκ(p)κ(ν) = ht(p) − 1, where κ(p) is the residue field of Rp and κ(ν) is the residue
field of Vν . If ν is divisorial valuation of R such that mR = mν ∩ R, then ν is called an
mR-valuation.

By [33, Theorem 9.3.2], the valuation ring of every divisorial valuation ν is Noetherian,
hence is a discrete valuation. Suppose that R is an excellent local domain. Then a
valuation ν of the quotient field K of R which is nonnegative on R is a divisorial valuation
of R if and only if the valuation ring Vν of ν is essentially of finite type over R ([12, Lemma
5.1]).

In general, the filtration I(ν) = {I(ν)n} is not Noetherian; that is, the graded R-
algebra

∑
n≥0 I(ν)nt

n is not a finitely generated R-algebra. In a two dimensional normal

local ring R, the condition that the filtration of valuation ideals I(ν) is Noetherian for
all mR-valuations ν dominating R is the condition (N) of Muhly and Sakuma [29]. It is
proven in [9] that a complete normal local ring of dimension two satisfies condition (N) if
and only if its divisor class group is a torsion group.

An integral divisorial filtration of R (which we will refer to as a divisorial filtration in
this paper) is a filtration I = {Im} such that there exist divisorial valuations ν1, . . . , νs
and a1, . . . , as ∈ Z≥0 such that for all m ∈ N,

Im = I(ν1)ma1 ∩ · · · ∩ I(νs)mas .

I is called an R-divisorial filtration if a1, . . . , as ∈ R>0 and I is called a Q-divisorial
filtration if a1, . . . , as ∈ Q. If ai ∈ R>0, then

I(νi)nai := {f ∈ R | νi(f) ≥ nai} = I(νi)dnaie,

where dxe is the round up of a real number.
Given an ideal I in R, the filtration {In} is an example of a divisorial filtration of R.

The filtration {In} is Noetherian if R is universally Nagata.
It is shown in [13, Theorem 4.5 ] that the “if” statement of Theorem 1.3 is true for

divisorial filtrations of a local domain R.

Theorem 1.4. ([13, Theorem 4.5]) Suppose that R is a local domain and I = {In} is
a divisorial filtration on R such that `(I) = dimR. Then mR ∈ Ass(R/In) for infinitely
many n.
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An interesting question is if the converse of Theorem 1.3 is also true for divisorial
filtrations of a local ring R. We prove this for two dimensional excellent normal local rings
in this paper (Theorem 7.1, also stated in Theorem 1.5 of this introduction).

1.4. Divisorial filtrations on normal excellent local rings. Let R be a normal ex-
cellent local ring. Let I = {Im} where

Im = I(ν1)ma1 ∩ · · · ∩ I(νs)mas .

for some divisorial valuations ν1, . . . , νs on R be an R-divisorial filtration on a normal
excellent local ring R, with a1, . . . , as ∈ R>0. Then there exists a projective birational
morphism ϕ : X → Spec(R) such that there exist prime divisors F1, . . . , Fs on X such
that Vνi = OX,Fi for 1 ≤ i ≤ s. Let D = a1F1 + · · ·+ asFs, an effective R-divisor. Define
dDe = da1eF1 + · · ·+ daseFs, an integral divisor. We have coherent sheaves OX(−dnDe)
on X such that

(4) Γ(X,OX(−dnDe)) = In

for n ∈ N. If X is nonsingular then OX(−dnDe) is invertible. The formula (4) is indepen-
dent of choice of X. Further, even on a particular X, there are generally many different
choices of effective R-divisors G on X such that Γ(X,OX(−dnGe)) = In for all n ∈ N.
Any choice of a divisor G on such an X for which the formula Γ(X,OX(−dnGe)) = In for
all n ∈ N holds will be called a representation of the filtration I.

Given an R-divisor D = a1F1 + · · ·+ asFs on X we have a divisorial filtration I(D) =
{I(D)n} where

I(D)n = Γ(X,OX(−dnDe)) = I(ν1)dna1e ∩ · · · ∩ I(νs)dnase = I(ν1)ma1 ∩ · · · ∩ I(νs)mas .

We write R[D] = R[I(D)].

1.5. Summary of principal results in this paper. Let R be an excellent two dimen-
sional normal excellent local ring with maximal ideal mR.

All possible analytic spreads `(I(D)) = 0, 1, 2 can occur for Q-divisors D on R. An
example where `(I(D)) = 0 < ht(I(D)) = 1 is given in Example 7.3. This example is

of a symbolic filtration I(D) = {Q(n)
1 ∩ Q(n)

2 ∩ Q(n)
3 } where Q1, Q2, Q3 are height one

prime ideals in a two dimensional normal excellent local ring R. In contrast, since the
filtration I(D) is not Noetherian, we have (by [13, Corollary 1.9]) that for every a ∈ Z>0,

the analytic spread of the ideal Q
(a)
1 ∩Q

(a)
2 ∩Q

(a)
3 is `(Q

(a)
1 ∩Q

(a)
2 ∩Q

(a)
3 ) = 2, the largest

possible.
We prove that the conclusions of Theorem 1.3 hold for Q-divisorial filtrations on R in

Theorem 7.1.

Theorem 1.5. (Theorem 7.1) Let R be a two dimensional normal excellent local ring.
The following are equivalent for a Q-divisorial filtration I(D) on R.

1) The analytic spread `(I(D)) = dimR[D]/mRR[D] = 2.
2) mR ∈ Ass(R/I(nD)) for some n.
3) There exists n0 ∈ Z>0 such that mR ∈ Ass(R/I(nD)) for all n ≥ n0.

We generalize the formula on Hilbert functions of filtrations of powers of ideals in (1)
and (2) to Q-divisorial filtrations on R in Theorem 8.1.
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Theorem 1.6. (Theorem 8.1) Suppose that R is a two dimensional normal excellent local
ring and I(D) is a Q-divisorial filtration on R. Then there exist a nonnegative rational
number α and a bounded function σ : N→ Q such that

`R(I(nD)/mRI(nD)) = `R((R[D]/mRR[D])n) = nα+ σ(n)

for n ∈ N. The constant α is positive if and only if dim(R[D]/mRR[D]) = 2.

It is unlikely that the function σ(n) will always be eventually periodic. It is shown in
[14, Theorem 9] that if D has exceptional support then the Hilbert function of grI(R) =∑

n≥0 I(nD)/I((n+ 1)D)tn has an expression

`R(I(nD)/I((n+ 1)D)) = nβ + τ(n)

where β ∈ Q and τ(n) is a bounded function. If R has equicharacteristic zero then it is
shown in [14, Theorem 9] that τ(n) is eventually periodic, and [14, Example 5] gives an
example where R has equicharacteristic p > 0 and τ(n) is not eventually periodic.

Suppose that A is an excellent normal local ring of dimension 3. Let Z → Spec(A) be
a resolution of singularities and D be an effective divisor on Z, all of whose components
contract to the maximal ideal mA. Then the Hilbert polynomial h(n) = `A(I(nD)/I((n+
1)D)) may be far from being polynomial like. The examples ([14, Example 6] and [10,
Theorem 1.4]) have the property that

lim
n→∞

h(n)

n2

is an irrational number. These examples are in three dimensional equicharacteristic rings
A of any characteristic. The reason for this irrational behavior in dimension three is
because of the lack of existence of Zariski decompositions in dimension three.

We now give an outline of the proof of Theorem 7.1. Let π : X → Spec(R) be a
resolution of singularities such that D is represented on X. Let E1, . . . , Er be the prime
exceptional divisors of π. An R-divisor ∆ on X is anti-nef if (E · ∆) ≤ 0 for all prime
exceptional divisors E on X. Since X has dimension two, D has a Zariski decomposition,
∆ = D + B where ∆ is an anti-nef divisor and B is an effective divisor with exceptional
support such that

I(nD) = Γ(X,OX(−dnDe)) = Γ(X,OX(−dn∆e)) = I(n∆)

for all n ∈ N. This decomposition does not exist in higher dimensions, even after blowing
up ([8], [30, Section IV.2.10], [21, Section 2.3]).

Proposition 1.7. (Corollary 6.5) Suppose that ∆ is an effective anti-nef Q-divisor on X.
Then the following are equivalent.

1) There exists n such that mR ∈ Ass(R/I(n∆)).
2) There exists n0 such that mR ∈ Ass(R/I(n∆)) for all n ≥ n0.
3) There exists j such that Ej is exceptional and (∆ · Ej) < 0.

Let Ej be an exceptional divisor of π and

Pj =
⊕
n≥0

Γ(X,OX(−dn∆e − Ej))

for 1 ≤ j ≤ r. Pj is a prime ideal in R[∆] = R[D]. In Proposition 6.7 it is shown that√
mRR[∆] = ∩ri=1Pi.
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The following proposition computes the dimension of R[∆]/Pj in terms of the intersection
theory of X.

Proposition 1.8. (Proposition 6.9) Suppose that ∆ is an effective anti-nef Q-divisor on
X and Ej is a prime exceptional divisor for π : X → Spec(R). Then

1) dimR[∆]/Pj = 2 if (∆ · Ej) < 0.
2) dimR[∆]/Pj ≤ 1 if (∆ · Ej) = 0.

Since
√
mRR[∆] = ∩ri=1Pi, we deduce Theorem 7.1 from Propositions 6.5 and 6.9.

The theory of Zariski decomposition was created and developed by Zariski in [35] for
projective surfaces over an algebraically closed field. In Section 4, we give the relative
version of this theory, over a two dimensional excellent normal local ring, and in Section 5,
we extend some results in [35] for numerically effective divisors on a nonsingular projective
surface to our situation of a resolution of singularities of a two dimensional normal excellent
local ring. We prove the main results of this paper on asymptotic properties of divisors
on a resolution of singularities of a two dimensional normal excellent local ring in Section
6. We prove Theorem 7.1 in Section 7 and Theorem 8.1 in Section 8.

1.6. Notation. We will denote the nonnegative integers by N and the positive integers
by Z>0, the set of nonnegative rational numbers by Q≥0 and the positive rational numbers
by Q>0. We will denote the set of nonnegative real numbers by R≥0 and the positive real
numbers by R>0. If x ∈ R, then dxe is the smallest integer which is greater than or equal
to x.

