
Named-Data Transport:
An End-to-End Approach for an Information-Centric IP Internet

Abdulazaz Albalawi
Computer Science and Engineering Department

University of California Santa Cruz
Santa Cruz, CA, USA
aalbalaw@ucsc.edu

J.J. Garcia-Luna-Aceves
Computer Science and Engineering Department

University of California Santa Cruz
Santa Cruz, CA, USA

jj@soe.ucsc.edu

ABSTRACT

Named-Data Transport (NDT) is introduced to provide efficient con-

tent delivery by name over the existing IP Internet. NDT consists of

the integration of three end-to-end architectural components: The

first connection-free reliable transport protocol, the Named-Data

Transport Protocol (NDTP); minor extensions to the Domain Name

System (DNS) to include records containing manifests describing

content; and transparent caches that track pending requests for con-

tent. NDT uses receiver-driven requests (Interests) to request con-

tent and NDT proxies that provide transparent caching of content

while enforcing privacy. The performance of NDT, the Transmis-

sion Control Protocol (TCP), and Named-Data Networking (NDN)

is compared using off-the-shelf implementations in the ns-3 simu-

lator. The results demonstrate that NDT outperforms TCP and is as

efficient as NDN, but without making any changes to the existing

Internet routing infrastructure.

CCS CONCEPTS

•Networks→Naming and addressing;Network protocol de-

sign; Transport protocols.

KEYWORDS

ICN, NDN, DNS, Transport protocols, TCP

1 INTRODUCTION

The limited support for reliable and efficient access to (e.g., videos

and documents) and services (e.g., multiplayer games) provided by

the communication protocols of the IP Internet led to the develop-

ment of dedicated systems aimed at content delivery. These systems

can be categorized as content delivery networks (CDN) [12, 104]

like Akamai [79] or peer-to-peer (P2P) applications [67] like BitTor-

rent [14]. While such content-delivery systems address many of the

performance limitations of the basic Internet protocol stack, they

require either third parties to provide added functionality or appli-

cations to replicate content-delivery functionality independently of

others. As a result, several Information-Centric Networking (ICN)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8040-9/20/09. . . $15.00
https://doi.org/10.1145/3405656.3418714

architectures have been developed to address the limitations of the

IP Internet and the inefficiencies of using CDN’s and P2P appli-

cations. These architectures [2, 11, 103] aim to allow all Internet

applications and users to obtain content and services by name,

without requiring specific systems to serve different applications or

forcing applications to determine where instances of content and

services of interest are located in the Internet.

Section 2 provides a summary of information-centric approaches

proposed in the past and highlights four important facts that moti-

vate the subject of this paper. First, prior transport protocols leave

applications in charge of reliable-communication functionality, rely

on connections to provide end-to-end reliable communication, or

require a network layer that provides much more than datagram de-

livery. Second, CDN and P2P approaches are insufficient to address

the ever-increasing content-oriented usage of the Internet by all

its users and applications. Third, most ICN architectures attain effi-

cient content distribution by: naming content and services rather

than endpoints; using in-network caches to allow content to be

delivered opportunistically from closer locations; and using either

name-based routing and embedding name resolution in the routing

infrastructure, or overlay networks of name resolvers or content

routers. Fourth, prior approaches that focus on modifications of the

Domain Name System (DNS) to accommodate content distribution

assume the use of TCP connections.

Name-based routing and forwarding have been considered to

be necessary to attain an information-centric Internet. The most

popular example of this approach today is the Named-Data Net-

working (NDN) architecture [76]. Needless to say, NDN and other

ICN architectures have produced valuable insight on what it means

to provide information centricity at Internet scale. However, by

requiring a far more complex network layer, these approaches have

deviated from the end-to-end principle [10, 87] and the subsequent

end-to-end arguments [15] that made systems built on datagram

packet-switching networks so successful, including the Internet.

Using name-based routing to attain an information-centric Internet

is an architectural choiceśnot a requirementśthat has profound

implications. It means that efficient content delivery must come

at the cost of redesigning the IP routing infrastructure and doing

away with the DNS. Furthermore, servers and clients must also be

modified to adopt the API’s needed to use a name-based network

layer, and widely successful application protocols like HTTP must

be redone. The contribution of this paper is to introduce an alter-

native end-to-end approach to an information-centric Internet that

we call Named-Data Transport (NDT).

Conceptually, NDT amounts to an end-to-end implementation of

the Interest-based approach first introduced by Jacobson et al. [60]

136

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada Abdulazaz Albalawi , J.J. Garcia-Luna-Aceves

that does not require any changes to the Internet routing infras-

tructure and takes advantage of the DNS. NDT allows applications

to ask for content and services by name, and makes the transport

layer responsible for: (a) mapping content names to one or multiple

locations where the content is offered, (b) delivering the content

reliably to consumers from content servers or transparent caches

without using end-to-end connections, and (c) enforcing the pri-

vacy of consumers. Like other ICN architectures, NDT can provide

the benefits attained with CDN’s and P2P applications, but without

requiring the services of specific vendors or replicating functional-

ities at the application layer. Furthermore, NDT can be deployed

incrementally and much faster than prior ICN architectures.

Section 3 presents the Named-Data Transport Protocol, or

NDTP, which is the first transport protocol that provides reliable

end-to-end communication over a datagram communication in-

frastructure without establishing connections. NDTP does this by

using content names and manifests that describe the structure of

the content as in some ICN-based architectures [13, 74, 100]. In

NDT, applications have access to content names in the same way

clients have access to Uniform Resource Locators (URLs) today.

Applications request content by name and NDTP provides reliable

name-based transport services by obtaining the structure of content

objects from the DNS without the need for end-to-end connections

and in a way that is transparent to end-user applications.

Section 4 describes how content names are mapped into mani-

fests by themanifest-yielding DNS (my-DNS), which augments

the DNS to maintain manifest records describing the locations

and structures of content objects. Given that NDTP consumers

obtain the location of the nearest copy of a content object given

its name, my-DNS serves as a de facto name-based routing over-

lay with redirection operating on a publish-subscribe basis. Using

my-DNS redirection eliminates the need for name-based routing

protocols while incurring very small additional delays.

Section 5 describes how NDT uses NDT proxies to: (a) support

transparent caching of content with privacy over the IP Internet for

arbitrary applications, (b) secure content relying on informational

asymmetry to prevent caches from accessing cached content and

on computational asymmetry to prevent clients from decoding

unauthorized content, and (c) support multicasting services without

the need for IP multicast routing. NDT proxies maintain Pending-

Interest Tables (PIT) similar to those used in NDN and other ICN

architectures, but without making any changes to the IP Internet

routing infrastructure.

Section 6 compares the performance of NDT with the perfor-

mance of TCP and NDN using our implementation of NDT in ns3,

which is publicly available [4] to foment further research on NDT,

and off-the-shelf implementations in ns-3 of TCP and NDN. The

results of the simulation experiments show that NDT is inherently

more efficient than TCP and as efficient as NDN, but without the

need for a clean-slate redesign of the Internet routing infrastructure.

Section 7 provides our conclusions.

2 RELATED WORK

We summarize prior work related to NDT, including transport

protocols, CDN and P2P approaches, ICN architectures, support for

mobility and privacy, and end-to-end DNS-based schemes.

2.1 Reliable Transport Protocols

TCP and all subsequent transport protocols that provide reliable

end-to-end communication are based on end-to-end connections

[54, 64, 80, 83]. This has become a big problem for content-oriented

Internet applications because connections are brittle, in most proto-

cols the context exchange must be restarted if a connection is lost,

a specific site must be selected to start the connection supporting

content retrieval, and in-network caching cannot be used without

compromising privacy.

QUIC [64] uses connection identifiers for additional resilience

to physical connectivity losses and mobility. However, it has been

shown that no correct connection-based protocol exists that pro-

vides reliable communication in the presence of nodes failing and

losing their state [69, 70, 94]. Hence, guaranteeing the correct op-

eration of any connection-oriented protocol requires that either

the sender and receiver participating in a connection have non-

volatile memory to remember any identifier used previously, or

that connection identifiers are never reused to identify incorrectly

past connections.

2.2 CDN and P2P Approaches

The limitations of using end-to-end connections between specific

sites to support content delivery prompted the development of

many CDN and P2P approaches over the years. Many surveys and

taxonomies have been published for CDN’s and P2P applications

and overlays (e.g., [12, 67, 68, 104]), and it should be clear that such

systems provide much if not all of the functionalities and services

present in all ICN architectures. For example, name-based content

routing and redirection strategies were implemented in CDN’s (e.g.,

[44, 52, 68, 85]) before they were advocated in ICN architectures.

The key difference between ICN architectures and CDN’s or P2P

applications is that they are applicable to all Internet users and

applications, rather than just those users serviced by specific CDN

third parties or specific P2P applications. It should be noted that

the end-to-end nature of NDT enables the use of many CDN and

P2P techniques to further improve its efficiency without requiring

changes to the Internet routing infrastructure.

