LOCAL UNIFORMIZATION OF ABHYANKAR VALUATIONS

STEVEN DALE CUTKOSKY

ABSTRACT. We prove local uniformization of Abhyankar valuations of an algebraic func-
tion field K over a ground field k. Our result generalizes the proof of this result, with
the additional assumption that the residue field of the valuation ring is separable over
k, by Hagen Knaf and Franz-Viktor Kuhlmann. The proof in this paper uses different
methods, being inspired by the approach of Zariski and Abhyankar.

1. INTRODUCTION

In this paper we prove local uniformization of Abhyankar valuations v of an algebraic
function field K over a ground field k. An Abhyankar valuation is a valuation which
satisfies equality in Abhyankar’s inequality (1). These valuations are particularly well
behaved. Abhyankar [1] showed that the value groups of these valuations are finitely
generated, and that the residue fields of their valuation rings are finitely generated field
extensions of k. In [20, Theorem 1.1], Knaf and Kuhlmann prove that with the additional
assumption that the residue field of the valuation is separable over the ground field k, local
uniformization holds for Abhyankar valuations of algebraic function fields. A version of
this theorem, valid for Abhyankar valuations in complete local rings over an algebraically
closed field, is proven by Teissier in [27, Theorem 5.5.1]. In this paper, we prove that local
uniformization holds for Abhyankar valuations in algebraic function fields, without any
extra assumptions. Our local uniformization theorems are given in Theorems 1.1, 1.2 and
1.3, stated later in this introduction, and proven in this paper.

The proof of Knaf and Kuhlmann [20], which has the assumption that the residue field
of the Abhyankar valuation v is separable over k, shows that there is a regular local ring
R of K which is dominated by the valuation v such that R is smooth over the ground field
k. Without the assumption that the residue field of v is separable over k, this may not
be possible to achieve. However, we prove in the general case of an Abhyankar valuation,
that there exists a regular local ring R of K which is dominated by the valuation v.

Our proof is a generalization of the proof of Zariski for maximal rational rank valuations
in a characteristic zero algebraic function field, [28]. This method was used by Abhyankar
to prove local uniformization of Abhyankar valuations in two dimensional algebraic func-
tion fields over an algebraically closed ground field in [2, Section 1]. The proofs in [28] and
[2] both make use of the values of derivations of K/k to achieve reduction of multiplicity.
We only use the definition of a regular local ring: it has a regular system of parameters.
Zariski used Perron transforms in [28] to prove local uniformization for rank 1 valuations
in characteristic zero algebraic function fields, and made a reduction argument to use
this result to prove local uniformization of arbitrary rank valuations in characteristic zero
algebraic function fields. Our approach is influenced by that of Samar El Hitti in [14],
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where local uniformization is proven in characteristic zero algebraic function fields for an
arbitrary valuation, via a uniform use of higher rank Perron transforms.

A delicate point in the construction of a proof of local uniformization of an Abhyankar
valuation in the general case, when the residue field of the valuation is not separable over
the ground field k, is that it may not be possible to find a coefficient field of the completion
of a given local ring dominated by the valuation which contains k.

Before stating our local uniformization theorems, we give some necessary background
about valuations. We refer to [29], [15] and [16] for basic facts about valuations. Let K be
an algebraic function field over a field k, and v be a valuation of K/k; that is, a valuation
of K which is trivial on k. Let V], be the valuation ring of v with maximal ideal m, and
I", be its valuation group. Let ¢ be the rank of v, and

O0)=P/CP C---CP/CcP/ =m,
be the chain of prime ideals in V,,. Let
O0=TycIhc.---cIh, =T,

be the chain of isolated subgroups. For 1 < i < t, let v; be the specialization of v with
valuation ring V,, = Vpr. The maximal ideal m,, of V), is m,, = P/V,,; in particular,
v1 = v. The value group of v; is I'), =T, /T';_1.

Abhyankar’s inequality ([1] and [29, Proposition 2, Appendix 2, page 331]) is

(1) rrank v + trdeg, V., /m, < trdeg, K

where rrank v is the rational rank of ». When equality holds in (1), we have that I', = Z"
as a group for some n and V,,/m,, is a finitely generated field over k. This is proven in [1],
and [29, Proposition 3, page 335, Appendix 2]. Valuations that satisfy equality in (1) are
called Abhyankar valuations.

The following three theorems, establishing local uniformization along an Abyhankar
valuation in an algebraic function field, are proven in Section 5 of this paper, as a conse-
quence of the theory developed in Section 4. Any notation used in the statements of our
local uniformization theorems, which is not defined above, can be found in Section 2. If
V,,/m,, is separable over k, these theorems are a consequence of [20, Theorem 1.1]

Theorem 1.1. Suppose that K is an algebraic function field over a field k and v is an
Abhyankar valuation of K/k. Then there exists a reqular algebraic local ring R of K such
that v dominates R. Further,

1) R has a regular system of parameters x11, ..., Ty, such that vi(zj1),...,v5(Tjr;)
is a Z-basis of I';/T'j_1 and Pj(R) = PYNR is the regular prime ideal (zj1, . .., T1,r,)
for1 <j<t.

2) We have that
(R/Pi(R))p,(r) = (V/PiV)P; = Vi /o,
for1<i<t.

Regular parameters as in 1) are called very good parameters of R (Definition 4.1).
Primitive transforms are defined in Definition 4.2. They are a particularly simple type
of birational transform of a regular local ring.

Theorem 1.2. Suppose that R satisfies the conclusions of Theorem 1.1.
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1) Suppose that 0 # f € R. Then there exists a sequence of primitive transforms
(3) along v, R — R(1), such that R(1) with the resulting very good parameters

x1,1(1), ..., 2, (1), satisfies the conclusions of Theorem 1.1, and
f = a8 (1)
where a1 1,...,aty, € N and u € R(1) is a unit.

2) Suppose that I C R is an ideal. Then there exists a sequence of primitive trans-
forms (8) along v, R — R(1), and a1, ...,a:,, € N such that

IR(1) = 211 (1)" -z, (1)* e R(1).

3) Suppose that 0 # f € V,,. Then there exits a sequence of primitive transforms (3)
along v, R — R(1), such that

f=wa ()t (D"t
where ai1,... a1, €N and u € R(1) is a unit.

Theorem 1.3. Suppose that K is an algebraic function field over a field k and v is
an Abhyankar valuation of K. Suppose that S is an algebraic local ring of K which is
dominated by v. Then there exists a birational extension S — R such that R is a regqular
algebraic local ring of K which is dominated by v and satisfies the conclusions 1) and 2)
of Theorem 1.1.

1.1. Defect of extensions of valuations. It has become apparent that the possibility
of defect in a finite extension of valued fields is the essential obstruction to local uni-
formization in positive characteristic ([22], [26] and [11]). This is somewhat surprising,
since defect does not appear explicitly in the proofs that do exist of local uniformization
of arbitrary valuations in a positive characteristic algebraic function field of dimension
< 3, including [2], [24], [18], [4], [3], [7], [5]. No general results of local uniformization of
arbitrary valuations exist, at the time of this writing, in positive characteristic algebraic
function fields of dimension larger than 3.

We now define the classical ramification and inertia indices and the defect of a finite
extension of valued fields.

Suppose that K is a field and v is a valuation of K. Let V, be the valuation ring of
v with maximal ideal m, and I', be the value group of v. Suppose that K — L is a
finite field extension and w is an extension of v to L. We have associated ramification and
inertia indices of the extension w over v,

e(w/v) =Ty :T,] and f(w/v) = [V,/my : V,,/my].

The defect of the extension of w over v is

[Lh . KM
w/v)= ——F——
W = ol /)
where K" and L are henselizations of the valued fields K and L. This is a positive integer
(as shown in [16]) which is 1 if V},/m,, has characteristic zero and is a power of p if V,,/m,,
has positive characteristic p.
The following theorem is a consequence of [21, Theorem 1].

Theorem 1.4. Let K/k be an algebraic function field and v be an Abhankar valuation
of K/k. Suppose that L is a finite extension field of K and w is an extension of v to L.

Then the defect §(w/v) = 1.
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This theorem plays an essential role in the proof of the local uniformization theorem of
[20].

It is shown in [11], that Zariski’s local uniformization algorithm, which takes place in
a finite extension of arbitrary valued fields, converges if and only if there is no defect. In
particular, if a projection to a regular local ring is chosen in which defect occurs, then the
resolution algorithm which we use will not converge.

In our proof of local uniformization (Theorems 1.1 - 1.3) the fact that there is no
defect in an extension of Abhyankar valuations does not appear explicitly, and we do not
use Theorem 1.4. However, since we show explicitly that Zariski’s local uniformization
algorithm converges in the completion of our local ring, it is implicit in the proof that
there is no defect in our finite extension.

1.2. Essentially finitely generated extensions of valuation rings. In this subsec-
tion, we discuss a very interesting question proposed by Hagen Knaf, and give an appli-
cation of our local uniformization theorem to improve a positive result on this question
from [12].

Let H be an ordered subgroup of an ordered abelian group G. The initial index e(G/H)
of H in G is defined ([15, page 138]) as

e(G/H) = {g € G0 | g < H>o}l,

where
Gso={9g€G|g>0}and Hog={h € H | h > 0}.
We define the initial index e(w/v) of the finite extension K — L as ¢(I'y,/T'}).
We always have that e(w/v) < e(w/v) ([15, (18.3)]).
Let D(v, L) be the integral closure of V,, in L. The localizations of D(v, L) at its maximal
ideals are the valuation rings V,,, of the extensions w; of v to L. We have the following
remarkable theorem.

