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Highlights

Determining the volume fraction in 2-phase composites and bodies
using time varying applied fields

Ornella Mattei, Graeme W. Milton, Mihai Putinar

e We tailor the time-dependent boundary conditions so that one bound-
ary measurement at any moment of time allows one to determine the
volume fraction of a lossy two-phase composite (or body).

e The response of a two-phase lossy composite (or body) at a single
frequency can be recovered by applying time-dependent boundary con-
ditions not oscillating at such a frequency.
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Abstract

A body © containing two phases, which may form a periodic composite with
microstructure much smaller that the body, or which may have structure on
a length scale comparable to the body, is subjected to slowly time varying
boundary conditions that would produce an approximate uniform field in ©
were it filled with homogeneous material. Here slowly time varying means
that the wavelengths and attenuation lengths of waves at the frequencies as-
sociated with the time variation are much larger than the size of O, so that
we can make a quasistatic approximation. At least one of the two phase
does not have an instantaneous response but rather depends on fields at
prior times. The fields may be those associated with electricity, magnetism,
fluid flow in porous media, or antiplane elasticity. We find, subject to these
approximations, that the time variation of the boundary conditions can be
designed so boundary measurements at a specific time t = t; exactly yield
the volume fractions of the phases, independent of the detailed geometric
configuration of the phases. Moreover, for specially tailored time variations,
the volume fraction can be exactly determined from measurements at any
time ¢, not just at the specific time ¢ = ¢;. We also show how time vary-
ing boundary conditions, not oscillating at the single frequency wy, can be
designed to exactly retrieve the response at wy.

Keywords: Composites, volume fraction estimation, bounds on transient
response, Markov functions
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1. Introduction

Consider a body © containing a periodic composite material of two isotropic
phases with the cell size being much smaller than ©. We ask: can one ex-
actly determine the volume fractions of the two phases from the response
of the body to time varying applied electric, magnetic, or elastic quasistatic
fields? Here quasistatic means that the frequencies associated with the time
variation have waves with wavelengths and attenuation lengths much larger
than ©.

Cherkaev (8] realized the answer is yes, that in principle one can recover
the volume fraction exactly. One makes measurements of, say, the electrical
response, as governed by the effective electrical permittivity €,(w) at each of
a continuum of frequencies w, such that the ratio € (w)/ez(w) of the permit-
tivities €;(w), and €y(w) of the phases traces an arc in the complex plane.
In principle this allows one by analytic continuation to determine the func-
tion €,(€1, €2) and hence to obtain the measure entering the Stieltjes function
representation of €, /ey as a function of €1 /e5. Then, the integral of the mea-
sure determines the volume fraction. Besides the difficulty of measuring the
response at sufficiently many frequencies that approximate a continuum of
frequencies, the analytic continuation is ill-posed. Nevertheless, one can get
approximations to the measure and thus to the volume fraction. In prior
work [28, 12| and subsequent work [35, 10, 9] this was done either by esti-
mation of the distributions of poles and zeros or poles and residues when
the measure is discrete or approximated by a discrete one, or by extraction
of a continuous measure. Other work based on the analytic properties of
€.(€1, €2) include using in an inverse way [28, 29, 11, 13| volume fraction
dependent bounds on €,(e;(w), €2(w)) at one frequency w or correlating the
values of €.(€1(w;), €2(w;)) at n frequencies w;,7 = 1,2,...,n. To yield accu-
rate approximations to the volume fraction these approaches usually require
measurements at many frequencies.

Here we show how the volume fractions can be exactly obtained from a
single time varying quasistatic field, composed of a continuum of frequen-
cies. By carefully tailoring the time varying applied field, the response at a
selected time ty only depends on the volume fractions and not on the detailed
microstructure. To our surprise, in many cases we find that the response at
any time ¢, and not just ¢y, only depends on the volume fractions and not on
the detailed microstructure.

Our work is an extension of that in [25, 26, 27]. In [25, 26] bounds were



obtained for antiplane elasticity on the response of the average stress (7)(t),
given a time dependent average strain (€)(t) = €yH(t), where the angular
brackets denote a volume average over the cell of periodicity, €, is a fixed
vector and H(t) is the Heaviside function, 0 for ¢ < 0 and 1 for ¢ > 0.
The bounds were volume fraction dependent, but otherwise independent of
the microstructure (and some bounds were also independent of the volume
fraction). Remarkably, in some examples the bounds were exceedingly tight
at particular times. These bounds can be used in an inverse way to provide
tight bounds on the volume fraction given measurements of the response
(T)(t) at these particular times.

For some choices of the frequency dependent shear moduli u(w) and
p2(w) of phase 1 and phase 2 the bounds in [25, 26] were quite wide at all
times. While the tightness or lack of tightness of the bounds was explained,
it was unclear how to tailor (€)(¢) to get tight bounds at a given time ¢ = ¢,
and whether this was at all possible when the bounds with (€)(t) = €y H (t)
were not tight. The case of applied fields that were a finite sum of n terms
with a e~™i! time dependence, with complex frequencies wi, ws, . .., w, was
studied in [27]|. To ensure that the input function did not diverge to infinity
in the distant past, we required that Imw; > 0 for all j. Designing these
input signals to ensure tight bounds on the response at time ¢ = ¢, boiled
down to one of approximation on the real interval [—1, 1] of a polynomial
of degree m + 1 by one of degree m, achieved by letting the difference be
an appropriately scaled Chebyshev polynomial. Additionally, we found the
input function could be designed to approximately reproduce at time t; the
response at another frequency wy.

Our approach here uses judicious applications of the residue theorem to
recover the volume fraction exactly. Moreover we can extract additional infor-
mation such as the exact first moment of the measure and the exact response
at a frequency wy. We emphasize that is important for the wavelengths and
attenuation lengths of the frequencies associated with the time variation of
the applied field be much bigger that ©, and not just the microstructure.
Otherwise, the frequency components will dephase or attenuate differently
as one moves inside ©.

Exact values of the volume fractions can sometimes be obtained using
another approach. It has an entirely different character. While the macro-
scopic response of composite materials, as governed by their effective moduli,
is generally microstructure dependent, there is a plethora of examples where
effective moduli satisfy microstructure independent relations, or relations



that only involve the volume fractions of the phases. A classic example is
Hill’s formula for the effective Lame modulus A, of a mixture of two elastic
phases sharing the same shear modulus p, having Lame moduli A\; and A,
and occupying volume fractions f; and fo =1 — fi:

1 S f2

= + . 1.1
A2 M+20 0 X+ 2u (1.1)

So if A\, and the moduli of the phases are known, we can determine the volume
fractions f; and fy exactly, without having to know anything about the
detailed microstructure. Many examples of such exact relations are surveyed
in chapters 3,4,5, and 6 in [31]. A general theory of exact relations was
developed [15, 17] and was reviewed in chapter 17 of [31] and in [16]. It led
to an enormous number of new exact relations [16]. According to this theory,
a manifold M is an exact relation if whenever a material has a tensor field
L(x) € M for all x then its associated effective tensor L, also lies in M.
Under an appropriate fractional linear transformation, M is transformed to
a linear subspace that must satisfy certain algebraic properties. The theory
is easily extended to include volume fractions by letting M consist of pairs
(f,L), where f represents the volume fraction, or volume fractions, of the
phases.

