
A Connection-Free Reliable Transport Protocol

J.J. Garcia-Luna-Aceves
Computer Science and Engineering Department

University of California

Santa Cruz, CA, USA

jj@soe.ucsc.edu

Abdulazaz Ali Albalawi
Computer Science and Engineering Department

University of California

Santa Cruz, CA, USA

aalbalaw@ucsc.edu

Abstract—The Internet Transport Protocol (ITP) is introduced
as an alternative to the Transmission Control Protocol (TCP)
for reliable end-to-end transport services in the IP Internet.
The design of ITP is based on Walden’s early work on host-
host protocols, and the use of receiver-driven Interests and
manifests advocated in several information-centric networking
architectures. The performance of ITP is compared against the
performance of TCP using off-the-shelf implementations in the
ns3 simulator. The results show that ITP is inherently better than
TCP and that end-to-end connections are not needed to provide
efficient and reliable data exchange in the IP Internet.

Index Terms—transport protocols, TCP, connections

I. INTRODUCTION

The two main transport protocols used in the Internet

today are the User Datagram Protocol (UDP), which provides

best-effort delivery between remote two processes, and the

Transmission Control Protocol (TCP), which provides reliable

in-order delivery of data between two remote processes.

The current design of TCP is based on the original proposal

by Cerf and Kahn on the Transmission Control Program [3],

which combined datagram delivery and end-to-end transport

functionality in a single protocol. Like most of the early work

on reliable transport protocols, the Transmission Control Pro-

gram used connections to implement reliable in-order delivery

of data between remote processes. Since then, even after the

original design by Cerf and Kahn [3] was divided into the

Internet Protocol (IP) [10] and TCP [11], connections have

been used to support end-to-end reliable communication.

Section II provides a critique of prior work related to reli-

able communication between remote processes over computer

networks. What is most notable is that, with one exception [1],

no prior transport protocol has been proposed that provides

reliable communication without end-to-end connections over

a datagram-based communication infrastructure.

This paper introduces the Internet Transport Protocol

(ITP), which is the first connection-free reliable transport

protocol that operates over a datagram-based communication

This material is based upon work sponsored by the National Science Foun-
dation (NSF) under Grant CCF-1733884. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF or the U.S. government.

infrastructure and uses existing name-resolution services avail-

able in the Internet without modifications.

ITP is based on Walden’s message-switching host-host pro-

tocol [13], the use of manifests and receiver-initiated requests

for content advocated in a number of information-centric

networking (ICN) architectures, and the inclusion of pointers

to manifests in each request for data and response.

Sections III describes how ITP operates. In a nutshell, an

association between two remote processes is established with

a two-way handshake in which a process A requests some

data from a remote process B by sending a data packet,

and process B returns a manifest informing process A what

Interests (requests) to send to obtain the requested data. Once

process A has a manifest, it sends Interests to process B
making reference to the manifest and informing B of what

A needs. Process B simply responds to Interests from process

A, without maintaining any state regarding process A. There

is no need for signaling to start or terminate the association;

process A can end the association when it obtains all it needs

according to the manifest, and process B can simply end the

association after a timeout.

Sections IV and V summarize retransmission and conges-

tion control mechanisms for ITP that were chosen to be very

similar to those currently used in TCP (TCP Reno) to highlight

that ITP is inherently more efficient than TCP.

Section VI compares the performance of ITP and TCP

using the ns3 [12] simulator. The results indicate that ITP

is inherently more efficient than TCP.

Section VII provides our conclusions and discusses promis-

ing future research.

II. RELATED WORK

Walden [13] proposed a message-switching host-host pro-

tocol for the ARPANET; however, connections have become

the way to support reliable communication between remote

processes in the Internet.

Considerable work has been reported over the years on

transport protocols that provide reliable end-to-end communi-

cation [8], [9], and most reliable transport protocols use byte

streams as the abstraction for retransmission and congestion-

control.