Theorem 1.5. ([15, Theorem 18.6]) The ring D(v, L) is a finite V,,-module if and only if
d(wi/v) =1 and e(w;/v) = e(w;/v)
for all extensions w; of v to L.

Hagen Knaf proposed the following interesting question, asking for a local form of the
above theorem. Essential finite generation is defined in Section 2.

Question 1.6. (Knaf) Suppose that w is an extension of v to L. Is V,, essentially finitely
generated over V,, if and only if

w/v) =1 and e(w/v) = e(w/v)?

Knaf proved the “only if” direction of his question; his proof is reproduced in [12,
Theorem 4.1].

The “if” direction of the question is true if L/K is normal or w is the unique extension
of v to L by [12, Corollary 2.2]. In [23, Theorem 1.3], it is shown that if L is an inertial
extension of K, then V,, is essentially finitely generated over V.

The “if” direction of the question is proven when K is the quotient field of an excellent
two-dimensional excellent local domain and v dominates R in [12, Theorem 1.4]. The proof
of [12, Theorem 1.4] uses the existence of a resolution of excellent surface singularities ([24]
or [4]) and local monomialization of defectless extensions of two dimensional excellent local
domains ([8, Theorem 3.7] and [13, Theorem 7.3]).
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The “if” direction is proven when K is an algebraic function field over a field k£ of
characteristic zero and v is arbitrary in [9, Theorem 1.3].

We obtain the following theorem, which is proven in Section 5, as a consequence of
Theorems 1.1 and 1.3.

Theorem 1.7. Let K be an algebraic function field over a field k, and let v be an Ab-
hyankar valuation on K. Assume that L is a finite extension of K and that w is an
extension of v to L. If e(w/v) = e(w/v), then V,, is essentially finitely generated over V.

The defect §(w/v) = 1 with the assumptions of Theorem 1.7 by Theorem 1.4 as v is an
Abhyankar valuation.

Theorem 1.7 is proven in [12, Theorem 1.5], with the additional assumption that V,/m,,
is separable over k. To prove the stronger Theorem 1.7, we must only modify the proof
of [12, Theorem 1.5] by observing that the statement of [12, Theorem 7.2] is true without
the assumption that V,,/m,, is separable over k, using Theorems 1.1 and 1.2 of this paper
in place of [20, Theorem 1.1].

A complete positive answer to Question 1.6 has been found by Rankeya Datta at the
time that this article was in press, in the article “Essential finite generation of extensions
of valuation rings”, arXiv:2101.08377.

2. NOTATION

We will denote the non-negative integers by N and Z~ o will denote the positive integers.

If R is a local ring we will denote its maximal ideal by mp. A regular prime ideal in a
Noetherian local ring is a prime ideal P such that R/P is a regular local ring. If A is a
domain then QF(A) will denote the quotient field of A. Suppose that A is a subring of a
ring B. We will say that B is essentially finitely generated over A (or that B is essentially
of finite type over A) if B is a localization of a finitely generated A-algebra. If R and S are
local rings such that R is a subring of S and mg N R = mpg then we say that S dominates
R.

Suppose that k is a field and K /k is an algebraic function field over k. An algebraic local
ring of K is a local domain which is essentially of finite type over k and whose quotient
field is K. A birational extension R — R; of an algebraic local ring R of K is an algebraic
local ring R; of K such that R; dominates R.

If v is a valuation of a field K, we will denote the valuation ring of v by V, and its
maximal ideal by m,,. If a valuation ring V,, dominates A we will also say that v dominates
A. If A is a subring of a valuation ring V,,, we will write A, for the localization of A at
m, N A.

A valuation v of a function field K/k is a valuation of K which is trivial on k.

A pseudo-valuation y on a local domain R is a prime ideal P of R and a valuation p on
the quotient field of R/P which dominates R/P. If u is a pseudo-valuation on a domain
R, we will write p(f) = oo if f is in the kernel P of the map from R to V,,. We will write

P = P(u)g.

3. EXTENSIONS OF PSEUDO-VALUATIONS

Suppose that T is a normal excellent local ring. Let P(w)r be a prime ideal of T" and w
be a rank one valuation of the quotient field of 7'/ P(w)r which dominates 7'/ P(w)p. The
valuation w induces a pseudo-valuation of 7' (as defined in the above Section 2), where
we define w(f) = w(f) if the class f of f in T/P(w)r is nonzero, and define w(f) = oo if
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f € P(w)r. Let

(2) Q(T) = Cauchy sequences { f,} in T such that for all [ € Z~,
= there exists n; € Zsq such that w(f,) > lw(my) if n > ny

We have that Q(T) is a prime ideal in 7" and Q(T) NT = P(w)r. There is a unique
extension of w to a valuation of the quotient field of 7'/Q(T") which dominates T7'/Q(T).
It is an immediate extension (there is no extension of the value group or the residue fields

of the valuation rings). Thus there is a unique extension of w to a pseudo-valuation of T
such that P(w); = Q(T). We define

o(T) = dimT/Q(T).

The objects Q(T') and o(T') are defined in [6], [10] and [14]. Concepts of this type are
studied in [19].

The following lemma is proven in the case that w is a rank 1 valuation dominating T’
(and not just a pseudo-valuation) in [6, Lemma 6.3]. The proof is essentially the same
here, although we require a little more notation.

Lemma 3.1. Let notation be as in this section. We further suppose that V,,/my, is an
algebraic field extension of T /mr.
1) Let I be a nonzero ideal in T such that I ¢ P(w)p. Let f € I be such that
w(f) =w(). Let
1

J=U%, (P(w)TT[f} : IjT[;]) 7

which is the strict transform of the ideal P(w)r in T[%] Then J is a prime ideal
in T[%], the map T/P(w)r — T[#]/J is birational (T[%]/J is of finite type over
T/P(w)p and both rings have the same quotient field) and there exists a mazimal
ideal n of T[#] containing J such that w dominates (T[%]/J)n and so w is a
pseudo-valuation on Ty = T[%]n with P(w)p, = Jy.

2) Suppose that Ty is normal. Then o(Ty) < o(T).

Proof. We first consider Statement 1). Let f be the class of f in T/P(w)r. Since I ¢
P(w)r we have that f # 0 and
1 I(T/P(w
T H /T = (T/P(w)r) [(/”T)]
f f
is a birational extension of T/ P(w)r and all its elements have nonnegative w-value. Let n
be the prime ideal in T[%] of elements of positive w-value. T'/mp C T[%]/n C V,,/my, and

Vo /my, is assumed to be algebraic over T'/my. Thus T[%]/n is finite over T'/my. By [25,
Theorem 15.6], n is a maximal ideal of T[%]

We now establish statement 2). The completion of 77 at it’s maximal ideal is T =

—

T[%]ﬁ where i = mg N T[ITT}] Let

Q= Uit (Q(T)T




the strict transform of Q(7') in T[IT]ﬁ Since I ¢ P(w); we have that w(f) = ccif f € Q.

R
Thus Q € Q(T1). Now T/Q(T) — T[IJT];L /Q is birational and the residue field extension
is finite, so by the dimension formula [25, Theorem 15.6],
o(T) =dimT| 7 ]a/Q = dimT1/QTh
since completion is flat. Thus ¢(7) > dim 71 /Q(T}) = o(T1). O

4. ABHYANKAR VALUATIONS

Let K be an algebraic function field of a field k and let v be an Abhyankar valuation
of K/k. Since v is Abhyankar, there exists a transcendence basis

L0153 L0mgs L1y v o5 Ty s L2015 e ooy Lt 1y ey Lry (S VV
of K over k such that the classes Zg 1, ..., %o, of 2o1,...,Z0,, in V,/m, are a transcen-
dence basis of V,,/m, over k and v(x;1),...,v(xiyr,) is a Z-basis of I'; /I';_; for 1 < i < t.

In particular, v(x;1),...,v(xy,) is a Z-basis of I',, for all i, and the set of classes of
ZO,1,- -5 Tie1,r_, i1V, /my, is a transcendence basis of V,, /m,, over k.

Definition 4.1. Suppose that A is a reqular algebraic local ring of K which is dominated
by vi. A regular system of parameters z;1,. ..,z i A such that vi(zj1),...,vi(2jr;) is
a basis of I'j/Tj_1 fori < j <t is called a very good regqular system of parameters in A.

Definition 4.2. Suppose that A is a reqular algebraic local ring of K which is dominated
by v;. Suppose that z1,...,2,, 5 a very good reqular system of parameters in A. A
primitive transform along v;, A — Ay, is defined by

(3) zik = 2 k(1) 21m

where vi(zj ) > Vi(zim). We define Ay = Alzj(1)],,. Then Ay is a regular algebraic
local ring of K which has the good regqular system of parameters z;1(1),. .., 2, (1) where

Zoc,,B(l) = Za, Zf (O[,ﬁ) 7é (]a k)

The following proposition is [12, Proposition 7.4] or [11, Lemma 4.1}, which is a gener-
alization of [28, Theorem 2].

Proposition 4.3. Suppose that A is a reqular algebraic local ring of K which is dominated
by v; and zi1,..., 2, 15 a very good regular system of parameters in A. Suppose that
M| = Haﬁ zzaf and My = Haﬁ Zia,éﬁ are monomials such that v;(My) < v;(Ms). Then
there exists a sequence of primitive transforms along v;,

A— A — = A,
such that My divides My in As.

