Check for
Updates

Named-Data Transport:
An End-to-End Approach for an Information-Centric IP Internet

Abdulazaz Albalawi
Computer Science and Engineering Department
University of California Santa Cruz
Santa Cruz, CA, USA
aalbalaw@ucsc.edu

ABSTRACT

Named-Data Transport (NDT) is introduced to provide efficient con-
tent delivery by name over the existing IP Internet. NDT consists of
the integration of three end-to-end architectural components: The
first connection-free reliable transport protocol, the Named-Data
Transport Protocol (NDTP); minor extensions to the Domain Name
System (DNS) to include records containing manifests describing
content; and transparent caches that track pending requests for con-
tent. NDT uses receiver-driven requests (Interests) to request con-
tent and NDT proxies that provide transparent caching of content
while enforcing privacy. The performance of NDT, the Transmis-
sion Control Protocol (TCP), and Named-Data Networking (NDN)
is compared using off-the-shelf implementations in the ns-3 simu-
lator. The results demonstrate that NDT outperforms TCP and is as
efficient as NDN, but without making any changes to the existing
Internet routing infrastructure.
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1 INTRODUCTION

The limited support for reliable and efficient access to (e.g., videos
and documents) and services (e.g., multiplayer games) provided by
the communication protocols of the IP Internet led to the develop-
ment of dedicated systems aimed at content delivery. These systems
can be categorized as content delivery networks (CDN) [12, 104]
like Akamai [79] or peer-to-peer (P2P) applications [67] like BitTor-
rent [14]. While such content-delivery systems address many of the
performance limitations of the basic Internet protocol stack, they
require either third parties to provide added functionality or appli-
cations to replicate content-delivery functionality independently of
others. As a result, several Information-Centric Networking (ICN)
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architectures have been developed to address the limitations of the
IP Internet and the inefficiencies of using CDN’s and P2P appli-
cations. These architectures [2, 11, 103] aim to allow all Internet
applications and users to obtain content and services by name,
without requiring specific systems to serve different applications or
forcing applications to determine where instances of content and
services of interest are located in the Internet.

Section 2 provides a summary of information-centric approaches
proposed in the past and highlights four important facts that moti-
vate the subject of this paper. First, prior transport protocols leave
applications in charge of reliable-communication functionality, rely
on connections to provide end-to-end reliable communication, or
require a network layer that provides much more than datagram de-
livery. Second, CDN and P2P approaches are insufficient to address
the ever-increasing content-oriented usage of the Internet by all
its users and applications. Third, most ICN architectures attain effi-
cient content distribution by: naming content and services rather
than endpoints; using in-network caches to allow content to be
delivered opportunistically from closer locations; and using either
name-based routing and embedding name resolution in the routing
infrastructure, or overlay networks of name resolvers or content
routers. Fourth, prior approaches that focus on modifications of the
Domain Name System (DNS) to accommodate content distribution
assume the use of TCP connections.

Name-based routing and forwarding have been considered to
be necessary to attain an information-centric Internet. The most
popular example of this approach today is the Named-Data Net-
working (NDN) architecture [76]. Needless to say, NDN and other
ICN architectures have produced valuable insight on what it means
to provide information centricity at Internet scale. However, by
requiring a far more complex network layer, these approaches have
deviated from the end-to-end principle [10, 87] and the subsequent
end-to-end arguments [15] that made systems built on datagram
packet-switching networks so successful, including the Internet.
Using name-based routing to attain an information-centric Internet
is an architectural choice-not a requirement-that has profound
implications. It means that efficient content delivery must come
at the cost of redesigning the IP routing infrastructure and doing
away with the DNS. Furthermore, servers and clients must also be
modified to adopt the API’s needed to use a name-based network
layer, and widely successful application protocols like HTTP must
be redone. The contribution of this paper is to introduce an alter-
native end-to-end approach to an information-centric Internet that
we call Named-Data Transport (NDT).

Conceptually, NDT amounts to an end-to-end implementation of
the Interest-based approach first introduced by Jacobson et al. [60]
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that does not require any changes to the Internet routing infras-
tructure and takes advantage of the DNS. NDT allows applications
to ask for content and services by name, and makes the transport
layer responsible for: (a) mapping content names to one or multiple
locations where the content is offered, (b) delivering the content
reliably to consumers from content servers or transparent caches
without using end-to-end connections, and (c) enforcing the pri-
vacy of consumers. Like other ICN architectures, NDT can provide
the benefits attained with CDN’s and P2P applications, but without
requiring the services of specific vendors or replicating functional-
ities at the application layer. Furthermore, NDT can be deployed
incrementally and much faster than prior ICN architectures.

Section 3 presents the Named-Data Transport Protocol, or
NDTP, which is the first transport protocol that provides reliable
end-to-end communication over a datagram communication in-
frastructure without establishing connections. NDTP does this by
using content names and manifests that describe the structure of
the content as in some ICN-based architectures [13, 74, 100]. In
NDT, applications have access to content names in the same way
clients have access to Uniform Resource Locators (URLs) today.
Applications request content by name and NDTP provides reliable
name-based transport services by obtaining the structure of content
objects from the DNS without the need for end-to-end connections
and in a way that is transparent to end-user applications.

Section 4 describes how content names are mapped into mani-
fests by the manifest-yielding DNS (my-DNS), which augments
the DNS to maintain manifest records describing the locations
and structures of content objects. Given that NDTP consumers
obtain the location of the nearest copy of a content object given
its name, my-DNS serves as a de facto name-based routing over-
lay with redirection operating on a publish-subscribe basis. Using
my-DNS redirection eliminates the need for name-based routing
protocols while incurring very small additional delays.

Section 5 describes how NDT uses NDT proxies to: (a) support
transparent caching of content with privacy over the IP Internet for
arbitrary applications, (b) secure content relying on informational
asymmetry to prevent caches from accessing cached content and
on computational asymmetry to prevent clients from decoding
unauthorized content, and (c) support multicasting services without
the need for IP multicast routing. NDT proxies maintain Pending-
Interest Tables (PIT) similar to those used in NDN and other ICN
architectures, but without making any changes to the IP Internet
routing infrastructure.