A plethora of proposals have been made to improve the

performance and functionality of TCP, including more efficient

flow control and retransmission strategies, the use of multiple978-1-7281-9829-3/20/$31.00 ©2020 IEEE

978-1-7281-9829-3/20/$31.00 ©2020 IEEE

2
0
2
0
 I

E
E

E
 3

9
th

 I
n
te

rn
at

io
n
al

 P
er

fo
rm

an
ce

 C
o
m

p
u
ti

n
g
 a

n
d
 C

o
m

m
u
n
ic

at
io

n
s

C
o
n
fe

re
n
ce

 (
IP

C
C

C
)

| 9
7
8
-1

-7
2
8
1
-9

8
2
9
-3

/2
0
/$

3
1
.0

0
 ©

2
0
2
0
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

P
C

C
C

5
0
6
3
5
.2

0
2
0
.9

3
9
1
5
4
0

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on April 08,2023 at 21:44:50 UTC from IEEE Xplore. Restrictions apply.

connections, enabling multihoming of the remote processes

exchanging data reliably (e.g., [7]), and even the use of

machine learning in TCP congestion control (e.g., [6]).

What is so striking about the prior work on reliable transport

protocols operating over a datagram infrastructure is that, with

one exception [1], all of the transport protocols require the

use of end-to-end connections to specific addresses. This has

become a problem because of the growing need to support

location-independent Internet services and content.

Several information-centric networking (ICN) architectures

have been proposed to date, and it is worth noting that the

congestion-control schemes proposed for such architectures

are very similar to those used in TCP [2].

III. INTERNET TRANSPORT PROTOCOL

A. Nexus: Implementing Associations without Connections

For two remote processes to communicate with one another

reliably, one must be able to address the other and they must

understand what they communicate to each other. We call these

two requirements of an association between two processes

as addressing and context. The current use of pairs of IP

addresses and ports satisfies the addressing requirement of an

association in the IP Internet. But what about the context?

If by necessity the communicating processes have no means

of discerning the structure of the data they are exchanging,

then they must agree on a method whereby they agree syn-

chronously on the state of their exchange using a common

representation for that state. In this light, the evolution of

TCP into a connection-based transport protocol makes sense

given the state of computing technology back in the 1970’s

and 1980’s when TCP was developed. Implementing an asso-

ciation using a connection uses limited computing resources

by establishing an agreement for the reliable exchange of a

byte stream with an initial sequence number and provides

enough context for processes to agree on how many bytes

have been successfully delivered. However, the price paid

for such efficiency in resource utilization is big in terms

of functionality. The context of the reliable communication

between the remote processes must be established in real time,

because there is no information regarding the structure of the

data to be exchanged, and hence must also be updated and

terminated jointly. Furthermore, a connection is ephemeral and

the context of the association is lost if the connection is broken.

ITP overcomes the inherent functionality limitations of end-

to-end connections by establishing asynchronous associations

between processes that are not lost if physical connectivity

is lost. This is done based on two insights: (a) no correct

connection-based protocol can be defined if delays are un-

bounded and nodes may lose connection state; and (b) the

names of data objects can be defined to be permanent and

uniquely associated with the objects they denote.

ITP takes advantage of the uniqueness and immutability

of data objects’ names to establish the needed context of an

association independently of network delays or the occurrence

of node or link failures, out-of-order datagram delivery, or

packet replication. The manifest of a data object is itself a

data object and specifies: (a) The unique immutable name of

the data object, (b) the structure of the data object consisting

of object chunks (OC) that can be sent in messages, and (c)

the procedure that should be used to decode the data object

from a set of OC’s. Additional metadata can be made part of

the manifest of a data object, such as the names and size of

object chunks and a list of IP addresses to contact to request

them. Provided that communicating processes can refer to

the same manifest, they can exchange elements of the data

object described in the manifest on a transactional basis, and

a consumer process is free to contact multiple processes using

the same nexus provided by the manifest.
We use the term nexus to denote the establishment of

the context of an association between processes by means of

manifests and references to them.
Figure 1 illustrates how a producer transmits a data object

D to a consumer in ITP based on a nexus. As in other modern

transport protocols, ITP messages use UDP headers stating

the address and port of the consumer and producer; this is

indicated in the figure with “UDP.” The manifest of a data

object D is denoted by M(D).