The maximal ideal of a local ring R will be denoted by mR. We will denote the length
of an R-module M by `R(M). [18, Scholie IV.7.8.3] gives a list of good properties of
excellent local rings which we will assume.

2. Divisors on a resolution of singularities of a two dim. local ring

Throughout this paper R will be a two dimensional excellent normal local ring with
quotient field K, maximal ideal mR and residue field k = R/mR.

From this section through Section 6, π : X → Spec(R) will be a resolution of singulari-
ties such that π is projective and all exceptional prime divisors of π are nonsingular. Such
a resolution of singularities exists by [24] or [7]. Let E1, . . . , Er be the exceptional prime
divisors for π. A divisor is exceptional if all its prime components map to mR by π. We
will further assume that π is not an isomorphism.

Remark 2.1. Suppose that F is a coherent sheaf on X. Then H0(X,F) is a finitely
generated R-module, H1(X,F) is an R module of finite length and H2(X,F) = 0.

Proof. By [20, Theorem III.5.2], H0(X,F) is a finitely generated R-module. By [20,
Theorem III.5.2 and Corollary III.11.2], H1(X,F) is an R module of finite length and by
[20, Corollary III.11.2], H2(X,F) = 0 since dimπ−1(mR) = 1. �

An element of the free abelian group Div(X) on the prime divisors of X is called a
divisor. Elements of Div(X) ⊗ Q are called Q-divisors and elements of Div(X) ⊗ R are
called R-divisors. We will sometimes refer to a divisor as an integral divisor if we want
to emphasize this fact. If D1 and D2 are R-divisors then write D2 ≥ D1 if D2 − D1 is
an effective divisor. The degree deg(L) for L an invertible sheaf on a projective curve is
defined in Section 3.
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We use the intersection theory on X developed in [23, Sections 12 and 13]. The inter-
section theory on X is determined by the formula (D · E) = deg(OX(D)⊗OE) if D is a
divisor on X and E is a prime exceptional divisor on X.

An R-divisor D is numerically effective (nef) if (E · D) ≥ 0 for all prime exceptional
divisors E of X. An R-divisor D on X is anti-effective or anti-nef if −D is respectively
effective or nef. A Q-divisor D is anti-ample if −D is ample and an (integral) divisor D
is anti-very ample if −D is very ample.

Let F be a prime divisor on X. Then OX,F is a (rank 1) discrete valuation ring. Let
νF be the associated valuation. For 0 6= f ∈ K the divisor of f on X is (f) =

∑
νF (f)F

where the sum is over all the prime divisors F of X. Two divisors D1 and D2 are linearly
equivalent, written D1 ∼ D2 if there exists f ∈ K such that (f) = D2 − D1. Two
divisors D1 and D2 which are linearly equivalent are also numerically equivalent; that is,
(E ·D2) = (E ·D1) for all prime exceptional divisors E of π.

Let D =
∑
biFi be an integral divisor on X. There is an associated invertible sheaf

OX(D) on X which is determined by the property that if U is an affine open subset of
X and h ∈ K is such that h = 0 is a local equation of D in U , then OX(D) | U = 1

hOU .
Thus

Γ(X,OX(D)) = {f ∈ R | (f) +D ≥ 0}.
Since R is a subset of Γ(X,OX) in K and R is normal we have that Γ(X,OX) = R by

Remark 2.1, and so if D is an effective divisor then Γ(X,OX(−D)) is an ideal in R.
Let dae denote the smallest integer that is greater than or equal to a real number a. If

D =
∑s

i=1 aiFi with ai ∈ R is an R-divisor, let dF e =
∑
daieFi.

Let F be a prime divisor on X. For α ∈ R≥0 define valuation ideals in R by

I(νF )α = {f ∈ R | νF (f) ≥ α}.

We necessarily have that I(νF )α = I(νF )dαe.
For an effective R-divisor D = a1F1 + · · · + asFs, where F1, . . . , Fs are prime divisors

on X and ai ∈ R≥0, we have an associated ideal in R

I(D) := I(νF1)a1 ∩ · · · ∩ I(νFs)as = I(νF1)da1e ∩ · · · ∩ I(νFs)dase = Γ(X,OX(−dDe)).

Let D be a divisor on X. Then Γ(X,OX(D)) 6= 0. The fixed component of D is the
largest effective divisor F on X such that

Γ(X,OX(D)) = Γ(X,OX(D − F )).

For n ∈ N, let Bn be the fixed component of nD and let

Mi = {n ∈ N | Ei is not a component of Bn}.

Mi is a numerical semigroup, so if Mi is nonzero, there exists hi ∈ Z>0 such that for
n� 0, n ∈Mi if and only if hi divides n.

The global sections Γ(X,OX(D)) of OX(D) generate OX(D) at a point q ∈ X if
OX(D)q = Γ(X,OX(D))OX,q. The points q ∈ X where OX(D) is generated by global
sections are necessarily disjoint from the support of the fixed component of D.

Lemma 2.2. Let D be an effective divisor on X and let F be a prime divisor in the
support of the fixed component of −D. Then the support of F is exceptional.

Proof. Write D =
∑r

i=1 aiFi where the Fi are distinct prime divisors on X and ai ∈ N.
Suppose that Fj is not exceptional for π. Let qj = π(Fj), a height one prime ideal in R.
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Since π is an isomorphism over Spec(R) \mR, we have that Rqj = OX,Fj , so

OX(−D)Fj = (q
aj
j )qj = (I(νj)aj )qj = Γ(X,OX(−D))qj

= Γ(X,OX(−D))OX,Fj .
Thus Fj is not in the support of F . �

The intersection matrix of the exceptional curves of π is the r × r matrix ((Ei · Ej))
which is negative definite ([23, Lemma 14.1]).

Proposition 2.3. Let D be a Q-divisor on X. Then D is ample if and only if (D ·E) > 0
for all prime exceptional divisors E on X.

This is proved in [23, Theorem 12.1]. As commented in the proof of [23, Theorem 12.1],
the additional assumption there that H1(X,OX) = 0 is not necessary for this conclusion.

Lemma 2.4. The support of a nonzero effective anti-nef R-divisor D on X contains all
exceptional prime divisors.

Proof. Let S be the set of exceptional prime divisors which are in the support of D. Write
D = B +

∑r
i=1 aiEi where B is an effective divisor which contains no exceptional prime

divisors in its support and all ai ≥ 0. For all Ej , we have that

0 ≥ (D · Ej) = (B · Ej) +
∑
i6=j

ai(Ei · Ej) + aj(E
2
j ),

and so

(5) −aj(E2
j ) ≥ (B · Ej) +

∑
i6=j

ai(Ei · Ej) ≥ 0.

If B is nonzero, then there exists Ej such that (Ej ·B) > 0 and thus aj > 0 and so Ej ∈ S.
If B = 0 then there exists Ej such that (Ej · D) < 0 since D 6= 0 and the intersection
matrix ((Ei · Ej)) is nonsingular. Thus S is nonempty. If Ej′ ∈ S and Ej is such that
(Ej · Ej′) > 0 then Ej ∈ S by (5). The exceptional fiber π−1(mR) is connected as R is
normal and π is birational (by [20, Corollary III.11.4]). Thus S is the set of all exceptional
prime divisors of X. �

Lemma 2.5. X is the blowup of an mR-primary ideal.

Proof. Since the intersection matrix ((Ei · Ej)) is negative definite, there exists an effective
anti-ample Q-divisor A on X with exceptional support (by Proposition 2.3). Thus −dA is
very ample for some d ∈ Z>0. Let I = Γ(X,OX(−dA)). The ideal I is mR-primary since
the support of A is exceptional. The integral closure of

∑
n≥0 I

ntn in R[t] is∑
n≥0

Intn =
∑
n≥0

Γ(X,OX(−ndA))tn.

Since R is excellent,
∑

n≥0 I
ntn is a finitely generated graded R-algebra. Thus after

replacing d with a higher power of d we may assume that In = In = Γ(X,OX(−ndA)) for
all n ∈ Z>0 (as follows from [4, Proposition III.3.2 and Proposition III.3.3 on pages 158
and 159]).

Let Y = Proj(⊕n≥0I
n), which is normal since ⊕n≥0I

n is integrally closed. Since
OX(−dA) is generated by global sections we have that IOX = OX(−dA). By the univer-
sal property of blowing up ([20, Proposition II.7.14]), there exists a unique R-morphism
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ϕ : X → Y such that ϕ∗OY (1) ∼= OX(−dA). ϕ is a birational morphism which is an iso-
morphism away from the preimage of mR. ϕ is of finite type since X → Spec(R) is. Since
(−A ·E) > 0 for all exceptional curves of X we have that ϕ does not contract any curves of
X and thus ϕ is quasi-finite. Let p ∈ X and q = ϕ(p). Let A = OY,q and B = OX,p. The
birational extension A→ B satisfies mAB is mB-primary since ϕ is quasi-finite. Since A
is normal and excellent it is analytically irreducible by [18, Scholie IV.7.8.3(vii)]. Thus by
Zariski’s main theorem [1, (10.7) page 240] or [11, Proposition 21.53], we have that A = B
and so ϕ is an isomorphism and X is the blowup of the mR-primary ideal I. �

Lemma 2.6. Let A be a universally Nagata domain and I be an ideal in A. Let Y =
Proj(

⊕
n≥0 I

n). Then the graded ring
⊕

n≥0 Γ(Y, InOY ) is a finite
⊕

n≥0 I
n-module and

there exists n0 ∈ Z>0 such that Γ(Y, InOY ) = In for n ≥ n0.

Proof. This follows from the proof on the last two lines of page 122 through the first half
of page 123 of [20, Theorem II.5.19], along with the fact (observed in [20, Remark 5.19.2])
that the integral closure of a Nagata domain in its quotient field is a finite extension (by
[26, Proposition 31.B]). �

3. Riemann-Roch theorems for curves

We summarize the famous Riemann-Roch theorems for curves. The following theorems
are standard over algebraically closed fields. A reference where they are proven over an
arbitrary field k is [22, Section 7.3]. The results that we need are stated in [22, Remark
7.3.33].

