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Abstract

Establishing that climate exerts an important general influence on topography in tectonically active
settings has proven an elusive goal. Here, we show that climates ranging from arid-humid consistently
influence fluvial erosional efficiency and thus topography, and this effect is captured by a simple
metric that combines channel steepness and mean-annual rainfall, k.o. Accounting for spatial
rainfall variability additionally increases sensitivity of channel steepness to lithologic and tectonic
controls on topography, enhancing predictions of erosion and rock uplift rates, and supports the
common assumption of a reference concavity near 0.5. In contrast, the standard channel steepness
metric, kg, intrinsically assumes climate is uniform. Consequently, its use where rainfall varies
spatially undermines efforts to distinguish climate from tectonic and lithologic effects, can bias
reference concavity estimates, and may ultimately lead to false impressions about rock uplift patterns
and other environmental influences. Capturing climate is therefore a precondition to understanding

mountain landscape evolution.
Teaser

Accounting for climate unlocks potential to disentangle primary factors controlling the evolution of

mountain topography.
INTRODUCTION

Covariation among climate, tectonics, and lithology is common in mountain landscapes, and has long
confounded attempts to isolate and quantify their respective roles in moderating topography and erosion
(I-3). Climate’s role in particular has been the subject of vigorous debate and clearly determining whether
climate importantly influences topography remains a critical challenge (/, 4-8). In principal, the normalized
channel steepness index (), a widely used metric that has produced useful correlations with erosion on
millennial timescales in diverse settings, has the potential to detect such an influence (/-3). However, a key
limitation of kj, is its reliance on upstream drainage area as a discharge proxy, thus building in an

assumption of spatially uniform rainfall.
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A promising alternative to k, is the variant, k.o (1):
kan = SQeref: (1)

where S is river slope, O is water discharge, and 0,.r is the reference concavity index. ko is a generalized
version of similar metrics (e.g., ref(9, 10)) that uses the product of drainage area (4) and average upstream
rainfall (P) estimated from mean-annual rainfall (MAP) as an improved discharge proxy (/). Importantly,
this allows k.o to account for spatial rainfall variability (/7). Although the stochastic natures of storms and
floods are not captured, MAP resolves spatial patterns well and scales quasi-linearly with larger
geomorphically relevant discharges (/2). To the extent MAP captures the principal influence of climate, its
near global coverage and relative simplicity offer notable advantages over reliance on sparse stream gauges.
A critical test to evaluate the usefulness of incorporating MAP is comparing the capacities of &, and ko

to predict erosion rates where rainfall is spatially variable.

Here, we present a detailed, large-scale analysis of topography as represented in river profiles and '"Be
erosion rates from the northern central Andes of Peru and Bolivia (Fig. 1) testing the hypothesis that k. is
a better predictor of erosion rates than k;, (I, /7). In so doing, we highlight assumptions implicit to each
metric and quantitatively evaluate the implications of carrying forward these different sets of assumptions
on understanding of the roles of climate, tectonics, and lithology on landscape evolution. This landscape is
characterized by a ~20-50 km wide band of high topographic relief and experiences a dramatic regional,
but locally variable, orographic rainfall gradient that spans much of the global range of mean-annual
rainfall. High elevations typically receive <~0.25 m/yr while lower elevations experience ~3—6 m/yr of
rainfall. The study area spans >1500 km along-strike, and in addition to extreme climate variations,
encompasses diverse tectonics (e.g., variable subduction geometry and seismicity)(/3, /4) and lithology
(15, 16). This degree of complexity is common in tectonically active ranges and is ideal for comparing the

abilities of ks, and ks to extract meaningful information about primary drivers of landscape evolution.
River Incision Theory and Metrics

A common framework for interpreting £, and ;o is the stream power model (SPM). The SPM can be cast

in terms of drainage area (A) or discharge (Q):

E = KA™S™, (2a)
E = K,Q™s™, (2b)
K = K,P™, (2¢)