Section 6 compares the performance of NDT with the perfor-
mance of TCP and NDN using our implementation of NDT in ns3,
which is publicly available [4] to foment further research on NDT,
and off-the-shelf implementations in ns-3 of TCP and NDN. The
results of the simulation experiments show that NDT is inherently
more efficient than TCP and as efficient as NDN, but without the
need for a clean-slate redesign of the Internet routing infrastructure.
Section 7 provides our conclusions.

2 RELATED WORK

We summarize prior work related to NDT, including transport
protocols, CDN and P2P approaches, ICN architectures, support for
mobility and privacy, and end-to-end DNS-based schemes.
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2.1 Reliable Transport Protocols

TCP and all subsequent transport protocols that provide reliable
end-to-end communication are based on end-to-end connections
[54, 64, 80, 83]. This has become a big problem for content-oriented
Internet applications because connections are brittle, in most proto-
cols the context exchange must be restarted if a connection is lost,
a specific site must be selected to start the connection supporting
content retrieval, and in-network caching cannot be used without
compromising privacy.

QUIC [64] uses connection identifiers for additional resilience
to physical connectivity losses and mobility. However, it has been
shown that no correct connection-based protocol exists that pro-
vides reliable communication in the presence of nodes failing and
losing their state [69, 70, 94]. Hence, guaranteeing the correct op-
eration of any connection-oriented protocol requires that either
the sender and receiver participating in a connection have non-
volatile memory to remember any identifier used previously, or
that connection identifiers are never reused to identify incorrectly
past connections.

2.2 CDN and P2P Approaches

The limitations of using end-to-end connections between specific
sites to support content delivery prompted the development of
many CDN and P2P approaches over the years. Many surveys and
taxonomies have been published for CDN’s and P2P applications
and overlays (e.g., [12, 67, 68, 104]), and it should be clear that such
systems provide much if not all of the functionalities and services
present in all ICN architectures. For example, name-based content
routing and redirection strategies were implemented in CDN’s (e.g.,
[44, 52, 68, 85]) before they were advocated in ICN architectures.

The key difference between ICN architectures and CDN’s or P2P
applications is that they are applicable to all Internet users and
applications, rather than just those users serviced by specific CDN
third parties or specific P2P applications. It should be noted that
the end-to-end nature of NDT enables the use of many CDN and
P2P techniques to further improve its efficiency without requiring
changes to the Internet routing infrastructure.

2.3 Prior ICN Architectures

TRIAD [53] and Content-Based Networking [20-22] were the earli-
est examples of ICN architectures advocating content-based rout-
ing by names or attributes and publish-subscribe operation. Many
subsequent ICN architectures evolved over the years that either
proposed to change the network layer of the Internet to imple-
ment location-independent name-based routing and forwarding,
or adopted the use of overlays as in CDN’s and P2P systems to
provide name-based routing, resolve names to locations of con-
tent, and support publish-subscribe functionality. These ICN ar-
chitectures include: COMET [36, 37], Content-Centric Networking
(CCN) [60], CONVERGENCE [42], DONA [63], PSIRP and PUR-
SUIT [38, 39, 102], MobilityFirst [78, 89], Named-Data Networking
(NDN) [76], Nebula [6], 4WARD [41], SAIL [40, 96], and XIA [56].

The advantages and disadvantages of the ICN architectures are
discussed in several surveys (e.g., [1, 2, 5, 11, 103]). Over the years,
NDN has become the most successful ICN architecture to date, and
more recent work has even focused on embedding NDN routers as
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part of the IP Internet routing infrastructure [19, 75]. Accordingly,
we use NDN as the leading example of prior ICN architectures.

The main benefits of NDN over the IP Internet architecture that
have been stated in the past are: (a) Allowing all Internet applica-
tions to request content and services by name rather than locations,
(b) eliminating performance issues associated with TCP connec-
tions, (c) providing added privacy to content consumers, (d) making
efficient use of in-network caching for arbitrary content, and (e)
enabling multicast services without the need for multicast routing
protocols. The subsequent description of NDT and its comparison
with NDN show that NDT provides all these benefits without the
need to change the Internet routing infrastructure or establish new
overlays on top of it.

In contrast to NDN and other ICN architectures, NDT does not
require the deployment of overlays of name resolvers or content
routers, or changes to the Internet routing infrastructure to operate.
This approach is motivated by recent results on caching and ICN
schemes. There is ample evidence that edge caching provides most
of the benefits derived from in-network caching at every router
[27, 28, 35]. On the other hand, the number of conent name pre-
fixes needed to provide name-based routing at Internet scale is
many orders of magnitude larger than the number of Internet IP
address ranges needed to support address-based routing. Hence,
independently of the type of name-based content routing used
[45, 51, 57, 99], the combined use of address-based routing and
redirection schemes that map names to addresses can be done far
more efficiently than the combined use of name-based routing and
PIT’s at each router. Performance results of recent ICN approaches
based on addresses indicate that this is the case [46-50].

2.4 Privacy and Mobility Support

Prior approaches attempting to address the privacy concerns of
transparent caching using end-to-end connections are not effective.
Traffic carried over closed secure connections used in HTTPS can-
not be cached, and this is a growing concern for content retrieval
on the Internet because more than 50% of web traffic is served
over HTTPS [31]. GroupSec [92] adapts HTTPS to support group
memberships to allow transparent caching on the Internet with-
out making any changes to caches or servers. Unfortunately, this
approach does not provide privacy among members in the same
group, and an adversary can infer whether multiple clients are
in the same group. Prior ICN architectures address privacy with
different mechanisms [5], and Arianfar et al. [7] propose a privacy
technique for NDN that leverages computational asymmetry to pre-
vent caches from decoding cached contents in real-time; however,
this method does not provide complete privacy for consumers.

The use of end-to-end connections between specific end-point
addresses prompted the development of many approaches to cope
with mobility in the context of the IP Internet [9, 33, 43, 65, 82,
86, 91, 93]. However, this prior work does not address eliminating
connections for reliable end-to-end communication, and some can
be used in NDT.

2.5 DNS-based Approaches

iDNS [90] and idICN [35] are arguably the first proposed approaches
aiming to provide the ICN benefits in the current Internet by lever-
aging the DNS system. Instead of resolving a URL hostname to an
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IP address, iDNS resolves content names directly to metadata that
contains the address of servers hosting the content, taking into
account local caches; however, iDNS does not specify a specific
protocol to retrieve contents using its method and instead leave it
as part of their future work.

idICN also uses the DNS to resolve a content name to a nearby
cache or a hosting server, and uses HTTP as the baseline for the
transfer protocol. The limitations of this approach are that it is
limited to HTTP, requires the connections used in TCP, and which
must take place at the application level, causing different types of
proxies to be used for caching. Similarly, DNS++ [30] and NEO [34]
introduce an information-centric API combined with a DNS-based
mechanism very similar to the one used in iDNS, and have the
same limitation of requiring TCP and legacy application protocols
to operate.