2.3 Prior ICN Architectures

TRIAD [53] and Content-Based Networking [20ś22] were the earli-

est examples of ICN architectures advocating content-based rout-

ing by names or attributes and publish-subscribe operation. Many

subsequent ICN architectures evolved over the years that either

proposed to change the network layer of the Internet to imple-

ment location-independent name-based routing and forwarding,

or adopted the use of overlays as in CDN’s and P2P systems to

provide name-based routing, resolve names to locations of con-

tent, and support publish-subscribe functionality. These ICN ar-

chitectures include: COMET [36, 37], Content-Centric Networking

(CCN) [60], CONVERGENCE [42], DONA [63], PSIRP and PUR-

SUIT [38, 39, 102], MobilityFirst [78, 89], Named-Data Networking

(NDN) [76], Nebula [6], 4WARD [41], SAIL [40, 96], and XIA [56].

The advantages and disadvantages of the ICN architectures are

discussed in several surveys (e.g., [1, 2, 5, 11, 103]). Over the years,

NDN has become the most successful ICN architecture to date, and

more recent work has even focused on embedding NDN routers as

137

Named-Data Transport ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

part of the IP Internet routing infrastructure [19, 75]. Accordingly,

we use NDN as the leading example of prior ICN architectures.

The main benefits of NDN over the IP Internet architecture that

have been stated in the past are: (a) Allowing all Internet applica-

tions to request content and services by name rather than locations,

(b) eliminating performance issues associated with TCP connec-

tions, (c) providing added privacy to content consumers, (d) making

efficient use of in-network caching for arbitrary content, and (e)

enabling multicast services without the need for multicast routing

protocols. The subsequent description of NDT and its comparison

with NDN show that NDT provides all these benefits without the

need to change the Internet routing infrastructure or establish new

overlays on top of it.

In contrast to NDN and other ICN architectures, NDT does not

require the deployment of overlays of name resolvers or content

routers, or changes to the Internet routing infrastructure to operate.

This approach is motivated by recent results on caching and ICN

schemes. There is ample evidence that edge caching provides most

of the benefits derived from in-network caching at every router

[27, 28, 35]. On the other hand, the number of conent name pre-

fixes needed to provide name-based routing at Internet scale is

many orders of magnitude larger than the number of Internet IP

address ranges needed to support address-based routing. Hence,

independently of the type of name-based content routing used

[45, 51, 57, 99], the combined use of address-based routing and

redirection schemes that map names to addresses can be done far

more efficiently than the combined use of name-based routing and

PIT’s at each router. Performance results of recent ICN approaches

based on addresses indicate that this is the case [46ś50].

2.4 Privacy and Mobility Support

Prior approaches attempting to address the privacy concerns of

transparent caching using end-to-end connections are not effective.

Traffic carried over closed secure connections used in HTTPS can-

not be cached, and this is a growing concern for content retrieval

on the Internet because more than 50% of web traffic is served

over HTTPS [31]. GroupSec [92] adapts HTTPS to support group

memberships to allow transparent caching on the Internet with-

out making any changes to caches or servers. Unfortunately, this

approach does not provide privacy among members in the same

group, and an adversary can infer whether multiple clients are

in the same group. Prior ICN architectures address privacy with

different mechanisms [5], and Arianfar et al. [7] propose a privacy

technique for NDN that leverages computational asymmetry to pre-

vent caches from decoding cached contents in real-time; however,

this method does not provide complete privacy for consumers.

The use of end-to-end connections between specific end-point

addresses prompted the development of many approaches to cope

with mobility in the context of the IP Internet [9, 33, 43, 65, 82,

86, 91, 93]. However, this prior work does not address eliminating

connections for reliable end-to-end communication, and some can

be used in NDT.

2.5 DNS-based Approaches

iDNS [90] and idICN [35] are arguably the first proposed approaches

aiming to provide the ICN benefits in the current Internet by lever-

aging the DNS system. Instead of resolving a URL hostname to an

IP address, iDNS resolves content names directly to metadata that

contains the address of servers hosting the content, taking into

account local caches; however, iDNS does not specify a specific

protocol to retrieve contents using its method and instead leave it

as part of their future work.

idICN also uses the DNS to resolve a content name to a nearby

cache or a hosting server, and uses HTTP as the baseline for the

transfer protocol. The limitations of this approach are that it is

limited to HTTP, requires the connections used in TCP, and which

must take place at the application level, causing different types of

proxies to be used for caching. Similarly, DNS++ [30] and NEO [34]

introduce an information-centric API combined with a DNS-based

mechanism very similar to the one used in iDNS, and have the

same limitation of requiring TCP and legacy application protocols

to operate.

3 NDTP

NDTP eliminates the need to maintain the ephemeral type of con-

text provided using connections by allowing a consumer and pro-

ducer to share a common description of the structure of the content

being exchanged, and such that both can refer to that description

to deliver specific portions of content reliably. This description is

called themanifest of the content object being delivered. The man-

ifest of a content object frees the NDTP consumer and producer of

the object from having to create and maintain the context for their

reliable exchange of the object in real-time.

Provided that an NDTP consumer and a producer can refer to the

same manifest, they can exchange any portion of the content object

described in the manifest on a transnational basis, and an NDTP

consumer process is also free to contact multiple parties hosting the

content using the same manifest published by the NDTP producer

of that content. More specifically, the NDTP process managing ap-

plication content publishes manifests accessible on the IP Internet

that describe how the content can be retrieved. The server applica-

tion servicing the content notifies its NDTP producer to publish a

manifest that maps to a unique global name and describes how the

content object is structured. Before the NDTP process servicing the

client application starts retrieving the content object, it queries its

local my-DNS (manifest-yielding DNS) to resolve the object name

to its manifest record, which contains the manifest of a content

object and additional information to manage the content on the IP

Internet. Once the consumer obtains the manifest record for the

content object, it proceeds with a window-based sequence of Inter-

ests requesting the chunks that are needed to decode the content

object, as stated in the manifest record.

For convenience, NDTP is implemented over UDP, just like sev-

eral recent transport protocols. As a result, NDTP operates com-

pletely in user-space, and its packets are encapsulated in UDP data-

grams, which are encapsulated further in IP datagrams. NDTP is

implemented using two main data structures: A producer that pub-

lishes content and a consumer that retrieves content. This design

is inspired by the NDN API design [72].

3.1 Publishing Content

Figure 1 shows an overview of the NDTP producer functional struc-

ture. When a server application needs to publish content, it is the

responsibility of the NDTP producer to publish the content on the

138

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada Abdulazaz Albalawi , J.J. Garcia-Luna-Aceves

Internet. This consists of three main parts: (1) saving the content

object and its name into its content store, (2) sending requested

data packets in response to received Interests, and (3) publishing a

manifest record for the content object by registering it along with

its name with its authoritative my-DNS server.

Before publishing content on the Internet, the producer segments

the content into multiple chunks and encodes them in a specific way

to ensure the privacy of cached content. An example of an encoding

method is explained in Section 5.1. Chunks can also be signed and

encrypted to ensure security at this stage. Once the content is

segmented into multiple chunks, it is cached at the content store.

The content store can be viewed as the sender buffer in TCP and

other connection-based transport protocols. The producer then

appends the names of the chunks into the manifest along with the

encoding method and other security parameters. The final stage

of publishing content on the Internet is by publishing its manifest.

This is done by constructing the manifest record using the manifest

itself andmeta-information about the content (e.g., a time to live, list

of servers to contact, etc.). The producer then registers the manifest

record along with the content name with a my-DNS authoritative

server. Registering and updating manifest records is done using

regular DNS standards [98], and it is up to the content provider to

determine which sites to use to host content objects.

An Interest from a consumer goes through the Interest process-

ing routine, which is used to perform a cache lookup at the content

store. The Interest is simply dropped if it’s a miss, and a data packet

is sent back if it succeeds. A NACK can be sent back to the consumer

if necessary. The design of NDTP allows application developers

to customize their content distribution and have full control over

deployment decisions.

Data Encoding

Publish
Manifest

Ap
pl
ic
at
io
n

Content
Store

Interest
Processing

Routine

Data packet

Manifest

drop/NACK
miss

Interest hit

Figure 1: Processing Interests and data packets at an NDTP

producer

3.2 Retrieving Content

Figure 2 shows the functional structure of an NDTP consumer.

Client applications running over NDTP retrieve data objects using

their names (URL). The client only needs to provide the content-

object name to the NDTP layer. The NDTP consumer does all the

work in retrieving the content, which involves contacting the lo-

cal my-DNS to retrieve the manifest record, and requesting the

actual content and decoding it. Using the NDTP API, clients access

the content directly through the function GetContentByName(),

which takes the content name as its parameter. Calling this function

invokes the consumer side of the NDTP layer.

The NDTP consumer responsibility can be broken into two main

tasks: resolving content names to their manifest record, and retriev-

ing the content using information from the manifest record. As

Figure 2 shows, the consumer in NDTP remembers a set of vari-

ables for each content that needs to be retrieved. These variables

are stored in a data structure called the Content Control Block or

CCB, which is used to control such things as Interest timeouts,

window size, and the decoding method. All Interests go through

the Interest crypto routine. The routine signs these Interests based

on information from the manifest. Arriving data packets will go

through the Data verification routine for authentication including

manifest as well as checking if packets are corrupted.