60
61
62
63
64
65
66
67

68
69
70
71
72

73
74
75
76
77
78
79
80

81
82
83
84

85
86

87
88
89
90
91

Manuscript submitted to Science Advances

where E is erosion rate (equal to the uplift rate (U) at steady state); K and K, are erosional efficiency
coefficients; and m and n are positive constant exponents that depend on and erosional process mechanics
and runoff variability (7, 2, 17). Dependence on runoff variability and erosional thresholds more broadly
suggests n ought vary with climate (2, 12, 18-23). Importantly, however, the primary influence of climate
is encapsulated within K, along with myriad other factors (e.g., rock properties). By contrast, K, is in
principle independent from rainfall, and to the extent that rainfall is the primary relevant component, climate
(1, 11). Effects of other factors like rock properties, weathering, sediment flux and size, and vegetation that

do not scale with rainfall are still subsumed in K, (17, 24-28).

Interpreting channel steepness patterns requires knowledge of the reference concavity index, 6,.;, which
describes scaling between discharge and channel slope and allows comparisons between rivers of different
sizes (29). Values near 0.5 are expected from theory and under uniform conditions 0,.,.= m/n (2, 30, 31).
However, spatially and/or temporally variable conditions affect profile concavity and channel steepness

(11, 32-35).

River profile collinearity in y-elevation plots (x-z) has become a popular method to determine optimal 6,
values from topography (34, 36, 37). This method leverages the SPM prediction that, provided 0,. is set
appropriately, the y-transform linearizes river profiles adjusted to uniform conditions with slopes equal to
ks (34). Assuming rivers of varying sizes are adjusted to uniform conditions, the optimal 0, that best
approximates m/n is that which minimizes differences among profile slopes (34, 36, 38, 39). Collinearity
can be quantified by comparing ks, values and optimized by minimizing variability (disorder) in x-z (36,
38, 39). However, where either rainfall or rock erodibility vary spatially (a common condition), the 6,.,that

best achieves collinearity among profiles may not be meaningful.

We can evaluate the effect of rainfall on collinearity by modifying y to scale with Q (i.e., P-4), which we
define as yp (11, 34, 40) (see Materials and Methods). The slope of river profiles on yp-z plots is k.
Therefore, spatial variations in rainfall that drive differences in channel steepness should not affect

collinearity in yp-z, improving 6,.s estimates provided catchments are adjusted to the rainfall pattern.

RESULTS AND DISCUSSION
River Profile Analysis

Transversely draining (trunk) rivers across our study area exhibit a consistent, distinctive pattern of higher
ks, than their tributaries using a typical 0,.,= 0.5, shown in %~z plots (Fig. 1). As outlined above, the simplest
interpretation of this pattern is that rivers are adjusted to spatially variable conditions (U or K), implying
trunk and tributary rivers systematically experience different conditions (e.g., average rainfall)(/ /). Here,

the discrepancy between trunk and tributary channel steepness is greatly reduced in -z space using 0. =



92
93
94

95
96
97
98
99
100
101

102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117

118

119
120
121
122
123

Manuscript submitted to Science Advances

0.5 (Fig. 1), bolstering the notion that profiles here are importantly influenced by spatially varying rainfall
and that k;.o captures this influence. Alternatively, the discrepancy between large trunk and small tributary

rivers may simply reflect an incorrect choice of 0,.;, which must be evaluated.

Quantitative comparisons between tributary k. or ko and equivalent trunk river segments (1694 tributary-
trunk pairs) across the study area is shown in Fig. 2. This confirms that trunk £, is higher than tributaries,
on average, using a typical 0,,,= 0.5 and reveals greater disparities at lower elevations (Fig. 2A-C). Also,
tributaries — which are more sensitive to varying environmental conditions (//, 33) — indicate a transition
between increasing and decreasing k&, with outlet elevation at ~2 km. Although this pattern is consistent
with rainfall variations (Fig. 1), spatial gradients in uplift rate cannot be discounted without first establishing

the sensitivity of &, to rainfall.