3 NDTP

NDTP eliminates the need to maintain the ephemeral type of con-
text provided using connections by allowing a consumer and pro-
ducer to share a common description of the structure of the content
being exchanged, and such that both can refer to that description
to deliver specific portions of content reliably. This description is
called the manifest of the content object being delivered. The man-
ifest of a content object frees the NDTP consumer and producer of
the object from having to create and maintain the context for their
reliable exchange of the object in real-time.

Provided that an NDTP consumer and a producer can refer to the
same manifest, they can exchange any portion of the content object
described in the manifest on a transnational basis, and an NDTP
consumer process is also free to contact multiple parties hosting the
content using the same manifest published by the NDTP producer
of that content. More specifically, the NDTP process managing ap-
plication content publishes manifests accessible on the IP Internet
that describe how the content can be retrieved. The server applica-
tion servicing the content notifies its NDTP producer to publish a
manifest that maps to a unique global name and describes how the
content object is structured. Before the NDTP process servicing the
client application starts retrieving the content object, it queries its
local my-DNS (manifest-yielding DNS) to resolve the object name
to its manifest record, which contains the manifest of a content
object and additional information to manage the content on the IP
Internet. Once the consumer obtains the manifest record for the
content object, it proceeds with a window-based sequence of Inter-
ests requesting the chunks that are needed to decode the content
object, as stated in the manifest record.

For convenience, NDTP is implemented over UDP, just like sev-
eral recent transport protocols. As a result, NDTP operates com-
pletely in user-space, and its packets are encapsulated in UDP data-
grams, which are encapsulated further in IP datagrams. NDTP is
implemented using two main data structures: A producer that pub-
lishes content and a consumer that retrieves content. This design
is inspired by the NDN API design [72].

3.1 Publishing Content

Figure 1 shows an overview of the NDTP producer functional struc-
ture. When a server application needs to publish content, it is the
responsibility of the NDTP producer to publish the content on the



ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

Internet. This consists of three main parts: (1) saving the content
object and its name into its content store, (2) sending requested
data packets in response to received Interests, and (3) publishing a
manifest record for the content object by registering it along with
its name with its authoritative my-DNS server.

Before publishing content on the Internet, the producer segments
the content into multiple chunks and encodes them in a specific way
to ensure the privacy of cached content. An example of an encoding
method is explained in Section 5.1. Chunks can also be signed and
encrypted to ensure security at this stage. Once the content is
segmented into multiple chunks, it is cached at the content store.
The content store can be viewed as the sender buffer in TCP and
other connection-based transport protocols. The producer then
appends the names of the chunks into the manifest along with the
encoding method and other security parameters. The final stage
of publishing content on the Internet is by publishing its manifest.
This is done by constructing the manifest record using the manifest
itself and meta-information about the content (e.g., a time to live, list
of servers to contact, etc.). The producer then registers the manifest
record along with the content name with a my-DNS authoritative
server. Registering and updating manifest records is done using
regular DNS standards [98], and it is up to the content provider to
determine which sites to use to host content objects.

An Interest from a consumer goes through the Interest process-
ing routine, which is used to perform a cache lookup at the content
store. The Interest is simply dropped if it’s a miss, and a data packet
is sent back if it succeeds. A NACK can be sent back to the consumer
if necessary. The design of NDTP allows application developers
to customize their content distribution and have full control over
deployment decisions.

Interest

Interest hit

» Pr

Routine -
Data Encoding

miss¢ c
drop/NACK 2
roj =
Data packet 3
< Content 3
o
Store £

P Manifest Publish

- Manifest

Figure 1: Processing Interests and data packets at an NDTP
producer

3.2 Retrieving Content

Figure 2 shows the functional structure of an NDTP consumer.
Client applications running over NDTP retrieve data objects using
their names (URL). The client only needs to provide the content-
object name to the NDTP layer. The NDTP consumer does all the
work in retrieving the content, which involves contacting the lo-
cal my-DNS to retrieve the manifest record, and requesting the
actual content and decoding it. Using the NDTP APJ, clients access
the content directly through the function GetContentByName (),
which takes the content name as its parameter. Calling this function
invokes the consumer side of the NDTP layer.
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The NDTP consumer responsibility can be broken into two main
tasks: resolving content names to their manifest record, and retriev-
ing the content using information from the manifest record. As
Figure 2 shows, the consumer in NDTP remembers a set of vari-
ables for each content that needs to be retrieved. These variables
are stored in a data structure called the Content Control Block or
CCB, which is used to control such things as Interest timeouts,
window size, and the decoding method. All Interests go through
the Interest crypto routine. The routine signs these Interests based
on information from the manifest. Arriving data packets will go
through the Data verification routine for authentication including
manifest as well as checking if packets are corrupted.

Aamif, Interest Crypto Interest o

Routine

Content
| Object

T

Data

Congestion
Control

Encoding
Method

Consumer Buffer

Application

Data

Data Verification | ¢
Routine D

Figure 2: Processing Interests and data packets at an NDTP
consumer

3.3 Retransmission and Congestion Control

Retransmission and congestion control algorithms in NDTP are
receiver-driven, just as in NDN and CCN [60]. These algorithms
are based on the inclusion of a manifest pointer in each Interest
and data packet. Clearly, many receiver-driven strategies can be
implemented. For simplicity, however, we chose to use the TCP
congestion-control and retransmission algorithms in NDTP. Given
the similarities of the mechanisms used in NDTP with well-known
mechanisms in TCP, the rest of this section provides only an outline
of the retransmission and congestion-control mechanisms in NDTP.

3.3.1 Congestion Control. The NDTP consumer controls the
flow of data traffic by controlling the sending rate of its Interests
using a congestion window. The congestion window specifies the
number of outstanding Interests allowed to be sent before receiving
their data packets. The window size is adjusted based on the AIMD
(Additive Increase Multiplicative Decrease) mechanism commonly
used in TCP for the congestion window. The NDTP consumer
increases its congestion window based on slow-start, starting with
transmitting one Interest and increasing the congestion window by
one for each newly received Data packet. The slow-start continues
until the window reaches the slow-start threshold. The consumer
operates under the congestion-avoidance state as in TCP [59] When
the slow-start threshold is exceeded, and increases its window by
one Interest every round-trip time.