We remark that if v;(M;) = v;(Ms) in the statement of Proposition 4.3, then we have
that M1 = Mg.
. . ay; by ; ag,;
Proof. r_b[‘here exists a largest index [ such that J[; zl,lf] # [1; zl’lj’? . Then v;([]; zléfj) <
vi(ll; % ljj ). By [28, Theorem 2], there exists a sequence of primitive transforms A — A

along v; in the variables z; j(m) from the regular parameters of A,, as j varies, such that
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I, z;l;’j divides [, zlb’]’.j in A;. Writing M; and My in the regular parameters z; j(s) of As

M, = Hzm(s)ai’j(s) and My = Hz” bisi(s),

we have that

My = H Zi,j(S)bi’j(s) Hzl,j(s)bl’j(s) H Zi,j(s)ai’j(s)

i<l,j J i>1,7

with b j(s) — a;;(s) > 0 for all j and for some j, b ;(s) — a;;(s) > 0. Without loss of
generality, this occurs for j = 1. (If b ;(s) = a;;(s) for all j, then a;; = b;; for all j in
contradiction to our choice of [.)

Now perform a sequence of primitive transforms As — A,, along v; defined by 21 (t) =
211(t+1)2q,8(t + 1) for o < I and B such that by g(t) < aqg(t) where

Hzag ) and My = Hza,g(t)b s(t)

to achieve that M; divides M> in A,,. O

4.1. Construction of an algebraic local ring which is dominated by v and has
some good properties. Let L = k(zo1,...,2,,). L — K is a finite field extension. Let
w =v|L and w; = y4|L.
Let
Ri =k[zon, .-, oo, = k(@01 Tic1p, ) [@ia, - - 7:Ct,Tt](xi,lv---vaft,rt)’

a regular local ring.

Lemma 4.4. Suppose that f € V.. Then there exists a sequence of primitive transforms
along w;,

Ri — R = Rilwi1(1), -, %0, (D] (@1 (1), (1))

such that f = uM where M is a monomial in z;1(1),..., 2+, (1) and u is a unit in R} .

It follows that Vi, /mw, = k(xo1,. .., Ti—1,r; 4)-

Proof. Write f = § with g,h € R;. Expand g = Za)\i’lw,’)\tﬂxii{l- x?trt” and h =

i A A~ .
D By Tid Tt i Ry = sef[wi, . @ ]] with

QNG 15 Aty BAi,la---v/\t,'rt € x= /{7(13071, < X0 7“0)'

A A i At,r
Let I = (z lll $t;:t | N1y iy #0) and J = (xl’ll t;tt | Bitr A # 0) which

are ideals in R;. By Proposition 4.3, there exists a sequence of primitive transforms along
Wi, Rz — R(l) = Ri[l'i,l(l), ey xtvrt(1)](‘22',1(1)7--'717‘,157«(1)) and di71, ey dt,r” €i71, ceey 67«,“ c N
such that TR(1) = z;1(1)%t -+ 2y, (1)t R(1) and JR(1) = @1 (1)1 - - - 24, (1)t R(1)
and dy; > e, for all k,I. Thus g = ;1 (1)%1 - - - 24, (1) and

h= @i (D gy, (1)

where v, € ]?(1\) are units. Now 7,6 € K N .ﬁ(l\) = R(1) are units (by [2, Lemma 2]).
Thus f = z;1(1)%17¢1 ... gy, (1)%re=¢trry5~1 has the desired form in R(1).
U
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Remark 4.5. The sequence of primitive transforms R; — R} of Lemma 4.4 induces a
sequence of primitive transforms

Ry — R% =R [$i,1(1)’ cee 7wtﬂ“t(1)](331,17---@1‘—1,”-_1,xi,l(l)v---:xt,'r't(l))
along w such that (R%)(xi’l(l) ..... 2o (1) = R}.

Now Vi, /mw, = k(zo1,...,Zi—14,_,) = Vi,/my, is a finite algebraic extension since v;
is Abhyankar. Thus there exist @;1,..., Qs € Vi,/my, such that
VVi/mVi - (Vwi/mwi)(aiyl’ s 7ai15i)'
Let T; be the integral closure of V,,, in L. There exists a maximal ideal m of T; such
that (T;)m = Vi, and so V,,/m,, = T;/m. Let oy 1,...,q; be lifts of @;1,..., @5, to T;.
Let fj(z) € Vi, [x] be the minimal polynomial of «; j over L. Let af, ; be the coefficients of

the f;(x). By Lemma 4.4, and Remark 4.5, there exists a sequence of primitive transforms
along w, Ry — R}, such that

ai; € (R)w; = (R (@1 (1), ry (1))
for all 7, k.
We may thus construct a sequence of primitive transforms along w
Ry — R(1) = --- — R(t)
such that
R(t) = k(zo1,- - @or0)[21,0()s - - o, T (O] @11 (8), 00, (1)
and

(R(t))w; = k(xo1,- - 20, 1,1 (1), s Tim 1, )21 (), - -+, e (D)) (21 (), (1))
for 1 <i<tand af’j € (R(t))w, for all 7,k and 1.

Replacing Ry with R(t), we may assume that aﬁj € (R1)y, for all i, 7, k.

Let B be the integral closure of R = Ry in K. Let Pj(R) = PN R = P“NR. Then the
localization Bp,(gy of the R-module B at the prime ideal P;(R) of R is the integral closure
in K of R,, = Rp,(g) for all i. Thus a;; € Bp,g) for all j. Now Bp,(g) is a finite Ry,
module for all ¢ and Bp,(g)N P is a maximal ideal in Bp,(g). Thus there exists a maximal
ideal m; in B Pi(R) such that m; = B Py(R) M My, Thus E,: is the m;-adic completion of
Bp,(r) with respect to m; and By, /mp, = Bp,(g)/m;. We have
(4)

Vwi/mwi = Rwi/mei = k(fO,la cte 7TZ'—1,T‘Z'_1) - k(§0,17 st 757:—1,7'1_1)(&7:,17 ctt 7ai,si)
C BPi(R)/mi = BVi/mByi - VVi/mVi = (Vwi/mwi)(ai,lv cee aai,si)
so Bp,(ry/m; = B,,i/mBVi =V,,/m,, for all i.
Now Bp,(p) is a finite R,,-module which implies that

P’L(R)(BPZ(R))TM = (xl}h S 7$t7rt)Bmi

is an m;-primary ideal in B,,,, so that z;1,...,2:,, is a system of parameters in B,,,,
since
(5) dim By,, =dim R, =7+ -+ 7.
Thus x;1,...,%¢,, is a system of parameters in E\m = E;
Let k; be a coefficient field of B, (so k; = Vi, /mw,). kil[zii, ..., 2] C By, is a power

series ring, by [29, Corollary 2, page 293], and B,, is a finite module over k;[[zi1,. .., Z¢ ]
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by [29, Remark on page 293]. By our construction, v;(x; 1), ..., vi(zy,) is a Z-basis of Ty,
and k; = V,,,/my, for 1 <i <t. Let Pi41(By,) be the prime ideal
Pi1(By,) = (P4 Vi) N By, C (PVy,) N By, = map,,.
Equation (5) implies that
dimB,, =7+ -+ r =dim R,
for all ¢. Thus
(6) dimBy,/Piy1(By,) = dim By, — dim(By, ) p,

[3

+1(BV1') = dlm BZ/Z‘ - dlm BVi+1 =T;.

Now B,, is reduced and equidimensional of the same dimension r; + --- + r; as B,, and

—

(7) Pir(B,)By = 001,
where the I; are prime ideals in E,,\Z such that
dim By, /I; = dim B, /Pi11(By,) = r;

for all j by [17, Scholie IV.7.8.3]. Define a prime ideal Q;11 = Qi1 (El,z) in EZ of the
Cauchy sequences {f;} in B,, such that given v € I';/I';_1, there exists jo such that
vi(f;) > for j > jo. The ideal Q;41(B,,) is the ideal Q(B,,) defined in (2).

We have an injective finite map

®)  killwin il 2 kil 2]/ Qirt Okillzan, -+ Ter)] = Buy/ Qi
&)
(9) dim EV\i/Qi+1 =T;.
Now PHI(B,,Z,)E; C Q41 implies one of the I; in (7) is Q;y1. Thus after possibly
reindexing the I;, we have that Q;;1 = I; and
(10) ]DH_l(Byi)Ey\i =Qir1NhLN---NI,.
v; is composite with the valuation 7; with valuation ring V5, = (V,,/ P/ ;) pv, value group
I'z, =T'i/I'i—1 and residue field (V,,/P}) pv. 7; naturally induces a valuation on E:z/ Qit1-

There exists a regular local ring D which is essentially of finite type over k,
such that B,, is a quotient of D.

(11)

Let P;(D) be the preimage of P! under the composition D — B,, — V, and let
D; = Dp,p). Then D; are regular local rings which are essentially of finite type over k
with regular parameters x;1,...,%ir;, Tit1,1,- -+ Tt Y1, - - - Ym i D; such that By, is a
quotient of D; (we identify the x; ; with their image in B).