Alternatively, trunk and tributary k, are nearly equal on average using 6,.,~0.3 (Fig. 2D). If 0,,,= 0.3 is a
good description of these profiles, this finding would imply that K is approximately uniform, and that K
and thus £, are not strongly affected by rainfall (Figs. 2d,e). The k;.-elevation pattern is not sensitive to ;.
(Fig. 2F), but quasi-uniform K would suggest k;, variations likely reflect spatial gradients in uplift rate.
However, 0,.,,= 0.3 is low compared to commonly observed values (37) and further is incompatible with
the high concavities observed along trunk rivers in this part of the Andes (32, 4/), rendering the

appropriateness of the “optimal” 6,.,,= 0.3 questionable.

In contrast, k.o is predicated on the assumption that K depends strongly on climate (Eqns. 1 and 2c). The
relationship between trunk and tributary k.o using 6..,= 0.5 is indistinguishable from linear (Figs. 2g,h).
That variations in K expected from discharge accumulation under the observed rainfall pattern reconcile
differences between trunk and tributary channel steepness implies that rivers are largely adjusted to the
rainfall pattern. This likely precludes recent substantial changes to the rainfall pattern as any such changes
would force trunk and tributary ko out of alignment. Moreover, discharge accumulation patterns have
spatial complexity unlikely to be mirrored by uplift patterns. The k.o pattern is distinct from k., suggesting
quasi-uniform, high erosion rates in tributaries with outlet elevations <2 km, above which tributary

headwaters often tap the low-relief plateau (Fig. 1) causing catchment mean k;qo to decline (Fig. 21).
Collinearity: Along-strike Variations and Limitations

We next explore the potential for along-strike variations in 6,.s by optimizing collinearity of all profiles
within each catchment — a more detailed, local analysis than the regional analysis of tributary-trunk pairs
above. Optimized 0, values for y-transformed stream networks have a central tendency of 0.25-0.3, while
xo-transformed networks have a bimodal distribution with a stronger mode at 0.45-0.5 and a weaker one at

0.25-0.3 (Fig. 3A). Although 6,.r optimizations in individual catchments are, collectively, consistent with

4
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the regional analysis, they suggest substantial inter-catchment variability. If true, this would complicate
topographic analyses and potentially confound efforts to evaluate relationships between erosion and

topography (29, 37).

Notably, increasing the minimum drainage area in the channel network from 1 km?* to 5 km* dramatically
reduces variability in optimized 6, for ypo-transformed stream networks (Fig. 3B). With this trimmed stream
network, a single mode at 0.45-0.5 emerges with ~70% of catchments falling within the typical 0.4-0.6
range, reinforcing the interpretation that channels are largely adjusted to the rainfall pattern. Remaining
catchments outside this range have variable lithology (5, 16) and/or are small (<200-300 km?) (see
Supplementary Material). Increasing this threshold further to 10 km? has little additional effect in our study
basins except to increase the frequency of outliers, which reflects a trade-off where the sparsity of tributaries
in the remaining stream network becomes a limiting factor (Fig. 3C). Interestingly, optimized 6,.rbased on
x-transformed profiles are less affected. A broad mode centered at 0.3-0.35 includes most catchments but
an additional mode at 0.45-0.5 appears. Catchments comprising the 0.45-0.5 mode tend to have less
spatially variable rainfall (lower standard deviation). This shift toward a bimodal distribution continues as
we increase the drainage area further, but outliers also become more common like we observe for yo-

transformed stream networks.