Manifest

Encoding
Method

Congestion
Control

Consumer Buffer

Interest Crypto
Routine

Data Verification
Routine

Interest

Data

Interest

Data

Content
Object

Ap
pl
ic
at
io
n

Figure 2: Processing Interests and data packets at an NDTP

consumer

3.3 Retransmission and Congestion Control

Retransmission and congestion control algorithms in NDTP are

receiver-driven, just as in NDN and CCN [60]. These algorithms

are based on the inclusion of a manifest pointer in each Interest

and data packet. Clearly, many receiver-driven strategies can be

implemented. For simplicity, however, we chose to use the TCP

congestion-control and retransmission algorithms in NDTP. Given

the similarities of the mechanisms used in NDTP with well-known

mechanisms in TCP, the rest of this section provides only an outline

of the retransmission and congestion-control mechanisms in NDTP.

3.3.1 Congestion Control. The NDTP consumer controls the

flow of data traffic by controlling the sending rate of its Interests

using a congestion window. The congestion window specifies the

number of outstanding Interests allowed to be sent before receiving

their data packets. The window size is adjusted based on the AIMD

(Additive Increase Multiplicative Decrease) mechanism commonly

used in TCP for the congestion window. The NDTP consumer

increases its congestion window based on slow-start, starting with

transmitting one Interest and increasing the congestion window by

one for each newly received Data packet. The slow-start continues

until the window reaches the slow-start threshold. The consumer

operates under the congestion-avoidance state as in TCP [59]When

the slow-start threshold is exceeded, and increases its window by

one Interest every round-trip time.

3.3.2 Fast Retransmit. NDTP uses a receiver-driven selective-

repeat retransmission strategy. An NDTP consumer retransmits

a lost Interest once an out-of-order data packet is received based

on the order in the transmitted list if a time constraint is met. A

139

Named-Data Transport ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

lost Interest 𝑦 initially transmitted at time 𝑡𝑖 is retransmitted once

the following constraint is met: As soon as a data packet arrives

for any Interest transmitted at 𝑡𝑥 where (𝑡𝑥>𝑡𝑖), and (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 -𝑡𝑖)>

RTT, where 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time and RTT is the time it

takes to send an Interest and receive the Data packet for it. Once

NDTP detects a packet loss using fast retransmit, the consumer

reduces its congestion window by one half and sets the slow-start

threshold to the new window size causing the consumer to go into

congestion-avoidance mode.

3.3.3 RTO Estimate. Because of transparent caching, congestion

detection based on retransmission timeouts (RTO) is not reliable in

NDN when data are retrieved from multiple sources. Many of the

congestion-control protocols proposed for NDN [24] argue against

the use of a single RTO to detect a packet loss because consumers

cannot detect when data are being retrieved from different locations.

Unlike NDN, a consumer in NDTP relies on IP addressing to identify

the source of each data packet, even when data are being retrieved

from multiple sources. This allows NDTP to provide accurate RTO

estimates by measuring the correct round-trip time for every data

packet, while manyNDN congestion-control algorithms (e.g., [3, 88]

must guess the sources of data packets. In the case of a timeout

event, the NDTP consumer retransmits the Interest that caused the

timeout, reduces its congestion window to one Interest, sets the

threshold half the congestion window size before the timeout, and

then goes into slow-start mode.

4 MANIFEST-YIELDING DNS

NDT attains location-independent content naming through the inte-

gration of name resolution with the transport protocol used to carry

content reliably. A new resource record type, which we call mani-

fest record is added to the DNS, resulting in themanifest-yielding

DNS (my-DNS). Instead of creating a new type of DNS resource

record for the manifests, it is possible to encode the manifest using

a TXT record instead. A manifest record describes the content struc-

ture by carrying the manifest generated by the NDTP producer,

lists the IP addresses of the different locations of the content on

the Internet, and other information, such as fields specifying the

freshness of the content and fields specifying security parameters.

Content naming in NDT is inspired by the iDNS approach [90] to

separate the content name from its location on the Internet. Content

names in NDT are based on DNS domain names, allowing them

to be persistent and unique through the hierarchical nature of my-

DNS. For example, the content name contentA.ucsc.edu represents

contentA hosted by the DNS domain ucsc.edu. With NDTP help,

each content name on the Internet is mapped to an individual

manifest generated by its producer, as explained in the previous

section. Having a single authority onmanifests allows consumers to

authenticate the origin of content on the Internet easily. To achieve

near-replica routing of content, my-DNS is used to map the name of

a content object to the manifest record that describes the locations

and structure of the content object to the consumers on the Internet.

In turn, a manifest record maps the manifest of a content object to a

list of IP addresses hosting a replica of the content. Each one of these

addresses is added to the list as an individual DNS type A record.

my-DNS updates this list as needed. This includes sorting the list by

the nearest replica based on the consumer’s geographical location

issuing the DNS query for the content name. Such an approach is

already being used to enhance domain-name lookup on the Internet

by many vendors. Because NDT uses standard DNS procedures to

resolve content names to manifest records, it can rely on standard

DNS procedures to dynamically register content names with its

corresponding manifest records. This is similar to a website adding

DNS records to its authoritative DNS server. Content servers can

dynamically register the content name with their manifest record

using dynamic-update DNS mechanisms [98].

Authoritative
my-DNSNDTP ServerNDTP ClientLocal

my-DNS

Manifest Query

Manifest Query

Manifest Record

Manifest Record

Interest

Data packet

Manifest Query

Manifest Record
Interest

Data packet

Content Name

Selectors
Manifest

Identification

QR Opcode AA TC RD RA Z RCODE

DNS
Header

3

protocol://contentA.ucsc.edu
User request content using URL

1

4
5

6

Content Name / Chunk Name

Content Name / Chunk Name

Data

Record
Chunks Names

Security Info

Signature Meta Info

UDP Header
IP Header

UDP Header
IP Header

2

Figure 3: Mapping content names to manifest records

Figure 3 shows the steps used in NDT to resolve a content name

into a manifest record using my-DNS. In Step 1, an NDTP consumer

issues a manifest query with the content name passed by the client

application to the local my-DNS server. The manifest query is

merely a DNS querywith the name field (QNAME) set as the content

name and the type field (QTYP) set as the manifest record type,

in addition to the standard DNS message fields. Assuming that a

specific my-DNS zone manages the manifest records under its zone,

the local my-DNS queries iteratively the global my-DNS for the

location of the authoritative my-DNS server of the my-DNS zone

specified in the URL. After the local my-DNS server obtains the IP

address of the authoritative my-DNS server, it sends a query of a

manifest record type along with the content name, as shown in Step

2. In response to the query from the local my-DNS, the authoritative

my-DNS server returns the manifest record associated with this

content name, as shown in Step 3. After receiving the manifest

record from the local my-DNS server, the NDTP consumer can start

issuing Interests to retrieve the content, as shown in Step 4. When

another NDTP consumer tries to retrieve the same content, the

local my-DNS simply returns the manifest record that has been

cached, as shown in Step 5.

140

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada Abdulazaz Albalawi , J.J. Garcia-Luna-Aceves

NDT ensures the security of the content itself, rather than rely-

ing on closed private connections. To protect the authenticity and

integrity of the content objects, the manifest record must also be

secured. This could be done by relying on digital signatures based

on public-key cryptography as in DNSSEC [32]. However, DNSSEC

is not widely deployed, is expensive to operate, and is not viewed

as a complete solution [8]. New techniques are clearly needed to

secure and protect manifest records, and they are the subject of

future work.

Without proper care, adding manifest records to the DNS could

lead to scaling problems resulting from IP address changes for con-

tent servers and mirroring sites hosting large numbers of content

objects, each with a manifest record that must be stored. Fortu-

nately, adding a layer of indirection prevents this problem, and the

DNS design already provides the means to add indirection via the

CNAME resource records. Using the CNAME records instead of

the A records of the content server inside the manifest records,

DNS updates messages to the server are avoided. Whenever a con-

tent server changes its IP address, only the A record stated in the

CNAME record of the content server needs to be updated. To en-

sure consumers keep up with the changes of the IP address of the

content server, the TTL can be set low for these records. This action

does not increase the load on the authoritative DNS server, as has

been discussed in the past in the context of mobile networks [101].

In addition, notification mechanisms can be used to update the local

DNS with the new IP address proactively using known consistency

mechanisms proposed for the DNS [25].

Mapping a domain name for every content object requires several

orders of magnitude additional storage capacity in the authoritative

and local DNS server. This may appear too onerous at first glance;

however, as has been noted before [90], most of today’s HTTP

servers can handle such a load (by hosting an entire directory

tree), and a dedicated DNS server can be used to host and manage

manifest records for content objects under a separate domain. For

example, the DNS resolution for the hierarchical content name

łContentA.Contents.example.com" would involve a maximum of

four requests, with the final one to the authoritative DNS server

for (Contents.example) for contentA.

