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Abstract 6 

Establishing that climate exerts an important general influence on topography in tectonically active 7 

settings has proven an elusive goal. Here, we show that climates ranging from arid-humid consistently 8 

influence fluvial erosional efficiency and thus topography, and this effect is captured by a simple 9 

metric that combines channel steepness and mean-annual rainfall, ksnQ. Accounting for spatial 10 

rainfall variability additionally increases sensitivity of channel steepness to lithologic and tectonic 11 

controls on topography, enhancing predictions of erosion and rock uplift rates, and supports the 12 

common assumption of a reference concavity near 0.5. In contrast, the standard channel steepness 13 

metric, ksn, intrinsically assumes climate is uniform. Consequently, its use where rainfall varies 14 

spatially undermines efforts to distinguish climate from tectonic and lithologic effects, can bias 15 

reference concavity estimates, and may ultimately lead to false impressions about rock uplift patterns 16 

and other environmental influences. Capturing climate is therefore a precondition to understanding 17 

mountain landscape evolution. 18 

Teaser 19 

Accounting for climate unlocks potential to disentangle primary factors controlling the evolution of 20 

mountain topography. 21 

INTRODUCTION 22 

Covariation among climate, tectonics, and lithology is common in mountain landscapes, and has long 23 

confounded attempts to isolate and quantify their respective roles in moderating topography and erosion 24 

(1–3). Climate’s role in particular has been the subject of vigorous debate and clearly determining whether 25 

climate importantly influences topography remains a critical challenge (1, 4–8). In principal, the normalized 26 

channel steepness index (ksn), a widely used metric that has produced useful correlations with erosion on 27 

millennial timescales in diverse settings, has the potential to detect such an influence (1–3). However, a key 28 

limitation of ksn is its reliance on upstream drainage area as a discharge proxy, thus building in an 29 

assumption of spatially uniform rainfall.  30 
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A promising alternative to ksn is the variant, ksnQ (1): 31 

𝑘!"# = 𝑆𝑄$!"# ,      (1) 32 

where S is river slope, Q is water discharge, and θref is the reference concavity index. ksnQ is a generalized 33 

version of similar metrics (e.g., ref(9, 10)) that uses the product of drainage area (A) and average upstream 34 

rainfall (𝑃') estimated from mean-annual rainfall (MAP) as an improved discharge proxy (1). Importantly, 35 

this allows ksnQ to account for spatial rainfall variability (11). Although the stochastic natures of storms and 36 

floods are not captured, MAP resolves spatial patterns well and scales quasi-linearly with larger 37 

geomorphically relevant discharges (12). To the extent MAP captures the principal influence of climate, its 38 

near global coverage and relative simplicity offer notable advantages over reliance on sparse stream gauges. 39 

A critical test to evaluate the usefulness of incorporating MAP is comparing the capacities of ksn and ksnQ 40 

to predict erosion rates where rainfall is spatially variable. 41 

Here, we present a detailed, large-scale analysis of topography as represented in river profiles and 10Be 42 

erosion rates from the northern central Andes of Peru and Bolivia (Fig. 1) testing the hypothesis that ksnQ is 43 

a better predictor of erosion rates than ksn (1, 11). In so doing, we highlight assumptions implicit to each 44 

metric and quantitatively evaluate the implications of carrying forward these different sets of assumptions 45 

on understanding of the roles of climate, tectonics, and lithology on landscape evolution. This landscape is 46 

characterized by a ~20-50 km wide band of high topographic relief and experiences a dramatic regional, 47 

but locally variable, orographic rainfall gradient that spans much of the global range of mean-annual 48 

rainfall. High elevations typically receive <~0.25 m/yr while lower elevations experience ~3–6 m/yr of 49 

rainfall. The study area spans >1500 km along-strike, and in addition to extreme climate variations, 50 

encompasses diverse tectonics (e.g., variable subduction geometry and seismicity)(13, 14) and lithology 51 

(15, 16). This degree of complexity is common in tectonically active ranges and is ideal for comparing the 52 

abilities of ksn and ksnQ to extract meaningful information about primary drivers of landscape evolution. 53 