Fig. 1. Nexus in ITP

The application running at the consumer site asks ITP to

send a data packet, which requests a data object (e.g., an HTTP

GET). In response to that request, the producer specifies a

number of parameters through a specific system call, includng

the content to send, the IP and port address of the client, and

additional control information depending on the system call it

used. Rather than setting up a connection to send the data, the

ITP process constructs a manifest and sends it to the client as a

data packet called Manifest Message in Figure 1, and creates

a Manifest Control Block (MCB) that specifies the manifest

M(D), points to the memory location for D, and includes a

Producer Buffer if additional memory space must be allocated

for efficiency. The OC’s of D are stored in a Content Store

(CS) at the producer, and can be copied to the producer buffer

to reduce latencies.
The nexus for D at the producer starts when it creates

the MCB for D and ends after a nexus timeout that must be

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on April 08,2023 at 21:44:50 UTC from IEEE Xplore. Restrictions apply.

long enough to allow consumer(s) to obtain the OC’s in D,

without having to reallocate memory for the Producer Buffer.

The nexus timeout is restarted each time the producer sends a

data packet with an OC of D.

The nexus for D at the consumer starts when it receives the

manifest M(D). After receiving M(D), a consumer creates

an Interest Control Block (ICB) for D and allocates memory

for a Consumer Buffer (CB) to store OC’s of D. The ICB

includes M(D) and the ICB status indicating the OC’s that

have been received and those that are missing. The nexus at

the consumer ends when it has all the OC’s needed for D, at

which point it deletes the ICB for D. Once the consumer has

a nexus for D, it obtains the data in D by sending Interests

for D. An Interest for D is denoted by I(D) and states: (a)

the names of the consumer and producer; (b) the name of

the data object; and (c) a manifest pointer (MP (D)) that

references M(D) and states implicitly or explicitly the OC’s

that the consumer is missing and those that it has obtained. The

producer responds to an Interest I(D) with one or multiple

data packets. Each data packet contains the manifest pointer

MP (D) of the Interest that prompted it and OC’s that are part

of D. The use of manifest pointers stated in Interests free the

producer from having to maintain per-consumer state, and its

nexus is simply with the data object D and its structure.

B. Software Architecture

As Figure 2 shows, the ITP software architecture consists

of five data structures: Producer, Consumer, Manifest control

block (MCB) list, Interest control block (ICB) list, and Content

Store. All entities in ITP have the same structure, making it a

bi-directional messaging protocol.

Producer ConsumerCS

UDP API

API

ICBICBICBICB

MCBMCBMCBMCB

Fig. 2. ITP software architecture

ITP messages are encapsulated in UDP packets, which

ensures that no alterations are needed for the network stack

and minimal changes are required for the application because

most network devices support UDP packets. As a result, ITP

can operate completely in user-space, allowing us to rapidly

develop and experiment with the protocol without any change

to the transport layer. This implementation makes ITP interface

on one side to user or application processes and the other side

to the UDP interface. The UDP socket is created once the

application process creates an ITP socket. Eventually, the UDP

module calls on the Internet module to transmit each segment

passed by the ITP layer.

Producer & Consumer: An ITP producer is responsible

for sending a data object, and an ITP consumer is responsible

for consuming the object. When the server application sends

out its reply, it is the ITP producer’s responsibility to construct

the manifest for this data and send it to the ITP consumer

at the other end. It is also its responsibility to send data

packets in response to received Interests. The ITP consumer

is responsible for retrieving the data using Interests based on

the information provided by the manifest. The same occurred

when the client application sent out a request (e.g., an HTTP

GET). However, applications that consume data are naturally

different from applications that produce data. Therefore, we

specified different system calls to send the data over ITP that

fits the application need. For example, when the client sends

an HTTP GET request, it is done through a different system

call than the one used by the server application to send an

HTTP response. This system call triggers the ITP producer

at the client side to deliver the Data packet that encapsulates

the HTTP GET request instead of constructing a manifest and

sending it to the ITP consumer at the server end.