Our results are also applicable to recovering the volume and shape of an
inclusion, or inclusions, in the body © from exterior boundary measurements.
This is an important inverse problem that has received much attention: see
[6, 21, 22, 34, 33, 19, 1, 18, 5, 7, 3, 2, 20, 32, 23] and references therein. For
the extension of our work to this problem the reader can refer to Sections
8,9, and 10 of [27]. The generalization to recovering the volume of an inclu-
sion, or inclusions, in the body © from exterior boundary measurements is
straightforward and will be outlined in Section 2.4.

2. Preliminaries

The effective magnetic permeability tensor (matrix) p, of a periodic com-
posite containing two phases with isotropic permeabilities p; and po is given
by solving the equations

V-b=0, h=-Vy, b(x)=_pxh(x), (2.1)

where b is the magnetic induction, h the magnetic field, ¥ the magnetic
scalar potential and the permeability u(x) takes the value p; in phase 1 and
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2 in phase 2, and p(x), h(x), and b(x) are all periodic functions of x. Let
() denote an average over the unit cell @) of periodicity:

1
=1 /Q F(x) dx, (2.2)

where |@| denotes the volume of (). As the response field (b) depends linearly
on the applied field (h), we may write

(b) = p.(h), (2.3)

which thus determines the effective permeability tensor pu,.

We could equivalently deal with electricity, fluid flow in porous media,
and antiplane elasticity as they are governed by the same equations, with
the electric permittivity, fluid permeability, and shear modulus playing the
role of the permeability. For example, in antiplane elasticity in an isotropic
material one assumes that the shear modulus p, which takes the role of
the magnetic permeability, is independent of x3, u = p(z1,x2), and one
looks for a solution where the only non-zero displacement component is us
and that is independent of x3. Then the only non-zero components of the
strain €(x) = [Vu + (Vu)?]/2 are 613 = €31 = 10u3/0z; and €3 = €39 =
10u3/0xy . Because €(x) is a pure shear (trace-free), the stress is 7(z1,z5) =
2u(xy, z2)€(xy, z9) and its only non-zero components are

T3 = 731 — 2#613 = u@u:),/@xl, Togz = T32 — 2#623 = u@ug/ﬁxg (24)

Since V-7 = 0, we get 0713/0x1 + 0Ta3/0x9 = 0. Thus, the two-dimensional
version of the equations (2.1) hold with the replacements

b - <713) O, (ggz;gg) o) o p(mn ). (25)

T23

2.1. Analytic properties
The effective permeability as p, is an analytic function of uy and uo,

except at negative real values of the ratio py/us with the properties:
Im[p, (1, p2)] > 01if Impy > 0 and Imps > 0,
poapy, ape) = ap,(p,p2),  p(L1) =1

8”’*(#1’ 1) aQu*(Mly 1) — _2f1f27 (26)

— AL T
O Al T
p1=1

p1=1



where Tr denotes the trace of the matrix. Taking a = i yields the corollary
that
Re[w, (11, p2)] > 0 if Repy > 0 and Re s > 0. (2.7)

As a result of these analytic properties p, (i1, p2) has the integral represen-
tation [4, 30, 14]

fa = o

B (pi1s ) = pol + 2f1p0Gy(2), with 2 = (2.8)
M2 — M1
where ) 0
dn(A
= 2.
G = [ T (2.9

is a Markov function of z. G,(z) has positive-semidefinite matrix valued
measure 1) dependent on the material microstructure and having the identity
as its mass,

1
/ dn(\) = 1. (2.10)
-1
Furthermore, as implied by (2.6), the first moment of the measure satisfies

1
Tr/ Ndn(\) = 2f, — d, (2.11)

1

where d = Tr1I is the dimensionality, d = 2 or 3. In the case where the
composite has square (for d = 2) or cubic symmetry (for d = 3), or is
isotropic, then dn(\) is proportional to the identity matrix and (2.11) implies

/1 Adn(\) = (2f»/d — 1)L (2.12)

Notice from (2.8) that f; can be absorbed into the measure, in which case
the integral of the measure yields the volume fraction.

2.2. Time dependent fields

If there is some time dependence, then in general the magnetic induction
at a given point and time depends on the magnetic field at that point at
previous times (memory effect). Thus, the last relation in (2.1), called the
constitutive equation, gets replaced by

b(x,t) = /_t K(x,t —t)h(x,1) dt, (2.13)
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where by causality K(x,s) = 0 if s < 0. Physically h(x,t) is always real but
it is useful to also consider complex fields. In particular, we may consider
fields h(x,t) with a time dependence e~** where the complex frequency w
has positive imaginary part, to ensure that the applied field is small in the
distant past. Then, (2.13), with ¢ replaced by ¢ — s, implies

b(x,t) = pu(x,w)h(x,t), px,w)= /000 K(x,5)e™* ds (2.14)

Thus, the constitutive relation in (2.1) still holds, but with complex fields
and complex permeabilities. Since K(x, s) is real, the complex permeability
p(x,w) satisfies

p(x,w) = pu(x, —w). (2.15)
The constraints that V- b = 0 and V x h = 0 are valid in the quasistatic
limit, where the wavelength is much larger than the size of the body ©. We
can take applied fields (h)(¢) that are a superposition u(t) of a continuum of
complex frequencies

() (1) = u(t) = /0 B(s)e #D-10) g (2.16)

where we are free to choose the amplitude vector field 3(s). To ensure that
(2.16) approximately holds for all unit cells @ within ©, we need to impose
boundary conditions that would ensure uniformity of the field in © were
it filled with a homogeneous medium: these are affine Dirichlet boundary
conditions on ¥ at 00: see Section 2.4.