River Incision Theory and Metrics 54 

A common framework for interpreting ksn and ksnQ is the stream power model (SPM). The SPM can be cast 55 

in terms of drainage area (A) or discharge (Q):  56 

𝐸 = 𝐾𝐴%𝑆",	       (2a) 57 

𝐸 = 𝐾&𝑄%𝑆",	       (2b) 58 

𝐾 =	𝐾&𝑃'%,      (2c) 59 
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where E is erosion rate (equal to the uplift rate (U) at steady state); K and Kp are erosional efficiency 60 

coefficients; and m and n are positive constant exponents that depend on and erosional process mechanics 61 

and runoff variability (1, 2, 17). Dependence on runoff variability and erosional thresholds more broadly 62 

suggests n ought vary with climate (2, 12, 18–23). Importantly, however, the primary influence of climate 63 

is encapsulated within K, along with myriad other factors (e.g., rock properties). By contrast, Kp is in 64 

principle independent from rainfall, and to the extent that rainfall is the primary relevant component, climate 65 

(1, 11). Effects of other factors like rock properties, weathering, sediment flux and size, and vegetation that 66 

do not scale with rainfall are still subsumed in Kp (17, 24–28). 67 

Interpreting channel steepness patterns requires knowledge of the reference concavity index, θref, which 68 

describes scaling between discharge and channel slope and allows comparisons between rivers of different 69 

sizes (29). Values near 0.5 are expected from theory and under uniform conditions θref = m/n (2, 30, 31). 70 

However, spatially and/or temporally variable conditions affect profile concavity and channel steepness 71 

(11, 32–35).  72 

River profile collinearity in χ-elevation plots (χ-z) has become a popular method to determine optimal θref 73 

values from topography (34, 36, 37). This method leverages the SPM prediction that, provided θref is set 74 

appropriately, the χ-transform linearizes river profiles adjusted to uniform conditions with slopes equal to 75 

ksn (34). Assuming rivers of varying sizes are adjusted to uniform conditions, the optimal θref that best 76 

approximates m/n is that which minimizes differences among profile slopes (34, 36, 38, 39). Collinearity 77 

can be quantified by comparing ksn values and optimized by minimizing variability (disorder) in χ-z (36, 78 

38, 39). However, where either rainfall or rock erodibility vary spatially (a common condition), the θref that 79 

best achieves collinearity among profiles may not be meaningful.  80 

We can evaluate the effect of rainfall on collinearity by modifying χ to scale with Q (i.e., 𝑃'∙A), which we 81 

define as χQ (11, 34, 40) (see Materials and Methods). The slope of river profiles on χQ-z plots is ksnQ. 82 

Therefore, spatial variations in rainfall that drive differences in channel steepness should not affect 83 

collinearity in χQ-z, improving θref estimates provided catchments are adjusted to the rainfall pattern.  84 

RESULTS AND DISCUSSION 85 

River Profile Analysis 86 

Transversely draining (trunk) rivers across our study area exhibit a consistent, distinctive pattern of higher 87 

ksn than their tributaries using a typical θref = 0.5, shown in χ-z plots (Fig. 1). As outlined above, the simplest 88 

interpretation of this pattern is that rivers are adjusted to spatially variable conditions (U or K), implying 89 

trunk and tributary rivers systematically experience different conditions (e.g., average rainfall)(11). Here, 90 

the discrepancy between trunk and tributary channel steepness is greatly reduced in χQ-z space using θref = 91 
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0.5 (Fig. 1), bolstering the notion that profiles here are importantly influenced by spatially varying rainfall 92 

and that ksnQ captures this influence. Alternatively, the discrepancy between large trunk and small tributary 93 

rivers may simply reflect an incorrect choice of θref, which must be evaluated.  94 

Quantitative comparisons between tributary ksn or ksnQ and equivalent trunk river segments (1694 tributary-95 

trunk pairs) across the study area is shown in Fig. 2. This confirms that trunk ksn is higher than tributaries, 96 

on average, using a typical θref = 0.5 and reveals greater disparities at lower elevations (Fig. 2A-C). Also, 97 

tributaries – which are more sensitive to varying environmental conditions (11, 33) – indicate a transition 98 

between increasing and decreasing ksn with outlet elevation at ~2 km. Although this pattern is consistent 99 

with rainfall variations (Fig. 1), spatial gradients in uplift rate cannot be discounted without first establishing 100 

the sensitivity of ksn to rainfall. 101 

Alternatively, trunk and tributary ksn are nearly equal on average using θref=0.3 (Fig. 2D). If θref = 0.3 is a 102 

good description of these profiles, this finding would imply that K is approximately uniform, and that K 103 

and thus ksn are not strongly affected by rainfall (Figs. 2d,e). The ksn-elevation pattern is not sensitive to θref 104 