We have that v; induces a pseudo-valuation on D; with kernel P41 (U;). Let

(12) Ai =D = ki[[Ti 1, Tirs, Tig 1,15 - s Tty Yls - - - Yo |-
Let Q = Qi+1(A;) be the preimage of Q; 41 in A;. Then 7; induces a pseudo-valuation on

By, with kernel ;41 and induces a pseudo-valuation on A; with kernel @ = Q;+1(4;). 7;
induces a pseudo-valuation on D;, with kernel

(13) Piy1(D;) = Q(A;) N D;

which is the preimage of P/ ; in D;.
10



More generally, suppose that
(14)
U; is a regular local ring which is essentially of finite type over k with quotient field K
such that U; dominates D; and the pseudo-valuation 7; dominates U;.

We then have a natural homomorphism 7 : U; — V,,. For j such that : < j < ¢+ 1,
define

(15) Pi(Uy) =7 (PYV,,).
We have a chain of prime ideals
P, 1(U;) C P(U;) C --- C Pi(U;) = my,.
Suppose that

(16) Tily-- sy Tiryy Titl,1y s Litlriprs-- Lty Yls oo Ym

is a regular system of parameters in U; such that v;(z;1),...,v(7;¢,) is a Z-basis of
I';/T'j—q for i < j <t. Such a regular system of parameters will be called a good regular
system of parameters, or simply “good regular parameters”. Sometimes we will abuse
notation and allow a good system of parameters to be a permutation of an ordered list
(16).

4.2. Transforms. We define four types of transformations U; — U(1) along v;.

Type (1,7) with ¢ < j. This is a transform
Tj

Tjk = ij,z(l)‘”“ﬂl, for 1 <k <y
=1

where ay; € N, Det(ay;) = +1 and v;(z;;(1)) > 0 for all [. We define
U(1) =Uilzja(1), ... @), (1],

Type (2,7) with ¢ < j. Suppose u € {Z411,- .., Ttrs Y1, -- - Ym} With v;(u) € Tj41. Let
at,...,ar; € N. Define

ai

1T L u(l)

U= :
1T

and U(1) = U;[u(1)]y,.
Type (3,j) with i < j. Suppose v;(yx) € I'; and v;(yr) = a1vj(xj1) + - + arvi(2)0;)
with a1,...,a;; € N and

Vi yikar > 0.

al J
Ti1 Tir;

Define yi = 2} -+ 27 yr(1) and U(1) = Uilye(1)]s-

Type (4,7) with ¢ < j. Suppose that v € {y1,...,ymn} with v;(u) € I';. Suppose that

ar ., arj) a1 --xqrju(l) and

ai,...,ar, € N are such that v;(u) > Vi(xj71~ ). Define u = Ty

U(1) = Ui[u(1)],-
In all four cases, U(1) has a natural good system of regular parameters.
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4.3. Formal Transforms. We now construct sequences of formal transforms along 7;
(17) A =U; = A1) = - — A(D).
We suppose that
xi,la s 7xt,7"t7y17 - Ye

is a given good regular system of parameters in U;. In A(0) = A; = U;, we suppose that
xiJ(O)? s 7$t77't(0)7 y1(0), s 7ye(0)

is a regular system of parameters such that 1 1(0) = x1.1,...,2¢r,(0) = 24, and y1(0), ..., ye(0)
may be formal (not in U;). Suppose that we have inductively defined A(0) — --- — A(n),
with a regular system of parameters

zii(n),...,xer,(n),y1(n), ..., ye(n).

Formal transforms of type (1,7). We define a formal transform A(n) — A(n+ 1) of
type (1,17) as follows. Set

zik(n szln—i—l)a” for1<k<m;
=1

where a;; € N, Det(a;;) = +1 and 7;(x;;(n + 1)) > 0 for all [. By Lemma 3.1, since
the ring A(n)[zia(n +1),..., 2, (n + 1)] is the blow up of an ideal in A(n) generated
by monomials in x;1(n),..., % (n) which is thus not contained in Q(A(n)), the pseudo-
valuation 7; extends uniquely to a pseudo-valuation which dominates a local ring
(A(n) [ml}l(n +1),... » Lir; (n+1))m,
where m,, is a maximal ideal of A(n)[z;1(n+1),..., 2z, (n+1)], and extends uniquely to
a pseudo-valuation which dominates it’s completion
Aln+1) = (A)zia(n + 1), ., @i (0 + D, )
We extend z;1(n+1),...,z;,,(n+ 1) to a regular system of parameters
zipfn+1),...,x0,(n+1),zip11(n+1),..., 20, (n+ 1), y1(n+1),...,5.(n+ 1)

in A(n+1) where x;,(n+1) = x;x(n) for j > i and y1(n+1),...,y.(n+1) can be chosen
arbitrarily to make a regular system of parameters.

Formal transforms of type (2,7). We define a formal transform A(n) — A(n + 1)
of type (2,i) as follows. Suppose that u € {zit11(n),...,x¢ Tt( ), y1(n), ..., ye(n)} and
Ui(u) = oo. Suppose that ai,...,a,; € N. Define u = xz,l( )y n( NREXTS

By Lemma 3.1, since the ring A(n)[u/] is the blow up of the ideal (z;1(n)* - - - x; ,, ()", u)
in A(n) which is not contained in Q(A(n)), the pseudo-valuation 7; extends uniquely to a
pseudo-valuation which dominates a local ring

(A()[u])m,
where m,, is a maximal ideal of A(n)[u], and extends uniquely to a pseudo-valuation which
dominates it’s completion
Aln+1) = A,
We define a regular system of parameters
zitn+1),...,zin,(n+1),zip11(n+1),..., 2, (n+1),y1(n+1),...,y.(n+ 1)
in A(n+1).

n*
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Ifue{yi(n),...,ye(n)}, then z; x(n+1) =z x(n) for j > iand y1(n+1),...,y.(n+1)
can be chosen arbitrarily to make a regular system of parameters. If u = x,(n) for some
a > 1 and b, then

. _ if (j, k) = (a,b)
man D ={ 2y 00 2 (o
and y1(n+1),...,y.(n+ 1) can be chosen arbitrarily to make a regular system of param-

eters.

Formal transforms of type (3,17).
We define a formal transform A(n) — (n + 1) of type (3,7) as follows. Suppose
Ti(y1(n)) # oo, and Ti(y1(n)) = a17i(wi1(n)) + - - + ar,;Vi(wir,) With ay,...,a,, € N and

(:L‘Z 1(n)a yl.(.z)m (n)a,-j> > 0.

Define y1(n) = x;1(n)* - - xi,, (n)*iy].

By Lemma 3.1, since the ring A(n)[y}] is the blow up of the ideal (x; 1(n)* - - z; »,(n)*,y1(n))
in A(n) which is not contained in Q(A(n)), the pseudo-valuation 7; extends uniquely to a
pseudo-valuation which dominates a local ring

(AM)[yiDm,

where m,, is a maximal ideal of A(n)[y]], and extends uniquely to a pseudo-valuation
which dominates it’s completion

A(n+1) = A(n)[yi]m,-
We define a regular system of parameters
zitfn+1),...,xin,(n+1),zip11(n+1),..., 200, (n+ 1), y1(n+1),...,5.(n+ 1)

in A(n+1) where z;,(n+1) = zj,(n) for j > i and y1(n+1),...,y.(n+1) can be chosen
arbitrarily to make a regular system of parameters.

Formal transforms of type (4,1).

We define a formal transform A(n) — A(n + 1) of type (4,i) as follows. Suppose that
Ui(y1(n)) # oo and ay,...,a,; € N are such that v;(y1(n)) > vi(zi1(n)* -z, (n)*79).
Define y1(n) = x;1(n)™ - @i, (n)"7y}.

By Lemma 3.1, since the ring A(n)[y}] is the blow up of the ideal (z;1(n)™ - - z; 7, ()", y1(n))
in A(n) which is not contained in Q(A(n)), the pseudo-valuation 7; extends uniquely to a
pseudo-valuation which dominates a local ring

(A)[yiDm,

where m,, is a maximal ideal of A(n)[y}], and extends uniquely to a pseudo-valuation
which dominates it’s completion

A(n+1) = A(n)[w1]m.,-
We define a regular system of parameters
zipn+1),...,x,(n+1),zip11(n+1),..., 2, (n+ 1), y1(n+1),...,5.(n+ 1)

in A(n+1) where ;,(n+1) = z;,(n) for j > i and y1(n+1),...,y.(n+1) can be chosen
arbitrarily to make a regular system of parameters.
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Remark 4.6. In a sequence (17) of formal transforms, we have that o(A(n)) = dim B,
for all n.
This follows since for all n, we have that

dim By, /P;4+1(By,) = 0(A(0)) > o(A(n)) > rrank 7; = dim B,, /P;11(B,,)
by (9), (6), Lemma 3.1 and [1, Proposition 2] or Proposition 2 page 331 [29].

We will call a regular system of parameters

(18) zia(n), ...,z (n),y1(n), ..., ye(n)

as constructed in the above sequence of formal transforms (17) a good regular system of
parameters in A(n). We will find it convenient to permute the variables in a good regular
system of parameters (18) and write it as

(19) z1(n),...,zp(n),z1(n), ..., 2m(n), xix11(n), ..., Ter, (), w1(n),. .., wy(n)
where

zi1(n) =zi1(n),...,x.(n) =z (n),
z1(n), ..., zm(n),wi(n),...,wy(n) is a permutation of y;(n),...,ye(n) and

wi(n),...,wi(n) € Q(A(n)).

We remind the reader that z;111(n),..., 2, (n) € Q(A(n)). We will also call (19) a good
system of parameters in A(n).