The associated field (b)(¢) in the case when the composite is entirely
phase 2, is

(b)a(t) = / pia((5))B(s)e~ O g (2.17)

The corresponding output field can be considered to be

V(1) = (B) (1) = (b)a(t) = / 2fu11a(6(5)) Gy (2(0(5))) Bls)e ™) i,

(2.18)
with
(W) + pa(w)
po(w) — pa(w)’
The physical applied field will be Re(h)(t), and the physical output field will
be

z(w) = (2.19)

Rev(t) = Re(b)(t) — Re(b)s(t). (2.20)
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2.8. The dual problem

Alternatively, one may choose u(t) to be the average magnetic induction
(h(t)), and the constitutive and effective constitutive law can be rewritten
as

h(x) = ju(x) 'b(x), (h) = ;" (b). (2.21)

Rather than considering the function g, (p1, p12) we can consider p; ! as a
function p;t(1/p1, 1/ p2) of 1/py and 1/po. All but the last property in (2.6)
hold if we make the replacements

=1/, o = 1/ pa, p, = (2.22)

Consequently p;1(1/p1,1/p2) has the integral representation

Vpr + 1/ + pio

S — 1 o — g
(2.23)

p (1 s 1/ p2) = T po + 2 fiH, (2) /12, with 2 =

where H,(z) is another Markov function of z,

H.(2) = /_ dr() (2.24)

1)\_27

with positive-semidefinite matrix valued measure 7 dependent on the ma-
terial microstructure and having the identity as its mass. With u(¢) as in
(2.16) (but with (h)(¢) replaced by (b)(t)), we can take our output field to
be

" 2iH, (2(w(s)))

Se-wE—t0) gg (9.
) P 22

v(t) = (h)(t) — (h)a(t) = /

)alt) = [ Bl (i) ds. (2.26)

is the field (h) () in the case when the composite is entirely phase 2, and z(w)
is given by (2.19). The analysis proceeds in a parallel way. Again, to ensure
that (b)(¢) is almost independent of the unit cell of periodicity @), we need
to impose Neumann boundary conditions on b(x) at 0© that would ensure
uniformity of the field in © were it filled with a homogeneous medium: see
Section 2.4.



2.4. Determining the volume occupied by inclusions in a body

Rather than assuming © contains a microstructured material, we can
treat the case where © contains two phases, with structure not necessarily
small compared to ©. For instance © may contain inclusions of one phase
surrounded by the second phase, where the sizes of the inclusions may be
comparable to the size of ©. The volume fraction fi, or fo =1 — fi, is now
the volume occupied by phase 1, or phase 2, divided by ||, the volume of ©
which may be presumed to be known.

We redefine our average as

1
=15 /@ F(x) dx, (2.27)

where |O)] is the volume of ©. We choose affine Dirichlet boundary conditions
on the potential ¢ (which may make more sense in an electrical setting or in
the setting of antiplane elasticity) that are dictated by our input signal u(¢):

Y(x,t) = —u(t) - x on 00. (2.28)

Equivalently, as more appropriate to magnetism, one can specify the tan-
gential components of h at 00. As h = —V a straightforward calculation
shows that (h)(t) = u(¢). Since V - b = 0 it then follows that

(b) = (V- (bx)) = = [ (b-n)xds, (2.29)
6] Joe
where n is the outwards normal to 00, and bx is the outer product be-
tween the vectors b and x. So (b) can be determined by measurements at
the boundary of ©. The relation between (b) and (h) defines some sort of
effective tensor pu? (D for Dirichlet):

(b) = u?(h), (2.30)

and the function p? (1, po) has the same analytic properties as p, (1, f12)
in (2.6), excepting the last property, and can be represented in terms of an
associated non-negative measure dn®”()\). Therefore the analysis carries over
with u(t) = (h)(t) given by (2.16).
We can also consider the dual problem where we specify Neumann bound-
ary conditions on b:
b-n=u(t) -non 00O, (2.31)

9



which from (2.29) implies (b)(¢) = (u(t)) = u(t). We can measure

(h) = (—Vi) = Ym dS, (2.32)

1

0] Joe
and the relation between (h) and (b) defines some other sort of effective
tensor uY (N for Neumann):

(h) = (1Y)~ (b). (2.33)

Again (u)~! as a function of 1/p; and 1/us, has the same analytic properties
as pm,(p1, o) in (2.6), excepting the last property, and can be represented in
terms of an non-negative associated measure dr¥()\).

If the body does contain a periodic composite material of two isotropic
phases with the cell size being much smaller than ©, then we may equate the
Dirichlet and Neumann effective tensors,

py = pl, (2.34)

as the boundary conditions (2.31) will produce fields h and b that are almost
periodic and consequently (2.28) will be satisfied in the homogenized limit.

3. Choosing an input signal that allows the volume fraction to be
exactly determined

In the previous sections we introduced a general framework to handle both
the problem of determining the volume fractions in a periodic composite and
that of determining the volume occupied by inclusions in a body, by applying
affine boundary conditions of either the Dirichlet or Neumann type. Within
such a framework, the input signal (that is (h)(¢), or (b)(¢) for the dual
problem) is

u(t) = /01 B(s)e @ tt0) g, (3.1)

where the w(s) parameterizes a curve in the upper half complex plane, and
the vector valued function (3(s) needs to be determined so that the volume
fraction is determined at least at the given time ¢, as showed in the remaining
of this section. The output is (see (2.18), and (2.25) for the dual problem)

v(t) :/0 aoF,(2(w(s)))a(s)e @) gg. (3.2)

10



in which F,(2) is given by either G, (2) (2.9) or H.(z) (2.24), and

a(s) = B(s)c(w(s)), (3.3)

2(w) = z(—w). (3.4)

Specifically, z(w) takes the same expression for both problems (see egs. (2.19)
and (2.23)), whereas c¢(w) = ps(w) for the direct problem and ¢(w) = 1/ps(w)
for the dual problem. The real constant ag = 2f; and the unknown measure
d~y, corresponding to either dn or dT, depend on the system. Note that, due
to equation (3.3), choosing the function B3(s) is equivalent to choosing the
function a(s), since c(w(s)) is known.

As it is only the real part of v(t) that has physical significance, we can

write .

Rev(ty) = ag /1 dy(N)g(A), (3.5)

where

_ /C ) g, (3.6)

in which C' is the curve traced out by z(w(s)) as s increases from 0 to 1, C
is the curve traced out by z(w(s)) as s decreases from 1 to 0, and for z € C,
r(z) is obtained from

r(2(w(s))) = a(s)/(22'(w(s))e'(s)), (3.7)

while for z € C, L
r(z) = —r(2). (3.8)

Let us assume C'UC is a closed curve encircling the interval [—1,1] once
anticlockwise. We choose a(s) so that r(z) satisfies (3.8) and is analytic,
with no poles, in C' U C. Then,this allows one to apply the residue theorem
in equation (3.6) to obtain

g(\) = 2mir(\). (3.9)
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The corresponding output at time tg, see equation (3.5), would then be

1
Rev(ty) = 27T7ja0/ dy(N)r(N). (3.10)
-1
In order for the output to depend only on ay and eventually the first mo-
ment of the measure, a(s) and, therefore r(z), by equation (3.7), have to be
suitably chosen. For example, if one takes

r(z) = —i(l + kz)ny/(2m), (3.11)

where ng is a constant real unit vector and k is a real coefficient, we obtain

1 1

(1 4+ EXN)dy(MN)ng = agng + aok/ Ady(A)ng.  (3.12)

-1

Rev(ty) = ag /

~1
Thus, with this choice of r(z) the fact that Rev(ty) only depends on aq
and the first moment of the measure is simply a consequence of the residue
theorem. Note that there is considerable freedom in the choice of r(z), still
leading to (3.12). Indeed, for example, to r(z) we may add A(1/z)ny where
A is an entire function, zero at the origin. A deformation of the contour path
C U C to infinity shows that this does not affect the output.