Control Blocks and Content Store: An ITP producer

uses the Manifest Control Block or MCB to remember several

variables for each manifest it creates. Some of these variables

represent the manifest itself, the manifest timeout, and con-

sumers authorized to retrieve the data object. These structures

are stored in a list. The MCB is similar to the transmission

control block (TCB) used in TCP to maintain data about

a connection. However, the MCB is only used to maintain

consumer-independent state, because the ITP consumers are

tasked with remembering nexus variables specific to them and

state their values in the manifest pointers included in their

Interests.

An ITP consumer stores the variables needed for each data

object it needs to retrieve in a data structure known as Interest

Control Block or ICB. As with the MCB, all these structures

are stored in a list. A consumer creates an ICB for each

new manifest it receives. The ICB includes variables such

as manifest name, list of ITP producers to contact, Interest

timeout and so forth. Once all the OC’s of a data object are

satisfied, the ICB tigers the ITP consumer to deliver the data

object from the Content Store to the application.

The Content Store (CS) in ITP resembles the NDN content

store and TCP send buffers. An ITP producer can use object

chunks (OC) in the CS to satisfy Interests from different

consumers, depending on the application need. A data object

being retrieved is buffered in the CS until all its OC’s are

received and then it is delivered to the application by the ITP

consumer. The decision of when to deliver the data to the

application is issued by its ICB as mentioned before. The CS

stores the OC’s based on their names.

C. Data Naming and Transparent Caching

Each data object in ITP carries a name, including the man-

ifest. The name of the manifest is mapped to a specification

of messages to be sent. A simple approach to name OC’s in

ITP is by using sequencing with the content name from the

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on April 08,2023 at 21:44:50 UTC from IEEE Xplore. Restrictions apply.

manifest. Using this method an ITP consumer appends a chunk

number to the content name of the outgoing Interest and keeps

incriminating it until it receives all the data packets with the

OC’s of the data object. An alternative way to name OC’s in

ITP is by using a cryptographically secure hash function of

their content. The hash digest for OC’s in a manifest can be

thought of as the sequence number in TCP used to identify

streams of bytes. This means that a manifest is a data object

with a hash digest as its name that describes an ordered

collection of OC’s and their corresponding hash digest. The

combination of the OC’s stated in the manifest and carried out

according to the method indicated in the manifest renders the

original data object.

Large data objects can be organized into a hierarchy of

decoding manifests. To prevent fragmentation and reassembly,

an OC should be small enough to fit in any link-level frame.

ITP can support transparent caching by having a data object

name prefixed with the ITP producer’s IP address and appli-

cation’s port number. This makes OC names to be globally

unique and prevents hash collision at in-network caches.

D. Application Dialogue over ITP

The interaction between transport protocols and applications

can differ from one protocol to another. For example, the

TCP API calls bind(), listen() and accept() are

specific for server sockets and connect() is specific for

client socket, while send() and recv() are common for

both types. Given that no connection is established from the

client to the server, the client just sends messages to the server

using a FORCE_SEND() call that forces the ITP producer

at the client side to send the message directly to the server

without constructing a manifest. Also, the server in ITP does

not need to accept a connection, and instead, it just waits for

messages to arrive. When a message arrives at the server, it

contains the address (IP, Port) of the sender, which then the

server can use to reply back to the client through a system

call SEND(). It is up to the application dialogue to handle

this. Because sockets by themselves are fully duplexed, an

application can simply send back to the port of origin, as

we mentioned before. An ITP server application can close

its socket after the dialog ends; however, because there is no

notion of a connection between the two ends, a server can

simply close its socket.

IV. RETRANSMISSION STRATEGY

ITP uses a receiver-driven selective-repeat retransmission

strategy inspired by the work by Jacobson et al. [5] and based

on the fact that both consumer and producer have the manifest

of the data object being exchanged.