Let E be an integral regular projective curve over a field k. For F a coherent sheaf on
E define hi(F) = dimkH

i(E,F).
Let D =

∑
aipi be a divisor on E, where pi are prime divisors on E (closed points) and

ai ∈ Z. We have an associated invertible sheaf OX(D). Define

deg(D) = deg(OE(D)) =
∑

ai[OEi,pi/mpi : k].

The Riemann-Roch formula is

(6) χ(OE(D)) := h0(OE(D))− h1(OE(D)) = deg(D) + 1− pa(E)

where pa(E) is the arithmetic genus of E.
We further have Serre duality,

(7) H1(E,OE(D)) ∼= H0(E,OE(K −D))

where K = KE is a canonical divisor on E. As a consequence, we have

(8) degD > 2pa(E)− 2 = deg(K) implies H1(E,OE(D)) = 0.

We have the following well known consequence of these formulas, which we record for
future reference.

Lemma 3.1. Let E be an integral regular projective curve over a field k. Let {Dn}n≥0 be
an infinite sequence of divisors on E such that deg(Dn) is bounded from below and let Z
be a divisor on E. Then there exists s ∈ Z>0 such that

h1(OE(Dn + Z)) ≤ s for all n ∈ N.

Proof. There exists an integer c such that deg(Dn) ≥ c for all n. Let U be an effective
divisor on E of degree larger than 2pa(E)− 2 + c. By Serre duality (7),

h1(OE(Dn + Z)) = h0(OE(K − (Dn + Z))
10



where K is a cononical divisor on E. We have

deg(K − (Z +Dn)) ≤ deg(K − Z)− c.

If deg(K − Z)− c < 0, then certainly h0(OE(K − (Dn + Z)) = 0. If deg(K − Z)− c ≥ 0,
then h1(OE(K − (Dn + Z) + U) = 0 by (8) and so

h0(OE(K − (Dn + Z)) ≤ h0(OE(K − (Dn + Z) + U)
= deg(K − (Dn + Z)) + deg(U) + 1− pa(E)
≤ deg(K − Z)− c+ deg(U) + 1− pa(E).

�

If L is an invertible sheaf on E then L ∼= OE(D) for some divisor D on E, and we may
define deg(L) = deg(OX(D)) = deg(D).

We will apply the above formulas in the case that E is a prime exceptional divisor for
a resolution of singularities π : X → Spec(R) as in Section 2. We take k = R/mR. We
have that E is projective over k = R/mR, and E is a nonsingular (by assumption) integral
curve. Let D be a divisor on X. Then deg(OX(D)⊗OE) = (D · E).

4. Zariski decomposition

In this section we present a relative form of the Zariski decomposition defined for pro-
jective surfaces over an algebraically closed field in [35]. Lemma 4.1 in the case that D is
exceptional follows directly from [35] or [3, Theorem 3.3].

We continue with our ongoing assumptions that R is a two dimensional excellent normal
local ring with quotient field K, maximal ideal mR and residue field k = R/mR and
π : X → Spec(R) is a resolution of singularities such that the exceptional prime divisors
E1, . . . , Er are nonsingular.

The proof of the following lemma is a modification of the proof of [3, Theorem 3.3].

Lemma 4.1. Let D be an effective R-divisor on X. Then there exist unique effective
R-divisors ∆ and B on X such that the following 1) and 2) hold.

1) ∆ = D +B is anti-nef and B has exceptional support.
2) (∆ · E) = 0 if E is a component of B.

Further,

3) ∆ is the unique minimal effective anti-nef R-divisor such that ∆ −D is effective
with exceptional support.

4) If D is a Q-divisor then ∆ and B are Q-divisors.

The decomposition ∆ = D + B of the conclusions of Lemma 4.1 is called the Zariski
decomposition of D.

Proof. For x = (x1, . . . , xr) ∈ Rr, consider the inequalities

(9) 0 ≤ xi for 1 ≤ i ≤ r

and

(10)

(
(D +

r∑
i=1

xiEi) · Ej

)
≤ 0 for 1 ≤ j ≤ r.

Since the matrix ((Ei · Ej)) is negative definite and by Proposition 2.3, there exists an
anti-ample, effective divisor A =

∑r
i=1 aiEi on X. Thus ai > 0 for all i (by Lemma 2.4)
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and after possibly replacing A with a positive multiple of A, x = a = (a1, . . . , ar) satisfies
(9) and (10). Let

(11) S = {x ∈ Rr | xi ≤ ai for all i and the 2r inequalities (9) and (10) are satisfied}.
The set S is nonempty and compact. Thus there is at least one point in S such that∑r

i=1 xi is minimized on S. Let b = (b1, . . . , br) be such a point. Let B = b1E1 + · · ·+brEr
and ∆ = D + B. Then ∆ is an effective, anti-nef R-divisor and B is an effective R-
divisor with exceptional support. Let Ej be a component of B. Since b minimizes

∑
xi,

B − εEj is effective and ∆ − εEj is not anti-nef for all ε > 0 sufficiently small. But
((∆− εEj) · Ei) ≤ 0 for all i 6= j so we must have that ((∆− εEj) · Ej) > 0 for all
positive ε and thus (∆ · Ej) = 0 since ∆ is anti-nef. Thus the decomposition ∆ = D +B
satisfies 1) and 2).

For b = (b1, . . . , br), b
′ = (b′1, . . . , b

′
r) ∈ Rr, define

min(b, b′) = (min(b1, b
′
1), . . . ,min(br, b

′
r)).

If b and b′ satisfy (9) and (10) then min(b, b′) also satisfies (9) and (10), as we now show.
For a fixed j, we may assume that min(bj , b

′
j) = bj (after possibly interchanging b and b′).

Then since (Ei · Ej) ≥ 0 if i 6= j, we have that

((D +
∑
i

min(bi, b
′
i)Ei) · Ej) ≤ ((D +

∑
i

biEi) · Ej) ≤ 0.

Suppose that B =
∑
biEi and B′ =

∑
b′iEi are effective R-divisors such that ∆ = D+B

and ∆′ = D = B′ satisfy both 1) and 2). We will show that B = B′ and so ∆ = ∆′. Let
min(B,B′) =

∑
i min(bi, b

′
i)Ei. There exist xi ≥ 0 such that min(B,B′) = B −

∑
i xiEi.

Since D + min(B,B′) is anti-nef, for each element Ej of the support of B we have

0 ≥
(
(D + min(B,B′)) · Ej

)
=

(
(∆−

∑
i

xiEi) · Ej

)
= −

∑
i

xi(Ei · Ej).

Thus
∑

i xi(Ei · Ej) ≥ 0 and so(
∑
i

xiEi) · (
∑
j

xjEj)

 =
∑
i

∑
j

xixj(Ei · Ej) ≥ 0.

Since the matrix ((Ei · Ej)) is negative definite, we have that xi = 0 for all i. Thus
B = min(B,B′). Similarily, B′ = min(B,B′) and so B = B′. Thus there is a unique
effective R-divisor B with exceptional support such that B and ∆ = D+B satisfy 1) and
2).

We now show that ∆ is the unique minimal effective and anti-nef R-divisor on X such
that ∆−D is effective with exceptional support. Let U be an effective anti-nef R-divisor on
X such that U−D is effective with exceptional support. Let U ′ = D+min(∆−D,U−D).
As shown earlier in the proof, U ′ ≥ D is effective and anti-nef. Write U ′ −D =

∑
uiEi

and B = ∆−D =
∑
biEi. We have

∑
ui ≤

∑
bi ≤

∑
ai so U ′ −D ∈ S (defined in (11)).

Since
∑
bi is the minimum of

∑
xi on S, we have that ui = bi for all i and so U ′ = ∆.

Thus ∆ ≤ U .
Now suppose that D is an effective Q-divisor on X. Let ∆ = D + B be the Zariski

decomposition of D. After possibly reindexing the E1, . . . , Er, we may assume that the
support of B is E1 ∪ · · · ∪ Es for some s with 1 ≤ s ≤ r. Expand D = F +

∑r
i=1 ciEi

where F is an effective Q-divisor whose support does not contain any prime exceptional
divisor and c1, . . . , cr ∈ Q≥0. Then ∆ = F +

∑r
i=1 diEi with ci ≤ di for all i and di = ci
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for s + 1 ≤ i ≤ r. Further, for 1 ≤ j ≤ s, we have 0 = (∆ · Ej) =
∑s

i=1 di(Ei · Ej) + gj
where gj = (F · Ej) +

∑r
i=s+1 ci(Ei · Ej) ∈ Q. Since the s× s matrix ((Ei · Ej))1≤i,j≤s is

negative definite, and thus is nonsingular, we have that d1, . . . , ds ∈ Q. Thus ∆ and B are
Q-divisors. �

Remark 4.2. From 3) of the conclusions of Lemma 4.1, we deduce that if D1 ≤ D2 are
effective R-divisors such that D2 −D1 has exceptional support and the respective anti-nef
parts of their Zariski decompositions are ∆1 and ∆2, then ∆1 ≤ ∆2.

Lemma 4.3. Suppose that D is an effective R-divisor on X and ∆ = D+B is the Zariski
decomposition of D. Then for all n ∈ N,

Γ(X,OX(−dnDe)) = Γ(X,OX(−dn∆e)).

Proof. Suppose that f ∈ Γ(X,OX(−dn∆e)). Then (f) − dn∆e ≥ 0. Writing n∆ =
dn∆e −G with G ≥ 0, we have −n∆ = G− dn∆e. From

−nD = −n∆ + nB = −dn∆e+ (G+ nB)

and the fact that G+nB ≥ 0, we have that (f)−nD ≥ 0 so that f ∈ Γ(X,OX(−dnDe)).
Let S be the set of prime divisors in the support of B. Suppose that

f ∈ Γ(X,OX(−dnDe)).