3.3.2 Fast Retransmit. NDTP uses a receiver-driven selective-
repeat retransmission strategy. An NDTP consumer retransmits
a lost Interest once an out-of-order data packet is received based
on the order in the transmitted list if a time constraint is met. A
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lost Interest y initially transmitted at time ¢; is retransmitted once
the following constraint is met: As soon as a data packet arrives
for any Interest transmitted at tx where (tx>t;), and (tcurrent-ti)>
RTT, where teyrrent is the current time and RTT is the time it
takes to send an Interest and receive the Data packet for it. Once
NDTP detects a packet loss using fast retransmit, the consumer
reduces its congestion window by one half and sets the slow-start
threshold to the new window size causing the consumer to go into
congestion-avoidance mode.

3.3.3 RTO Estimate. Because of transparent caching, congestion
detection based on retransmission timeouts (RTO) is not reliable in
NDN when data are retrieved from multiple sources. Many of the
congestion-control protocols proposed for NDN [24] argue against
the use of a single RTO to detect a packet loss because consumers
cannot detect when data are being retrieved from different locations.
Unlike NDN, a consumer in NDTP relies on IP addressing to identify
the source of each data packet, even when data are being retrieved
from multiple sources. This allows NDTP to provide accurate RTO
estimates by measuring the correct round-trip time for every data
packet, while many NDN congestion-control algorithms (e.g., [3, 88]
must guess the sources of data packets. In the case of a timeout
event, the NDTP consumer retransmits the Interest that caused the
timeout, reduces its congestion window to one Interest, sets the
threshold half the congestion window size before the timeout, and
then goes into slow-start mode.

4 MANIFEST-YIELDING DNS

NDT attains location-independent content naming through the inte-
gration of name resolution with the transport protocol used to carry
content reliably. A new resource record type, which we call mani-
fest record is added to the DNS, resulting in the manifest-yielding
DNS (my-DNS). Instead of creating a new type of DNS resource
record for the manifests, it is possible to encode the manifest using
a TXT record instead. A manifest record describes the content struc-
ture by carrying the manifest generated by the NDTP producer,
lists the IP addresses of the different locations of the content on
the Internet, and other information, such as fields specifying the
freshness of the content and fields specifying security parameters.

Content naming in NDT is inspired by the iDNS approach [90] to
separate the content name from its location on the Internet. Content
names in NDT are based on DNS domain names, allowing them
to be persistent and unique through the hierarchical nature of my-
DNS. For example, the content name contentA.ucsc.edu represents
contentA hosted by the DNS domain ucsc.edu. With NDTP help,
each content name on the Internet is mapped to an individual
manifest generated by its producer, as explained in the previous
section. Having a single authority on manifests allows consumers to
authenticate the origin of content on the Internet easily. To achieve
near-replica routing of content, my-DNS is used to map the name of
a content object to the manifest record that describes the locations
and structure of the content object to the consumers on the Internet.
In turn, a manifest record maps the manifest of a content object to a
list of IP addresses hosting a replica of the content. Each one of these
addresses is added to the list as an individual DNS type A record.
my-DNS updates this list as needed. This includes sorting the list by
the nearest replica based on the consumer’s geographical location
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issuing the DNS query for the content name. Such an approach is
already being used to enhance domain-name lookup on the Internet
by many vendors. Because NDT uses standard DNS procedures to
resolve content names to manifest records, it can rely on standard
DNS procedures to dynamically register content names with its
corresponding manifest records. This is similar to a website adding
DNS records to its authoritative DNS server. Content servers can
dynamically register the content name with their manifest record
using dynamic-update DNS mechanisms [98].
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Content Name | Chunks Names

Record Selectors
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Figure 3: Mapping content names to manifest records

Figure 3 shows the steps used in NDT to resolve a content name
into a manifest record using my-DNS. In Step 1, an NDTP consumer
issues a manifest query with the content name passed by the client
application to the local my-DNS server. The manifest query is
merely a DNS query with the name field (QNAME) set as the content
name and the type field (QTYP) set as the manifest record type,
in addition to the standard DNS message fields. Assuming that a
specific my-DNS zone manages the manifest records under its zone,
the local my-DNS queries iteratively the global my-DNS for the
location of the authoritative my-DNS server of the my-DNS zone
specified in the URL. After the local my-DNS server obtains the IP
address of the authoritative my-DNS server, it sends a query of a
manifest record type along with the content name, as shown in Step
2. In response to the query from the local my-DNS, the authoritative
my-DNS server returns the manifest record associated with this
content name, as shown in Step 3. After receiving the manifest
record from the local my-DNS server, the NDTP consumer can start
issuing Interests to retrieve the content, as shown in Step 4. When
another NDTP consumer tries to retrieve the same content, the
local my-DNS simply returns the manifest record that has been
cached, as shown in Step 5.
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NDT ensures the security of the content itself, rather than rely-
ing on closed private connections. To protect the authenticity and
integrity of the content objects, the manifest record must also be
secured. This could be done by relying on digital signatures based
on public-key cryptography as in DNSSEC [32]. However, DNSSEC
is not widely deployed, is expensive to operate, and is not viewed
as a complete solution [8]. New techniques are clearly needed to
secure and protect manifest records, and they are the subject of
future work.

Without proper care, adding manifest records to the DNS could
lead to scaling problems resulting from IP address changes for con-
tent servers and mirroring sites hosting large numbers of content
objects, each with a manifest record that must be stored. Fortu-
nately, adding a layer of indirection prevents this problem, and the
DNS design already provides the means to add indirection via the
CNAME resource records. Using the CNAME records instead of
the A records of the content server inside the manifest records,
DNS updates messages to the server are avoided. Whenever a con-
tent server changes its IP address, only the A record stated in the
CNAME record of the content server needs to be updated. To en-
sure consumers keep up with the changes of the IP address of the
content server, the TTL can be set low for these records. This action
does not increase the load on the authoritative DNS server, as has
been discussed in the past in the context of mobile networks [101].
In addition, notification mechanisms can be used to update the local
DNS with the new IP address proactively using known consistency
mechanisms proposed for the DNS [25].