Consumer Steps: The consumer keeps track of the status

of its control buffer (CB) to ensure that a data object is

passed to the application correctly. The initial status of the

CB is set with all OC’s missing when the consumer sends

its first Interest to the producer for a data object D, and the

CB status is updated with each OC received correctly from

the producer. Depending on the application using ITP, the

consumer may have to receive all the OC’s of a data object

before it passes them to the application process and then empty

its ICB. Alternatively, the consumer may be allowed to pass to

the application OC’s that are in order and without any missing

OC’s, and delete those OC’s from its CB.

The consumer is in charge of retransmissions, and simply

persists sending Interests to the producer asking for the OC’s

needed to decode the data object, and each Interest includes a

manifest pointer that reflects the latest snapshot of the CB

status. As such, each Interest can be viewed as including

a vector of acknowledgments informing the producer about

the OC’s that have been received correctly and those that

are missing. The consumer maintains a list of Interests based

on the local times when they were transmitted. The manifest

pointer of each Interest includes the local transmission time

or a sequence number that differentiates it from any other

Interest, even when multiple Interests carry manifest pointers

stating the same CB status. Hence, each data packet received

can be matched uniquely with a transmitted Interest and the

consumer can accurately update its round-trip time (RTT)

estimate with every data packet it receives, even when data

packets and Interests are lost or delivered out of order.

To facilitate efficient retransmissions, the consumer applies

a retransmission timeout (RTO) for each Interest it sends

to the producer; the RTO is updated based on Jacobson’s

algorithm [4]. This allows ITP to obtain better RTO estimates

by measuring the correct RTT with each data packet. The

consumer retransmits an Interest i originally sent at time ti in

two cases: (a) after the RTO for Interest i expires, or (b) when

a data packet for an Interest j sent at time tj > ti arrives at

time td and td−ti > RTT. The latter allows for fast retransmits

without incurring unnecessary Interest retransmissions.

Producer Steps: A producer simply responds to Interests

from any consumer regarding a data object D using the

information about D stored in its MCB and the manifest

pointer included in each Interest. The manifest pointer carried

in an Interest identifies the consumer and the OC’s that it

needs. The order in which a producer receives Interests is

not critical, and the occurrence of Interest losses or Interest

duplicates does not confuse a producer, because each Interest

carries a manifest pointer.

V. CONGESTION CONTROL

We describe a congestion-control strategy for ITP that

mimics the approach used in TCP Reno, but takes advantage

of the receiver-driven retransmission strategy using manifest

pointers in Interests and data packets. Using a congestion-

control strategy that mimics TCP Reno allows us to illustrate

the inherent benefits of the connection-free receiver-initiated

approach used in ITP compared to the connection-based

sender-initiated approach used in TCP.

We adopt a simple Interest-based approach for congestion

control in which one Interest from the consumer elicits one

data packet from the producer. This is the original approach

advocated in CCN [5] and NDN [?]. However, more sophisti-

cated approaches could and should be implemented in which

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on April 08,2023 at 21:44:50 UTC from IEEE Xplore. Restrictions apply.

a window of packets or packets with multiple OC’s are sent

in response to Interests.

Producer Steps: Data packets are the main cause of

congestion in ITP, because the size of an Interest is relatively

small compared to a data packet. The use of receiver-driven

Interests allows the data traffic in ITP to be controlled by

controlling the rate at which the consumer issues Interests.

This frees the producer from having to maintain any per-

consumer congestion state. Accordingly, the producer’s role

in congestion control is minimum and consists of simply

submitting requested OC’s upon reception of Interests from

consumers.

Consumer Steps: The consumer controls the flow of data

traffic with the producer by controlling its Interests’ sending

rate using a congestion window. The congestion window

defines the maximum number of outstanding Interests allowed

to send without receiving their data packets.

The window size is adjusted by the consumer based on the

AIMD (Additive Increase Multiplicative Decrease) mechanism

commonly used in TCP for the congestion window. Similar to

TCP Reno, the consumer in ITP starts in slow-start with a

congestion window of size one. The value of the congestion

window size is increased for each data packet received. This

continues until either a loss is detected or the congestion

window reaches the slow-start threshold, ssthresh. Once the

consumer exceeds the ssthresh, it enters the congestion avoid-

ance state as in TCP [4]. During this state, the consumer

increases its congestion window by one Interest every round-

trip time.