We note that the possibility of incurring additional redirection

delays to reduce storage requirements in my-DNS servers is a better

trade off than requiring all routers to maintain FIB’s and PIT’s that

are several orders of magnitude larger than the FIB’s of IP routers

today.

In terms of the size of the manifest records that are handled by

the DNS, RFC 1035 [71] already defines mechanisms on how to

handle large DNS responses. This is done by relying on TCP instead

of UDP to handle such a response. However, another approach is

to use a layer of indirection by having a manifest record pointing

to other manifests that can be retrieved from the content server

responsible for publishing the content objects and its manifest

record instead of using the authoritative DNS server.

5 NDT PROXIES

Client requests are redirected transparently to caches in the IP

Internet by intercepting TCP connections destined for specific ports

or a specific set of destination addresses. This is usually done by

using a layer-four switch on the route between the client and the

origin server, and by splitting the TCP connection into two with

a proxy web cache spoofing the connection with the client. This

poses a significant privacy concern, because the cache has access

to each request and response between the server and the client.

Establishing private connections, such as using the TLS protocol,

is not a solution because it precludes transparent caching.

NDT eliminates the limitations of transparent caching in the IP

Internet by means of the manifests that describe the structure of

content objects globally at the transport layer. As a result, network

administrators can simply install a single NDT proxy cache in their

network and configure a layer-four switch to redirect all NDTP

traffic to proxies. Figure 4 shows an example of transparent caching

in NDT.

Server
95.85.36.216

NDT Proxy (NP)
192.168.3.1

Host
192.168.1.1

Content
Store

Pending
Interest

Table
Interest

QoS

2

1 5

Host
192.168.2.1

4

 Interest

SRC: 192.168.1.1
 DST: 95.85.36.216

 Name: ucsc/video1

 Data

 SRC: 192.168.3.1
DST: 192.168.2.1

 Name:ucsc/video1

 Interest

 SRC: 192.168.2.1
DST: 95.85.36.216

 Name:ucsc/video1

3

 Interest

 SRC: 192.168.3.1
 DST: 95.85.36.216

 Name:ucsc/video1

 Data

SRC: 192.168.3.1
DST: 192.168.1.1

 Name:ucsc/video1

Figure 4: Transparent caching and Interest aggregation

After an NDTP consumer retrieves the manifest record of a con-

tent object, it proceeds with a window-based sequence of Interests

requesting all the chunks that are needed to decode the requested

content as stated in the manifest. An NDTP consumer at the client

starts issuing Interests destined to the NDTP producer at the server

(Step 1 in Figure 4). A layer-four switch on the way is configured

to intercept Interests intended for the content server and forwards

them to a nearby NDT proxy cache ((Step 2 in Figure 4). The NDT

proxy then checks whether the requested data packet is stored in

its content store, and forwards the Interest towards the NDTP pro-

ducer using its own IP address as the origin of the Interest (Step 3

in Figure 4). Once the NDT proxy receives a data packet, it uses it to

satisfy any pending Interest received from other NDTP consumers

(Step 4 in Figure 4), as indicated in Step 5 of Figure 4.

NDT proxies track pending Interest from NDTP consumers using

a Pending Interest Table (PIT) that serves the same purpose as in

NDN. Specifically, an NDT proxy forwards an Interest only once

towards the address of a content producer or mirroring site using its

own IP Address as the Interest source, and aggregates subsequent

Interests in the same content. However, the PIT in NDT is kept

outside the routing infrastructure and does not impose additional

overhead compared to today’s web caches, whichmust keep track of

TCP connections between the client and the origin server in a data

structure called the connection tracker. Furthermore, forwarding

Interests in NDT does not need a new routing infrastructure like

NDN and similar ICN architectures do.

141

Named-Data Transport ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

5.1 Securing Cached Content

From a security of standpoint, content carried over NDTP can be

public or private. Protecting the privacy of public content is not a

concern; however, authentication and integrity is a necessity. By

ensuring the integrity and authenticity of the manifest record using

methods like DNSSEC [32] aswe explained previously, allowsNDTP

to ensure the security of the content as well. Part of a manifest

record is the name of the chunks that need to be requested using

Interests in order to construct the content object. By using a hashing

function, NDTP uses each chunk hash digest as the name. As a

result, the manifest contains the content name, the digest of each

chunk composing the content, and the hashing function used by

the server to name these chunks, similar to the one proposed for

NDN[73]. Finally, by computing the hash digest of these chunks,

an NDTP consumer can verify the authenticity and integrity of a

received data packet.

NDTP relies on multiple security methods to ensure the protec-

tion of private content. The goal is to ensure privacy while also

enabling transparent caching of content. To achieve this, NDTP

must ensure the following: (a) Only the NDTP producer and the

NDTP consumer of a content object should be able to access the

content object to preserve privacy, (b) NDTP producers and NDTP

consumers must be able to authenticate each other, (c) NDTP con-

sumers must be able to detect the integrity of received content

objects, and (d) NDTP should at least provide the same level of

anonymity as HTTPS.

TLS and other secure methods based on end-to-end connections

rely on symmetric cryptography per each connection to ensure

privacy. Given that the keys they use are generated uniquely for

each connection, it is apparent that using similar keys to secure

content in NDTP would negate the benefits of transparent caching.

One simple way to benefit from transparent caching with sym-

metric cryptography is to use group keys. Such an approach cer-

tainly downgrades the privacy of those consumers retrieving the

same content objects, but also ensures that caches are unable to

access the content cached for the group. To increase the level of

privacy between content consumers, NDTP uses computational

asymmetry by encoding the data using a specific method known

only to one particular consumer. This is done by combining a con-

tent object with useless data (or old chunks in the content store)

intended solely for obfuscation.

5.1.1 Group Key. Using group keys should be enough to prevent

an adversary from accessing cached content. However, compared

to TLS in which an encryption key is used for each connection, this

might raise two security issues: (1) a member inside the list may

infer that other members in the same list are retrieving the same

content object by observing the chunks names; and (2) members

that are not part of the content list may infer that multiple con-

sumers are requesting the same content by observing the names

of requested chunk names. NDTP overcomes this problem by en-

coding part of the content for each consumer in a different way

using computational asymmetry. Because NDTP relies mainly on

old chunks to do this, the chance of these chunks being in a cache

will be high, which reduces the latency to retrieve them. As a result,

consumers retrieving the same content will be requesting different

sets of chunks.

5.1.2 Encoding Data. The way in which NDTP encodes data to

ensure computational asymmetry is by combining the content of an

object with old data or łuseless" data intended solely for obfuscation

to produce a set of coded fragments. For example, multiple chunks

of the original content can be encoded with other chunks from the

content store, resulting in new coded chunks. The way in which

these chunks are encoded is only shared between the content con-

sumer and the content producer. Even though such a method does

not provide complete privacy, it should make it computationally

expensive for caches to access cached contents.

The method used in NDTP to encode the data of a data object

is based on previous work on censorship at storage systems [95].

A similar method was also used in [7] to prevent real-time censor-

ship at nodes in ICN networks. Algorithm 1 shows how an NDTP

producer encodes content for data obfuscation.

The return manifest of Algorithm 1 is simply a list of tuples,

each describing what chunks to request and how to decode the

original chunk as shown in Eq. (1). After receiving its manifest,

the NDTP consumer simply sends Interest for the coded chunks

corresponding to the original chunk in the manifest as shown in

Eq. (2).
[(

ℎ(𝐵1,1), ..., ℎ(𝐵𝑐,1), ℎ(𝑋1)
)

, ...,
(

ℎ(𝐵1,𝑛), ..., ℎ(𝐵𝑐,𝑛), ℎ(𝑋𝑛)
)]

(1)

𝑓𝑖 =
(

𝑋𝑖 ⊕𝑗=1,...,𝑐 𝐵 𝑗,𝑖
)

𝑓 𝑜𝑟 𝑖 = 1, ..., 𝑛 (2)

Algorithm 1 Data Obfuscation

1: procedure Encode(𝑐𝑜𝑛𝑡𝑒𝑛𝑡)

2: 𝑓 ← Segment(𝑐𝑜𝑛𝑡𝑒𝑛𝑡) ⊲ return list of chunks

3: for 𝑖 ∈ {1, . . . , 𝑛 − 1} do

4: 𝑋𝑖 = 𝑓𝑖
5: 𝐶ℎ𝑢𝑛𝑘𝑁𝑎𝑚𝑒 ← 𝑁𝑈𝐿𝐿

6: for 𝑗 ∈ {1, . . . , 𝑐 } do

7: 𝑋𝑖 = (𝑋𝑖 ⊕ 𝑏 𝑗)

8: 𝐶ℎ𝑢𝑛𝑘𝑁𝑎𝑚𝑒 ← ℎ (𝑏 𝑗)

9: 𝐶ℎ𝑢𝑛𝑘𝑁𝑎𝑚𝑒 ← ℎ (𝑋𝑖)

10: 𝑀𝑎𝑛𝑖 𝑓 𝑒𝑠𝑡 ← 𝐶ℎ𝑢𝑛𝑘𝑁𝑎𝑚𝑒

11: return𝑀𝑎𝑛𝑖𝑓 𝑒𝑠𝑡

12:

13: c: number of random old chunks

14: n: number of content’s fragments

15: h: hash function

16: ChunkName: tuple of hash digest

17: Manifest: list of tuples

5.1.3 Partial Encryption. Data encoding alone is not sufficient

to provide complete confidentiality, but it could be enforced by

using group keys to partially encrypt some of the coded chunks.