We suggest that the effect of increasing the minimum drainage area suggests variability of optimized 6,.rin
the yo-z analysis (Fig. 3A) largely reflects limitations imposed by the spatial resolution of the rainfall data.
At 1 km?, the area defining streams is much smaller than resolution of the rainfall grid (~20 km?).
Consequently, rainfall estimates at small drainage areas, particularly in high-relief tributaries with
associated spatial rainfall variability, are likely to be inaccurate. This can produce anomalous k.o values
that can bias the results of the 6,.; optimization. Smaller catchments comprising fewer streams are more
sensitive to anomalous values as these artifacts affect a larger fraction of the total stream network. Spatially
varying tectonics and lithology can have similarly strong influences on optimized values in small
catchments for this same reason. Additionally, debris flows or other processes important in high-relief
terrain may compound these issues at small drainage areas (42), which may explain some changes to the

“optimized” 0, values.
Erosion Rates and Topography

Metrics ks, and kgqp ultimately predict distinct erosion rate patterns (Figs. 2,4). At the broad scale, the k.
pattern is not sensitive to 0,.r and predicts a more homogenous erosion pattern than ko (Fig, 4a-c). Also,
importantly, &, systematically predicts higher erosion rates than ;.o at high elevations because it does not

account for the rainfall pattern. Here, the 2 m/yr rainfall contour nicely separates domains where £, and
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ksno predict higher erosion rates (Fig. 4D). These observations are all consistent with the expectation that
many factors are convolved within 4. In contrast, to the extent that k.o captures the influence of climate,

it better isolates tectonic and lithologic factors (Fig. 4C,E).

Indeed, plotting new and published (43—46) erosion rates from quasi-steady state catchments (E=U) across
the study area against k, and ko reveals the potential for &,o to overcome limitations of &, where climate,
lithology, and tectonics co-vary (Fig. 5). Further, consequences of carrying forward faulty assumptions
(e.g., quasi-uniform K despite variable lithology and rainfall) during topographic analyses are evident. It is
difficult to detect any consistent relationships among k., erosion rate, lithology, and climate for catchments
in the Eastern Cordillera (EC), particularly for 6,.,= 0.3, and only pronounced lithologic contrasts between
EC and Subandean catchments are apparent (Figs. 5a,b). This could be mistakenly interpreted to suggest
the influences from climate in general and lithologic variations in the EC are weak or absent. In contrast,
ksno resolves distinct relationships separated by 3-fold differences in K, between resistant (quartzite-rich)
metasedimentary rocks and plutonic/weaker metamorphic rocks comprising EC catchments (Fig. 5C).
Clustering, particularly of catchments with plutonic bedrock, that experience disparate rainfall but have
similar kg, further supports the interpretation that ky,p is capturing the influence of climate. As transient
responses to recent changes to the rainfall pattern would tend to disrupt such clustering (/7), this
observation also bolsters the interpretation that catchments reflect quasi-adjustment to the modern rainfall

pattern.

This example highlights the need for caution, however, when considering relationships between erosion
rates and kg, particularly where strong variations in rainfall are present. Because ;.0 magnifies differences
between catchments with different lithology that also experience different amounts of rainfall, it is better
able to resolve distinct lithologic trends. However, failure to segregate samples populating these different
trends would increase data scattering and result in apparently weaker correlations. Catchments containing
more than one lithology are also likely to plot in intermediate positions between distinct endmembers,

which can compound apparent scatter and potentially distort endmember trends.

Interestingly, we also find that k.o also implies that topography is more sensitive to uplift rate than ks,
reflected by lower values for power-law exponent n (Eqn. 2)(2). While we emphasize that a range of »
values (and associated erosional efficiency coefficients) can fit these data reasonably well, relationships
determined using k.o are better constrained than £, (see Supplementary Material). This apparently weaker
topographic sensitivity to uplift rate (higher n) and weaker constraints on this sensitivity (range of
compatible n values) are both attributable to mixing of lithologic and climatic influences in k.
Additionally, after accounting for rainfall variations with ks, we do not resolve any dependence of # on

climate, consistent with results from the Himalaya (I, /9). This may reflect continuity of quasi-linear