Then (f) − nD ≥ 0. Write (f) − nD = A + C where A and C are effective R-divisors
on X, no components of A are in S and all components of C are in S. We have that
(f)− n∆ = A+ (C − nB). If E ∈ S then

(E · (A+ (C − nB))) = (E · ((f)− n∆)) = 0

which implies (E · (C−nB)) = −(E ·A) ≤ 0. The intersection matrix of the curves in S is
negative definite since it is so for the set of all exceptional curves, so C − nB ≥ 0 (by [35,
Lemma 7.1]). Thus (f) − n∆ ≥ 0 which implies (f) − dn∆e ≥ 0 since (f) is an integral
divisor. Thus f ∈ Γ(X,OX(−dn∆e)). �

5. Nef divisors

In this section we extend to our relative situation X → Spec(R) some theorems proven
by Zariski in [35] for projective surfaces over an algebraically closed field. We stay as close
as possible to Zariski’s original proof, although some parts require modification. In [21],
and the references in that book, a theory of nef divisors on nonsingular projective varieties
of arbitrary dimension over an algebraically closed field of characteristic zero is derived.
Much of this theory can be extended to the relative situation, over Spec(A), where the
local ring A is normal and essentially of finite type over an algebraically closed field of
characteristic zero, or even of positive characteristic.

We continue with our ongoing assumptions that R is a two dimensional excellent normal
local ring with quotient field K, maximal ideal mR and residue field k, and that π : X →
Spec(R) is a resolution of singularities such that the exceptional prime divisors E1, . . . , Er
of π are all nonsingular.

Proposition 5.1. Let ∆ be an effective anti-nef divisor on X. For n ≥ 0, let Bn be the
fixed component of −n∆. Suppose that E is a prime divisor which is in the support of
the fixed component Bn of −n∆ for infinitely many n. Then E is exceptional for π and
(∆ · E) = 0.
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Proof. By Lemma 2.2, E is exceptional. We will assume that (∆ · E) < 0 and derive a
contradiction. Since Γ(X,OX(−∆)) 6= 0 there exists an effective divisor D on X such
that D ∼ −∆. Write D = U + F1 + · · · + Fs where U is an effective divisor with no
exceptional divisors in its support and F1 = E,F2, . . . , Fs are prime exceptional divisors.
Let ∆i = U + F1 + · · ·+ Fi for 0 ≤ i ≤ s.

We have short exact sequences

0→ OX(nD −∆0)→ OX(nD)→ OX(nD)⊗O∆0 → 0.

There exists a very ample effective divisor H on X which contains no exceptional prime
divisors in its support and whose support is disjoint from ∆0 by [20, Theorem III.5.2]
since ∆0 intersects π−1(mR) in only a finite number of closed points and so ∆0 is a closed
subscheme of the affine scheme X \ V (H) and thus ∆0 is an affine scheme. We thus have
that H1(∆0,OX(−nD)⊗O∆0) = 0 for all n and so

(12) h1(OX(nD)) ≤ h1(OX(nD −∆0))

for all n ∈ N.
For i < s and n ∈ N, we have short exact sequences

0→ OX(nD −∆i − Fi+1)→ OX(nD −∆i)→ OX(nD −∆i)⊗OFi+1 → 0.

Thus

h1(OX(nD −∆i)) ≤ h1(OX(nD −∆i+1) + h1(Fi+1, OX(nD −∆i)⊗OFi+1).

(D ·Fi+1) = (−∆ ·Fi+1) ≥ 0 implies that there exists σi > 0 such that h1(Fi+1, OX(nD−
∆i)⊗OFi+1) ≤ σi for all n ∈ N by Lemma 3.1, so

(13) h1(OX(nD −∆i)) ≤ h1(OX(nD −∆i+1)) + σi

for all i ≥ 0 and n ∈ N.
Now consider the exact sequences

0→ OX(nD −∆0 − F1)→ OX(nD −∆0)→ OX(nD −∆0)⊗OF1 → 0

for n ∈ N. Since (F1 ·D) = (F1 · −∆) > 0 we have that H1(F1,OX(nD −∆i)⊗OF1) = 0
for n � 0 by (8). From the natural inclusion OX(nD −∆0) → OX(nD) we deduce that
F1 is in the support of the fixed locus of nD−∆0 if F1 is in the support of the fixed locus
of −n∆. Thus for n such that F1 is a component of the base locus Bn of −n∆, the image
of H0(X,OX(nD −∆0)) in H0(F1,OX(nD −∆i)⊗OF1) is zero. Thus

h1(OX(nD −∆0)) = h1(OX(nD −∆0 − F1))− χ(OF1(nD −∆0)⊗OF1)

so that by the Riemann Roch theorem (6),

(14) h1(OX(nD −∆0)) = h1(OX(nD −∆0 − F1)) + n(∆ · F1) + (∆0 · F1) + pa(F1)− 1.

As explained before the statement of Lemma 2.2, there exists a positive integer h such
that for n� 0, F1 is a component of Bn if h 6 |n.

By (12) and (13), there exists a constant c > 0 such that

h1(OX(nD)) ≤ h1(OX((n− 1)D)) + c

for all n ∈ Z>0 and for all n� 0 such that h 6 |n we have by (12), (13) and (14) that

h1(OX(nD)) ≤ h1(OX((n− 1)D) + n(∆ · F1) + c.

Thus we have h1(OX(nD)) < 0 for n � 0 since we have assumed that (∆ · F1) < 0. But
this is impossible, giving a contradiction and so (∆ · F1) = 0. �
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Proposition 5.2. Let Γ be an effective divisor on X such that −Γ has no fixed component.
Then

1) OX(−nΓ) is generated by global sections for all n� 0.
2) There exists s ∈ Z>0 such that h1(X,OX(−nΓ)) < s for all n ∈ N.

Proof. The set of base points

Ω = {p ∈ X | OX(−Γ)p is not generated by global sections}
of Γ(X,OX(−Γ)) is a finite set of closed points, which are necessarily contained in the
exceptional fiber of π. Let C ≥ 0 be an effective divisor on X such that −C is very ample
for π. There exists an integer m > 0 such that there exists an effective divisor H ∼ −mC
with no exceptional components in its support and such that Ω is disjoint from its support
(by [20, Theorem III.5.2]). After replacing C with this multiple mC we may assume that
H ∼ −C. Let f ∈ K, the quotient field of R, be such that (f)− C = H. We may regard
the effective divisor H as a closed subscheme of X.

We have a short exact sequence

0→ OX(C)
f→ OX → OH → 0

and tensoring with OX(−iΓ− jC) we have short exact sequences

(15) 0→ OX(−iΓ− (j − 1)C)
f→ OX(−iΓ− jC)→ OX(−iΓ− jC)⊗OH → 0.

For i, j ≥ 0, let Ai,j be the natural image of Γ(X,OX(−iΓ− jC)) in

Γ(H,OX(−iΓ− jC)⊗OH),

upon taking global sections of (15). Since the base points of Γ(X,OX(−iΓ − jC)) are
a subset of Ω and so are disjoint from H, we have that, for all i, j ≥ 0, Ai,jOH,q =
OX(−iΓ− jC)q for all q ∈ H.

There exists n ∈ Z>0 such that there exists an effective divisor G on X such that
G ∼ −nC, the support of G contains no exceptional components of π and sup(H) ∩
sup(G) ∩ sup(π−1(mR)) = ∅ (by [20, Theorem III.5.2]). We may regard G as a closed
subscheme of X. Thus H is a closed subscheme of the affine scheme X \ G and so H is
affine, say H = Spec(S). The restriction of π to H is determined by a ring homomorphism
R → S. Now S = Γ(H,OH) is a finitely generated R-module since π is a projective
morphism (by [20, Corollary II.5.20]). As explained in [20, Corollary II.5.5], since S is

Noetherian, the functor M → M̃ gives an equivalence of categories between the category of
finitely generated S-modules and the category of coherent OSpec(S)-modules, with inverse

F 7→ Γ(Spec(S),F).
In particular, letting Bi,j = Γ(H,OX(−iΓ − jC) ⊗ OH) for i, j ≥ 0, we have that

OX(−iΓ − jC) ⊗ OH = B̃i,j . We also have that Bi,j is the tensor product over S of i
copies of B1,0 and j copies of B0,1 ([20, Proposition II.5.2]).

We have that the ring A0,0 is a quotient of Γ(X,OX) = R since π is proper birational
and R is normal. Let A0,0[t1, t2] be a polynomial ring over A0,0, which is bigraded by
specifying that deg(a) = (0, 0) if a ∈ A0,0, deg(t1) = (1, 0) and deg(t2) = (0, 1). Let M be

the bigraded A0,0-subalgebra M :=
∑

i,j≥0Ai,jt
i
1t
j
2 of A0,0[t1, t2]. Similarly, let B be the

bigraded S-subalgebra B :=
⊕

i,j≥0Bi,jt
i
1t
j
2 of S[t1, t2].

We have a natural inclusion of graded rings M → B.
Since H is disjoint from Ω we have that

Ai1,0A
j
0,1Sq = AijSq = OX(−iΓ− jA)⊗OH,q = (Bi,j)q

15



for all q ∈ H and i, j ≥ 0. Thus

(16) Ai1,0A
j
0,1S = Bi,j for all i, j ≥ 0.

Let A be the bigraded A0,0-subalgebra A := A0,0[A1,0t1, A0,1t2] of M . Now we have

a natural surjection Ai1,0A
j
0,1 ⊗R S → Bi,j for all i, j ≥ 0 by (16). Thus the natural

homomorphism A ⊗R S → B is surjective. Since S is a finitely generated R-module, we
have that B is a finitely generated bigraded A-module. Since A ⊂ M ⊂ B and A is
Noetherian, we have that M is also a finitely generated A-module.

By [35, Lemma 4.3], since A is generated in bidegrees (1, 0) and (0, 1), and M is a
finitely generated bigraded R-module, there exists N ∈ Z>0 such that

(17) Ai,j = Ai,j−1A0,1 whenever j ≥ N and i ≥ 0 is arbitrary

and

(18) Ai,j = Ai−1,jA1,0 whenever i ≥ N and j ≥ 0 is arbitrary.

Thus taking global sections in the short exact sequences (15), and applying (18), we have
that if i ≥ N and j ≥ 0, then
(19)
Γ(X,OX(−iΓ−jC)) = Γ(X,OX(−iΓ−(j−1)C))f+Γ(X,OX(−(i−1)Γ−jC))Γ(X,OX(−Γ)).