Figure 5 shows a high-level view of the NDTP encryption operation.

In the example, two consumers retrieving the same content have

two different encoding methods but only one group key. Having

a group key ensures that caches are not able to decrypt cached

chunks. The group key also allows for overlapping requests to

benefit from transparent caching.

The basic approach serves two goals. First, it provides privacy

among consumers retrieving the same content by encoding part

of the content differently for each consumer. Second, given that

142

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada Abdulazaz Albalawi , J.J. Garcia-Luna-Aceves

each consumer has its own secret on how to decode part of the

content, an adversary cannot easily infer if consumers are retriev-

ing the same content. The reason why consumers with the same

group key cannot be sure about other members of the same group

is that chunks used in the data obfuscation might have been used to

encode other content as well. This should be sufficient to prevent

consumers from decoding these chunks, mainly when they have

limited resources. Besides, by using the group key, we are guaran-

teeing partial caching for all the chunks that are encrypted using

the group key.

To increase the level of obfuscation, the producer can apply

an all-or-nothing transform, where caches or consumers in the

same content list cannot decode the content unless all chunks are

known. The trade-off with obfuscation and using group keys is that

more coded chunks that combine the original content are needed

to decode it. However, the older the chunks used to obfuscate the

content, the higher the chance that it will be retrieved from a closed

cache. Also, this method can be used to populate caches with chunks

from other content objects.

Server

Consumer 1

Consumer 2

ManifestList of Encrypted
Chunks' Names

Group Key

List of Coded
Chunks' Names

Encoding Method

Encoding Method

Figure 5: Partial encryption in NDT

5.2 Manifest Privacy

To provide partial encryption while also leveraging caching, only

themanifest has to be secured using public key encryption. By using

a specific URL format, an NDTP consumer knows that its request

is for private content (like in HTTPS). In this case, there is no need

to query the DNS server for the manifest record of the content.

Instead, the consumer sends its request to the IP address of the

content provider, just as in HTTPS. However, the NDTP consumer

can still rely on the DNS to retrieve the necessary keys of the NDTP

producer (server). This can be done by using techniques like DNS-

based Authentication of Named Entities (DANE) [58], which allows

the publication of Transport Layer Security (TLS) keys in zones

for applications to use. After the NDTP consumer retrieves the IP

address and the server key, it can issue aManifest Interest encrypted

using both the client and the server public and private key to ensure

its authentication, integrity, and encryption. Once the server proves

the client is authorized to request the content, it will then send back

the manifest. While this is happening, NDTP caches on the way will

not be able to intercept and understand either the Manifest Interest

or the manifest itself since they are encrypted. To allow transparent

caching while also ensuring privacy, the manifest contains a specific

encoding method that is unique for each consumer and a group key

that is unique for each content as we explained earlier.

5.3 Name Privacy and Access Control

BecauseManifest Interests andmanifests are encrypted using public-

key encryption, no intermediate node is able to access any informa-

tion inside them, including the name of the content requested. This

means that consumers that are seeking the same content will not

know who else is requesting it since both the Manifest Interest and

the manifest are encrypted using the consumer and the producer

keys. The same applies to members that are not part of the content

group as well.

As we explained before, NDTP uses a chunk hash digest as its

name. To prevent an adversary from reversing these chunk names

to their original content, a one-way hash can be used. In generating

these hash digests, NDTP producers use a randomly generated

number (salt) to control access to chunk names from consumers

who have their access revoked. This salt added to the manifest along

with a timer on when this manifest and salt will expire. An NDTP

consumer who was at some point authorized to receive a certain

content but not anymore is unable to infer whether a particular

chunk name will be related to a specific content object without

the current salt value. Besides, consumers who have their access

revoked will also be unable to request the content.

5.4 Multicast Support at the Transport Layer

The IP multicast architecture in place today is based on the ap-

proach introduced by Deering and Cheriton [29]. The limitations

of this approach have been discussed multiple times in the past

[66], and among them are the need for global agreements on group

addresses and the use of multicast routing protocols. CCN and NDN

are able to provide łnative multicast support," (i.e., supporting mul-

ticast delivery without multicast addresses and multicast routing

protocols) by using PIT’s to track pending Interests for multicast

content denoted by name.

As we have explained, NDT proxies use PIT’s to track pending

Interests at the transport layer, and the aggregation of pending

Interests at NDT proxies is very similar to that of NDN routers near

consumers, but is based on IP addresses. However, this still leaves

multiple copies of Interests for the same object flowing through

the routers along the paths between NDT proxies at the edge and

content sites. To reduce this traffic, network providers may choose

to deploy layer-four switches to intercept and redirect NDT traffic

to caching proxies at different network locations between popular

mirrored content producers and customers.

The combined use of NDT proxies and manifest records with

which consumers can be redirected to nearest mirroring sites results

in similar functionality as a CDN, but without the need for overlays.

6 PERFORMANCE COMPARISON

We compared the performance of NDT, TCP, and NDN using our

NDT implementation in ns-3 [97] and off-the-shelf implementa-

tions of TCP, DNS, and NDN in ns-3 and ndnSIM [77]. The ns-3

implementation of NDT is publicly available to the research com-

munity [4] to facilitate reproducibility of results and future NDT

improvements.

143

Named-Data Transport ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

0 10 20 30
0

20

40

Time (sec)

C
W
N
D
(P
ac
k
et
s)

(a) CWND Size

0 10 20 30
0

1

2

3

Time (sec)
T
h
ro
u
g
h
p
u
t
(M

b
p
s)

NDTP TCP

(b) Throughput

5 6 8 10
0

0.5

1

1.5

·104

Time (sec)

Q
u
eu
e
si
ze

(b
y
te
s)

(c) Router’s Buffer Occupancy

Figure 6: Single-flow scenario for NDTP and TCP

6.1 Efficiency of Congestion Control and
Retransmission Mechanisms in NDTP

This experiment illustrates the inherent benefits of using a receiver-

driven connection-free reliable transport protocol based on mani-

fests instead of a connection-based transport protocol like TCP. We

compared the congestion-control and retransmission mechanisms

of NDTP and TCP assuming a scenario consisting of a simple net-

work with a single source and a single sink. The topology of the

network is a single path of four nodes with a single consumer/client

at one end and a producer/server at the other end. Both ends share

a common bottleneck of 1.5 Mbps and no in-network caching takes

place. The propagation delay between the two ends is set to 40𝑚𝑠 .

The consumer in NDTP issues Interests for the content served at

the other end after requesting the manifest for this content from

the producer. The client in TCP consumes traffic generated by the

server after establishing a connection with it using the TCP three-

way handshake. The size of the object chunks in NDTP is equal to

the segment size in TCP, and fixed at 1500 bytes and both NDTP

and TCP share the same fixed-header size.

Figure 6a shows the evolution of the congestion window for

both protocols during the first 30𝑠 of the downloading a content of

3.69𝑀𝐵, a total of 2465 chunks/segments. The growth of the con-

gestion windows for both protocols matches the expected behavior

of the additive-increase multiplicative-decrease (AIMD) algorithm.

The retransmission policy in NDTP allows receivers to detect

and recover from a packet loss faster than in TCP, where it took

the client a total of 35.5s to download the file compared to the

total download time of 33.2s in NDTP. This is due to the fact that

NDTP does not use connections and applies a fast retransmission

strategy enabled by manifests. A consumer in NDTP has a complete

picture of which OC’s were received correctly and which were lost,

and does not rely on partial ACK’s like TCP does. Accordingly,

the consumer immediately goes into congestion avoidance state,

instead of fast recovery. As a result, NDTP continues increasing

its congestion window normally. This allows NDTP to use the

bottleneck’s buffer more efficiently compared to TCP, which is

forced into fast recovery, during which the sender can only transmit

new data for every duplicate ACK received.

Figure 6c shows the queue size of the bottleneck’s buffer for only

5 seconds of the simulation to highlight the idle periods of each

protocol. It can be seen from the figure that TCP has more extended

idle periods compared to NDTP. As a result, NDTP achieved higher

average throughput due to better utilization of the link’s capacity

and the buffer size.

6.2 Efficiency of Transparent Caching

This experiment highlights the ability of NDT to take advantage

of in-network caching like NDN does, but without requiring any

changes to the IP routing infrastructure. We compared the total

average time taken to retrieve multiple copies of a large data file

using NDT, TCP, and NDN. The experiment consists of a source

node connected over a 10 Mbps shared link to a cluster of six con-

sumers, all interconnected via 100 Mbps links. An intermediate

router is configured to forward NDT traffic to a caching proxy for

NDT traffic. The same topology was used for NDN as well. Both

NDN and NDT use the same congestion control algorithm, which

mimics the TCP congestion control algorithm to provide a fair com-

parison with TCP. The scenario was run six times, and each time we

increased the number of consumers in the network. All consumers

start pulling a 6MB data file from the source simultaneously, and

the total download time for every consumer is displayed in Figure

7.