6
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scaling between threshold-exceeding flood discharges and MAP across climate regimes in our study (7,
12). We expect any climate-dependent departures from this scaling would inhibit data collapse using similar
n values, particularly among catchments with disparate rainfall. Notably, variable n values with climate and
breakdown of quasi-linear scaling should also be expressed in collinearity between trunk and tributary
rivers, which we do not observe (Fig. 2G). Together, these findings suggest capturing the influence of
climate is an important precondition to understanding interactions among topography, erosion, and other

environmental variables.
Implications for Landscape Analysis

This analysis reveals important considerations for future landscape analyses. Although we argue that
tributaries here have lower £, than trunk rivers due to climate-driven variations in erosional efficiency (K),
anytime large and small rivers exhibit this pattern a lower 6,.r will decrease the channel steepness disparity
between them. Optimizing collinearity between rivers in -z space will return the 0, value that best
approximates assumptions required for equal ks: spatially uniform K and U. Under such conditions,
differences in slope are directly related to differences in upstream drainage area. In practice, enforcing this
condition optimizes convolution of any environmental variations that exist with drainage area, and
systematic spatial gradients in K and/or U will bias optimized values. This of course is problematic if the
goal is to extract meaningful information about controls on channel steepness. Further, rather than true
variability in 0, variability in optimized values likely reflects spatially variable K and/or U (i.e., violations
of collinearity requirements, not variations in factors controlling intrinsic profile concavity represented by
m/n in the SPM). This same reasoning applies to k;.o. However, unlike k,, where orographic rainfall can
systematically affect K between catchments across large areas and effects of these rainfall variations can
propagate downstream (e.g., integrating dry headwaters)(/ /), lithology (~K),) and data resolution limitations
primarily affect k.0 only locally. Collinearity optimization algorithms are better-equipped to handle

localized perturbations (36), decreasing potential for biased 6,.r estimates based on yp-z collinearity.

Despite these strengths, we do not necessarily expect all landscapes are in quasi-equilibrium with modern
MAP. These exceptions may reflect important complexities of the local hydroclimate or recent climate
changes that have substantially altered modern rainfall patterns (e.g., refs(47—-49)). Also, spatial gradients
in uplift can differently influence trunk and tributary k.. In all these cases, optimizing xo-z collinearity
may also give biased 0,.r estimates, the use of which may complicate ks,p-erosion rate relationships and
distort the apparent influence of different environmental variables. As such, we caution that these factors

should considered when interpreting yo-z collinearity.
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We conclude that k.0 based on MAP with 0.~ 0.45-0.5 provides the best remote estimate of spatial
variations in erosion at the landscape sale. Calibrated with erosion rate measurements it can dramatically
improve understanding of primary environmental controls on landscape evolution. These findings are
unaffected by the diverse climatic, tectonic, and morphologic conditions across >1500 km along strike on
the eastern flank of the central Andes, demonstrating that climate exerts a strong, ubiquitous influence on

erosional efficiency and topography.

MATERIALS AND METHODS
Topographic Analysis

We use one-arcsecond (~30 m) Shuttle Radar Topography Mission digital elevation model (50) and
TRMM-2B31 (Tropical Rainfall Measuring Mission) rainfall data (57), which has ~4.5 km horizontal
resolution at this latitude. We extracted and analyzed river profiles from 104 transversely draining
catchments (> 100 km?) that span >1500 km north-to-south along the eastern margin of the northern-central
Andes using built-in functions in TopoToolbox and the Topographic Analysis Kit (52, 53). We extract the
longest (trunk) river from each of the 104 transverse catchments and all tributaries that drain directly into
the trunk stream with drainage area between 5 and 100 km? (1694 total). Then we apply the y-transform

(34) to stream networks to linearize profiles in y-elevation plots:

x [ A \Frer
x=1 (Tz)) dx, (3a)
z(x) = z(xp) + ksn " X, (3b)
where x is distance upstream; x; is the outlet position; Ao is a reference drainage area, here set equal to 1

km?; and z is elevation. The above equations can similarly be cast in terms of discharge (Q) rather than

drainage area to arrive at yp and kg (11, 40):