Mapping a domain name for every content object requires several
orders of magnitude additional storage capacity in the authoritative
and local DNS server. This may appear too onerous at first glance;
however, as has been noted before [90], most of today’s HTTP
servers can handle such a load (by hosting an entire directory
tree), and a dedicated DNS server can be used to host and manage
manifest records for content objects under a separate domain. For
example, the DNS resolution for the hierarchical content name
“ContentA.Contents.example.com" would involve a maximum of
four requests, with the final one to the authoritative DNS server
for (Contents.example) for contentA.

We note that the possibility of incurring additional redirection
delays to reduce storage requirements in my-DNS servers is a better
trade off than requiring all routers to maintain FIB’s and PIT’s that
are several orders of magnitude larger than the FIB’s of IP routers
today.

In terms of the size of the manifest records that are handled by
the DNS, RFC 1035 [71] already defines mechanisms on how to
handle large DNS responses. This is done by relying on TCP instead
of UDP to handle such a response. However, another approach is
to use a layer of indirection by having a manifest record pointing
to other manifests that can be retrieved from the content server
responsible for publishing the content objects and its manifest
record instead of using the authoritative DNS server.

5 NDT PROXIES

Client requests are redirected transparently to caches in the IP
Internet by intercepting TCP connections destined for specific ports
or a specific set of destination addresses. This is usually done by
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using a layer-four switch on the route between the client and the
origin server, and by splitting the TCP connection into two with
a proxy web cache spoofing the connection with the client. This
poses a significant privacy concern, because the cache has access
to each request and response between the server and the client.
Establishing private connections, such as using the TLS protocol,
is not a solution because it precludes transparent caching.

NDT eliminates the limitations of transparent caching in the IP
Internet by means of the manifests that describe the structure of
content objects globally at the transport layer. As a result, network
administrators can simply install a single NDT proxy cache in their
network and configure a layer-four switch to redirect all NDTP
traffic to proxies. Figure 4 shows an example of transparent caching
in NDT.

Interest

SRC: 192.168.3.1 Flatatatalateleleleletliuulululolefuutiuls
DST: 95.85.36.216 v
Name:ucsc/video1 H

Pending
Content Interest
&) aos
e 77"
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Figure 4: Transparent caching and Interest aggregation

After an NDTP consumer retrieves the manifest record of a con-
tent object, it proceeds with a window-based sequence of Interests
requesting all the chunks that are needed to decode the requested
content as stated in the manifest. An NDTP consumer at the client
starts issuing Interests destined to the NDTP producer at the server
(Step 1 in Figure 4). A layer-four switch on the way is configured
to intercept Interests intended for the content server and forwards
them to a nearby NDT proxy cache ((Step 2 in Figure 4). The NDT
proxy then checks whether the requested data packet is stored in
its content store, and forwards the Interest towards the NDTP pro-
ducer using its own IP address as the origin of the Interest (Step 3
in Figure 4). Once the NDT proxy receives a data packet, it uses it to
satisfy any pending Interest received from other NDTP consumers
(Step 4 in Figure 4), as indicated in Step 5 of Figure 4.

NDT proxies track pending Interest from NDTP consumers using
a Pending Interest Table (PIT) that serves the same purpose as in
NDN. Specifically, an NDT proxy forwards an Interest only once
towards the address of a content producer or mirroring site using its
own IP Address as the Interest source, and aggregates subsequent
Interests in the same content. However, the PIT in NDT is kept
outside the routing infrastructure and does not impose additional
overhead compared to today’s web caches, which must keep track of
TCP connections between the client and the origin server in a data
structure called the connection tracker. Furthermore, forwarding
Interests in NDT does not need a new routing infrastructure like
NDN and similar ICN architectures do.
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5.1 Securing Cached Content

From a security of standpoint, content carried over NDTP can be
public or private. Protecting the privacy of public content is not a
concern; however, authentication and integrity is a necessity. By
ensuring the integrity and authenticity of the manifest record using
methods like DNSSEC [32] as we explained previously, allows NDTP
to ensure the security of the content as well. Part of a manifest
record is the name of the chunks that need to be requested using
Interests in order to construct the content object. By using a hashing
function, NDTP uses each chunk hash digest as the name. As a
result, the manifest contains the content name, the digest of each
chunk composing the content, and the hashing function used by
the server to name these chunks, similar to the one proposed for
NDN{[73]. Finally, by computing the hash digest of these chunks,
an NDTP consumer can verify the authenticity and integrity of a
received data packet.

NDTP relies on multiple security methods to ensure the protec-
tion of private content. The goal is to ensure privacy while also
enabling transparent caching of content. To achieve this, NDTP
must ensure the following: (a) Only the NDTP producer and the
NDTP consumer of a content object should be able to access the
content object to preserve privacy, (b) NDTP producers and NDTP
consumers must be able to authenticate each other, (c) NDTP con-
sumers must be able to detect the integrity of received content
objects, and (d) NDTP should at least provide the same level of
anonymity as HTTPS.

TLS and other secure methods based on end-to-end connections
rely on symmetric cryptography per each connection to ensure
privacy. Given that the keys they use are generated uniquely for
each connection, it is apparent that using similar keys to secure
content in NDTP would negate the benefits of transparent caching.

One simple way to benefit from transparent caching with sym-
metric cryptography is to use group keys. Such an approach cer-
tainly downgrades the privacy of those consumers retrieving the
same content objects, but also ensures that caches are unable to
access the content cached for the group. To increase the level of
privacy between content consumers, NDTP uses computational
asymmetry by encoding the data using a specific method known
only to one particular consumer. This is done by combining a con-
tent object with useless data (or old chunks in the content store)
intended solely for obfuscation.

5.1.1 Group Key. Using group keys should be enough to prevent
an adversary from accessing cached content. However, compared
to TLS in which an encryption key is used for each connection, this
might raise two security issues: (1) a member inside the list may
infer that other members in the same list are retrieving the same
content object by observing the chunks names; and (2) members
that are not part of the content list may infer that multiple con-
sumers are requesting the same content by observing the names
of requested chunk names. NDTP overcomes this problem by en-
coding part of the content for each consumer in a different way
using computational asymmetry. Because NDTP relies mainly on
old chunks to do this, the chance of these chunks being in a cache
will be high, which reduces the latency to retrieve them. As a result,
consumers retrieving the same content will be requesting different
sets of chunks.
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5.1.2 Encoding Data. The way in which NDTP encodes data to
ensure computational asymmetry is by combining the content of an
object with old data or “useless" data intended solely for obfuscation
to produce a set of coded fragments. For example, multiple chunks
of the original content can be encoded with other chunks from the
content store, resulting in new coded chunks. The way in which
these chunks are encoded is only shared between the content con-
sumer and the content producer. Even though such a method does
not provide complete privacy, it should make it computationally
expensive for caches to access cached contents.