Since −C is ample, for fixed i, OX(−iΓ− jC) is generated by global sections for all j � 0
(by [20, Theorem II.5.17]). Let i be a fixed integer ≥ N and let j > 0 be such that
OX(−iΓ− jC) is generated by global sections.

The only points q ∈ X where it is possible for OX(−iΓ− (j−1)C)q to not be generated
by global sections are the points of Ω. Suppose that q ∈ Ω. Thus q is not in the support of
H = (f)−C, and so f = 0 is a local equation of C at q and fOX,q = OX(−C)q. Further,
since q ∈ Ω, Γ(X,OX(−Γ))OX,q ⊂ mqOX(−Γ) where mq is the maximal ideal of OX,q,
equation (19) and Nakayama’s lemma show that

OX(−iΓ− jC)q = Γ(X,OX(−iΓ− jC))OX,q
= Γ(X,OX(−iΓ− (j − 1)C))fOX,q

+Γ(X,OX(−(i− 1)Γ− jC)OX(−γ)mq

= Γ(X,OX(−iΓ− (j − 1)C))OX(−C)q.

Thus Γ(X,OX(−iΓ − (j − 1)C))OX,q = OX(−iΓ − (j − 1)C)q, and since this is true for
all q ∈ Ω, OX(−iΓ− (j − 1)C) is generated by global sections.

By descending induction on j, we obtain that OX(−iΓ) is generated by global sections
for all i ≥ N .

We now prove the second statement of the proposition. Let g0, . . . , gr ∈ Γ(X,OX(−NΓ))
generate Γ(X,OX(−NΓ)) as an R-module. Then g0, . . . , gr induce a proper R-morphism
ϕ : X → PrR such that ϕ∗OPrR(1) ∼= OX(−NΓ) (by [20, Theorem II.7.1, Corollary II.4.8]).

In fact, ϕ is projective, by [17, Proposition II.5.5 (v)] or [34, Lemma 29.43.15, Tag 01W7]
and [34, Lemma 29.43.16 (1), Tag 01W7]. Let Z be the image of ϕ in PrR (which is closed
since ϕ is proper) and let OZ(1) = OPrR(1)⊗OZ . Let ϕ : X → Z be the induced projec-

tive R-morphism. By [20, Corollary III.11.2], for s ∈ Z, the support of R1ϕ ∗ OX(−sΓ) is
contained in the finite set of closed points of Z which are the images of curves contracted
by ϕ (the prime exceptional divisors E of π such that (E · −Γ) = 0). By [20, Theorem
II.5.19], Γ(Z,R1ϕ ∗ OX(−sΓ)) is a finitely generated R-module. Since it’s support is the
maximal ideal of R, the length of Γ(Z,R1ϕ ∗ OX(−sΓ)) as an R-module is finite.
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From the Leray spectral sequence we obtain exact sequences ([32, Theorem 11.2]) for
m ∈ Z,

0→ H1(Z,ϕ∗OX(−mΓ))→ H1(X,OX(−mΓ))→ H0(Z,R1ϕ∗OX(−mΓ)).

For m ∈ N, write m = nN + s with 0 ≤ s < N . Then OX(−mΓ) ∼= ϕ∗OZ(n)⊗OX(−sΓ).
Then by the projection formula ([20, Exercise III.8.3]), we obtain exact sequences for
n, s ∈ Z

(20)
0→ H1(Z,OZ(n)⊗ ϕ∗OX(−sΓ))→ H1(X,ϕ∗OZ(n)⊗OX(−sΓ))
→ H0(Z, (R1ϕ∗OX(−sΓ))⊗OZ(n)).

Let

s1 = max{`RΓ(Z,R1ϕ∗OX(−sΓ)) | 0 ≤ s < N}.
We have that H1(Z,OZ(n)⊗ϕ∗OX(−sΓ)) = 0 for all 0 ≤ s < N and n� 0 ([20, Theorem
III.5.2]). Let

s2 = max{`RH1(Z,OZ(n)⊗ ϕ∗OX(−sΓ)) | 0 ≤ s < N and n ∈ N}

s2 is finite by [20, Proposition III.8.5, III.Theorem 8.8, Corollary III.11.2]. By (20), we
have that `RH

1(X,OX(−mΓ)) ≤ s1 + s2 for all m ∈ N. �

Proposition 5.3. Let ∆ be an effective anti-nef divisor on X. For n ≥ 0, let Bn be the
fixed component of −n∆. Then there exists an effective exceptional divisor G on X such
that Bn ≤ G for all n ∈ Z>0.

Proof. To prove the proposition, it suffices to prove it for it for some positive multiple d
of ∆, since for n ∈ N, writing n = md+ s with 0 ≤ s < d, we have Bn ≤ Bmd +Bs.

Write −∆ =
∑t

i=1 aiFi. Let

Mi = {n ∈ N | Fi is not a component of Bn}.

Mi is a numerical semigroup, so if Mi is nonzero, there exists hi ∈ Z>0 such that for
n� 0, n ∈Mi if and only if hi divides n. Let

B(D) = {Fi | Fi is a component of Bn for infinitely many n}.

By Proposition 5.1, Fi ∈ B(D) implies (Fi · ∆) = 0 and Fi is exceptional for π. After
possibly reindexing that Fi, we may assume that the support of B(D) is ∪si=1Fi, for some
s ≤ t. We have that Mi = 0 or hi > 1 for 1 ≤ i ≤ s. Thus the support of Bn is ∪si=1Fi if
n� 0 and hi 6 |n for all i such that 1 ≤ i ≤ s and Mi is non zero.

If we replace ∆ with n0∆ for some n0 � 0, we have that the support of B1 is B(D).
By Proposition 5.2, there exists s0 ∈ N such that the effective divisor Γ = ∆ +B1 satisfies
the condition that h1(OX(−nΓ)) ≤ s0 for all n ≥ 1 since −Γ has no fixed component.

For a given n ∈ Z>0, consider the following conditions on a divisor Zn.

a) nΓ ≥ Zn ≥ n∆
b) −Zn has no fixed component
c) h1(OX(−Zn)) ≤ s0.

Let Cn be a minimal element in the set of divisors satisfying a), b) and c). Let B′n =
Cn − n∆. Then nB1 ≥ B′n ≥ Bn (since −n∆ = −nΓ + nB1 = −Cn + B′n and Cn ≤ nΓ).
Thus it suffices to show that the B′n are bounded from above.

For 1 ≤ i ≤ s we have short exact sequences

0→ OX(−Cn)→ OX(−Cn + Fi)→ OX(−Cn + Fi)⊗OFi → 0,
17



giving exact sequences

0→ H0(X,OX(−Cn))→ H0(X,OX(−Cn + Fi))→ H0(Fi,OX(−Cn + Fi)⊗OFi)
→ H1(X,OX(−Cn))→ H1(X,OX(−Cn + Fi))→ H1(Fi,OX(−Cn + Fi)⊗OFi)→ 0.

We will show that

(21) −(Cn · Fi) ≤ max{s0 − (F 2
i )− 1 + pa(Fi), 2pa(Fi)− 2− (F 2

i ), 0}
for all n and 1 ≤ i ≤ s.

First assume that Fi is not a component of B′n. Then (B′n · Fi) ≥ 0. Since (Fi ·∆) = 0
by Proposition 5.1, we have that (Cn · Fi) ≥ 0 and so (21) holds.

Now assume that Fi is a component of B′n. We have that either

(22) H0(X,OX(−Cn + Fi)) = H0(X,OX(−Cn))

or

(23) h1(OX(−Cn + Fi)) > s0.

If (22) holds, then h0(OX(−Cn + Fi)⊗OFi) ≤ s0 . Thus

s0 ≥ h0(OX(−Cn + Fi)⊗OFi) ≥ ((−Cn + Fi) · Fi) + 1− pa(Fi)
by the Riemann-Roch formula (6), and so (21) holds.

Suppose that (23) holds. Then h1(Fi,OX(−Cn + Fi)⊗OFi) > 0, and so

((−Cn + Fi) · Fi) < 2pa(Fi)− 2

by (8). Thus (21) holds.
For i with 1 ≤ i ≤ s, let σi = max{s0 − (F 2

i )− 1 + pa(Fi), 2pa(Fi)− 2− (F 2
i ), 0}. Since

(Fi ·∆) = 0 for 1 ≤ i ≤ s by Proposition 5.1, and by (21), we have that

(B′n · Fi) = ((Cn − n∆) · Fi) = (Cn · Fi) ≥ −σi.
In particular, σi ≥ −(B′n · Fi).

Since the intersection matrix ((Fi · Fj)) for 1 ≤ i, j ≤ s is negative definite, and thus is
nonsingular, there exists a Q-divisor E = c1F1 + · · · + csFs such that (E · Fi) = −σi for
1 ≤ i ≤ s. Then

((E −B′n) · Fi) = −σi − (B′n · Fi) ≤ 0

for all i implies E ≥ B′n by ([35, Lemma 7.1]), since the intersection matrix is negative
definite. Thus the B′n are bounded from above. �

Corollary 5.4. Let ∆ be an effective anti-nef Q-divisor on X. Let Bn be the fixed com-
ponent of −dn∆e; that is, the largest effective divisor on X such that

Γ(X,OX(−dn∆e)) = Γ(X,OX(−dn∆e −Bn)).

Then

1) The integral divisor Bn has exceptional support for all n ∈ N and
2) There exists an effective integral divisor G with exceptional support such that Bn ≤

G for all n ∈ Z>0.

Proof. Statement 1) follows from Lemma 2.2. If ∆ is an integral divisor then Statement
2) follows from Proposition 5.3.

Now assume that ∆ is a Q-divisor. Write ∆ =
∑ bi

d Fi with d ∈ Z>0 and bi ∈ N,
where the Fi are distinct prime divisors on X. Since d∆ is an integral divisor, there
exists an effective integral divisor C with exceptional support such that Bnd ≤ C for
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all n ∈ N. Let n ∈ N, and write n = md − c with m ∈ N and 0 ≤ c < d. Then
OX(−dn∆e) = OX(−md∆ + bc∆c). Thus Bn ≤ Bmd + bc∆e ≤ C + d∆. �

Lemma 5.5. Let {Dn} with n ≥ 0 be an infinite sequence of divisors on X and Z be an
effective divisor on X. If the sequence h1(OX(Dn)) is bounded from above and if for each
prime exceptional component E of Z (Dn ·E) is bounded from below then h1(OX(Dn+Z))
is bounded from above.