When an Interest times out, the consumer retransmits the

Interest and reduces its congestion window to one. It sets the

ssthresh to half the congestion window size before the timeout,

and then goes into slow-start. If it detects a packet loss using

fast retransmit, the consumer reduces its congestion window

by one half and sets the ssthresh to the new window size

causing it to go into congestion avoidance.

VI. PERFORMANCE COMPARISON

We evaluated the performance of ITP, TCP (New Reno),

and NDN using the ns3 [12] asimulator, and considered the

efficacy of congestion control methods and fairness.

A. Efficacy of Congestion Control

We compared the congestion-control and retransmission

mechanisms of ITP and TCP assuming a scenario consisting

of a simple network of a single source and a single sink.

The topology of the network is a single path of four nodes

with a single sink at one end and a server at the other end.

Both ends share a common bottleneck of 1.5 Mbps and no in-

network caching takes place. The propagation delay between

the two ends is set to 40ms. Consumers in ITP issue Interests

for the content served at the other end, where the client in

TCP consume traffic generated by the server. The size of the

object chunks in ITP are equal to the segment size in TCP,

and fixed at 1500 bytes. Both ITP and TCP share the same

fixed-header size.

Figure 3(a) shows the evolution of the congestion window

every 50ms for the three protocols during the first 30s of

the downloading a content of 3.69MB, a total of 2465

chunks/segments. The growth of the congestion windows for

all three protocols matches the expected behavior of the AIMD

algorithm. However, a consumer in NDN cannot detect the

data source, which prevents the use of out-of-order delivery

methods to detect packet losses.

The ITP retransmission policy allows receivers to detect and

recover from a packet loss faster than in TCP, where it took

the consumer a total of 35.5s to download the file. This is

mainly due to the fact that ITP does not use connections and

applies a fast retransmission strategy enabled by manifests.

A consumer in ITP has a complete picture of which OC’s

were received correctly and which were lost, and does not

rely on partial ACK’s like TCP does. Accordingly, it imme-

diately goes into congestion avoidance state, instead of fast

recovery. As a result, ITP continues increasing its congestion

window normally. This gives ITP the advantage of utilizing

the bottleneck’s buffer compared to TCP, where it has to go

into fast recovery, during which the sender can only transmit

new data for every duplicate ACK received. Figure 3(c) shows

the queue size of the bottleneck’s buffer for only five seconds

of the simulation to highlight the idle periods of each protocol.

It can be seen from the figure that TCP has more extended

idle periods compared to ITP. As a result, ITP achieved

higher average throughput due to better utilization of the link’s

capacity and the buffer size.

Table 1 shows the average simulation results for TCP and

ITP for the same scenario with few changes to the topology.

The round-trip time between the two ends is set to 60ms.

The bottleneck of the topology is set to 10Mbps. The access

links at the server, and the client is set to 100 Mbps. The

client requests/receives data for the duration of the simulation,

which is 30s. The start times of the client’s session are

randomly chosen between 1s and 5s. The simulation was

repeated 10 times, and results were measured at the client-

side. The simulation time does not take into account the TCP

handshake used to close a connection. As shown from the

table, the consumer in ITP achieves higher throughput than

TCP, resulting in more bytes received. This is mainly due to

ITP connectionless nature, which gives it the ability to detect

and react to congestion faster than TCP, resulting in fewer

packet losses.