Remark 4.7. IfU(n) — U(n+1) is a tranform or A(n) — A(n+1) is a formal transform
then we have

ki[[xm(n), e Ti (n)]] C ki[[xiyl(n + 1), e T (TL + 1)“

4.4. Setting up the reduction algorithm. We now fix i. Let U; = D; and A; = f)z
(12). Let
xl,...,xr,zl,...,zm,xHLl,...,xtvrt,wl,...,wl
be a good system of regular parameters in U; of the form of (19), so that wy,...,w; €
Py (U). - -
Let Z; be the class of z; in A;/Qit+1(A:) = By, /Qi+1(By,) for 1 < j < m. The element Z;

is integral over C; = k;[[x1, ..., x,]] by (8). Thus there exists a relation E;Lj +aj7nj,1§?j_1 +

- +ajo =0 with all a;; € C;. Thus z;j + aj,nj_lz;-ljfl + - +ajo € Qir1(A;). That is,

— o/ onj n;—1
Vi(z; +ajp,—12,7 "+ +ajp) = 00. Set

(20) g(j)(azl, cey Ty ) = 2™ 4 aj,nj_lx"j_l + -+ ajo

for 1 < j < m which are monic polynomials in Cj[z] such that 7;(g\%)(z;)) = co. We may
assume that each ¢\9)(z) is an irreducible polynomial in C;[z].

Lemma 4.8. There exists a sequence of transforms U — U(1) of types (1,i), (3,i) and
(4,1) such that U(0) has very good parameters

z1(0),...,2,(0),21(0),...,2m(0),xix11(1), ..., zer, (1), w1(0),...,wi(1)

such that, with A(0) = U(0),

1) xi-i—l,l(]-)a . ,$t7rt(1)7w1(0), ey ’U)l(l) C R+1(U(O))
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2) There exist monic polynomials fU)(z) € k;[[21(0),...,2.(0)]][z] such that
7i(f9(2(0))) = oo

for1 <j <m.
3) Suppose that o € k; and q € Z~o. Then there exists o' € U(0) and h € m‘i‘(o) such
that

(21) a=a + (z1(0)- - 2,.(0))h
with h € A(0).

Proof. For each j, the monic polynomial g\ (z) = 2™ + ajmj_lx”j_l + - +ajo € Ci[z]
is irreducible. Further, we have that v;(ajo) > 0 so x divides the residue of g (z) in
Ci/mc;[x] = ki[z]. Thus by Hensel’s lemma (Theorem 14 on page 279 [29]), all a;; €
mg,. Since v;(z;) € Zv(x1) + - -+ + Zv(z,), by Proposition 4.3, there exists a transform
of type (1,i), U — U’, defined by zs = [[xx(0)%* such that performing the further
transforms of types (i,4) and (i,3), setting z; = x1(0)---2,(0)2;(0) for 1 < j < m and
w; = 21(0) - - - 2,(0)w;(0) for 1 < j <, we have that

bji = (551( ) : ( ))n]—t H (O)a . ,xr(O)H
for 0 <t < mn; —1. Thus setting f J)( ) = + bjn—12" Loy bjo we have that
9 () € i[[z1(0), ..., 2,(0)]][z] and 7;(fY) (2 ( ))) = oo for all]. O

Replacing U; with U(0), we may suppose that the good properties of Lemma 4.8 hold
in Ul and Al

Suppose that m > 1, and let z = z;. In the algorithms of Subsections 4.5 - 4.7, we
will show that we can construct a sequence of transforms of types (i,1) and (i,3) giving a
reduction of m. In our reduction algorithm, none of the variables

22y o5 2my Lit 115+ 5 Ty, W1, - - -, W

will be effected, so we need only keep track of the change in the first variables x1, ..., x,, 2.
In Theorem 4.9, we will prove that we can apply this algorithm m times to obtain the
condition that @;41 is a regular prime.

4.5. The reduction algorithm. Let z = z; and let

Set u = ord f(0,...,0,z). We have that 1 < p < n. If u = 1 we replace z with
flay, ..oz, z),'and obtain a reduction in m. So suppose that u > 2. Set a,, = 1 and let
p = min{v;(a;z’)}. Write

B . ) , ‘
ap+ a1z 4 +ap—12" + 2" =0y 2"+ a2+ a2 g, 2

where p = 7;(2") = -+ = Tia;,2"), with iy < -+ <is and p < 74(a;;2"7) < vi(a;,,, 29 1)
if j > s.

There exist d; € Z such that 7;(z) = >.._, d;v;(x;). There exists a formal transform
A; — A(1) along 7; of type (1,i), z; = [[, z(1)%" for 1 < j < r, as in Lemma 4.4, such
that A(1) has regular parameters x1(1),...,2,(1), z,... such that if a;; is nonzero, then
ai; is a unit @;; in k;f[z1(1),...,z,(1)]] times a monomial in z1(1),...,z,(1). Further, by

dr

¢ is a monomial z1(1)¢! -+ z,(1)° (all e; are nonnegative).

15
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Now perform the formal transform A(1) — A(2) along 7; of type (3,i) defined by
(22) z=x1(1)% 2, (1) 2

so that 7;(Z1) = 0. Now A(2)/maw) C Vi,/my, = k; so k; continues to be a coefficient
field of A(2) and there exists a unit « € k; such that setting

(23) Z1 = 21 — Q,
x1(1),...,27(1), 21, ... are good regular parameters in A(2).
(24) If 7;(21) = oo we terminate the algorithm.

Since z1 € Qi+1(2) = Qi+1(A(2)), we have a reduction of m in A(2).
Suppose that 7;(z1) # oo, We have that

f(a:1,...7$7»72) = ailzil +."+aiszis+ais+1zis+'l +.”+ain+12in+l .
1-1(1)91 .. .xr(l)gr (azj (751 + a)ll 4 ... _|_ ey, (Zl + a)ls)
$1(1)glais+1 e l'T(l)gTvierl ais+1 (Zl + a)ls‘-ﬁ-l + ..
oy (1)t ey (1) imirag, (21 4 )

+ + |

Now perform a formal transform along 7; A(2) — A(3) of type (1,i) in z1(1),...,z,(1) so
that x1(1)9t - - 2,.(1)9 divides 1 (1) -+ 2,.(1)%% for all j. Setting

fl(l‘l(l), e xr(1)7 Zl) - xl(l)gl f _;Ur(l)gr

we have that 7;(f1) = oco. We expand

(S k‘i[[l‘l(l), Ce l‘r(l)]][zﬂ

(25) fi=a;, (Zl + Oé)il + -t a, (21 + Ct)i5 + .%'1(2) e .%'T(Q)Q
with Q € k;[[z1(2),...,2,(2)]][z1]. We have that
fl(O, ..., 0, Zl) = dil(zl + Ot)il + -+ &is(zl + Oz)is S k:,-[zl].
where @, is the residue of @;; in k; = A(2)/m 4(2). We have that 1 < ord f1(0,...,0,21) <
w (since 7;(f1) = 00).
(26)
If ord f1(0,...,0,21) < p then we have a reduction. Go back to the beginning of

Subsection 4.5 with z replaced by z;, A4; replaced with A(3), C; replaced with
kil[z1(2),...,2,(2))]], f replaced with f; and p replaced with ord f;(0,...,0,21).

Of course it may now be that z is formal.
If ord f1(0,...,0,21) = u, then iy = pu, a;, is a unit in C; (since ord f(0,...,0,z) = p)
and f1(0,...,0,21) = a;,2}". Thus
f1(0, ey 0,21 — Oé) = ZlilZil +-- 4+ aiszis = dis(zl - a)is'

So, i1 = 0 and a;, # 0. Thus

vi(2) = viai) = ,7i(ao)
% (Nvi(z1) + - + Nyi(zy)) N (Zvi(x1) + - - - + Zvi(zy))
= Ny(z1) + - + Ny(a,).

m

Thus there exist ly,...,l, € N such that 7;(z) = Vi(xlll -..zlr), and so there exists

A€ k; =V, /m,, such that 7;(z — )\:clf--ml"") > vi(z). Set z1 = z — )\mlf ..zl and

r T
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filxy,. .., xp,21) = f(x1,. .., 2, 2) (this fi is different from the f; of (25)). We have that
ord f1(0,...,0,21) = p.
(27)
Go back to the beginning of Subsection 4.5 with z replaced by z; and f replaced with fi,
and run the reduction algorithm in A;.

Of course it may now be that z is formal.

4.6. Termination of the reduction algorithm. We either terminate after a finite num-
ber of iterations of the reduction algorithm, or after a finite number s of reductions (26)
of u, we never find a reduction in p after that, performing the operation of equation (27)
infinitely many times.

We thus construct a sequence

A =G0) = G1) = -+ = G(s)

where each G(j) — G(j + 1) is an iteration of the reduction algorithm, culminating in the
reduction step (26) and such that the algorithm proceeding from G(s) never produces a
further reduction in y. In each G(j) we start with good parameters 71(j), ..., 7 (j), Z; and
make a change of variables replacing 5; with Z;. This notation is chosen so that we may
differentiate between different iterations of the reduction algorithm. After introducing this
notation and explaining the construction of G(j — 1) — G(j), we will explain the three
possibilities that the algorithm from G(s) can take.

In G(0) = A;, we start with z{, € U; with 7;(z[)) < oo, and 71(0),...,Z-(0),z(, which are
the first part of a good regular system of parameters in U;. If s > 0, we make a change of
variables

(28) 20 =2 = > doama(0)"10 -z ()

with Ag; € k; and the sum is finite. We then apply the reduction algorithm to Zp, to
construct G(0) — G(1).