As can be observed from Figure 7, TCP, NDT, and NDN perform

very much the same when a single consumer is involved. This is

to be expected, given that most of the NDT and NDN data packets

are retrieved from the source in this case, and all three approaches

use similar algorithms for congestion control. As the number of

consumers increases, the completion times in NDT andNDN remain

constant for all six scenarios. In contrast, the completion time in

TCP increases linearly because all the data must be retrieved from

the source. The use of PIT’s in NDT and NDN results in only the

first consumer Interests traversing the path to the producer, while

the rest of the Interests are simply added to the PIT of the first

router in NDN and the caching proxy in NDT.

144

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada Abdulazaz Albalawi , J.J. Garcia-Luna-Aceves

1 2 3 4 5 6
0

10

20

30

Number of clients

T
o
ta
l
d
o
w
n
lo
ad

ti
m
e
(s
ec
)

NDT

TCP

NDN

Figure 7: Transfer time vs. number of consumers

6.3 Impact of Manifest Records and Mirroring

This experiment highlights how NDT’s architectural components

work together to provide efficient name-based content delivery

over the existing IP Internet. We compared the total average time

taken to retrieve a large data file in three cases, namely: Using

only the transparent caching enabled by NDT proxies (NP), using

redirection to nearest mirroring sites based on my-DNS without

transparent caching at NP’s, and using NP’s together with with

redirection to nearest mirroring sits based on my-DNS.

Figure 8 shows the topology used in this scenario, which con-

sists of multiple edge networks connected by a cluster of multiple

consumers and mirroring sites located between the edge and the

cloud network where the content server is located. Each edge router

is connected to NDT proxies that provide transparent caching for

NDT traffic passing through them. When my-DNS is enabled, In-

terests from consumers are routed to the nearest mirroring site for

the content. Each experiment was run five times and the number

of consumers in each cluster was increased. Each consumer starts

pulling a 6MB data file from the producer at a random start time

based on a Poisson distribution with a short average arrival time.

Server

NP ProxyNP Proxy NP Proxy

Mirroring SiteMirroring Site

Cloud

Fog

Edge

Figure 8: Network topology

Figure 9 shows the average latency incurred in retrieving the con-

tent object for each scenario, along with the variance. As expected,

NDT performs its best when NDT proxies and nearest-replica rout-

ing through the my-DNS are used. As Figure 9 indicates, when only

NP’s are used, Interests from consumers have to reach the producer

site, and the benefits of using NP’s come from aggregating Interests

and caching content. However, because of the short inter-arrival

time of Interests, only aggregation is useful. In our scenario with

ten consumers, only two Interests for the same data object traverse

the path to the producer. Using my-DNS without NP’s results in a

shorter retrieval time for consumers, but duplicate packets are sent

along links. When both my-DNS and NP’s are used, Interests from

consumers are routed to the nearest mirroring site and aggregated

at the NP’s.

2 4 6 8 10
0

20

40

60

Number of clients

T
o
ta
l
d
o
w
n
lo
ad

ti
m
e
(s
ec
)

NP’s w/o mirroring

my-DNS with mirroring w/o NP’s

NP’s & my-DNS with mirroring

Figure 9: Total download time for different approaches to

the use of mirroring and caching in NDT

6.4 Overhead of URL to Manifest Mapping

This experiment illustrates the overhead of mapping URLs to man-

ifest records using my-DNS. The scenario is based on the HTTP

application, where clients start requesting the main web page and

then start requesting the embedded inline objects based on their

URL in the web page. The main object size and the size of the

embedded inline objects are based on the top one million visited

web pages indicated in [84]. We used two HTTP applications for

our comparison, one based on persistent connections, in which a

new HTTP request cannot be sent until the response to the current

request is received. The other application is based on HTTP pipelin-

ing, where multiple HTTP requests can be sent together over a

single TCP connection. For the case of NDT, each URL mapped to

a single manifest record. The NDTP consumer starts querying the

my-DNS for the manifest record of the main object, and it queries

for the inline objects records after retrieving the main object from

the server.

The topology of the network is a single path of four nodes with

a single client connected to its local my-DNS server, and a content

server at the other end that is connected to its authoritativemy-DNS

server. For the sake of simplicity, the IP address of the authoritative

my-DNS server is cached at the local my-DNS server at the start

of the simulation. Both resource and manifest records need to be

retrieved from the authoritative my-DNS server at the other end

if they are not cached. For a fair comparison between NDT and

HTTP over TCP, NDT and TCP have the same fixed-header size,

the same chunk and segment size, and the same congestion control

algorithm.

145

Named-Data Transport ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

As Figure 10a shows, NDT performs at least as well as HTTP

pipelining. Both HTTP applications require a connection to be es-

tablished using TCP three-way handshakes before a client can start

sending and receiving data. By contrast, NDTP allows clients to

retrieve data without the need to establish a connection, which

reduces the number of RTTs by at least one compared to TCP. Mul-

tiplexing is easily supported in NDTP because objects in NDTP

are globally named and pointed by their own manifest, allowing

consumers to pipeline and multiplex multiple objects together. As

seen in Figure 10b, when manifest records are cached, NDT out-

performed both types of HTTP. This proves that using my-DNS

to translate URLs as structured in applications like HTTP do not

impose significant overhead in NDT.

Using my-DNS in NDT does not impose significant overhead

compared to NDN. A consumer in NDN has to retrieve the manifest

from the producer before issuing Interests to retrieve the content.

Retrieving the manifest record using my-DNS adds only the addi-

tional delay incurred in redirecting the consumer to the site with

the manifest.

1 2 3 4 5
0

200

400

600

800

Number of objects

D
o
w
n
lo
ad

T
im

e
(m

s)

Persistent Connections HTTP Pipelining NDT

(a) No cached DNS records

1 2 3 4 5
0

200

400

600

800

Number of objects

D
o
w
n
lo
ad

T
im

e
(m

s)

(b) With cached DNS records

Figure 10: Overhead of URL-to-manifest mapping

6.5 TCP Friendliness

This experiment is used to illustrate TCP friendliness in NDTP with

and without caching. The topology of the network consists of a

bottleneck link of capacity 1Mbps and a buffer size of 20 packets. For

the sake of simplicity, the chunk size of NDTP is fixed at 1000 bytes,

and the same goes for the segment size of TCP. TCP operates with

the SACK option enabled, and ACK’s are not delayed. Both TCP and

NDTP have the same round-trip-time delay, and they are retrieving

the same file of about 3MB. For the scenario with cashing, NDT

caching proxies are configured in the topology before the bottleneck.

This allows the NDT caching proxy to serve the consumer Interests

for dropped data packets due to congestion along the bottleneck.

Initially, the NDT caching proxy is empty and caches any data

packets that pass through it. A router is configured to interrupt

NDTP packets based on the protocol number and redirect them to

the NDT caching proxy.

Figure 11a shows the results with and without caching. Using

Jain’s fairness index, the fairness between the two flows without

caching is equal to 𝐹 = 0.9988, which is understandable because

NDTP also follows an AIMD congestion control algorithm like TCP.

Similar results occur when caching takes place. The results illustrate

that caching does not have a large negative effect on fairness. In

fact, fairness between the two flows was equal to 𝐹 = 0.9967 with

caching. This is due to the ability of NDTP to detect that most

packets were retrieved from the primary source, and control its

sending rate accordingly. Even though NDTP achieved less fairness

than two competing TCP flows under the same scenario (where

fairness equals 𝐹 = 0.999996), the total download time for TCP

flows retrieving the same file size was higher by 8.5%.

0 25 50
0

0.5

1

1.5

2

Time

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

NDTP

TCP

(a) Without caching

0 25 50
0

0.5

1

1.5

2

Time

T
h
ro
u
g
h
p
u
t
(M

b
p
s)

NDTP

TCP

(b) With caching

Figure 11: TCP Friendliness

7 CONCLUSIONS AND FUTUREWORK

We introduced Named-Data Transport (NDT), the first ICN ap-

proach that attains efficient content dissemination without end-to-

end connections or modifications to the IP routing infrastructure.

The design of NDT provides the same benefits of NDN and similar

ICN architectures through the integration of a new connectionless

reliable transport protocol with name resolution and NDT proxies

that support privacy-preserving on-line caching and native multi-

casting.

The results of simulation experiments in ns-3 show that: (a) NDT

is inherently more efficient than TCP, (b) the performance of NDT

and NDN is very similar, and (c) NDT outperforms HTTP over TCP

while being able to provide privacy.

We implemented congestion and retransmission control algo-

rithms in NDT that are similar to those used in TCP simply to

highlight the inherent benefits of the name-based connectionless ap-

proach used in NDTP. Far more efficient algorithms can be adapted

to be used in NDTP, including many that have been proposed for

TCP recently [16, 17], and this is an area of future work. Similarly,

our initial design of mechanisms to secure content and manifest

records should be viewed as a starting point, and clearly more work

is needed in this area. Making native multicast more efficient in

NDT is another area of future work.