4. Conditions that allow one to generate appropriate trajectories

To apply the results of the previous section we need to choose w(s) so that
C UC is a closed curve encircling the interval [—1, 1] once. Recall that z(w)
takes the same expression for both problems, see (2.19) and (2.23), where
wi(w), i = 1,2, are the responses of the two phases satisfying

pi(w) = pi(=w), (4.1)

with
Im(pi(w)) > 0 in the quadrant Rew > 0,Imw > 0. (4.2)

To begin let us suppose that ps(w) = p9 a positive real constant independent

of w. As
24z

pi2 — pi1(w)
we see that Im z(w) > 0 in the quadrant Rew > 0, Imw > 0. The identity
(4.1) implies that z(w) is real on the positive imaginary axis. p;(w) and
hence z(w) might also be real along intervals of the real w axis.

z(w) -1, (4.3)

12



Assume z(wp) and z(wy) are real at frequencies w; and wy each either
on the positive imaginary axis or positive real axis, with z(w;) > 1 and
z(wy) < —1. This is typically guaranteed if p;(w.) = po for some w, on the
positive imaginary or real axis since z(w) will then have a simple pole at
w = w,. We may then take w; and w, on opposite sides of w, and sufficiently
close to w,. We take a trajectory I' linking w; and wy that remains in the
quadrant Rew > 0, Imw > 0 except at the endpoints. Its image is a curve
C = z(I') linking z(w;) and z(ws) that remains in the upper half plane
Imz > 0. Thus, C UC is a closed curve encircling the interval [—1, 1] once,
anticlockwise. The curve C' may have loops that do not cross the real axis.
Alternatively, if p;(w) = w1 is a positive real constant independent of w,
while ps(w) depends on w, then the curve C' = z(I') linking z(w;) and z(ws)
will remain in the lower half plane Im z < 0. Thus C' U C will be a closed
curve encircling the interval [—1, 1] once, clockwise. The latter case is treated
by a simple modification of the arguments in the previous section.

More generally, if p;(w) and pe(w) both depend on w, we may consider
those curves in the quadrant Rew > 0, Imw > 0 where p;(w)/p2(w), and
hence z(w) is real, and look for a point w; on one of these curves where
z(wy) > 1 and another point wy on the same or nearest neighboring curve
where z(wy) < —1. Again we join w; and wy by a trajectory I' that avoids
these curves. This trajectory has an image curve C' = z(I") that lies in the
upper half-plane or in the lower half plane.

In particular, if there is a wy in the quadrant Rewy > 0, Imwy > 0 such
that p1(wo) = p2(wo) then there will be a curve in the w plane (not a smooth
curve if wy is not a simple zero of u(w) — pz(w)) along which p; (w)/pa(w) is
real and z(w) takes real values z(w;) > 1 and z(wy) < —1 at points w; and
wy on this curve close to wy. Then, we join w; and ws by a trajectory I' that
avoids the curves where 1i;(w)/p2(w) is real.

5. Recovering the response at another frequency
Suppose that we want to determine the response of the material at the
frequency wy:
1
dy(Mng _,
Vo(t) = ao/ Me—l%(t—to)y (5‘1)
-1 A— 20

where both the real constant ag and zyp = z(wp) are known, as well as the
constant real unit vector ng. Specifically, assume that we are interested in

13



the output function at time tg:

Vo(to) :aO/ dy(Nng (5.2)

1 A= 20

Suppose that probing the material with an input function at the same fre-
quency wy is not feasible, but it is possible to apply an input with a continuous
spectrum of frequencies, such as the one in equation (3.1). The correspond-
ing output will then be (3.2), and the goal of this section is to determine the
function B(s) in (3.1) so that the value taken by v(¢) in (3.2) at ¢ = ¢, will be
equal to vo(to). We start by assuming, as before, that the curve C' traced out
by z(w(s)) is such that C'UC is a closed curve encircling the interval [—1, 1]
once, anticlockwise. Then, the following choice of r(z) given by (3.7) (note
that a(s) in (3.7) is related to B(s) by (3.3) so that, as before, prescribing
r(z) is equivalent to choosing 3(s)):

ino 7;110

r(z) = 1 (5.3)

7(z — 20) * dnt(z — Zg)’

will ensure that (3.8) holds and, if 2 is outside C'U C, Rev(ty) = Revo(ty).
Indeed, if zy is outside C'U C, then, upon application of the residue theorem,
the above choice of r(z) will lead to the following value of the output function

(3.2) at ¢ = £
Rev(ty) = ap /11 dy(N) (/C’UC ;(j)z dz)

1
- @ g g

-1 — 20 A — Z0
= Re Vo(to)7 (54)

and we are finished. If the curve C' traced out by z(w(s)) is such that C UC
encircles [—1, 1] once, clockwise, then we need to reverse the sign of r(z) in
(5.3). On the other hand, if 2 is inside C' U C, a deformation of this closed
curve towards infinity and Cauchy’s theorem imply the contour integral is
zero. Then, Rev(ty) = 0 and we cannot proceed to obtain Re vo(ty).

6. Measure independent results valid for all time

In Sections 3 and 5 we obtained results for Re v(t) that only depended on
ag and possibly also the first moment of the measure or only on the response
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at a fixed frequency. Remarkably, and much to our surprise, numerical sim-
ulations showed that similar results hold for all time ¢ when w(0) and w(1)
both lie on the imaginary axis. To explain this, we take real a and b and
assume that

w(0) = —ia, w(1l)= —ib, (6.1)

have images

2(w(0)=A>1, zw(l))=DB<-1, (6.2)
where (3.4) implies A and B are real. For s € (0,1) we assume w(s) traces
out a curve I' in the quadrant Rew > 0, Imw > 0, while z(w(s)) takes
values in the upper half plane tracing anticlockwise the curve C' = z(I') as s

increases from 0 to 1.
Then, assuming without loss of generality that ¢y = 0, from (3.2) we have

Rev(t) = aORe/O F. (2(w(s)))e(s)e ™" ds

= apRe /01 e~w(e) (/11 %) a(s)ds. (6.3)

We choose an applied field with a(s) such that r(z), given by (3.7), takes the
form r(z) = —iny/(27), that is the expression taken by r(z) in (3.11) when
k = 0. Then, switching variables from s to w, (6.3) implies

Rev(t) = ag /_ 1 dy(\) <Re Bo /F e-ithL“)) dw) . (6.4)