Each G(j — 1) — G(j) terminates with a new variable 7, which is derived from Zz;_;
in the reduction algorithm (these are the variables named z; and z respectively in the
reduction step (26)). The reduction algorithm gives Z1(j), ..., Zr(j), z; which are part of
a regular system of parameters in G(j). If j < s, we make a change of variables

(20) Z =2 = 3 A ()0 -z () )

with A;; € k; and the sum is finite, and perform the reduction algorithm on Z; in G(j).
We thus construct Zzg,z1,...,%z, by performing the reduction algorithm of subsection
4.5, each time obtaining a reduction in u, giving a formal sequence of transforms

A =G0) — - = G(s)

along 7;.
From G(s) there are three possible paths that the algorithm can take.

1) After a change of variables of the from of (29) in Z, we obtain Z; such that
Ui(Zs) = oo or there exists g(Z1(s),...,7r(5),%s) € ki[[T1(s),...,Tr(5)]][Zs] such
that 7;(g) = oo and ord ¢(0,...,0,Zs) = 1. In both cases we terminate the algo-
rithm with a reduction in m.
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2) We make a change of variables of the form of (29) in Z/, to obtain Zs;. Then we
perform a formal transform of type (i,1) Zi(s) = [[, Zr(s, 1)%+®) for 1 < i < r
followed by a formal transform of type (i,3) of (22)

Zs = T1(s, 1) - T (s, 1) 2
followed by the change of variables (23),
Zepl = Zs — Qo1
with ag1 € k; such that 7;(Z), ) = oo, terminating the algorithm in (24) with a
reduction in m.

3) We perform the operation of (27) infinitely many times, never terminating the
algorithm.

Let us assume that this third case occurs. We set z; = Z,. We repeat the algorithm of
subsection 4.5 infinitely many times in G(s), each time culminating in step (27), construct-
ing as+if1(s)91(5+i) . -fT(s)gr(SH) for i > 0 with agy; € k; and g1(s+14),...,9-(s+1) €N
such that for all 7,

gi(jl(s)gl(s'i'i""l) .. .jr(s)gr(s+i+1)) > ﬁi(jl(s)gl(s+i) .. .fr(s)gr(sﬂ'))
and the sequence

Forigl = Fsti — 0o @1 ()71 T o7 (5)9(5H0)

satisfies

Vi(Zori) = Vi@ ()T T ()0 CH), Di(Zarin) > TilZora)-
Since v;3(Z1(s)91 5+ . .. 7, (5)9(579) is an increasing sequence in the semigroup Nu; (%1 (s))+
-« + Ny;(Z,(s)), we have that v;(Z1(s)96) ... T, (5)9(+)) s o0 as i — oo. Thus
Ui(Zs4i) > 00 as i +— 00. Let z be the limit in G(s) of the Cauchy sequence {Zs4;}. We
have that the regular parameter z., satisfies 7;(2o0) = 00, 80 200 € Q(5) = Qi+1(G(s)) and
so we have a reduction of m in G(s). Thus the third case produces a change of variables

(30) Zoo =Ty — 3 AgyEi(s) 1) (5) )
in G(s) with A;; € k; and where the sum is infinite.

4.7. The algorithm comes from an algebraic sequence of transforms. We use the
notation of Section 4.6.

Recall that we constructed a sequence

A;=G0) = G(1) = - — G(s)

such that either we obtained a reduction of m in G(s), or we obtained a reduction after
making a final sequence G(s) — H where H is a composition of a formal transform along
v; of type (i,1) and a formal transform along v; of type (3,i).

We have good regular parameters 71(j), ..., Zr(j), %}, ... in G(j) and in (29) we make
a change of variables obtaining a new system of good regular parameters

Z1(4),- % (J), Zjs- -
Each G(j) — G(j + 1) has a factorization
G(5) = E;(0) = E;(1) = E;(2) = Ej(3) = G(j +1).

The parameters Z1(j),...,Zr(j),Zj,... are good regular parameters in in E;(0). The
map F;(0) — Ej(1) is the formal transform along 7; of type (i,1) given by Z;(j) =
18



[1; Z(4, 1)bix() for 1 < i <r. Thus Z1(4,1),...,Z(4, 1),%;,... are good regular parame-
ters in £;(1). The map E;(1) — E;(2) is a formal transform along 7; of type (3,i), given
by a substitution

(31) z; =714, 1)) .z (4, 1)6r(]’)5j
such that 7;(Z;) = 0. We then set

(32) T =% -

where a; € k; so that

(33) 21,1, B (Gy 1) Zps

are good regular parameters in F;(2). The map F;(2) — E;(3) = G(j + 1) is a formal
transform of type (1,i) given by substitutions

(34) 75, 1) = [T e+ 1) 00
k
for 1 <4 <, resulting in the good regular parameters 71 (j +1),...,Zr(j +1),2Z},,... in

E;(3)=G(j +1).

If we do not find a reduction of m in G(s), then we are in the case 2) discussed in
Section 4.6. In this case we have a sequence of maps G(s) — Hy — H, giving a reduction
of min H.

We make a change of variables of the form of (29) in Z/, to obtain Z, giving good regular

parameters Zi(s),...,Z,(S),Zs,... in G(s). The map G(s) — H; is a formal transform
along 7; of type (i,1) given by a substitution 7;(s) = [, Tx(s, 1)%+\) for 1 < i < r, giving
good regular parameters (s, 1),...,%,(s,1),Zs,... in Hy. The map H; — H is a formal
transform of type (i,3) of the form of (22),

(35) Zo = T1(s, 1)) T, (s5, 1)) 5

followed by the change of variables (23),

(36) Zop1 = Zs — Qi1

with ag41 € k; such that 7;(Z, ) = oo, terminating the algorithm in (24) with a reduction
in m, and giving good regular parameters T1(s,1),...,7,(s,1),Z,,,... in H.

We will show that there exists a sequence
U;=V(0)—=V(1)—---—=V(s)
such that each sequence V' (j) — V(j + 1) is a sequence of transforms along v; such that

G(j) = ‘7(]\) for all j. If we have a final sequence G(s) — H, then we will construct a

final sequence of transforms along v;, V(s) — J, such that H = J.
We will construct the V'(j) by induction, so that V(j) has good regular parameters

*

fl(])? s 7§T(j)7zj7- ..
such that
(37) z;‘ =Z; + (1(5) - - -fr(j))"(j)hj

with h; € G(j) = 17(3\'), and such that we can take o(j) arbitrarily large. In particular,
we have v;(z]) = 7;(z;).
If j =0, we define 2§ as in (38) below.
Suppose that we have constructed V(0) — V(j) and j < s. We will construct V(j) —
V(ji+1).
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Define a transform V' (j) — F(1) along v; of type (1,i) by the substitutions z;(j) =
[1; Z(4, 1)bivk(j) for 1 <i <r. Thus 71(4,1),...,Z-(J, 1),2]’-‘, ... are good regular parame-
ters in F(1) and F(1) = E;(1).

We have that Z1(j) - - - Zr(j) is a monomial in Z1(j,1),...,Z,(j, 1) in which all variables
have positive exponents. Recall the substitution (31) used to define the map E;(1) —
E;(2). Taking o(j) sufficiently large in (37), we have that 71 (j,1)%V) .- Z,(j,1) () di-
vides (Z1(j) -~ Z»(4))°Y) in F(1) and

(T1() - - T ()79 y _y
- < = DT (g, 1) e
G0 oz e @ DT B G T € meq)

for some vy, ...,v, € Zsg. Let F(1) — F(2) be the transform along v; of type (3,i) defined
by

Z; =T (.]7 1)61(j) o 'ET(L 1)er(j)6j+1'

Then
Zj+1 = Ujp1 — T1 (4, )" - T (4, 1) hy

and so F'(2) = E(2).

The variable | of E(2) is defined by (32). By (21), there exists o/ € U; such that
ajr1 = + (Z1(4,1) - Tr(4,1))"0h where h € F(2) and 7(j) can be arbitrarily large.

Set v;.H = 041 — &'. We have that fl(j,l),...,f,ﬂ(j,l),?;,rl is part of a regular
system of parameters in E(2) and 7Z1(j,1),...,Z.(7, 1),11§-Jrl are part of a regular system
of parameters in F'(2) such that

/U;'Jrl = E;'Jrl + (fl (.]7 1) o 'fr(ja 1))60)9]
with g; € E(2) and (j) can be arbitrarily large.
Finally define a transform along v; of type (1,i) F'(2) — F(3) by the substutions

zi(j.1) = [[ 7 + 10D
k

—

for 1 <i <r, so that F(3) = E(3). We have thus constructed V(j + 1) = F(3).
Now in the change of variables of (29), we have

Zjp1=Zp = D N @+ D)0 g (4 1) U
1
for 1 <1 <r. We apply (21) to find X, ; € U; such that

N1y =Ny + (@G +1) -2 (f + 1)) h 0,
where hji1; € G(j + 1) and w(j + 1) can be arbitrarily large, and set

(38) Zer = Vhar = 2 Xm0 (4 1)U,
l

The construction of the final sequence V' (s) — J is a simplification of the argument for
constructing V(j — 1) — V (j).
We may now prove the following theorem.