We focused on static content in our discussion of NDT; however,

the approaches that have been described for the support of real-

time voice and video-conferencing in NDN and CCN [55, 61] are

equally applicable to the end-to-end information-centric approach

in NDT.

The implementation of NDT in ns3 is publicly available [4] to

foster further research on NDT and similar information-centric

Internet solutions that preserve and evolve with the IP routing

infrastructure.

146

ICN ’20, September 29-October 1, 2020, Virtual Event, Canada Abdulazaz Albalawi , J.J. Garcia-Luna-Aceves

REFERENCES
[1] E.G. AbdAllah, H.S. Hassanein, and M. Zulkernine, łA Survey of Security Attacks

in Information-Centric Networking," IEEE Communications Surveys & Tutorials,
2015.

[2] B. Ahlgren et al., łA Survey of Information-Centric Networking," IEEE Communi-
cations Magazine, July 2012, pp. 26ś36.

[3] A. Albalawi and J. J. Garcia-Luna-Aceves, łA Delay-Based Congestion-Control
Protocol for Information-Centric Networks," Proc. IEEE ICNC ‘19, 2019.

[4] A. Albalawi and J.J. Garcia-Luna-Aceves, łNDT ns-3 Simulator." Available at:
https://github.com/aalbalaw/NDT.

[5] M. Ambrosin et al., łSecurity and Privacy Analysis of National Science Foundation
Future Internet Architectures," IEEE Communications Surveys & Tutorials, 2018.

[6] T. Anderson et al., łA Brief Overview of the NEBULA Future Internet Architecture,"
ACM SIGCOMM CCR, 2014.

[7] S. Arianfar et al., łOn Preserving Privacy in Content-Oriented Networks," Proc.
ACM SIGCOMMWorkshop on Information-Centric Networking, 2011.

[8] S. Ariyapperuma and C. Mitchell, łSecurity vulnerabilities in DNS and DNSSEC,"
Proc. IEEE ARES ‘07, April 2007.

[9] R. Atkinson, S. Bhatti, and S. Hailes. łILNP: Mobility, Multi-homing, Localised
Addressing and Security through Naming," Telecommunication Systems, 2009.

[10] P. Baran, łOn Distributed Communications Networks," IEEE Transactions on
Communications Systems, March 1964.

[11] M.F. Bari et al., łA Survey of Naming and Routing in Information-Centric Net-
works," IEEE Communications Magazine, July 2012, pp. 44ś53.

[12] N. Bartolini, E. Casalicchio, and S. Tucc, łA Walk through Content Delivery
Networks," Proc. IEEE MASCOTS ‘03, 2003.

[13] M. Baugher et al., łSelf-Verifying Names for Read-Only Named Data," Proc. IEEE
INFOCOM Workshops ‘12, March 2012.

[14] BitTorrent. http://bittorrent.com
[15] M.S. Blumenthal and D.D. Clark, łRethinking the Design of the Internet: The End-

to-End Arguments vs. the Brave New World," ACM Trans. on Internet Technology,
Aug. 2001.

[16] N. Cardwell et al., łBBR: Congestion-Based Congestion Control," ACM Queue,
Oct. 2016.

[17] N. Cardwell et al., łModel-based Network Congestion Control," Technical Disclo-
sure Commons, March 27, 2019.

[18] G. Carofiglio, M. Gallo, and L. Muscariello, łICP: Design and Evaluation of an
Interest Control Protocol for Content-Centric Networking," Proc. IEEE NOMEN
‘12, March 2012.

[19] G. Carofiglio et al., łEnabling ICN in the Internet Protocol: Analysis and Evalua-
tion of the Hybrid-ICN Architecture," Proc. ACM ICN ‘19, Sept. 2019.

[20] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, ł Achieving Scalability and Ex-
pressiveness in an Internet-Scale Event Notification Service," Proc. ACM PODC ‘20,
2000.

[21] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, łContent-based Addressing and
Routing: A General Model and Its Application," Tech. Report CU-CS-902-00, Univ.
of Colorado, Jan. 2000.

[22] A. Carzaniga and A.L. Wolf, łContent-Based Networking: A New Communication
Infrastructure," Proc. Workshop on Infrastructure for Mobile and Wireless Systems,
2002.

[23] V.G. Cerf, Y.K. Dalal, and C.A. Sunshine, łSpecification of Internet Transmission
Control Program," INWG Note 72, revised Dec. 1974.

[24] Q. Chen et al., łTransport Control Strategies in Named Data Networking: A
Survey," IEEE Communications Surveys & Tutorials, 2016.

[25] X. Chen et al., łMaintaining Strong Cache Consistency for the Domain Name
System," IEEE Transactions on Knowledge and Data Engineering, August 2007

[26] S. Cheshire, J. Graessley, and R. McGuire, łEncapsulation of TCP and other
Transport Protocols over UDP," Internet Draft, July 2013.

[27] A. Dabirmoghaddam, M.M. Barijough, and J. J. Garcia-Luna-Aceves, łUnder-
standing Optimal Caching and Opportunistic Caching at the Edge of Information-
Centric Networks," Proc. ACM ICN ‘14, Sept. 2014.

[28] A. Dabirmoghaddam, M. Dehghan, and J.J. Garcia-Luna-Aceves, łCharacterizing
Interest Aggregation in Content-Centric Networks," Proc. IFIP Networking 2016,
May 17ś19, 2016.

[29] S.E. Deering and D.R. Cheriton, łMulticast Routing in Datagram Internetwork
and Extended LANs," ACM TOCS, May 1990.

[30] E. Demirors and C. Westphal, łDNS++: A Manifest Architecture for Enhanced
Content-Based Traffic Engineering," Proc. IEEE GLOBECOM ‘17, 2017.

[31] T. Dierks, łThe Transport Layer Security (TLS) Protocol Version 1.2," 2008.
[32] D. E. Eastlake 3rd, łDomain Name System Security Extensions," RFC 2535, 1999.
[33] W.M.Eddy, łAt What layer Does Mobility Belong?," IEEE Communications Maga-

zine, 2004.
[34] A. Eriksson and A. Mohammad Malik, łA DNS-Based Information-Centric Net-

work Architecture Open to Multiple Protocols for Transfer of Data Objects, Proc.
IEEE ICIN ‘18, 2018.

[35] S. K. Fayazbakhsh et al., łLess Pain, Most of the Gain: Incrementally Deployable
ICN," Proc. ACM SIGCOMM ‘13, 2013.

[36] D. Florez-Rodriguez et al., łGlobal Architecture of the COMET System," Seventh
Framework STREP No. 248784, 2013.

[37] FP7 COMET project. [Online]. Available: http://www.comet-project.org/
[38] FP7 PSIRP project. [Online]. Available: http://www.psirp.org/
[39] FP7 PURSUIT project. [Online]. Available:

http://www.fp7-pursuit.eu/PursuitWeb/
[40] FP7 SAIL project. [Online]. Available: http://www.sail-project.eu/
[41] FP7 4WARD project. [Online]. Available: http://www.4ward-project.eu/
[42] FP7 CONVERGENCE project. [Online]. Available: http://www.ictconvergence.eu/
[43] Z. Gao, A. Venkataramani, and J.F. Kurose, łTowards a Quantitative Comparison

of Location-Independent Network Architectures," ACM SIGCOMM CCR, 2014.
[44] J.J. Garcia-Luna-Aceves, łSystem and Method for Discovering Information Ob-

jects and Information Object Repositories in Computer Networks,ž U.S. Patent
7,162,539, January 9, 2007.

[45] J. J. Garcia-Luna-Aceves, łName-Based Content Routing in Information Centric
Networks Using Distance Information," Proc. ACM ICN ‘14, Sept. 2014.

[46] J.J. Garcia-Luna-Aceves, Q. Li, and Turhan Karadeniz, łCORD: Content Oriented
Routing with Directories," Proc. IEEE ICNC ‘15, Feb. 2015.

[47] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, łContent-Centric Network-
ing Using Anonymous Datagrams," Proc. IFIP Networking ‘16, May 2016.

[48] J.J. Garcia-Luna-Aceves, M. Mirzazad-Barijough, and E. Hemmati, łContent-
Centric Networking at Internet Scale through The Integration of Name Resolution
and Routing," Proc. ACM ICN ‘16, Kyoto, Japan, Sept. 2016.

[49] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, łEfficient Multicasting in
Content-Centric Networks Using Datagrams,ž IEEE Globecom ‘16, Dec. 2016.

[50] J.J. Garcia-Luna-Aceves, łNew Directions in Content Centric Networking,žProc.
IEEE CCN ‘15 Oct. 2015.

[51] C. Ghasemi et al., łMUCA: New Routing for Named Data Networking," Proc. IFIP
Networking ‘18, May 2018.

[52] D.K. Gifford, łReplica Routing," U.S. Patent 6,052,718, April 18, 2000.
[53] M. Gritter and D. Cheriton, łAn Architecture for Content Routing Support in

The Internet," Proc. USENIX Symposium on Internet Technologies and Systems, Sept.
2001.