Proof. By induction on the number of components of Z, we may assume that h1(OX(Dn+
Z − F )) is bounded where F is a prime component of Z. We have a short exact sequence

0→ OX(−F )→ OX → OF → 0,

giving exact sequences

H1(X,OX(Dn + Z − F ))→ H1(X,OX(Dn + Z))→ H1(F,OX(Dn + Z)⊗OF ).

If F is exceptional, there exists s ∈ Z>0 such that h1(F,OX(Dn + Z) ⊗ OF ) ≤ s for all
n ≥ 0 by Lemma 3.1, so h1(OX(Dn +Z)) is bounded from above. If F is not exceptional,
then F is affine and so H1(F,OX(Dm+Z))⊗OF ) = 0 for all m, so again h1(OX(Dn+Z))
is bounded from above. �

Proposition 5.6. Let ∆ be an effective anti-nef divisor on X. Then h1(OX(−n∆)) is
bounded for n ∈ N.

Proof. Let Cn be the effective divisors of the proof of Proposition 5.3, so that B′n = Cn−n∆
are effective divisors and there exists an effective divisor G with exceptional support such
that B′n ≤ G for all n ∈ N. Since −∆ is nef, we have that (−Cn · E) is bounded from
below for each prime exceptional component E of G. Further, we have (by the proof of
Proposition 5.3) that h1(OX(−Cn)) ≤ s0 for all n ∈ N. For each effective divisor Z ≤ G,
Proposition 5.5 gives us an upper bound for h1(OX(−Cn+Z)) over n ∈ N. The maximum
of these bounds is an upper bound for h1(OX(−n∆)) over n ∈ N. �

Corollary 5.7. Let ∆ be an effective anti-nef divisor on X and F be a coherent sheaf on
X. Then h1(OX(−n∆)⊗F) is bounded for n ∈ N.

Proof. There exists an effective anti-ample divisor A on X with exceptional support by
Proposition 2.3. There exists n0 ∈ Z>0 such that F ⊗ O(−n0A) is generated by global
sections, so there is a surjection OsX → F ⊗ OX(−n0A) for some s, giving a short exact
sequence of coherent sheaves

0→ K → OX(n0A)s → F → 0

and surjections

H1(X,OX(−n∆ + n0A))s → H1(X,OX(−n∆)⊗F).

Thus h1(OX(−n∆)⊗F) is bounded above for n ∈ N since −∆ is nef, and by Lemma 5.5
and Proposition 5.6. �

6. Asymptotic properties of divisors on a resolution of singularities

We continue with the notation introduced in the introduction and in Section 2. We
assume that R is a two dimensional excellent normal local ring with quotient field K,
maximal ideal mR and residue field k, and that π : X → Spec(R) is a resolution of
singularities such that the exceptional prime divisors E1, . . . , Er of π are all nonsingular.
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As explained in the introduction, If F is prime divisor on X and α ∈ R≥0, then there
is a valuation ideal I(νF )α = {f ∈ R mod νF (f) ≥ α} of R, where νF is the valuation of
the discrete (rank 1) valuation ring OX,F .

Proposition 6.1. Suppose that ∆1 ⊂ ∆2 are effective anti-nef Q-divisors on X such that
∆1 6= ∆2. Then there exists n0 ∈ Z>0 such that Γ(X,OX(−dn∆2e)) 6= Γ(X,OX(−dn∆1e))
for all n ≥ n0.

Proof. Write ∆1 =
∑
aiFi and ∆2 =

∑
biFi where the Fi are distinct prime divisors on

X. We have bi ≥ ai for all i and bj > aj for some j. If Fj is not exceptional then certainly
Γ(X,OX(−dn∆2e)) 6= Γ(X,OX(−dn∆1e)) for n sufficiently large by Lemma 2.2.

Now suppose that Fj is exceptional. By 2) of Lemma 5.4, there exists an effective
exceptional divisor H =

∑
ciFi such that the fixed component Bn of Γ(X,OX(−dn∆1e))

satisfies Bn ≤ H for all n ∈ N. Observe that g ∈ Γ(X,OX(−dn∆2e)) implies νj(g) ≥
dnbje. By definition of Bn, for n ∈ Z>0, there exists fn ∈ Γ(X,OX(−dn∆1e)) such that
(fn) − dn∆1e = An + Bn where Fj is not a component of the effective divisor An. Thus

νj(fn) = dnaje+ δ with δ ≤ cj . We have that n >
cj+1
bj−aj implies dnaje+ δ < dnbje. Thus

νj(fn) < dnbje so that fn 6∈ Γ(X,OX(−dn∆2e)). �

Corollary 6.2. Suppose that ∆1 ⊂ ∆2 are effective anti-nef Q-divisors on X. Then the
following are equivalent.

1) Γ(X,OX(−dn∆1e)) = Γ(X,OX(−dn∆2e)) for infinitely many n ∈ Z>0.
2) Γ(X,OX(−dn∆1e)) = Γ(X,OX(−dn∆2e)) for all n� 0
3) ∆1 = ∆2.

Proof. Proposition 6.1 proves the essential implication 1) implies 3). The directions 3)
implies 2) and 2) implies 1) are immediate. �

Proposition 6.3. Let ∆ =
∑s

i=1 aiFi be an effective anti-nef Q-divisor on X and E be a
prime exceptional divisor on X. Then E = Fj for some j with aj > 0. The following are
equivalent

1) There exists n ∈ Z>0 such that

I(n∆) = ∩si=1I(νFi)nai 6= ∩i6=jI(νFi)nai .

2) There exists n0 ∈ Z>0 such that

I(n∆) = ∩si=1I(νFi)nai 6= ∩i6=jI(νFi)nai .

for all n ≥ n0.
3) (∆ · Fj) < 0.

Proof. It follows from Lemma 2.4 that E = Fj for some j with aj > 0.
Let D1 =

∑
i6=j aiFi, so that D1 ≤ ∆. Let ∆1 = D1 +B1 be the Zariski decomposition

of D1. We have that ∆1 ≤ ∆ by Remark 4.2, and so 0 ≤ ∆ − ∆1 = ajFj − B1 so that
0 ≤ B1 ≤ ajFj . Thus ∆1 = ∆− λFj with 0 ≤ λ ≤ aj .

If ∆1 6= ∆ then λ > 0, and so

(24) (Fj ·∆) = (Fj ·∆1) + λ(F 2
j ) < 0.

If ∆1 = ∆ then B1 = ajFj . Since aj > 0, we have that

(25) 0 = (∆1 · Fj) = (∆ · Fj).
by 2) of Lemma 4.1.
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Suppose that 1) holds. Then ∆1 6= ∆ so that (Fj ·∆) < 0 by (24), so that 1) implies
3) holds. Certainly 2) implies 1) is true, so we are reduced to proving 3) implies 2). Now
3) implies ∆1 6= ∆ by (24) and (25). If 2) doesn’t hold then there exist infinitely many
n ∈ Z>0 such that Γ(X,OX(−dn∆e)) = Γ(X,OX(−dn∆1e)) so that ∆1 = ∆2 by Corollary
6.2, giving a contradiction. �

Corollary 6.4. Let ∆ =
∑s

i=1 aiFi be an effective anti-nef Q-divisor on X and E be a
prime exceptional divisor on X so that E = Fj for some j with aj > 0. The following are
equivalent

1) I(n∆) = ∩ri=1I(νFi)nai = ∩i6=jI(νFi)nai for all n ∈ Z>0.
2) (∆ · Fj) = 0.

Corollary 6.5. Suppose that ∆ is an effective anti-nef Q-divisor on X. Then the following
are equivalent.

1) There exists n such that mR ∈ Ass(R/I(n∆)).
2) There exists n0 such that mR ∈ Ass(R/I(n∆)) for all n ≥ n0.
3) There exists a prime exceptional divisor E for π such that (∆ · E) < 0.

Proof. Write ∆ =
∑s

i=1 aiFi, so that I(n∆) = ∩si=1I(νFi)nai . For a fixed n, we have that
mR ∈ Ass(R/ ∩si=1 I(νFi)nai) if and only if

∩si=1I(νFi)nai 6= ∩Fi which are not exceptionalI(νFi)nai

which occurs if and only if there exists j such that Fj is exceptional and

∩si=1I(νFi)nai 6= ∩i6=jI(νFi)nai

Thus by Proposition 6.3, the three conditions of the corollary are equivalent. �

Let ∆ =
∑s

i=1 aiFi be an effective and anti-nef Q-divisor on X. By Lemma 2.4, all
prime exeptional divisors E1, . . . , Er are in the support of ∆. After permuting the Fi, we
may assume that Fi = Ei and ai > 0 for 1 ≤ i ≤ r. We have that

R[∆] :=
⊕
n≥0

Γ(X,OX(−dn∆e)) =
⊕
n≥0

∩si=1I(νFi)nai .

Let Pj =
⊕

n≥0 Γ(X,OX(−dn∆e − Ej)) for 1 ≤ j ≤ r. We have that

(26) Γ(X,OX(−Ej)) = {f ∈ R | νEj (f) > 0} = mR

for 1 ≤ j ≤ r. for all j. Suppose that f ∈ Γ(X,OX(−dm∆e)) and g ∈ Γ(X,OX(−dn∆e))
are such that fg ∈ Γ(X,OX(−d(m+ n)∆e − Ej). Then

νEj (f) + νEj (g) = νEj (fg) ≥ (m+ n)aj + 1

implies νEj (f) ≥ maj + 1 or νEj (g) ≥ naj + 1 so that f ∈ Γ(X,OX(−dm∆e − Ej) or
g ∈ Γ(X,OX(−dn∆e − Ej). Thus Pj is a prime ideal in R[∆].

If f ∈ mR, then νEj (f) ≥ 1 for 1 ≤ j ≤ r so that

(27) mRR[∆] ⊂ Pj .
We have exact sequences

0→ Pj → R[∆]→
⊕
n≥0

Γ(Ej ,OX(−dn∆e)⊗OEj ).