The method used in NDTP to encode the data of a data object
is based on previous work on censorship at storage systems [95].
A similar method was also used in [7] to prevent real-time censor-
ship at nodes in ICN networks. Algorithm 1 shows how an NDTP
producer encodes content for data obfuscation.

The return manifest of Algorithm 1 is simply a list of tuples,
each describing what chunks to request and how to decode the
original chunk as shown in Eq. (1). After receiving its manifest,
the NDTP consumer simply sends Interest for the coded chunks
corresponding to the original chunk in the manifest as shown in

Eq. (2).
| (BB, s B(Be) D)) s (BB, o BB X)) | (1)

fi= (Xi Dj=1,...c Bjyi) fori=1,..,n (2)

Algorithm 1 Data Obfuscation

1: procedure ENCODE(content)
2 f < SEGMENT(content) > return list of chunks
3 forie{1,...,n—1}do

4 X; = ﬁ

5 ChunkName < NULL
6 for j € {1,...,c} do

7 Xi=(X;® b])

8 ChunkName < h(b;)
9 ChunkName «— h(X;)
Manifest « ChunkName

return Manifest

10:
11:
12:
13:
14:
15:
16:
17:

c: number of random old chunks
n: number of content’s fragments
h: hash function

ChunkName: tuple of hash digest
Manifest: list of tuples

5.1.3 Partial Encryption. Data encoding alone is not sufficient
to provide complete confidentiality, but it could be enforced by
using group keys to partially encrypt some of the coded chunks.
Figure 5 shows a high-level view of the NDTP encryption operation.
In the example, two consumers retrieving the same content have
two different encoding methods but only one group key. Having
a group key ensures that caches are not able to decrypt cached
chunks. The group key also allows for overlapping requests to
benefit from transparent caching.

The basic approach serves two goals. First, it provides privacy
among consumers retrieving the same content by encoding part
of the content differently for each consumer. Second, given that
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each consumer has its own secret on how to decode part of the
content, an adversary cannot easily infer if consumers are retriev-
ing the same content. The reason why consumers with the same
group key cannot be sure about other members of the same group
is that chunks used in the data obfuscation might have been used to
encode other content as well. This should be sufficient to prevent
consumers from decoding these chunks, mainly when they have
limited resources. Besides, by using the group key, we are guaran-
teeing partial caching for all the chunks that are encrypted using
the group key.

To increase the level of obfuscation, the producer can apply
an all-or-nothing transform, where caches or consumers in the
same content list cannot decode the content unless all chunks are
known. The trade-off with obfuscation and using group keys is that
more coded chunks that combine the original content are needed
to decode it. However, the older the chunks used to obfuscate the
content, the higher the chance that it will be retrieved from a closed
cache. Also, this method can be used to populate caches with chunks
from other content objects.

? Group Key
? Encoding Method

List of Encrypted

Chunks' Names Manifest

Encoding Method

Cam

Consumer 1

Cam

Consumer 2

Server

List of Coded
Chunks' Names

Figure 5: Partial encryption in NDT

5.2 Manifest Privacy

To provide partial encryption while also leveraging caching, only
the manifest has to be secured using public key encryption. By using
a specific URL format, an NDTP consumer knows that its request
is for private content (like in HTTPS). In this case, there is no need
to query the DNS server for the manifest record of the content.
Instead, the consumer sends its request to the IP address of the
content provider, just as in HTTPS. However, the NDTP consumer
can still rely on the DNS to retrieve the necessary keys of the NDTP
producer (server). This can be done by using techniques like DNS-
based Authentication of Named Entities (DANE) [58], which allows
the publication of Transport Layer Security (TLS) keys in zones
for applications to use. After the NDTP consumer retrieves the IP
address and the server key, it can issue a Manifest Interest encrypted
using both the client and the server public and private key to ensure
its authentication, integrity, and encryption. Once the server proves
the client is authorized to request the content, it will then send back
the manifest. While this is happening, NDTP caches on the way will
not be able to intercept and understand either the Manifest Interest
or the manifest itself since they are encrypted. To allow transparent
caching while also ensuring privacy, the manifest contains a specific
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encoding method that is unique for each consumer and a group key
that is unique for each content as we explained earlier.

5.3 Name Privacy and Access Control

Because Manifest Interests and manifests are encrypted using public-
key encryption, no intermediate node is able to access any informa-
tion inside them, including the name of the content requested. This
means that consumers that are seeking the same content will not
know who else is requesting it since both the Manifest Interest and
the manifest are encrypted using the consumer and the producer
keys. The same applies to members that are not part of the content
group as well.

As we explained before, NDTP uses a chunk hash digest as its
name. To prevent an adversary from reversing these chunk names
to their original content, a one-way hash can be used. In generating
these hash digests, NDTP producers use a randomly generated
number (salt) to control access to chunk names from consumers
who have their access revoked. This salt added to the manifest along
with a timer on when this manifest and salt will expire. An NDTP
consumer who was at some point authorized to receive a certain
content but not anymore is unable to infer whether a particular
chunk name will be related to a specific content object without
the current salt value. Besides, consumers who have their access
revoked will also be unable to request the content.

5.4 Multicast Support at the Transport Layer

The IP multicast architecture in place today is based on the ap-
proach introduced by Deering and Cheriton [29]. The limitations
of this approach have been discussed multiple times in the past
[66], and among them are the need for global agreements on group
addresses and the use of multicast routing protocols. CCN and NDN
are able to provide “native multicast support,' (i.e., supporting mul-
ticast delivery without multicast addresses and multicast routing
protocols) by using PIT’s to track pending Interests for multicast
content denoted by name.