[54] Y. Gu and R. Grossman, ł UDT: UDP-Based Data Transfer for High-Speed Wide
Area Networks," Computer Networks, Elsevier, 2007.

[55] P. Gusev and J. Burke, łNDN-RTC: Real-Time Videoconferencing over Named
Data Networking," Proc. ACM ICN ‘15, Sept. 2015.

[56] D. Han et al., łXIA: Efficient Support for Evolvable Internetworking," Proc. USENIX
NSDI ‘12, 2012.

[57] E. Hemmati and J.J. Garcia-Luna-Aceves, łA New Approach to Name-Based
Link-State Routing for Information-Centric Networks," Proc. ACM ICN ‘15, Sept.
2015.

[58] P. Hoffman and J. Schlyter, łThe DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA," RFC 6698, 2012.

[59] V. Jacobson, łCongestion Avoidance and Control, Proc. ACM SIGCOMM ‘88, Aug.
1988.

[60] V. Jacobson et al., łNetworking Named Content," Proc. ACM CoNEXT ‘09, Dec.
2009.

[61] V. Jacobson et al., łVoCCN: Voice-over Content-Centric Networks," Proc. ACM
ReArch ‘09, Dec. 2009.

[62] E. Kohler, M. Handley, and S. Floyd, łDatagram Congestion Control Protocol
(DCCP)," RFC 4340, IETF, March 2006.

[63] T. Koponen et al., łA Data-Oriented (and Beyond) Network Architecture,ž Proc.
ACM SIGCOMM ‘07, Aug. 2007.

[64] A. Langley et al., łThe QUIC Transport Protocol: Design and Internet-Scale
Deployment," Proc. ACM SIGCOMM ‘17, Aug. 2017.

[65] D. Le, X. Fu, and D. Hogrefe, łA Review of Mobility Support Paradigms for the
Internet, IEEE Communications Surveys & Tutorials, 2006.

[66] B.N. Levine et al., łConsideration of Receiver Interest for IP Multicast Delivery,"
Proc. IEEE Infocom ‘00, March 2000.

[67] J. Li, łOn peer-to-peer (P2P) content delivery," Peer-to-Peer Netw. Appl., 2008.
[68] E.K. Lua et al., łA Survey and Comparison of Peer-to-Peer Overlay Network

Schemes," IEEE Communications Survey & Tutorial, March 2004.
[69] N.A. Lynch, Y. Mansour, and A. Fekete, łData link layer: Two Impossibility

Results," Proc. ACM PODC ‘88, 1988.
[70] N.A. Lynch, Distributed Algorithms, Morgan Kauffman, 1996.
[71] P. Mockapetris, łDomain Names ś Implementation and Specification," RFC 1035,

Nov. 1987.
[72] I. Moiseenko and L. Zhang. łConsumer-producer API for Named Data Network-

ing," Proc. ACM ICN ‘14, 2014.
[73] I. Moiseenko, ł Fetching content in Named Data Networking with Embedded

Manifests," 2014.
[74] M. Mosko, I. Solis, E. Uzun, C. Wood, łCCNx 1.0 Protocol Architecture," Xerox

PARC, April 2017.
[75] L. Muscariello et al., łHybrid Information-Centric Networking," IETF Internet

Draft, Oct. 2019.
[76] NSF Named Data Networking project. [Online].

Available: http://www.named-data.net/

147

Named-Data Transport ICN ’20, September 29-October 1, 2020, Virtual Event, Canada

[77] NS-3 based Named Data Networking (NDN) simulator [Online]. Available:
https://ndnsim.net/current/index.html

[78] NSF Mobility First project. [Online].
Available:http://mobilityfirst.winlab.rutgers.edu/.

[79] E. Nygren, R.K. Sitaraman, and J. Sun, łThe Akamai Network: A Platform for
High-Performance Internet Applications," ACM SIGOPS Operating Systems Review,
Aug. 2010.

[80] G. Papastergiou et al., łDe-ossifying the Internet Transport Layer: A Survey and
Future Perspectives," IEEE Communications Surveys & Tutorials, Nov. 2016.

[81] R. Peon, łExplicit proxies for HTTP/2.0," IETF Informational Internet Draft, 2012.
[82] E. Perera, V. Sivaraman, and A. Seneviratne, łSurvey on Network Mobility Sup-

port," ACM SIGMOBILE Mobile Computing and Communications Review, 2004.
[83] M. Polese et al., łA Survey on Recent Advances in Transport Layer Protocols,"

IEEE Communications Surveys & Tutorials, Aug. 2019.
[84] R. Pries, Z. Magyari, and P. Tran-Gia, łAn HTTP Web Traffic Model based on

the Top One Million Visited Web Pages," Proc. IEEE Euro-NF Conference on Next
Generation Internet ‘12, 2012.

[85] J. Raju, J.J. Garcia-Luna-Aceves, and B. Smith, łSystem and Method for Infor-
mation Object Routing in Computer Networks," U.S. Patent 7,552,233, June 23,
2009.

[86] D. Saha et al., łMobility Support in IP: A Survey of Related Protocols," IEEE
Network, 2004

[87] J.H. Saltzer, łEnd-to-End Arguments in System Design," RFC 185, 1980.
[88] L. Saino, C. Cocora, and G. Pavlou, łCCTCP: A Scalable Receiver-Driven Con-

gestion Control Protocol for Content Centric Networking," Proc. IEEE ICC ‘13,
2013.

[89] I. Seskar et al., łMobilityFirst Future Internet Architecture Project," Proc. AINTEC
‘11, Nov. 2011.

[90] S. Sevilla, P. Mahadevan, and J.J. Garcia-Luna-Aceves, łiDNS: Enabling Informa-
tion Centric Networking through the DNS," Proc. IEEE INFOCOM Workshop on

Name-Oriented Mobility ‘14, 2014.
[91] S. Sevilla and J.J. Garcia-Luna-Aceves, łFreeing The IP Internet Architecture from

Fixed IP Addresses," Proc. IEEE ICNP ‘15, Nov. 2015.
[92] S. Sevilla, J.J. Garcia-Luna-Aceves, and H. Sadjadpour, łGroupSec: A New Security

Model for the Web," Proc. IEEE ICC ‘17, 2017.
[93] S. Sevilla and J.J. Garcia-Luna-Aceves, łA Deployable Identifier-Locator Split

Architecture," Proc. IFIP Networking ‘17, June 2017.
[94] J.M. Spinelli, łReliable Communication on Data Links," LIDS-P-1844, MIT, Dec.

1988.
[95] A. Stubblefield and D. Wallach, łDagster: Censorship-Resistant Publishing With-

out Replication," Rice University, Dept. of Computer Science, Tech. Rep. TR01-380,
2001.

[96] B. Tremblay et al., ł(D.A.3) Final Harmonised SAIL Architecture," Report FP7-
ICT-2009-5-257448-SAIL/D-2.3, Feb. 2013.

[97] F. Urbani, W. Dabbous, and A. Legout, NS3 DCE CCNx quick start, INRIA, Nov.
2011.

[98] P. Vixie et al., łDynamic Updates in the Domain Name System," IETF RFC 2136,
1997.

[99] L. Wang et al., łA Secure Link State Routing Protocol for NDN," IEEE Access,
March 2018.

[100] C. Westphal and E. Demirors, łAn IP-Based Manifest Architecture for ICN,"
ACM ICN Demo, September 2015.

[101] Y. Wu, J. Tuononen, and M. Latvala, łPerformance Analysis of DNS with TTL
Value 0 as Location Repository in Mobile Internet," IEEE WCNC ‘07, March 2007.

[102] G. Xylomenos et al., łCaching and Mobility Support in a Publish-Subscribe
Internet Architecture," IEEE Communications Magazine, July 2012

[103] G. Xylomenos et al., łA Survey of Information-centric Networking Research,"
IEEE Communication Surveys & Tutorials, July 2013.

[104] B. Zolfaghari et al., łContent Delivery Networks: State of the Art, Trends, and
Future Roadmap," ACM Computing Surveys, April 2020.

148

	Abstract
	1 Introduction
	2 Related Work
	2.1 Reliable Transport Protocols
	2.2 CDN and P2P Approaches
	2.3 Prior ICN Architectures
	2.4 Privacy and Mobility Support
	2.5 DNS-based Approaches

	3 NDTP
	3.1 Publishing Content
	3.2 Retrieving Content
	3.3 Retransmission and Congestion Control

	4 Manifest-Yielding DNS
	5 NDT Proxies
	5.1 Securing Cached Content
	5.2 Manifest Privacy
	5.3 Name Privacy and Access Control
	5.4 Multicast Support at the Transport Layer

	6 Performance Comparison
	6.1 Efficiency of Congestion Control and Retransmission Mechanisms in NDTP
	6.2 Efficiency of Transparent Caching
	6.3 Impact of Manifest Records and Mirroring
	6.4 Overhead of URL to Manifest Mapping
	6.5 TCP Friendliness

	7 conclusions and Future Work
	References