(Fig. 2F), but quasi-uniform K would suggest ksn variations likely reflect spatial gradients in uplift rate. 105 

However, θref = 0.3 is low compared to commonly observed values (31) and further is incompatible with 106 

the high concavities observed along trunk rivers in this part of the Andes (32, 41), rendering the 107 

appropriateness of the “optimal” θref = 0.3 questionable.  108 

In contrast, ksnQ is predicated on the assumption that K depends strongly on climate (Eqns. 1 and 2c). The 109 

relationship between trunk and tributary ksnQ using θref = 0.5 is indistinguishable from linear (Figs. 2g,h). 110 

That variations in K expected from discharge accumulation under the observed rainfall pattern reconcile 111 

differences between trunk and tributary channel steepness implies that rivers are largely adjusted to the 112 

rainfall pattern. This likely precludes recent substantial changes to the rainfall pattern as any such changes 113 

would force trunk and tributary ksnQ out of alignment. Moreover, discharge accumulation patterns have 114 

spatial complexity unlikely to be mirrored by uplift patterns. The ksnQ pattern is distinct from ksn, suggesting 115 

quasi-uniform, high erosion rates in tributaries with outlet elevations <2 km, above which tributary 116 

headwaters often tap the low-relief plateau (Fig. 1) causing catchment mean ksnQ to decline (Fig. 2I). 117 

Collinearity: Along-strike Variations and Limitations 118 

We next explore the potential for along-strike variations in θref by optimizing collinearity of all profiles 119 

within each catchment – a more detailed, local analysis than the regional analysis of tributary-trunk pairs 120 

above. Optimized θref values for χ-transformed stream networks have a central tendency of 0.25-0.3, while 121 

χQ-transformed networks have a bimodal distribution with a stronger mode at 0.45-0.5 and a weaker one at 122 

0.25-0.3 (Fig. 3A). Although θref optimizations in individual catchments are, collectively, consistent with 123 



Manuscript submitted to Science Advances 

5 
 

the regional analysis, they suggest substantial inter-catchment variability. If true, this would complicate 124 

topographic analyses and potentially confound efforts to evaluate relationships between erosion and 125 

topography (29, 37).  126 

Notably, increasing the minimum drainage area in the channel network from 1 km2 to 5 km2 dramatically 127 

reduces variability in optimized θref for χQ-transformed stream networks (Fig. 3B). With this trimmed stream 128 

network, a single mode at 0.45-0.5 emerges with ~70% of catchments falling within the typical 0.4-0.6 129 

range, reinforcing the interpretation that channels are largely adjusted to the rainfall pattern. Remaining 130 

catchments outside this range have variable lithology (15, 16) and/or are small (<200–300 km2) (see 131 

Supplementary Material). Increasing this threshold further to 10 km2 has little additional effect in our study 132 

basins except to increase the frequency of outliers, which reflects a trade-off where the sparsity of tributaries 133 

in the remaining stream network becomes a limiting factor (Fig. 3C).  Interestingly, optimized θref based on 134 

χ-transformed profiles are less affected. A broad mode centered at 0.3-0.35 includes most catchments but 135 

an additional mode at 0.45-0.5 appears. Catchments comprising the 0.45-0.5 mode tend to have less 136 

spatially variable rainfall (lower standard deviation). This shift toward a bimodal distribution continues as 137 

we increase the drainage area further, but outliers also become more common like we observe for χQ-138 

transformed stream networks.  139 

We suggest that the effect of increasing the minimum drainage area suggests variability of optimized θref in 140 

the χQ-z analysis (Fig. 3A) largely reflects limitations imposed by the spatial resolution of the rainfall data. 141 

At 1 km2, the area defining streams is much smaller than resolution of the rainfall grid (~20 km2). 142 

Consequently, rainfall estimates at small drainage areas, particularly in high-relief tributaries with 143 

associated spatial rainfall variability, are likely to be inaccurate. This can produce anomalous ksnQ values 144 

that can bias the results of the θref optimization. Smaller catchments comprising fewer streams are more 145 

sensitive to anomalous values as these artifacts affect a larger fraction of the total stream network. Spatially 146 

varying tectonics and lithology can have similarly strong influences on optimized values in small 147 

catchments for this same reason. Additionally, debris flows or other processes important in high-relief 148 

terrain may compound these issues at small drainage areas (42), which may explain some changes to the 149 