0
_ox [ Qo \Pres
Xo =, (ch)) dx, (4a)
z(x) = z(xp) + ksng * Xo- (4b)

Collinearity is defined as the degree to which two river segments collapse to a single line in x-z (or yo-z),
which we quantify in two ways. The first method directly compares average channel steepness (ks» and knp)
of tributaries with equivalent segments of its trunk river: lines may only be collinear if they have equal
slopes. We calculate average channel steepness for each tributary as its fluvial relief divided by the change
in  (or xp), both of which are measured from the tributary confluence with the trunk river upstream to a

minimum drainage area of 1 km? (i.e., k,=Az/Ay). Average ks, and ks for comparable segments of the
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trunk river are calculated using Ay (or Ayp) along the trunk river over the same elevation range as for each
tributary. Results and interpretations are not sensitive to different methods of calculating average ks or kg,

for example with a fixed segment smoothing distance.

The second method optimizes 8,.r values for both for k;, and k.o that maximize collinearity in x-z and yo-
z, respectively, in individual catchments using the ‘mnoptimvar’ function in TopoToolbox (52) (c.f,(36,
39)). It operates by segmenting stream networks from each catchment into bins of equal y (or yp). The
function then searches for the 0,.r value that minimizes elevation differences as quantified by a user-defined
variability statistic among stream segments across all bins. Optimization results presented in the main text
use the ‘robustcov’ function in MATLAB, which implements an efficient algorithm to estimate the
minimum covariance determinant (54). Minimizing interquartile range and standard deviation yield
comparable results. Results do not appear sensitive to the number of bins or to the minimum number of
stream segments within each bin. As discussed in the main text, optimized values reflect those that best
align with assumptions for collinearity, which are not necessarily equivalent to the most appropriate 6.

value, particularly in catchments with spatially varying environmental factors (Supplementary Material).

Interpolated maps for &, and ;.o are all generated from the same stream network. Color ramps for &, and
ksno maps are normalized to reflect equivalent data ranges that include ~99.5% of pixel values. This range
was determined to exclude outliers that saturate color maps. The normalized difference map was calculated
by first normalizing values in ks and ko maps between 0 and 1. Color ramp was then optimized for

visualization centered on a value of 0 with symmetrical ranges above and below.
"Be Sample Preparation

Southern Peru samples were collected in 2018 from active channel deposits of quasi-steady state trunk-
stream tributaries, and processes at the WOMBAT laboratory at the School of Earth and Space Exploration
at Arizona State University. Samples were first rinsed and dry-sieved to yield 250-1000 um fraction. Sieved
samples were cleaned using a 2:1 solution of hydrochloric acid (HCI) and nitric acid (HNOs). Samples
underwent density separation using lithium polytungstate (LST) to remove heavy minerals, which was then
diluted to separate quartz from less dense minerals. Samples were leached using 1-2% hydrofluoric acid
(HF) and HNOs solution and rolled on heat for 6-8 hours. Samples underwent a minimum of 10 leaches to
eliminate mineral species other than quartz and ensure complete etching of quartz grains. Once quartz
fractions were purified, samples were spiked with a commercial *Be solution and dissolved in HF and
HNO:s. Beryllium was extracted through standard anion and cation chromatography techniques, oxidized

in a muffle furnace, and mixed with a niobium matrix and loaded into cathodes for analysis on the
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accelerator mass spectrometer at Purdue Rare Isotope Measurement Laboratory. Reported '’Be/’Be ratios