\ im — z(w

Additionally substituting ¢ = iw, h(() = z(—i() and letting D = i’ gives

Rev(t) = ag / 11 dy(\) (Re?—ﬁ /D E(C)% dg), (6.5)

where E(¢) = e~¢*. Let us take  as the domain inside D U D. Suppose
A = h(ay) with multiplicity m; > 1 for j = 1,2,...,m with a; € Q and
h(By) = oo with multiplicity ny, > 1 for £k = 1,2,...,n with 5, € 2. Observe
that the logarithmic derivative h'(¢)/(h(¢) — A) has poles at { = [, k =

1,2,...,n, with residues —ny, and at ¢ = «;, 7 = 1,2,...,m, with residues
m;. Then, noting that h(¢) and E(() are real symmetric
h(Q) = h(C), E(Q) = E(Q), (6.6)
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a simple application of the residue theorem shows that

Re - E(C)Ah/(f;()o i = - /D UDE(O—A}f (ff<)<> ac

n m(A)
= > mE(B) - Z m;(A)E(a;(A)),
: " (6.7)

where we replaced m, m; and «aj with m(\), m;(\) and ax(\) to emphasize
their dependence on A. Note that (6.6) implies that the points o, and fy
come in complex conjugate pairs and this ensures that the right hand side of
(6.7) is real. This relation (6.7) holds for any analytic function F(() defined
in an open neighborhood of the closure of €2 that is real symmetric, and not
just E(¢) = e~¢t. Thus,

Rev(t) = apng ane —B ao/ A)ng Z m; et (6.8)

will be measure independent for all time ¢ if and only if A({) = z(—i() does
not take real values in [—1, 1] throughout Q. If it is measure independent,
then we can obtain the volume fraction f; = ag/2 from measurements of
Rev(t) at any time ¢.

If m(A) and m;(\) do not depend on A, then at t = t, = 0 (6.7) implies

1
%RG/DUD)‘ ne d{ an—Zm], (6.9)

and the right hand side can be identified with the winding number of CUC =
h(D UE) about z = \. This is 1 if C lies in the upper half plane and CUC
encloses the interval [—1, 1] and we get agreement with (3.12). We assumed
D is traced anticlockwise around (a+b)/2 as s is increased from 0 to 1. This
will not be the case if the right hand side of (6.9) is —1. Rather D will be
traced clockwise so that C' is traced anticlockwise around the origin. This
will reverse the sign of (6.9) giving agreement with (3.12).

Note that if ps (or pq) is real, positive, and frequency independent, then
as observed in Section 4, (4.3) implies z(w) will have strictly positive (or
negative, respectively) imaginary part when w is in the quadrant Rew >
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0,Imw > 0. Thus, the poles S of h(¢) and zeros a; of h(¢) — A will be
simple and alternate along the real axis.

One can also get time independent results that only incorporate the first
moment of the measure. Again, we take an applied field with a(s) such that
r(z) = —ingz/(27) but this time we set E(() = h({)e ¢*. Now E(() is not
analytic in an open neighborhood of the closure of €2, but has poles at the

points B, k = 1,2,...,n. However, we have
h'(Q)h(C) : AR ()
— _p . .
—ho) - MOTING (010

If we assume simple poles, i.e. n, = 1 for all k, then near the pole at 5, h(()
has an expansion

hO) = 2 k(G = B+ (6.11)

giving

W(O)e ™t bpe Pt pyte Pkt NePr

= = + + ... 6.12
A—hQ)  C-BP = (=R (612)
Consequently, we get
n 1 n
Rev(t) = ag Z e~k / Ady(AN)ng — agng Z byte Pkt
k=1 -1 k=1

1 m(X)

—ag / > mi (M)A dy(A)ng. (6.13)
-1 =1

This will be measure dependent for all times t # to if z(—i() does take real
values in [—1,1] throughout Q. Otherwise, the result depends for all time
only on the measure through its first moment.

7. Revisiting the problem of recovering the response at any fre-
quency

Now suppose we choose an applied field with a(s) such that r(z) is given
by (5.3), in which zy = z(wp) where wy is some, possibly complex, frequency
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at which we desire to determine the response. We assume zy does not lie on
the interval [—1,1] on the real axis, where X lies. We let
e ¢t e ¢t

E(() = + —.

2(h(¢) = z0) * 2(h(¢) = =)

This will have poles at points zy = h(k,) with multiplicity p, > 1 for ¢ =

1,2,...,p with k, € Q, and poles at points z; = h(Rg) with multiplicity

pe>1for £ =1,2,...,p with &, € 2. When 2 is real, the k;, include their
complex conjugates. Observing that

(7.1)

h’(C) - 1 1 h,(C)e_Ct
E«“—h@V_LM—a»+%A—%J[A—Mo]
! h’(C)e‘“} i {h’(C)e—Ct}
+2()‘ - ZO) [h(o — 2 2()\ V4 Z_O) h(o —= | (7.2)
and proceeding as before, we obtain for complex z, that
L Q)
Rei | EOs =g %
m(\)

; my(A)e” {2@ - ) | 20n - 70)]

Zme ] - Zwe-““] e G

where we have assumed the integral over D is anticlockwise. This gives

O

m(})

Rev(t) = ao /_1 Y (Mno ; (Ve [20\ - =) 20N - Z_o)}
¢ —trg ! dy(A)ng
—a0;p£€ /1 —2()\—20)
L wr [ dy(A)ng
_aozz:;pfe /_1% (7.4)

If z(—i¢) does not take real values in [—1, 1] throughout  (m = 0) and p # 0
then we can recover the response at frequency wp from measurements at any
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two times t; and ty # t1. To see this, we take p = 1, which as we will see
shortly is necessarily the case when m = 0 and p # 0, and set

! dvy(A)ng
= —_— 7.5
Then (7.4) implies the linear equations
Rev(t)) = —aple " — gole 1™
Rev(ty) = —apfe ™ — qole 2, (7.6)

which can be solved for £, and hence its real part, giving v(ty). On the other
hand, if z(—iC) takes real values in [—1, 1] inside £2, then we cannot recover
the response at frequency wy, for all measures =, unless ¢t = 0.

When z; is real, (7.4) should be replaced by

m(A)

Rev(t) = ao /_ lldwx)nogmj@)e—taju) [A;]

P 1
b d’)’()‘)no
tke
—a Epe /—, 7.7
0[@:1 ‘ ] -1 A= 2 0

and for ¢t # 0 and p # 0 we can recover the response at frequency wy for
all measures « if and only if z(—i() does not take real values in [—1,1]
throughout © (m = 0).