Theorem 4.9. Let U; = D;. Then there exists a sequence of transforms of types (1,i),
(2,3), (3,i) and (4,i), Ui — U(1) along v; such that Qix+1(1) = Qix1(U(1)) is a regular

prime ideal in U(1); that is, E(l\)/Qi_H(l) is a reqular local ring.
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Proof. Let
TlyeeeyLTpy 21y v 2my Lit1,15 -+ 5 Ltyry, Wy - -5 WY
be a system of good regular parameters in U; of the form of (19), so that

Tit1,1y -y Ty, Wiy oo, W € Q(Uz)
Suppose that m > 1. As shown above, there exists a sequence of transforms along v;
U; — W(1) such that W(l\) has good regular parameters
T1(1)y o (1), 22, oy 2y Tt 1,1y« o s Tty W, Wy e+, WY
where
Tig1 1y Tty Wy W1, ..., w; € Q(W(1)).
Since zg,...,2zm € U; are “algebraic”, and they have relations in k;[[z1(1),...,z,(1)]] by
Lemma 4.8, we may continue the algorithm, finding a sequence of transforms along v;
U — W(1) = --- = W(m) so that there are regular parameters

z1(1), ..., zp(1), Tig11, - s xtﬂ,w’l, e w;n, W, ..., W
in m such that
QW (M) = (Tit 115+ s Ttirys Wiy e v vy Wiy W1,y - o, WY).
Thus the conclusions of the theorem hold in W (m). O

4.8. Resolution in the smallest rank. Suppose that U; is as in (14) and there exist
wi,...,w € P= Pi_'_l(Ui) = Qi.t,_l(Ai) NU;, CU;

—

and Z1,...,2, € Q = Qi+1(4;) C A; = U(i) such that

Q = (éla . 'aémal‘i+1,1, sy Ty, W1, - - 'awl)
and

(39) .
Llyeees Tpy 2Ly v vy Bmy Lit1,1y - -5 Ly, Wiy - oo, WY

is a good regular system of parameters in A;.

Good regular systems of parameters are defined at the beginning of SubSection 4.3.

We will show that if m > 1, then there exists a sequence of transforms U; — U(1) along
v; such that there exist an expression (39) in U(1) and A(1) = U(1) with a decrease of m
(and increase in [).

We will prove this by descending induction on m. By Theorem 4.9, we can assume that
there is such an expression with m = dimU; — dim B,, (and [ = 0).

From equation (10), we have a reduced primary decomposition PA; = QN IyN---N1,.
Thus there exists fi,...,f; € P and ay,...,a; € (A;)g such that a1 f1 +--- + aifi = %1.

Write a; = % where b; € A; and ¢; € A; \ Q. Set d; = b; H#i c¢j. Then
difi+---+difi =ck

where ¢ =[] ¢ & Q (so 7i(c) < 00).
We will show that there exists g € P such that g has an expansion

(40) g=a121 + asis + -+ apw; with a; € A; and oy € Q.
If one of the f; has such an expansion, then we set g = f;. Otherwise,
fi€ (8, %,...,w)

for all ¢, and so, ¢z = 22:1 difi € (32, %2,...,w;). But ¢ € Q implies c21 & (32, 2,...,wy),
a contradiction. Thus some f; has an expansion (40).
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Suppose g € A; has an expansion (40). Let 7 = E(al) < 00. For 1 < j < m, there
exists z; € U; such that 2; = z; + h; where h; € m?7. Substituting into (40), we obtain
an expansion

g =00+ 06121 + 0220+ -+ + Sy
with &g € (mki[[ml,...,mr]])?ﬁv 01y...,0p € A; and 7;(61) = 7 < o0.

Expand
ZBZ bri L ghr + 712+
1<i
where 0 # Bz € ki, vi(x; b1, $?r’i) < Vi(:rlil’”l ...xf,”'“) for all 4, and 71, ...,y € 4;, so
that VZ(B,xll Loghe Y=
Expand
50—281 cLi, :L‘qcnrl
1<i
where 0 # ¢; € k; and I/z(fL‘i Lot < (et ) for all b
Let J ({x bl gty {xcl 7 ..., }) be the ideal generated by all of the x?l’i gl
and 2" -+ 2,77, There exists a transform U; — U(1) along v; of type (1,i) in 21,...,2,

and z1(1),...,2,(1) such that JU(1) is generated by x?l Lokt = x1(1)e - xp ()6,

Now define a sequence of transforms U(1) — U(2) along v; of types (4,i) and (2,i) by

z1 =x1 (1) 2 (1) 21 (1),
2 = x1(1)% - 2, (1)%7 (1) for 2 < i < m,
xjp=21(1)" -z (1)2; (1) for i +1 < j <t and all &,
wj = x1(1)% -+ 2,.(1)%7w; (1) for all j.

Taking the sequence of completions of these rings, A; — A(1) = [7(?) — A(2) = (7(?),
we have an induced sequence of formal transforms along 7;. Then g = z1(1)°' -+ - z,(1)" g1
where g1 € m 49y satisfies g1 = $121(1) mod mi@). Now

g U(2) —
o < U@NQFUER) =U?)

by [2, Lemma 2], and so g1 € U(2) N Qi+1(A(2)) = Pi11(U(2)). We thus have a reduction
of m in A(2).
By induction on m, we have thus established the following theorem.

Theorem 4.10. Suppose that U; is as in (14) and U; has a good regular system of param-
eters satisfying (39). Then there exists a sequence of transforms U; — U(1) along v; of
types (i,1), (i,2), (i,3) and (i,4)such that Pi11(U(1)) is a regular prime ideal in U(1) and
Qit1(U(1)) = Pipr(U(1))U(1).
4.9. Resolution in arbitrary rank. Suppose that U; is as in (14). Regular parameters
$i’1,. . .,.%'i’n.,yl, s Ym

in U; such that v;(x;1), ..., vi(zi,,) is a Z-basis of I'; /T';_1 and the prime ideal P;;(U;) of
(15) is Pis1(U;) = (y1,- -, Ym) so that P11 (U;) is a regular prime ideal are called v4-good
regular parameters in U;.

Lemma 4.11. Suppose that U; is as in (14) and that U; has v;-good regular parameters

.Ti71, e ,SCZ'VTZ.,yl, ey Ym-
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1) Suppose that f € U; \ Pi11(U;). Then there exists a sequence of transforms U; —
U(1) along v; of types (1,i) and (2,i) such that f has an expression

f=mia(D) -y, (1) iy,
where dy,...,d,, € N and v € U(1) is a unit.
2) Suppose that f € Pi11(U;) and p € T;/T;_1 is given. Then there exists a se-
quence of transforms U; — U(1) along v; of types (1,i) and (2,i) such that f =
zi1 (D)4 oy, (1), where dy, . ..,dy, €N, v € U(1) and

vi(zia ()™ - i (1) %) > p.
The proof of Lemma 4.11 is similar to the proof of Lemma 4.4.

Proof. First assume that f is in Case 1). Expand
)\1‘ Ai,ri
f= ZOC,\i,l,...,,\mwm’l eyt hayn e hnym

in A; = U; with N1y, € k; not all zero and hq,...h, € A;. Let

)\i, Ai,ri
I= (xi,ll Ly | 100 VIS T Vi 7"é 0)’
an ideal in U;. By Proposition 4.3, there exists a sequence of transforms of type (1,i)
along v;, U; — U(1), where U(1) has v;-good parameters z;1(1), ...,z (1),91,-..,Ym
and there exist d;1...,d;,, € N, such that

TU(1) = 23 (1 - (15U (1),
Now perform a sequence of transforms of type (2,i) along v;, U(1) — U(2) defined by
yj = win ()%, (1) iy (1) for 1< j < m,

to obtain f = x;1(1)% - z;,,(1)%"iy where v € [7(?) is a unit. Now v € ﬁ(?) NnK
implies v € U(2), achieving the conclusions of 1) in U(2).
Now suppose that f is in Case 2). Then f = hyy; + - + himYm with hy, ... Ay, € Us.

Then perform a sequence of transforms along v; of type (2,i), U; — U(1), defined by
yj = a;fll . ‘-:I:Z:iiyj(l) for 1 <i < m, with dy,...,d,, € N, such that l/z(xffll . xfl:}l) > p,
to obtain the conclusions of 2) in U(1).