are blank corrected.
Erosion Rate Calculation, Curation, and Regression Analysis

Published erosion rates were recalculated using a common workflow to ensure robust comparisons and
curated to exclude catchments unlikely to reflect quasi-steady state conditions. We exclude catchments with
large slope-break knickpoints, which unfortunately includes a considerable fraction of catchments from the
various published datasets. Overwhelmingly, remaining catchments are composed of a single lithology (735,
16), and those comprising more than one lithology are classified according to the dominant lithology by
extent within the catchment. Channel steepness for new and published samples in quasi-steady state
catchments were calculated with a minimum drainage area of 1 km? and 500 m smoothing distances.
Erosion rates were recalculated using a production-rate weighted elevation following procedures of
Portenga and Bierman (55) and published '°Be concentrations were scaled to all be consistent with
07KNSTD standard (56). Erosion rates were then calculated using the CRONUS online calculator (version
3.0)(57, 58). We assume no topographic shielding, 0 cm sediment thickness, and density of 2.65 g/cm?, and
use the ‘std’ elevation flag. Erosion rates are calculated using time-invariant production rate scaling (59),

and are quoted with 1o external uncertainty.

Regressions analysis was conducted following methods from Adams et al.(/). Quality of fits was evaluated
using the MSWD, which can account for uncertainties on individual measurements in both x and y
directions. Well fit models should approach 1 + 2o, with higher values indicating that data are over-
dispersed and the degree to which uncertainties are likely underestimated (60). Models are fit using 2c
external uncertainties on erosion rate measurements and 2 SE on k,, and k0. We fit distinct relationships
apparent in ks,-E and ksqo-E in two ways using the ‘MC York’ MATLAB function from Adams et al.({). In
the first, we allow both the power-law coefficient (K or K,,) and exponent () vary freely to arrive at the
best-fit pair of parameter values. In the second, we fix 7 to find the best-fit K or K, value. These different
approaches yield similar parameter values with indistinguishable differences in quality of fits. However, an
advantage to fixing the » exponent allows for direct comparison of K or K, values between trends and is
therefore preferred. Five samples with Neogene-Paleogene age bedrock from Hippe et al.(45) were
excluded from all fitting because they do not correlate with rocks of similar age across the study area, unlike
other rock units, and were not fit separately due to their small population and narrow ranges of both channel

steepness and erosion rate.
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Figure 1. Map synthesizing topography, rainfall, subduction regime, and channel steepness patterns from
the north-central Andes of Peru and Bolivia. Topographic analysis based on catchments outlined in white.
Locations of '“Be erosion rate measurements used for this study shown with yellow circles (54 total).
Comparisons between y-z (red), and yp-z (blue) profiles for representative catchments along-strike. Trunk
profiles are highlighted in black. All panels plotted with 6,.,= 0.5 and show optimized 6,.rvalues determined
using stream networks with minimum upstream drainage area of 5 km? (and 1 km?) — see text for details.
Numbered lines 1-4 on maps show centerline locations of 50 km wide swath profiles of topography and
rainfall, depicted top-right. Swaths show mean, minimum, and maximum values; vertical dashed lines show

position where mean elevation reaches 2 km — see text for details.
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0.5; G-I). Dashed lines show 1:1 relationship. Solid black lines show total least-squares (A, D, G) and
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ordinary-least-squares (B, E, H) regressions with 95% confidence intervals in gray. Spatial pattern of

erosion predicted by trunk and tributary rivers shown in C,F, and 1.
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Figure 3. Analysis of optimized 0,.r values individually fit to -z profiles (red) and yo-z (blue) for each
catchment along-strike, and comparison between stream networks calculated with minimum drainage areas
of 1 km?* (A), Skm* (B), and 10km* (C). Optimized 0, values are plotted alongside catchment rainfall
characteristics and drainage area. Histogram shows frequency of optimized values — see Materials and