Protocol Throughput Bytes Received Packet Loss
(Mbps) (Mbyte)

ITP 9.020282 31.85985 115.5
±0.01438 ±1.84591 ±0.52705

TCP 8.110141 28.83405 220
±0.05913 ±1.75277 ±0.00000

TABLE I
SINGLE-FLOW RESULTS

B. Fairness

We evaluated fairness among flows in ITP assuming a

topology consisting of two consumers and two producers

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on April 08,2023 at 21:44:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Single-flow scenario for TCP and ITP

connected via a bottleneck link with 1Mbps capacity. The

queue size is set to 20 packets and the file size is 10 MB. Both

producers transmit the manifests for the file at the beginning

of the simulation at the same time. Both consumers start

issuing Interests to retrieve the data from the producer after

receiving the manifests. We used Jain’s fairness index F as

our performance metric for this scenario which is defined as

F = (
∑n

i=1
xi)

2(n
∑n

i=1
x2

i)
−1, where xi is the throughput

for the ith connection and n is the number of users sharing

the same bottleneck resource. The fairness index F is bounded

between 1/N and 1, where 1 corresponds to the case in which

all N flows have a fair allocation of the bandwidth (best case),

and 1/N refers to the case in which all the bandwidth is given

to only one user (worst case).

Fig. 4. Multiple-flows with homogeneous start

Figure 4(a) shows the evolution of CWND for both con-

sumers. As seen from the figure, ITP CWND behavior follows

the usual TCP sawtooth behavior since both are based on an

AIMD congestion-control algorithm. The fairness between the

two flows is F = 0.99; this can also be seen from Figure 4(b),

where both consumers achieve a similar average throughput.

VII. CONCLUSIONS AND FUTURE WORK

We introduced ITP, the first connection-free reliable trans-

port protocol that operates using the existing datagram com-

munication infrastructure and name resolution services of the

IP Internet. ITP integrates the message-switching approach

first discussed by Walden [13] with the use of manifests and

receiver-driven requests for content.

We chose to make the retransmission and congestion-control

algorithms used in ITP very similar to those used in TCP

Reno today to show the inherent benefits of ITP over TCP;

however, much more efficient algorithms developed recently

for TCP can be adapted to ITP. Furthermore, the use of

manifest pointers in ITP enables far more efficient congestion

and retransmission control by providing receivers with more

control for how and when transmissions and retransmissions

should occur.

ITP allows for all application data to be cached transparently

on the way to consumers using ITP caching proxies, and this

is an area for further study.

REFERENCES

[1] A. A. Albalawi, and J.J. Garcia-Luna-Aceves, “Named-Data Transport:
An End-to-End Approach for an Information-Centric IP Internet,” Proc.

ACM ICN ‘20, 2020.

[2] Q. Chen et al., “Transport Control Strategies in Named Data Networking:
A Survey,” IEEE Communications Surveys and Tutorials, 2016.

[3] V.G. Cerf and R.E. Kahn, “A Protocol for Packet Network Intercommu-
nication,” IEEE Transactions on Communications, May 1974.

[4] V. Jacobson, “Congestion Avoidance and Control, Proc. ACM SIGCOMM

‘88, Aug. 1988.

[5] V. Jacobson et al., “Networking Named Content,” Proc. ACM CoNEXT

‘09, Dec. 2009.

[6] N. Jay et al., “A Deep Reinforcement Learning Perspective on Internet
Congestion Control,” Proc. 36th Int’ Conf. Machine Learning, 2019.

[7] A. Langley et al., “The QUIC Transport Protocol: Design and Internet-
Scale Deployment,” Proc. ACM SIGCOMM ‘17, August 2017.

[8] G. Papastergiou et al., “De-Ossifying the Internet Transport Layer:
A Survey and Future Perspectives,” IEEE Communications Surveys &

Tutorials, Nov. 2016.

[9] M. Polese et al., “A Survey on Recent Advances in Transport Layer
Protocols,” IEEE Communications Surveys & Tutorials, Aug. 2019.

[10] J. Postel, “DoD Standard Internet Protocol,” RFC 760, Jan. 1980.

[11] J. Postel, “DoD Standard Transmission Control Protocol,” RFC 671, Jan.
1980.

[12] ns-3 Network Simulator [Online]. Available: https://www.nsnam.org

[13] D.C. Walden, “Host-To-Host Protocols,” in Tutorial: A Practical View

of Computer Communications Protocols (J.M McQuillan and V.G. Cerf,
Eds.), pp. 172-204, IEEE, 1978.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on April 08,2023 at 21:44:50 UTC from IEEE Xplore. Restrictions apply.