As we have explained, NDT proxies use PIT’s to track pending
Interests at the transport layer, and the aggregation of pending
Interests at NDT proxies is very similar to that of NDN routers near
consumers, but is based on IP addresses. However, this still leaves
multiple copies of Interests for the same object flowing through
the routers along the paths between NDT proxies at the edge and
content sites. To reduce this traffic, network providers may choose
to deploy layer-four switches to intercept and redirect NDT traffic
to caching proxies at different network locations between popular
mirrored content producers and customers.

The combined use of NDT proxies and manifest records with
which consumers can be redirected to nearest mirroring sites results
in similar functionality as a CDN, but without the need for overlays.

6 PERFORMANCE COMPARISON

We compared the performance of NDT, TCP, and NDN using our
NDT implementation in ns-3 [97] and off-the-shelf implementa-
tions of TCP, DNS, and NDN in ns-3 and ndnSIM [77]. The ns-3
implementation of NDT is publicly available to the research com-
munity [4] to facilitate reproducibility of results and future NDT
improvements.
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Figure 6: Single-flow scenario for NDTP and TCP

6.1 Efficiency of Congestion Control and
Retransmission Mechanisms in NDTP

This experiment illustrates the inherent benefits of using a receiver-
driven connection-free reliable transport protocol based on mani-
fests instead of a connection-based transport protocol like TCP. We
compared the congestion-control and retransmission mechanisms
of NDTP and TCP assuming a scenario consisting of a simple net-
work with a single source and a single sink. The topology of the
network is a single path of four nodes with a single consumer/client
at one end and a producer/server at the other end. Both ends share
a common bottleneck of 1.5 Mbps and no in-network caching takes
place. The propagation delay between the two ends is set to 40ms.
The consumer in NDTP issues Interests for the content served at
the other end after requesting the manifest for this content from
the producer. The client in TCP consumes traffic generated by the
server after establishing a connection with it using the TCP three-
way handshake. The size of the object chunks in NDTP is equal to
the segment size in TCP, and fixed at 1500 bytes and both NDTP
and TCP share the same fixed-header size.

Figure 6a shows the evolution of the congestion window for
both protocols during the first 30s of the downloading a content of
3.69MB, a total of 2465 chunks/segments. The growth of the con-
gestion windows for both protocols matches the expected behavior
of the additive-increase multiplicative-decrease (AIMD) algorithm.

The retransmission policy in NDTP allows receivers to detect
and recover from a packet loss faster than in TCP, where it took
the client a total of 35.5s to download the file compared to the
total download time of 33.2s in NDTP. This is due to the fact that
NDTP does not use connections and applies a fast retransmission
strategy enabled by manifests. A consumer in NDTP has a complete
picture of which OC’s were received correctly and which were lost,
and does not rely on partial ACK’s like TCP does. Accordingly,
the consumer immediately goes into congestion avoidance state,
instead of fast recovery. As a result, NDTP continues increasing
its congestion window normally. This allows NDTP to use the
bottleneck’s buffer more efficiently compared to TCP, which is
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forced into fast recovery, during which the sender can only transmit
new data for every duplicate ACK received.

Figure 6¢ shows the queue size of the bottleneck’s buffer for only
5 seconds of the simulation to highlight the idle periods of each
protocol. It can be seen from the figure that TCP has more extended
idle periods compared to NDTP. As a result, NDTP achieved higher
average throughput due to better utilization of the link’s capacity
and the buffer size.

6.2 Efficiency of Transparent Caching

This experiment highlights the ability of NDT to take advantage
of in-network caching like NDN does, but without requiring any
changes to the IP routing infrastructure. We compared the total
average time taken to retrieve multiple copies of a large data file
using NDT, TCP, and NDN. The experiment consists of a source
node connected over a 10 Mbps shared link to a cluster of six con-
sumers, all interconnected via 100 Mbps links. An intermediate
router is configured to forward NDT traffic to a caching proxy for
NDT traffic. The same topology was used for NDN as well. Both
NDN and NDT use the same congestion control algorithm, which
mimics the TCP congestion control algorithm to provide a fair com-
parison with TCP. The scenario was run six times, and each time we
increased the number of consumers in the network. All consumers
start pulling a 6MB data file from the source simultaneously, and
the total download time for every consumer is displayed in Figure
7.

As can be observed from Figure 7, TCP, NDT, and NDN perform
very much the same when a single consumer is involved. This is
to be expected, given that most of the NDT and NDN data packets
are retrieved from the source in this case, and all three approaches
use similar algorithms for congestion control. As the number of
consumers increases, the completion times in NDT and NDN remain
constant for all six scenarios. In contrast, the completion time in
TCP increases linearly because all the data must be retrieved from
the source. The use of PIT’s in NDT and NDN results in only the
first consumer Interests traversing the path to the producer, while
the rest of the Interests are simply added to the PIT of the first
router in NDN and the caching proxy in NDT.



ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

30

)
=)
T

Total download time (sec)
=
T

S

Number of clients

Figure 7: Transfer time vs. number of consumers

6.3 Impact of Manifest Records and Mirroring

This experiment highlights how NDT’s architectural components
work together to provide efficient name-based content delivery
over the existing IP Internet. We compared the total average time
taken to retrieve a large data file in three cases, namely: Using
only the transparent caching enabled by NDT proxies (NP), using
redirection to nearest mirroring sites based on my-DNS without
transparent caching at NP’s, and using NP’s together with with
redirection to nearest mirroring sits based on my-DNS.

Figure 8 shows the topology used in this scenario, which con-
sists of multiple edge networks connected by a cluster of multiple
consumers and mirroring sites located between the edge and the
cloud network where the content server is located. Each edge router
is connected to NDT proxies that provide transparent caching for
NDT traffic passing through them. When my-DNS is enabled, In-
terests from consumers are routed to the nearest mirroring site for
the content. Each experiment was run five times and the number
of consumers in each cluster was increased. Each consumer starts
pulling a 6MB data file from the producer at a random start time
based on a Poisson distribution with a short average arrival time.

Cloud
Fog
errovlna Site errMM Site.
Edge

ééé?::éé é%@c%;é?@ a‘%@&@c‘é

Figure 8: Network topology

Figure 9 shows the average latency incurred in retrieving the con-
tent object for each scenario, along with the variance. As expected,
NDT performs its best when NDT proxies and nearest-replica rout-
ing through the my-DNS are used. As Figure 9 indicates, when only
NP’s are used, Interests from consumers have to reach the producer
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site, and the benefits of using NP’s come from aggregating Interests
and caching content. However, because of the short inter-arrival
time of Interests, only aggregation is useful. In our scenario with
ten consumers, only two Interests for the same data object traverse
the path to the producer. Using my-DNS without NP’s results in a
shorter retrieval time for consumers, but duplicate packets are sent
along links. When both my-DNS and NP’s are used, Interests from
consumers are routed to the nearest mirroring site and aggregated
at the NP’s.