Since the point zq lies outside C UC, the winding number of C'UC' around

Zp 18 zero, that is:
p n
Zpe - Z ng = 0. (7.8)
=1 k=1

On the other hand, assuming the function h : D — C'is orientation preserv-
ing, the winding number of C'U C' around the point A is equal to one:

m(\)

Z mi(A\) = > e = 1. (7.9)

This implies m # 0, and we cannot recover Rev(ty) from measurements
of Rev(t) except at t = 0. However, if the mapping h : D — C reverses
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orientation, then
m(A

) n

mi(A) = e =1, (7.10)
j=1 k=1
and m can only be zero if n =p = 1.

By setting ¢t = 0in (7.4) and (7.7) and using these identities we recover the
conclusion (5.4) of section 5. Note that if h : D — C reverses orientation, we
need to change signs of the right hand sides of (7.4) and (7.7). If C reverses
orientation this sign change is a consequence of the sign change of r(z) given
by (5.3) needed to ensure (5.4) holds. Alternatively if D reverses orientation,
then the right hand side of (7.3) changes sign and there is no change in the
sign of r(z).

Throughout all cases discussed above it was implicitly assumed that the
curve D is simple, that is, without self-intersections. Therefore, D U D is a
Jordan curve, the boundary of the domain 2. We can relax this condition,
simply assuming that D is a curve contained in the upper half-plane, with
boundaries at the real points. Leaving aside the domain €2, we still can
invoke Cauchy’s theorem in this more general setting, with the necessary
modification of the weights ny,m;(A),pe. Specifically, these numbers will
consist of the respective multiplicities, times the winding number with respect
to D U D of the associated zero or pole. Then it may well happen that
some winding numbers are equal to zero, thus erasing the contribution of the
respective singularity of the integrand.

8. Numerical results

Let us start by considering a composite made of two phases, one of which,
say phase 2, is lossless, so that z(w) takes the form (4.3). Furthermore, as-
sume that pi(w) = 1 + i/w, thus mimicking the low frequency dielectric
response of a lossy dielectric material, and ps = 2. According to the pro-
cedure illustrated in Section 4, we can generate an appropriate trajectory I
traced by w(s), with s € [0, 1], by taking two frequencies w; and ws on oppo-
site sides of the frequency w, for which p; (ws) = p2. In this example, w, = i,
so let us take wy = 1.5 and wy = 0.5i. We verify that z(wp) = =5 < —1
and z(w;) = 11 > 1, so, then, we can take a trajectory I' linking w; and wy
that remains in the quadrant Rew > 0, Imw > 0. Consider, for instance,
w(s) = =2(1 +14)s* + (2 + i)s + 1.54, for which w(0) = w; and w(1) = ws.
Then, z(w(s)) takes values in the upper half plane tracing anticlockwise the
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curve C' = z(T) as s increases from 0 to 1, so that the curve C'UC'is a closed
curve encircling the interval [—1, 1] once, see Figure 1(a).

15; 0.5- 1
D
10t
0.5
5 L
X <
g 0 0
— —
_5 L
0.5
10t =
D
-15 ‘ ‘ : : -0.5 -1
10 -5 0 5 10 -1.5
Re(2) Re(¢)

(a) (®)

Figure 1: (a) Given p; = 1+ 4/w and py = 2, we choose the trajectory w(s) = —2(1 +
i)s? + (2 +i)s + 1.5 with s € [0, 1], so that its image through the function z(w) given by
(4.3) is the curve connecting the points zp = z(w(0)) = 11 and 27 = z(w(1)) = —5. Then,
the curve C' U C is a closed curve encircling the interval [—1,1] once. (b) In red is the
curve D traced by ((s) = iw(s) as s is increased from 0 to 1, and the curve D traced by

¢(s). The domain inside D U D is Q. In black is represented the line where the function
h(¢) = z(—iC) takes real values, the yellow region is where the real part of h(¢) takes
values bigger than 1 and the purple region where it takes values smaller than -1. The
color bar indicates that the real part of h(¢) never takes values [—1,1] in the domain €,
especially along the black line, where the imaginary part of h({) is zero. Notice that the
function has a single pole at ( = —1: indeed, z(w) has a pole at w, = 1.

Note that the trajectory chosen is rather special because the function
h(¢) = z(—i() does not take real values in [—1, 1] throughout € (the domain
inside D U D), see Figure 1(b). This ensures that the bounds on Rev(t)
are measure-independent not only at time ¢ = ty, but for any time ¢t. To
see this, for simplicity, we consider the one-dimensional forward problem in
which the input function Reu(t) (3.1) has only one non-zero component,
that we will denote by Reu(t), and we look at the response (3.2) of the
material in the same direction, that we will denote with Rewv(t). First, we
assume that the first moment of the measure is not known, and set £ = 0 in
the formula (3.11) that determines the relevant component of the function
r. The corresponding input function is depicted in Figure 2(a), whereas
Figure 2(b) shows the bounds on the output function Rev(t).

For any moment of time, the bounds are found by optimizing over the
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measure: the maximum and minimum values are attained when the relevant
component of the matrix-valued measure «(\), that we denote with v(}), is
an extreme measure, namely the point mass y(\) = (A — Ag), where )q is
varied over [—1,1]. The outer bounds, in blue, in Figure 2(b) correspond to
the case when the volume fraction is not given (note that the upper bound
is always zero), and therefore ag, is not known, whereas the inner ones do
incorporate the volume fraction (ap = 0.6). Notice that the latter are indeed
coincident and not only the value they take at t = t5 = 0 equals ag, as
predicted by (3.12), but the value they take at any moment of time ¢ is exactly
the one provided by (6.8), where §; = —1 is the only simple pole (n; = 1) of
the function A(¢) in €2, and the second part of the formula is zero as h(() does
not have any zero in the domain €2, see also Figure 1(b). Therefore, according
to (6.8), the two coincident bounds incorporating the volume fraction have
the following analytical expression: Rew(t) = —agexp(t), which is indeed
in agreement with the result shown in Figure 2(b). Note that any other
trajectory w(s) having the same features of the one chosen in this example,
that are, the corresponding closed curve C' U C encircles [—1,1], and the
corresponding closed curve DU D is such that h({) does not take real values
in [—1, 1] inside it, would have led to the same bounds depicted in Figure 2(b).