Remark 6.6. Suppose that ∆ is an effective anti-nef Q-divisor on X. Then dimR[∆]/Pj =
0 if and only if R[∆]/Pj = R/mR.
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Proof. Suppose that for some m > 0 there exists f ∈ Γ(X,OX(−dm∆e)) such that it’s
class f in Γ(X,OX(−dm∆e))/Γ(X,OX(−dm∆e − Ej)) is nonzero. Then

ftm ∈
∞∑
n=0

Γ(X,OX(−dn∆e))/Γ(X,OX(−dn∆e − Ej))tn = R[∆]/Pj

is nonzero. The element ftm is not a unit since it is homogeneous of positive degree and
it is not nilpotent since R[∆]/Pj is an integral domain. Thus dimR[∆]/Pj > 0. Thus by
(26), dimR[∆]/Pj = 0 implies R[∆]/Pj = R/mR. �

Proposition 6.7. Suppose that ∆ is an effective anti-nef Q-divisor on X. Then√
mRR[∆] = ∩ri=1Pi.

Proof. We have that
√
mRR[∆] ⊂ ∩ri=1Pi by (27).

Let h ∈ ∩ri=1Pi. We will show that hn ∈ mRR[∆] for some n ∈ Z>0, which will establish
the proposition. We may assume that h is homogeneous, so that

h ∈ ∩ri=1Γ(X,OX(−da∆e − Ei)) = Γ(X,OX(−da∆e − E1 − · · · − Er)
for some a ∈ N. We must show that hn ∈ mRΓ(X,OX(−dan∆e)) for some n ∈ Z>0.

First suppose that a = 0. We have that Γ(X,OX(−E1 − · · · −Er) = mR so we already
have that h ∈ mRΓ(X,OX) = mR.

Now suppose that a > 0. After replacing ∆ with a positive multiple of ∆ and h with a
power of h we may assume that ∆ is an integral divisor and h ∈ Γ(X,OX(−∆−

∑r
i=1Ei)).

By Lemma 2.5, there exists an mR-primary ideal I in R such that X is the blowup of I,
so that X = Proj(

⊕
n≥0 I

n) and IOX = OX(−C) is very ample, where C is an effective
divisor whose support is the union of all exceptional prime divisors E1, . . . , Er. The graded
ring

⊕
n≥0 Γ(X, InOX) is a finite

⊕
n≥0 I

n-module and there exists n0 ∈ Z>0 such that

the R-ideal Γ(X, InOX) = In for n ≥ n0 by Lemma 2.6. Since R and X are normal,
Γ(X, InOX) = In for all n ≥ 0.

After possibly replacing I with a positive power of I we may assume that Γ(X, InOX) =
In for all n ∈ N and that there exists an effective divisor H ∼ −C on X with no exceptional
prime divisors in its support. Let f ∈ Γ(X,OX(−C)) = I be such that (f)−C = H. We
have a short exact sequence

0→ OX(C)
f→ OX → OH → 0.

There exists α ∈ Q>0 such that F :=
∑r

i=1Ei − αC ≥ 0. There exists e ∈ Z>0 such that
eαC is an integral divisor and so eF is an integral divisor. Thus for n ∈ Z>0, we have
that

hn2e ∈ Γ(X,OX(−n2e∆− n2e(
∑r

i=1Ei)) = Γ(X,OX(−n2e∆− n2eαC − n2eF )
⊂ Γ(X,OX(−n2e∆− n2eαC)) = Γ(X,OX(−n2e(∆ + α

2C)− n2eα2C)).

Now the effective integral divisor 2e(∆ + α
2C) is anti-ample by Proposition 2.3, since ∆

is anti-nef. Thus there exists n0 ∈ Z>0 such that OX(−n2e(∆ + α
2C)) is generated by

global sections for all n ≥ n0. Let Γ = n02e(∆ + α
2C). By the argument of the proof of

Proposition 5.2, applying (17), there exists N > 0 such that

Γ(X,OX(−iΓ−jC)) = Γ(X,OX(−iΓ−(j−1)C)Γ(X,OX(−C))+fΓ(X,OX(−iΓ−(j−1)C)

whenever j ≥ N and i ≥ 0. Since f ∈ Γ(X,OX(−C)), we have that

Γ(X,OX(−iΓ− jC)) = Γ(X,OX(−iΓ− (j − 1)C))Γ(X,OX(−C))
= IΓ(X,OX(−iΓ− (j − 1)C)) ⊂ IΓ(X,OX(−in02e∆)).
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Thus

hnn02e ∈ Γ(X,OX(−nΓ−nn02eα

2
C)) ⊂ IΓ(X,OX(−nn02e∆)) ⊂ mRΓ(X,OX(−nn02e∆))

whenever n is so large that n ≥ N
n0eα

. �

Corollary 6.8. Suppose that ∆ is an effective anti-nef Q-divisor on X. Then

dimR[∆]/mRR[∆] = 0

if and only if the image of Γ(X,OX(−dn∆e)) in Γ(Ej ,OX(−dn∆e) ⊗ OEj ) is zero for
1 ≤ j ≤ r and for all n > 0.

Proof. By Proposition 6.7, we have that dimR[∆]/mRR[∆] = 0 if and only if dimR[∆]/Pj =
0 for all j, and this second conditions holds if and only if R[∆]/Pj = R/mR for all j by
Remark 6.6. �

Proposition 6.9. Suppose that ∆ is an effective anti-nef Q-divisor on X and Ej is a
prime exceptional divisor for π : X → Spec(R). Then

1) dimR[∆]/Pj = 2 if (∆ · Ej) < 0.
2) dimR[∆]/Pj ≤ 1 if (∆ · Ej) = 0.

Proof. Suppose that (∆ · Ej) < 0. We have short exact sequences

0→ OX(−dn∆e − Ej)→ OX(−dn∆e)→ OX(−dn∆e)⊗OEj → 0.

Taking global sections we have short exact sequences

0→ Γ(X,OX(−dn∆e − Ej))→ Γ(X,OX(−dn∆e))
→ Γ(Ej , OX(−dn∆e)⊗OEj )→ H1(X,OX(−dn∆e − Ej)).

There exists d ∈ Z>0 such that d∆ is an integral divisor. By Corollary 5.7, applied to d∆
and the coherent sheaves OX(−ds∆e − Ej) for 0 ≤ s < d, we have that

h1(X,OX(−dn∆e − Ej))
is bounded for positive n. Since (−∆ · Ej) > 0, we have (by the Riemann Roch theorem
(6)) that there exists c′ > 0 such that

h0(OX(−dn∆e)⊗OEj ) > c′n

for n � 0. Thus there exists c > 0 such that the image An := Im(Γ(X,OX(−dn∆e)) in
Bn := Γ(Ej ,OX(−dn∆e)⊗OEj ) satisfies

(28) `R(Γ(X,OX(−dn∆e))/Γ(X,OX(−dn∆e − Ej)) = `R(An) = dimk An ≥ cn
for n� 0.

Let A = ⊕n≥0An. We have that B0 is a finite field extension of k = R/mR = A0. Now
OX(−d∆) ⊗ OEj is ample on the projective curve Ej , so there exists e ∈ Z>0 which is

divisible by d such that OX(−e∆) ⊗ OEj is very ample and B = ⊕m≥0Bme is a finitely
generated B0-algebra which is generated by its terms of the lowest positive degree me
([20, Theorem II.5.19 and Exercise II.5.14]). Thus B is the coordinate ring of a projective
embedding of the curve Ej in a projective space over B0, determined by a B0-basis of

Γ(Ej ,OX(−e∆)⊗OEj ). Thus B has dimension two. Let A =
⊕

m≥0Ame.

By (28), for n � 0, there exists F ∈ Ane such that 0 6= F . The ring B(F ) of elements

of degree zero in the localization BF is such that Spec(B(F )) is the affine variety Ej \
V (F ), with maximal ideals in B(F ) corresponding to height one homogeneous prime ideals
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in Proj(B) which do not contain F (by [20, Proposition II.2.5]). Thus there exists a
homogeneous height one prime ideal Q = ⊕n>0Qne in B which does not contain F .

Let P = A ∩ Q, where P = ⊕n>0Pne with Pne = Qne ∩ Ane. dimB/Q = 1 implies
that there exists d ∈ Z>0 such that dimk(Bne/Qne) < d for all n (by [5, Theorem 4.1.3]).
Thus by (28) we have that P 6= 0. P is not the graded maximal ideal ⊕n≥0Ane of A since
F 6∈ P .

We have constructed a chain of distinct homogeneous prime ideals 0 ⊂ P ⊂
⊕

n>0Ane
in A and thus A has dimension ≥ 2. The extension A → A is integral so dimA ≥ 2
by the going up theorem ([2, Theorem 5.11]). We have that mRΓ(X,OX(−dn∆e)) ⊂
Γ(X,OX(−dn∆e−Ej)) for all n ≥ 0 by (27). We thus have a surjection R[∆]/mRR[∆]→
A and so dimA ≤ dimR[∆]/mRR[∆]. But dimR[∆]/mRR[∆] ≤ 2 by [14, Lemma 3.6], so
that dimA = 2.

Now suppose that (∆ · Ej) = 0. Let Bn = Γ(Ej ,OX(−dn∆e) ⊗ OEj ) and An be the
natural image of Γ(X,OX(−dn∆e)) in Bn. We have that A0

∼= R/mR = k and B0 is a
finite field extension of k. Let A =

∑
n≥0Ant

n where t is an indeterminate. We have that

A ∼= R[∆]/Pj .
By the Riemann-Roch Theorem (6) and Lemma 3.1, there exists d > 0 such that

dimk(Bn) < d for all n ∈ N.
For a ∈ Z>0, define aA =

∑
n≥0 aAnt

n to be the graded subring of A defined by

aA = k[A1t, A2t
2, . . . , Aat

a]. The ring aA is a finitely generated graded k-algebra. For

fixed a, there exists e ∈ Z>0 such that aA
(e) =

∑
n≥0 aAent

en is generated in degree e

(as follows from [4, Proposition III.3.2 and Proposition III.3.3 on pages 158 and 159]).