O
Lemma 4.12. Suppose that U; is as in (14) and that U; has v;-good regular parameters

xi,l,... ,xmi,yl,.. 5 Ym-

Suppose that z1, ..., 2m are reqular parameters in Uj1 = (UZ‘)Pi+1(Ui). Then there exists
a sequence of transforms along v;, U; — U(1) of types (1,i) and (2,i) such that Uiy =
U p,,,wy) and U(1) has vi-good reqular parameters v11(1), ..., 21, (1),y1(1),. .., ym(1)
such that vi(x;1(1)), ..., vi(x1,, (1)) is a Z-basis of T;/Ti—1, Piy1(U(1)) = (y1(1),...,ym(1))
is a reqular prime and for 1 < j <m,
1 T
2= i () i (1) y5(1)
with dj, € N for all j, k.
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Proof. We have that

(Wi, Ym)Uiv1 = (21, - -+, 2m)Uis1 = P (Us) Ui
Thus there exist a;; € U;y1 such that for 1 < j <m,

m
ij E CLjJﬂyk.
k=1

There exist b; 1, € U; and ¢;, € U; \ Pi11(U;) such that ajj = lc”—: By Lemma 4.11, there
J

s

exists a sequence of transforms U; — U(1) along v; of types (1,i) and (2,i) such that U(1)
has v;-good regular parameters

zi1(1),. . i (1), 51(1), ..., ym(1)
such that for all j, k,
e = wia (D)5 2y, (1) 5
where ~;; are units in U(1) and dé- r € N. Now perform a sequence of transforms U(1) —
U(2) along v; of type (2,i)
ue(D) = 2ia ()i, (1) e(2)

for 1 < k < m so that we have expansions
m
zj = Zf]kyk(Q) for1<j<m
k=1

with fj, € U(2) for all j, k. We continue to have U(2)p,, (v (2)) = Uit1. Since Det(f;x)
is a unit in U4, there exists an fj, such that fj, & Piy1(U(2)). Without loss of
generality, 5 = 1. By Lemma 4.11, there exists a sequence of transforms along v;,
U(2) — U(3), of types (1,i) and (2,i) such that U(3) has r;-good regular parameters
2i1(3), ., Tir, (3),91(3), ..., ym(3) such that

Lk = w31 (3)°% i, (3) kg

where g;, € U(3) is a unit if fj; € Pi11(U(3)) and Vi(q:i71(3)aﬂl'k . ':c”i(?))a;’z) is arbitrarily
large if gj1 € Pi41(U(3)). After performing a transform U(3) — U(4) along v; of type
(i,1), and permuting the y;(3), we have an expression

m
2 =21 (D)7 @i ()7 | g (4) + Zgi,kyk(‘l)
k=2
where g7 € U(4) and g11 is a unit in U(4). We then make a change of variables in U(4),

replacing y1(4) with g1191(4) + 2240 g7, vk(4), giving equations

21 = @i (4P, (4)Priyn (4)
zj = ey Giuk(4) for 2<j <m

with g7, € U(4). We thus have that

Det [ : ¢ P (U(4)),



so that some g%, ¢ P,41(U(4)), with 2 < 5,2 < k. We may thus continue as above to
construct U(4) — U(5) such that U(5)p,, () = Uit1 and

2 = $i71(5)61,1 ...;Ei’ri(g))ﬁl,”yl(g))
29 = $¢,1(5)62’1 ...xm(5)ﬁz,riy2(5)
5 = Y g for3<j <m.
By induction, we continue, to achieve the conclusions of the lemma. U

Lemma 4.13. Suppose that U; is as in (14) and that U; has v;-good regular parameters

$i71,... 7xi7r¢7y17~ S Ym-

Suppose that Ui = (Us) p,, v,y has good reqular parameters

EH-LI? ey Ty e 7§t,17 - 7Tt,7"uy1a e Y
Then there exist a sequence of transforms of types of types (1,i) and (2,i) U; — U(1) along
v; such that U(1) has good regular parameters

zin(1), .z, (1), e (1), 2, (1), 91(1), . ym(1)
such that ) .
oy = i (1) %00y, (1) 00y 5 (1)
fora>i+1 and
1 T
U =g (1) -z (1) (1)

for1 <1< m.

Suppose that U;y1 — X is a transform along viy1 of one of the types (1,j), (2,7), (3,7)
or (4,j) with i+ 1 < j. Then there exists a sequence of transforms U(1) — V(1) along v;
of types (1,k), (2,k), (3,k) and (4,k) with k =i or k = j such that V(1)p_ (v) = X.

Proof. The existence of the map U; — U(1) having the properties asserted in the Lemma
is a consequence of Lemma 4.12.

Suppose that U;y1 — X is of type (1,j). Then X = Ui1[z;1(1), ..., %), (1)]y,, where
Tk = lel Zj(1)%! for 1 < k < r;. We have that for 1 <1 <y,

7
z0(1) = [ [ wea(1)15;
k=1

where §; = szzl(xivl(l)d}ﬂl . -xi,ri(l)dzfl)bkvl is a unit in Ujy;.

Now z;,;(1) = [[,., f?j“l’l where (b;) = (ag;)”' is a matrix with integral coefficients.
Thus v (I35, 2k (1)) > 0 for 1 < I < r;. Defining U(1) — U(2) by U(2) =
UM)[zj1(2),...,2jr,(2)],, where z;x(1) = [[,2, 2;1(2)% for 1 < k < rj, we thus have
that U(Q)Pi+1(U(2)) = X.

Now suppose that U;y1 — X is of type (3,j). Then X = U;11[y,(1)]
i - jj;f]yk(l) with v(7,(1)) = 0 and v;11(7;(1)) > 0. Now

yr(1) Yk
, — >0
Viy1 (x%l(l)al . xj,rj(l)mj ) Vit1 B Qr. =

viy1 Where 7 =

so if
yr(1)

yr(1) )
v; — | <0, then y; a— | =0,
<$j,1(1)“1"'$jmj(1) ”) ! («’Uj,l(l)“l cee @ (1)
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and so there exists k such that ax # 0 and n € N such that

o) 4o () 20

Let U(1) — U(2) be the transform of type (2,i) defined by x; (1) = x;,1(1)"x;x(2). Then,
setting x;;(2) = xjx(1) for [ # k, define U(2) — U(3) to be the transform of type (3,j)
defined by y(1) = 3.1 (2)1252(2)% -~ 250, (1)1 51(2).

The remaining two cases, transforms of types (2,j) and (4,j), have a similar but simpler
analysis. O

Theorem 4.14. Let D be the local ring of (11). There exists a sequence of transforms
D — D(1) along v such that there exist good regular parameters

L1y Lt Yy - -5 Ym

in D(1) such that vj(zj1),...,vj(zjr;) is a Z-basis of T'j/Tj—1 for 1 <j <t and

v(yr) = -+ = vlym) = oo

In particular, Pj(D(1)) are regular primes in D(1) for1 < j < t+1 and thus D(1)/P;+1(D(1))
s a regular local ring which is dominated by v and dominates B,,. We further have that

(D(1)/P(DM)))p,pay) = Vii /Mo,
for1 <i<t.

Proof. We will prove the theorem by descending induction on ¢ with 1 < ¢ < ¢t. By
Theorems 4.9 and 4.10, there exists a sequence of transforms D; — E; along v; of types
(1,t), (2,t), (3,t) and (4,t) such that Piiq(E1) is a regular prime in Ej.

Suppose, by induction, that we have constructed a sequence of transforms D;;1 — Ej
along v;41 of types (1,j), (2,j), (3,j) and (4,j) with j > i+ 1 such that P;(E;) are regular
primes in E; for j > i+ 1. By Theorems 4.9 and 4.10 and Lemmas 4.12 and 4.13, there
exists a sequence of transform D; — F) along v; of types (1,j), (2,j), (3,j) and (4,j) with
J > i such that (Fy)p, (k) = E1. By Theorem 4.10, there exists a sequence of transforms
along v;, F1 — F5, such that (FQ)Pi+1(F2) = F; and P;;1(F3) is a regular prime in Fh. By
Lemmas 4.12 and 4.13, there exists a sequence of transforms along v;, Fo — F3, such that

F3 has good regular parameters @1, ..., &, 21, - - -, 2m such that Pj(F3) = (j1,...,Ym)
for all j >4 and v;(wj1), ..., vi(w)4;) is a Z-basis of I';/T';j_1 for i < j <t.
The last statement of the theorem follows from (4). O

5. LocAL UNIFORMIZATION OF ABHYANKAR VALUATIONS

In this section we prove Theorems 1.1, 1.2, 1.3 and 1.7.

Proof of Theorem 1.1: This is immediate from Theorem 4.14, taking R to be

D(1)/Pi1(D(1)).

We remark that the regular parameters in R of the conclusions of Theorem 1.2 are good
regular parameters (Definition 4.1).

Proof of Theorem 1.2: We first prove 1). In R= killz11,- ., %t )], where k1 =V, /m,,

is a coefficient field of R, we have an expansion
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b1,1 bt
(41) f= Z by 1yesbtr, L1107 'xt,rtt
with Qb 1,bir, € k1. Let J be the ideal

b b
J= (215 g | Qb #0)-

By Proposition 4.3, there exists a sequence of primitive transforms R — R(1) along v such
that

JR(l) = 1‘1,1(1)(11’1 R xmt(l)a”t R(l)

Then f has an expression

f=aa M)tz (D)™t
—_— —_—

with v € R(1) a unit. By [2, Lemma 2], u € KNR(1) = R(1), giving the desired expression
of fin R(1).
To prove 2), take generators fi,..., f, of I. By part 1) of this theorem, there exists
a sequence of primitive transforms R — R(1) along v such that each f; is a monomial in
z1,1(1),..., 24y, (1) times a unit in R(1). By Proposition 4.3, we many now apply another
sequence of primitive transforms R(1) — R(2) along v to achieve the conclusions of 2).
The proof of 3) is a variation on the proof of 1), as in Lemma 4.4.

Proof of Theorem 1.3: There exist fi,..., f;, € V,, such that S = k[f1,..., fi]u. Let
R be the regular local ring of the conclusions of Theorem 1.1. By Theorem 1.2, there
exists a sequence of primitive transforms R — R(1) such that f1,..., f,, € R(1) and R(1)
satisfies the conclusions of Theorem 1.1. Thus R(1) dominates S and so R(1) satisfies the
conclusions of Theorem 1.3.

Proof of Theorem 1.7: To prove Theorem 1.7, we need only modify the proof of [12,
Theorem 1.5] by observing that the statement of [12, Theorem 7.2] is true without the
assumption that V,,/m, is separable over k, using Theorems 1.1 and 1.2 of this paper in
place of [20, Theorem 1.1].
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