Now suppose that we know the first moment of the measure: M; =
f_ll Ad7y(A). Then, we apply an input function Rewu(t) so that the corre-
sponding output function will incorporate such a piece of information by
choosing, for instance, k¥ = 1 in (3.11). Therefore, a(s) (3.7) and S(s) (3.3)
are known and the input function (3.1) is determined, see Figure 3(a). We
compute the bounds on the output function Rewv(t), by considering the ex-
treme measure y(A) = wpd(A — Ag) + w1d(A — A1), where the weights w, and
wy are chosen so that the values of the zeroth and first moments of the mea-
sure are the desired ones, and Ay and \; are varied over the interval [—1,1]
in search for the minimum and maximum values of Rev(t) at any time ¢, see
Figure 3(b). The outer bounds in blue correspond to the case where only
the volume fraction is known, whereas the inner bounds in red incorporate
also the first moment of the measure. Like in the previous case, the latter
are coincident, due to the special choice of the trajectory w(s), and their an-
alytical expression is given by the sum of the relations (6.8) (which does not
include M;) and (6.13) (which includes M; only). For the case under study,
h(¢) has only one single pole, 5; = —1 with corresponding residue b; = —4,
and no zeros in the domain ). Therefore, the analytical expression of the
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Figure 2: We take 1 = 1 +i/w, gz = 2, and w(s) = —2(1 + i)s® + (2 + i)s + 1.5i. (a)
The relevant component of the input function (3.1), Re[u(t)], is found by choosing the
relevant component of the function r according to (3.11), with & = 0. Therefore, «(s) is
given by (3.7), and then the coefficient 5(s) appearing in (3.1) is known through (3.3). (b)
By optimizing over the measure with one point mass for any moment of time, we obtain
bounds on the output function Re[v(t)] in two different scenarios: in blue are the bounds
when the volume fraction, and therefore ag, is not given, whereas in red are the bounds
incorporating the volume fraction f; (ap = 2f1 = 0.6). The upper blue bound is clearly
always zero, whereas the lower blue bound takes value -2 at ¢ = 0 and decreases in time.
Interestingly enough, the red bounds are coincident: indeed, the spectrum of frequencies
w(s) chosen is such that the bounds are measure-independent at any moment of time.
Furthermore, their analytical expression is exactly determined by equation (6.8) which,
upon substituting the value 81 = —1 of the only simple pole, n; = 1, of the function h(()
in Q, provides Re[v(t)] = —agexp(t) (according to Figure 1(b), h(¢) does not have any
zero in € and the curve D is traced clockwise).

output function, when M; = 0.4, is Rev(t) = —agexp(t)(1.4 + 4t) which is,
indeed, in agreement with the numerical results in Figure 3(b).

Finally, suppose that we want to determine the response of the material
Rewg(t) at a very specific frequency, wy, by applying the spectrum of fre-
quencies w(s) chosen earlier. As explained in Section 5, this is only possible
if z(wp) is outside C UC. This is true if, for instance, we choose wy = 29/27i,
for which z(wp) = 30, see Figure 1(a). Then, by choosing the input function
given by the choice (5.3), the corresponding output function Rew(t) is such
that at t = tg it provides the value Rewqg(ty), as shown by (5.4). Such a
result holds true for any measure 7. In Figure 4(a), we plot the bounds on
both output functions, Revy(t) and Rewv(t), by optimizing over the position
of the point mass A\g in 7 = §(A — Ag). Not only the bounds are coincident
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Figure 3: We take py = 1+ i/w, po = 2, and w(s) = —2(1 +4)s? + (2 + i)s + 1.5.
Furthermore, we assume that the first moment of the measure M; is known, say M; = 0.4.
(a) The input function Re[u(t)] is found by setting £ = 1 in (3.11). Therefore, a(s) is
given by (3.7), and then the coefficient 5(s) appearing in (3.1) is known through (3.3). (b)
In blue are the bounds when only ag = 2f; = 0.6 is given, whereas in red are the bounds
incorporating also the first moment of the measure M; = 0.4. The upper blue bound
is clearly always zero, whereas the lower blue bound takes value —ag at t =ty = 0 and
decreases in time. Again, the red bounds incorporating the first moment of the measure
and the volume fraction are coincident: like in the case when the first moment of the
measure was not known, the spectrum of frequencies w(s) chosen is such that the bounds
are independent of the measure, aside from its first moment, at any moment of time.

at t = to = 0, in agreement with (5.4), but they are coincident for any mo-
ment of time. Notice that, if the measure is known, then the two output
functions take exactly the same value at any moment of time ¢, as shown in
Figure 4(b). Since z is real, the analytical expression of the output function
is given by (7.7), where the first term equals zero, given that h(¢) does not
take any real value between —1 and 1 in €, see Figure 1(b), and the second
term reads —agexp(31/27t)/(Ao — z(wo))-

Similar results hold when we consider different models for the material
properties pq; and ps. Suppose, for instance, that both materials are dis-
persive, meaning that they both are frequency dependent. Assume that
pi(w) = 1 — 1/w? thus mimicking the response of plasma in the dielec-
tric problem, and ps(w) = 1+ i/w. An appropriate trajectory w(s) that
generates a curve C so that C' U C is a closed curve that encircles the
interval [—1,1] once is the one chosen in the previous example, that is
w(s) = =2(1 +i)s* + (2 + 4)s + 1.54, as shown in Figure 5(a). Further-

24



-0.2 ||—Bounds on Re v(t) -0.2|—Re v(t)
—Bounds on Re v(t) —Re vy(¢)

1 0 1 2
t t

(a) (b)

Figure 4: We take 3 = 1+ i/w, and ps = 2. The value at ¢ = ¢ of the output function
Reluvg(t)], corresponding to an input function at the frequency wy = 29/27i, is determined
by applying an input function of the type (3.1) with w(s) = —2(1+14)s?+(2+i)s+1.5i. We
choose 5(s) in (3.1) by selecting «(s) in (3.3) according to (3.7), with r(z) given by (5.3).
(a) Here the measure is unknown and bounds on Re[vg(t)], in red, and Re[v(t)], in blue,
are computed by optimizing over all measures. The bounds coincide not only at t =ty =0
but any moment of time ¢. (b) Here the measure is known to be v(A) = (A — 0.5): the
value at any t of Re[vo(t)], corresponding to an input at the frequency wy, is equal to the
value of Re[v(t)], corresponding to the input (3.1) with w(s) chosen as described above.
The analytical expression is —ag exp(31/27t)/(Ao — z(wo)).

more, the chosen trajectory is such that the curve D traced clockwise by
((s) = iw(s) is such that the function h(¢) = z(—i¢) does not take real
values in [—1, 1] throughout © (the domain inside D U D), as shown in Fig-
ure 5(b). This ensures that the bounds on Re v(¢) when the volume fraction
is known are measure-independent not only at time ¢ = t,, but for any time
t, as shown in Figure 5.