Methods and Supplementary Material.
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Figure 4. Comparison between interpolated maps — see Materials and Methods — of &, and k. illustrating
distinct erosion rate patterns predicted by each (A-C), difference map highlighting contrasts between £,
and ko (D) and simplified geologic map (E). Color stretches for panels (A-C) are linear minimum-
maximum scales cropped to the same data range to be directly comparable while excluding outliers (colors
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Figure 5. Synthesis of 'Be catchment-average erosion rates (54 total) from the eastern flank and of
northern-central Andes, including curated published data from northern and central Bolivia (43-46) and six

new rates from southern Peru. EC and SA denote association with the Eastern Cordillera and Subandes,
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respectively. Measurements shown with 16 uncertainty. See Materials and Methods for details about data
curation, lithologic classification, and regression analysis. Regressions based on the best-fit fixed » values
are preferred because they allow direct comparison of K (or K,) values between trends; results from
regressions where both n and K (or K,,) values are allowed to vary are similar and shown for comparison.
Samples from catchments with Plutonic bedrock and high rainfall (Wet Plutonic) excluded from fitting in
(A) are shown with red error bars; however, these samples are not excluded from fitting in (B) because 0,.r
= 0.3 here implies K is independent from rainfall. Note, k.o resolves distinct trends among resistant rock
types found in the EC that are not evident using k., and best-fit n values for £, (both 0, are higher than
for k. Further, note clustering of plutonic bedrock samples (squares) experiencing wide variations in

rainfall in (C) compared with scattering exhibited by these same sample in (A) and (B).
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Fig. S1. Comparison between best-fit optimized 0. and fit residuals for y-transformed catchments
(top) and yo-transformed catchments (bottom), for all minimum drainage area thresholds analyzed
(see Figure 3 in main text). Color shows basin size: color stretch restricted to emphasize lower
drainage areas. Note, each panel is normalized internally such that residuals for each catchment
fall between 0 and 1, and residuals scale roughly with catchment size. Thus, relative characteristics
between panels are not necessarily comparable and only comparisons within the same panel among
catchments of similar sizes are appropriate. Within each panel, we can observe that catchments
with anomalous (low) optimized 0. exhibit similar residuals to catchments with values near 0.5,
demonstrating these anomalous values are indeed effective in collapsing profiles and achieving
collinearity, and therefore are not the result of relatively inferior fits. Because these catchments
also tend to exhibit variable lithology (15, 16) and/or strong disequilibrium, this also demonstrates
that adjusting 0,.ralone can effectively compensate for and mask meaningful variations in channel

steepness.
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Fig. S2. Constraints on SPM exponent n from regressions for ks, with 0,.r= 0.3 (A, B), ksn with Orer
= 0.5 (C, D) and ksno with 0,¢r= 0.5 (E-G). Each point records MSWD =+ 2¢ of best-fit regression
(representing a distinct K(or Kp)-n pair) for given fixed n values, calculated over the range of 1-3
at increments of 0.1 using methods from Adams et al. (/). Red horizontal lines bound MSWD =+
20 for the n value of the best-fit among all values (MSWD nearest to 1). Regressions for different
n values with MSWD range that overlaps with best-fit #n value are shown in red and interpreted to
yield comparable goodness-of-fit, thus providing constraints on the range of possible n values.
Note, n values for Eastern Cordillera (EC) trends evident using ks» (both 0e) are higher and less
well constrained than either of the EC trends that emerge using ksno. Subandean trends are
unconstrained for both ks» and ks»p. However, assuming an n value for Subandean trends equal to
those calculated from EC trends, which are compatible with Subandean trends, implies a K or K,
value that can be directly compared.



Data S1. (separate file)

Source data for all plots and analyses presented in the main text, comprising a spreadsheet with
three tabs formatted in excel. Tabs are: 1) ‘Large Basin Stats’ with topographic characterizations
of 104 basins depicted in main text Figs. 1 and 3; 2) ‘Trunk-Tributary Pairs’ with source data and
relevant information for all catchments analyzed to create main text Fig. 2; and 3) ‘Erosion Rate
Catchment Stats’ containing all information to reproduce analysis presented in main text Fig. 5.
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