T T T
== NP’s w/o mirroring
—Q— my-DNS with mirroring w/o NP’s
| =9— NP’s & my-DNS with mirroring N

o
IS

Total download time (sec)
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Number of clients

Figure 9: Total download time for different approaches to
the use of mirroring and caching in NDT

6.4 Overhead of URL to Manifest Mapping

This experiment illustrates the overhead of mapping URLs to man-
ifest records using my-DNS. The scenario is based on the HTTP
application, where clients start requesting the main web page and
then start requesting the embedded inline objects based on their
URL in the web page. The main object size and the size of the
embedded inline objects are based on the top one million visited
web pages indicated in [84]. We used two HTTP applications for
our comparison, one based on persistent connections, in which a
new HTTP request cannot be sent until the response to the current
request is received. The other application is based on HTTP pipelin-
ing, where multiple HTTP requests can be sent together over a
single TCP connection. For the case of NDT, each URL mapped to
a single manifest record. The NDTP consumer starts querying the
my-DNS for the manifest record of the main object, and it queries
for the inline objects records after retrieving the main object from
the server.

The topology of the network is a single path of four nodes with
a single client connected to its local my-DNS server, and a content
server at the other end that is connected to its authoritative my-DNS
server. For the sake of simplicity, the IP address of the authoritative
my-DNS server is cached at the local my-DNS server at the start
of the simulation. Both resource and manifest records need to be
retrieved from the authoritative my-DNS server at the other end
if they are not cached. For a fair comparison between NDT and
HTTP over TCP, NDT and TCP have the same fixed-header size,
the same chunk and segment size, and the same congestion control
algorithm.
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As Figure 10a shows, NDT performs at least as well as HTTP
pipelining. Both HTTP applications require a connection to be es-
tablished using TCP three-way handshakes before a client can start
sending and receiving data. By contrast, NDTP allows clients to
retrieve data without the need to establish a connection, which
reduces the number of RTTs by at least one compared to TCP. Mul-
tiplexing is easily supported in NDTP because objects in NDTP
are globally named and pointed by their own manifest, allowing
consumers to pipeline and multiplex multiple objects together. As
seen in Figure 10b, when manifest records are cached, NDT out-
performed both types of HTTP. This proves that using my-DNS
to translate URLs as structured in applications like HTTP do not
impose significant overhead in NDT.

Using my-DNS in NDT does not impose significant overhead
compared to NDN. A consumer in NDN has to retrieve the manifest
from the producer before issuing Interests to retrieve the content.
Retrieving the manifest record using my-DNS adds only the addi-
tional delay incurred in redirecting the consumer to the site with
the manifest.

Download Time (ms)

—a— Persistent Connections —¢— HTTP Pipelining —e— NDT
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Figure 10: Overhead of URL-to-manifest mapping

6.5 TCP Friendliness

This experiment is used to illustrate TCP friendliness in NDTP with
and without caching. The topology of the network consists of a
bottleneck link of capacity 1 Mbps and a buffer size of 20 packets. For
the sake of simplicity, the chunk size of NDTP is fixed at 1000 bytes,
and the same goes for the segment size of TCP. TCP operates with
the SACK option enabled, and ACK’s are not delayed. Both TCP and
NDTP have the same round-trip-time delay, and they are retrieving
the same file of about 3MB. For the scenario with cashing, NDT
caching proxies are configured in the topology before the bottleneck.
This allows the NDT caching proxy to serve the consumer Interests
for dropped data packets due to congestion along the bottleneck.
Initially, the NDT caching proxy is empty and caches any data
packets that pass through it. A router is configured to interrupt
NDTP packets based on the protocol number and redirect them to
the NDT caching proxy.

Figure 11a shows the results with and without caching. Using
Jain’s fairness index, the fairness between the two flows without
caching is equal to F = 0.9988, which is understandable because
NDTP also follows an AIMD congestion control algorithm like TCP.
Similar results occur when caching takes place. The results illustrate
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that caching does not have a large negative effect on fairness. In
fact, fairness between the two flows was equal to F = 0.9967 with
caching. This is due to the ability of NDTP to detect that most
packets were retrieved from the primary source, and control its
sending rate accordingly. Even though NDTP achieved less fairness
than two competing TCP flows under the same scenario (where
fairness equals F = 0.999996), the total download time for TCP
flows retrieving the same file size was higher by 8.5%.
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—— TCP

Throughput (Mbps)
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Figure 11: TCP Friendliness

7 CONCLUSIONS AND FUTURE WORK

We introduced Named-Data Transport (NDT), the first ICN ap-
proach that attains efficient content dissemination without end-to-
end connections or modifications to the IP routing infrastructure.
The design of NDT provides the same benefits of NDN and similar
ICN architectures through the integration of a new connectionless
reliable transport protocol with name resolution and NDT proxies
that support privacy-preserving on-line caching and native multi-
casting.

The results of simulation experiments in ns-3 show that: (a) NDT
is inherently more efficient than TCP, (b) the performance of NDT
and NDN is very similar, and (c) NDT outperforms HTTP over TCP
while being able to provide privacy.

We implemented congestion and retransmission control algo-
rithms in NDT that are similar to those used in TCP simply to
highlight the inherent benefits of the name-based connectionless ap-
proach used in NDTP. Far more efficient algorithms can be adapted
to be used in NDTP, including many that have been proposed for
TCP recently [16, 17], and this is an area of future work. Similarly,
our initial design of mechanisms to secure content and manifest
records should be viewed as a starting point, and clearly more work
is needed in this area. Making native multicast more efficient in
NDT is another area of future work.

We focused on static content in our discussion of NDT; however,
the approaches that have been described for the support of real-
time voice and video-conferencing in NDN and CCN [55, 61] are
equally applicable to the end-to-end information-centric approach
in NDT.

The implementation of NDT in ns3 is publicly available [4] to
foster further research on NDT and similar information-centric
Internet solutions that preserve and evolve with the IP routing
infrastructure.
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