Finally, we engineer an example in which the trajectory w(s) is such
that the bounds are measure dependent at any ¢, except at t = {5 = 0,
where they are coincident. To this purpose, consider a material for which
2(w) = (iwtag)/(w=i(ar+az)w—aiaz), with ag < ag < a3 real coefficients,
and the following trajectory w(s) = (a; + €)i + bs — (b + (26 + a3 — a3)i)s?,
where € is a sufficiently small real number and b is possibly complex. By
choosing the parameters wisely, as in Figure 7(a), the closed curve C' U C'
traced by z(w(s)) and z(w(s)), as s varies in [0,1], encircles the interval
[—1,1], while the function h(¢) = z(—i() takes real values between -1 and
1 in the domain 2, see Figure 7(b). As a result, the bounds on the output
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Figure 5: (a) Given p; = 1 — 1/w? and pp = 1+ i/w, we choose the trajectory w(s) =
—2(1+14)s% + (2 +14)s + 1.5, with s € [0,1], so that its image through the function z(w)
given by (4.3) is the red curve connecting the points z(w(0)) = 14 and z(w(1)) = —4.
Then, CUC is a closed curve encircling the interval [—1, 1] once. (b) In red is the curve D
traced by ((s) = iw(s) as s is increased from 0 to 1, and the curve D traced by ((s). The
domain inside D U D is €. In black is the straight line where the function h(¢) = 2(—i()
takes real values, the yellow region is where the real part of h({) takes values bigger than
1 and the purple region where it takes values smaller than —1. The color bar indicates
that the real part of h(¢) never takes values [—1, 1] in the domain . Notice that h({) has
a single pole at ¢ = —1: indeed, z(w) has a pole at w, = i.

function are coincident only at ¢ =ty = 0, as shown in Figure 8.

9. Conclusions

In this paper, we consider the response in time of a two-phase compos-
ite in which at least one of the two constituent materials has a non-local
response in time. We found that when the applied field is suitably chosen,
the measurement of the response of the composite at a specific moment of
time exactly yields the volume fraction of the phases, independent of the
microstructure of the composite. To achieve such a result, one has to choose
affine boundary conditions where the applied field is composed by a contin-
uous spectrum of complex frequencies. Such spectrum has to satisfy certain
properties that are related to the response of the constituent materials, which
are supposed to be rational functions of the frequency. This is to guarantee
that there exists a range of frequencies where the absorption is zero (to this
regard, see for instance the experiment described in [24], where the authors
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Figure 6: The case where 11 = 1—1/w?, iy = 1+i/w, and w(s) = —2(1+4)s2+(2+14)s+1.5.
(a) Bounds on the output function Re[v(t)]: in blue are the bounds when the volume
fraction, and therefore ag, is not given, whereas in red are the bounds incorporating the
volume fraction f; (ap = 2f; = 0.6). The latter bounds are coincident: indeed, the
spectrum of frequencies w(s) chosen is such that the bounds are measure-independent
at any moment of time. Their analytical expression is exactly determined by (6.8). (b)
Bounds on Re[v(¢)] when only the the volume fraction f; (ap = 2f; = 0.6) is given (outer
blue bounds), whereas in red are the bounds incorporating also the first moment of the
measure M; = 0.4. Again, the latter bounds are coincident: like in the case when the
first moment of the measure was not known, the spectrum of frequencies w(s) chosen is
such that the bounds are measure-independent at any moment of time. Furthermore, their
analytical expression is exactly determined by the sum of equations (6.8) and (6.13).

studied viscous damping in a material over 7 decades of frequency). If that
were not the case, then one could expect the trajectory of frequencies to fail
to satisfy some of the properties that would ensure the exact determination of
the volume fraction (specifically, the curve C' would not cross the horizontal
axis and, therefore, C'| JC would not form a closed loop around the inter-
val [—1,1]). If the continuous spectrum of frequencies satisfies the further
property that the initial and final frequencies are purely imaginary, then,
remarkably, the volume fraction can be retrieved by measuring the response
of the composite at any moment of time. Note that a slight modification of
the boundary conditions will also allow one to recover the first moment of
the measure. Additionally, one can recover the response of the composite at
a certain frequency by suitably applying boundary conditions not oscillating
at such a frequency. Finally, following [27], all the analysis developed here
carries through to determining exactly the Fourier components of an inclu-
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Figure 7: (a) Given z(w) = (iw + a2)/(w? — i(ay + a3)w — aja3), with a1 = 1, ay = 5,
and ag = 8, we choose the trajectory w(s) = (aq +€)i+bs — (b + (26 + a1 — a3)i)s?, with
e =0.3and b = 2+, with s € [0,1], so that its image through the function z(w) given
by (4.3) is the red curve connecting the points z(w(0)) = 1.8408 and z(w(1)) = —1.3433.
Then, C UC is a closed curve encircling the interval [—1,1] once. (b) In red is the curve D
traced by ((s) = iw(s) as s is increased from 0 to 1, and the curve D traced by ((s). The
domain inside D U D is Q. In black is the straight line where the function h(¢) = z(—i()
is real. The choice of parameters, for which h(¢) has two single poles at ( = —8 and at
¢ = —1, while it has a zero at ( = —5, is such that h(¢) does take real values between —1
and 1 in the domain €2, as indicated by the color bar.

sion in a body, from which the shape of the inclusion and not just its size
can theoretically be recovered.

Note that our results assume the absence of noise and that the responses
of the phases are exactly known. Noise in the measurements of the output at
a given time, say t = t, is easily handled. Different volume fractions would
correspond to a different output at time t = ¢3. Those outputs compatible
with the error bars of the measured response at ¢t = ¢, give us the range of
possible volume fractions. Dealing with uncertainity in the responses of the
phases is more involved. The functions p;(w) and po(w) need to have the
required analytic properties. So, instead of these being exactly known, they
may belong to sets of functions ¥; and W, satisfying these properties. Then
for every pair of functions, one in each set, associated bounds need to be
calculated on the volume fraction from the measured response at time t = ;.
However, the input function should be that for one specific pair and such
that the volume fraction would be uniquely determined by measurements at
t =ty were this pair the actual responses of the two phases. In the end, one
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Figure 8: Consider z(w) = (iw + a2)/(w? — i(ay + a3)w — ajaz), with a; = 1, ay = 5,
and oz = 8, and trajectory w(s) = (a1 + €)i + bs — (b+ (2¢ + a1 — a3)i)s?, with € = 0.3
and b = 2 + 4, with s € [0,1]. (a) Bounds on the output function Re[v(t)]: in blue are
the bounds when the volume fraction, and therefore ag, is not given, whereas in red are
the bounds incorporating the volume fraction f; (ag = 2f1 = 0.6). Contrariwise to the
previous cases, the latter bounds are coincident only at ¢ = ¢ty = 0, where they take
value —ag: indeed, the spectrum of frequencies w(s) chosen is such that the bounds are
measure-dependent at any moment of time (except ¢ = tg). (b) Bounds on Re[v(t)] when
only the the volume fraction f; (ag = 2f1 = 0.6) is given (outer blue bounds), whereas in
red are the bounds incorporating also the first moment of the measure M; = 0.4. Again,
the latter bounds are coincident only at time ¢t = ¢ty = 0.

should take the union of these bounds on the volume fraction. In addition
to the complexity, the effect of incorporating a range of functions 4 (w) and
p2(w) would likely be highly dependent on the chosen example. So, faced
with a particular problem it would be prudent for a researcher to investigate
these effects.
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