Since aA is a finitely generated aA
(e)-module, we have that dim aA = dim aA

(e). Since

dimk aA
(e)
n < d for all n ∈ N, we have that dim aA ≤ 1 for all a ∈ Z>0 by [5, Theorem

4.1.3]. Suppose that Q0 ⊂ Q1 ⊂ · · · ⊂ Qs is a chain of distinct prime ideals in A. Since
∪a≥0(aA) = A, for all a � 0, Q0 ∩ aA ⊂ Q1 ∩ aA ⊂ · · · ⊂ Qs ∩ aA is a chain of distinct
prime ideals in A. Thus dimA ≤ 1. �

Corollary 6.10. Suppose that ∆ is an effective anti-nef Q-divisor on X. Then

dimR[∆]/mRR[∆] = 2

if and only if there exists an exceptional prime divisor E of π such that (∆ · E) < 0

Proof. This follows from Propositions 6.7 and 6.9. �

7. Analytic spread of divisorial filtrations

Theorem 7.1 is a generalization to (not necessarily Noetherian) divisorial filtrations on
a two dimensional normal local ring of a theorem of McAdam, for filtrations of powers of
ideals, in [27] and [33, Theorem 5.4.6]. We recall the exact statement of McAdam’s theorem
in Theorem 1.3 of the introduction. The concept of a divisiorial filtration I(D) = {I(nD)}
is defined in the introduction.

Theorem 7.1. Let R be a two dimensional normal excellent local ring. The following are
equivalent for a Q-divisorial filtration I(D) on R.

1) The analytic spread `(I(D)) = dimR[D]/mRR[D] = 2.
2) mR ∈ Ass(R/I(nD)) for some n.
3) There exists n0 ∈ Z>0 such that mR ∈ Ass(R/I(nD)) for all n ≥ n0.
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Proof. Let π : X → Spec(R) be a resolution of singularities such D =
∑s

i=1 aiFi for some
prime divisors Fi on X and the exceptional divisors E1, . . . , Er of π are nonsingular. Let
∆ = D+B be the Zariski decomposition ofD onX, so that I(D) = I(∆) andR[D] = R[∆]
(by Lemma 4.3). Then this theorem follows from Corollary 6.10 and 6.5. �

Corollary 7.2. Let R be a two dimensional normal excellent local ring and I(D) be a Q-
divisorial filtration on R. Then dimR[D]/mRR[D] ≤ 1 if and only if there exist height one

prime ideals Q1, . . . , Qs in R and b1, . . . , br ∈ Q>0 such that I(nD) = Q
(dnb1e)
1 ∩· · ·∩Q(dnbse)

s

for all n ∈ N.

Proof. We have that I(nD) = Q
(dnb1e)
1 ∩ · · · ∩ Q(dnbse)

s for all n ∈ N if and only if mR 6∈
Ass(R/I(nD)) for all n which holds if and only if dimR[D]/mRR[D] ≤ 1 by Corollary
7.1. �

Example 7.3. There exists a Q-divisorial filtration I(D) on a two dimensional normal
excellent local ring R such that the analytic spread `(I(D)) = 0 and height

ht(I(D)) = ht(I(D)) = 1,

giving an example where ht(I(D)) > `(I(D)). The Rees algebra of the example is a Non

Noetherian symbolic algebra R[D] =
∑

n≥0Q
(n)
1 ∩Q(n)

2 ∩Q(n)
3 where Q1, Q2, Q3 are height

one prime ideals in R.

Proof. Let k be an algebraically closed field and F be an irreducible cubic form in the
polynomial ring k[x, y, z] such that E = Proj(k[x, y, z]/(F )) is an elliptic curve. Let
R = k[[x, y, z]]/(F ), a complete, normal excellent local ring of dimension two with maximal
ideal mR = (x, y, z). Let π : X → Spec(R) be the blow up of the maximal ideal mR of
R. X is nonsingular with π−1(mR) ∼= E, mROX = OX(−E), OX(−E) ⊗ OE ∼= OE(1)
and (E2) = −3. We have that OX(−E)⊗OE ∼= OE(q1 + q2 + q3) for some closed points
q1, q2, q3 ∈ E. Let p1, p2, p3 ∈ E be distinct closed points on E such that the degree 0
invertible sheaf L = OE(q1 + q2 + q3 − p1 − p2 − p3) has infinite order in Pic0(X). Then
h0(Ln) = 0 for all n ∈ Z. In each regular local ring OX,pi , let ui, vi be a regular system
of parameters such that ui = 0 is a local equation of E at pi. Let Fi be the Zariski
closure of vi = 0 in X, which is an integral curve. Let π(Fi) = Qi ∈ Spec(R). R/Qi is
Henselian since it is complete, so by [28, Theorem 4.2 page 32], we have that E intersects
the integral curve Fi only at the point pi. Fi intersects E transversally at pi so that
(E · Fi) = 1. Let D = F1 + F2 + F3. The Zariski decomposition of D is ∆ = D + E. We
have that OX(−n∆)⊗OE ∼= Ln for all n. Thus Γ(X,OX(−n∆−E)) = Γ(X,OX(−n∆))
for all n ∈ Z>0, and so by Proposition 6.7,

R[∆]/
√
mRR[∆] =

⊕
n≥0

Γ(X,OX(−n∆))/Γ(X,OX(−n∆− E)) = R/mR = k.

Thus

dimR[∆]/mRR[∆] = dimR[∆]/
√
mRR[∆] = 0.

Since 0 = `(I(D)) < 1 = ht(I(D)), we have that R[D] is Non Noetherian (by [13,
Proposition 3.7]). �

8. The Hilbert function of R[D]/mRR[D]

Theorem 8.1. Suppose that R is a two dimensional normal excellent local ring and I(D)
is a Q-divisorial filtration on R. Then there exist a nonnegative rational number α and a
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bounded function σ : N→ Q such that

`R(I(nD)/mRI(nD)) = `R((R[D]/mRR[D])n) = nα+ σ(n)

for n ∈ N. The constant α is positive if and only if dim(R[D]/mRR[D]) = 2.

The function σ is bounded from both above and below. The proof gives an explicit
calculation of the constant α in terms of the intersection theory of a suitable resolution of
singularities in equation (35). The constant α is a nonnegative integer if ∆ is an integral
divisor in the Zariski decomposition D = ∆ +B.

Proof. There exists a resolution of singularities π : X → Spec(R) such thatD is an effective
Q-divisor on X, mROX is invertible and the prime exceptional divisors E1, . . . , Er of X are
all nonsingular. Let G be the effective exceptional divisor such that mROX = OX(−G).
Let ∆ = D +B be the Zariski decomposition of D on X. There exists d ∈ Z>0 such that
d∆ is an integral divisor.

Suppose that the ideal mR is generated by f1, . . . , fb. We have an induced short exact
sequence of coherent sheaves on X

0→ K → ObX → mROX → 0.

Tensoring with OX(−dn∆e) and taking global sections, we have short exact sequences

0→ mRΓ(X,OX(−dn∆e)→ Γ(X,OX(−dn∆e −G))→ H1(X,K ⊗OX(−dn∆e)).

Thus there exists c1 ∈ Z>0 such that

(29) `R(Γ(X,OX(−dn∆e −G))/mRΓ(X,OX(−dn∆e)) ≤ c1

for all n ∈ N by Corollary 5.7, applied to the effective anti-nef divisor d∆ and the coherent
sheaves F = K ⊗OX(−ds∆e) for 0 ≤ s < d. From the short exact sequences

0→ OX(−dn∆e −G)→ OX(−dn∆e)→ OX(−dn∆e)⊗OG → 0

we have inclusions for n ∈ N

Γ(X,OX(−dn∆e))/Γ(X,OX(−dn∆e −G))→ Γ(G,OX(−dn∆e)⊗OG)

and by Corollary 5.7, there exists c2 ∈ Z>0 such that

(30) |`R(Γ(G,OX(−dn∆e)⊗OG))− `R(Γ(X,O)X(−dn∆e))/Γ(X,OX(−dn∆e)))| ≤ c2.

We are reduced to computing h0(OX(−dn∆e) ⊗ OG) for n ∈ N. Write G =
∑r

i=1 aiEi
with ai ∈ Z>0.

Let e =
∑r

i=1 ai. There exists a function τ : {1, . . . , e} → {1, . . . , r} such that letting
C1 = Eτ(1) and Cj+1 = Cj + Eτ(j+1) for 1 ≤ j < e, we have that Ce = G. We have short
exact sequences

(31) 0→ OX(−Cj)⊗OEτ(j+1)
→ OCj+1 → OCj → 0

for 1 ≤ j < e. The cohomology groups h1(OX(−dn∆e −mEj) ⊗ OEτ(j+1)
) are bounded

for 1 ≤ j < e and n ∈ N by Lemma 3.1. Let

f = max{h1(OX(−dn∆e −mEj)⊗OEτ(j+1)
) | 1 ≤ j < e and n ∈ N}.

Tensoring the sequences (31) with OX(−dn∆e) and taking cohomology, we find that
(32)
|h0(OX(−dn∆e)⊗OCj+1)−h0(OX(−dn∆e)⊗OCj )−h0(OX(−dn∆e−Cj)⊗OEτ(j+1)

)| ≤ f
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for 1 ≤ j < e and n ∈ N. Setting C0 = 0, we have that there exists λ ∈ Z>0 such that

(33) |h0(X,OX(−dn∆e)⊗OG)−
e−1∑
i=0

h0(X,OX(−dn∆e − Ci)⊗OEτ(i+1)
)| < λ

for all n ∈ N. Writing n = md+ s with 0 ≤ s < d, we have

h0(OX(−dn∆e − Cj)⊗OEτ(j+1)
) = h0(OX(−md∆− ds∆e − Cj)⊗OEτ(j+1)

).

By Lemma 3.1 and the Riemann-Roch theorem (6), there exists g ∈ Z>0 such that

(34) |h0(OX(−md∆− ds∆e − Cj)⊗OEτ(j+1)
)−md(−∆ · Eτ(j+1))| ≤ g

for 1 ≤ j < e and m ∈ N. Thus the theorem holds with

(35) α = (−∆ ·G).

�
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