“optimized” θref values.  150 

Erosion Rates and Topography 151 

Metrics ksn and ksnQ ultimately predict distinct erosion rate patterns (Figs. 2,4). At the broad scale, the ksn 152 

pattern is not sensitive to θref and predicts a more homogenous erosion pattern than ksnQ (Fig, 4a-c). Also, 153 

importantly, ksn systematically predicts higher erosion rates than ksnQ at high elevations because it does not 154 

account for the rainfall pattern. Here, the 2 m/yr rainfall contour nicely separates domains where ksn and 155 
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ksnQ predict higher erosion rates (Fig. 4D). These observations are all consistent with the expectation that 156 

many factors are convolved within ksn. In contrast, to the extent that ksnQ captures the influence of climate, 157 

it better isolates tectonic and lithologic factors (Fig. 4C,E). 158 

Indeed, plotting new and published (43–46) erosion rates from quasi-steady state catchments (E=U) across 159 

the study area against ksn and ksnQ reveals the potential for ksnQ to overcome limitations of ksn where climate, 160 

lithology, and tectonics co-vary (Fig. 5). Further, consequences of carrying forward faulty assumptions 161 

(e.g., quasi-uniform K despite variable lithology and rainfall) during topographic analyses are evident. It is 162 

difficult to detect any consistent relationships among ksn, erosion rate, lithology, and climate for catchments 163 

in the Eastern Cordillera (EC), particularly for θref = 0.3, and only pronounced lithologic contrasts between 164 

EC and Subandean catchments are apparent (Figs. 5a,b). This could be mistakenly interpreted to suggest 165 

the influences from climate in general and lithologic variations in the EC are weak or absent. In contrast, 166 

ksnQ resolves distinct relationships separated by 3-fold differences in Kp between resistant (quartzite-rich) 167 

metasedimentary rocks and plutonic/weaker metamorphic rocks comprising EC catchments (Fig. 5C). 168 

Clustering, particularly of catchments with plutonic bedrock, that experience disparate rainfall but have 169 

similar ksnQ further supports the interpretation that ksnQ is capturing the influence of climate. As transient 170 

responses to recent changes to the rainfall pattern would tend to disrupt such clustering (11), this 171 

observation also bolsters the interpretation that catchments reflect quasi-adjustment to the modern rainfall 172 

pattern.  173 

This example highlights the need for caution, however, when considering relationships between erosion 174 

rates and ksnQ, particularly where strong variations in rainfall are present. Because ksnQ magnifies differences 175 

between catchments with different lithology that also experience different amounts of rainfall, it is better 176 

able to resolve distinct lithologic trends. However, failure to segregate samples populating these different 177 

trends would increase data scattering and result in apparently weaker correlations. Catchments containing 178 

more than one lithology are also likely to plot in intermediate positions between distinct endmembers, 179 

which can compound apparent scatter and potentially distort endmember trends.  180 

Interestingly, we also find that ksnQ also implies that topography is more sensitive to uplift rate than ksn, 181 

reflected by lower values for power-law exponent n (Eqn. 2)(2). While we emphasize that a range of n 182 

values (and associated erosional efficiency coefficients) can fit these data reasonably well, relationships 183 

determined using ksnQ are better constrained than ksn (see Supplementary Material). This apparently weaker 184 

topographic sensitivity to uplift rate (higher n) and weaker constraints on this sensitivity (range of 185 

compatible n values) are both attributable to mixing of lithologic and climatic influences in ksn. 186 

Additionally, after accounting for rainfall variations with ksnQ we do not resolve any dependence of n on 187 

climate, consistent with results from the Himalaya (1, 19). This may reflect continuity of quasi-linear 188 



Manuscript submitted to Science Advances 

7 
 

scaling between threshold-exceeding flood discharges and MAP across climate regimes in our study (1, 189 

12). We expect any climate-dependent departures from this scaling would inhibit data collapse using similar 190 

n values, particularly among catchments with disparate rainfall. Notably, variable n values with climate and 191 

breakdown of quasi-linear scaling should also be expressed in collinearity between trunk and tributary 192 

rivers, which we do not observe (Fig. 2G). Together, these findings suggest capturing the influence of 193 

climate is an important precondition to understanding interactions among topography, erosion, and other 194 

environmental variables.   195 

 Implications for Landscape Analysis 196 

This analysis reveals important considerations for future landscape analyses. Although we argue that 197 

tributaries here have lower ksn than trunk rivers due to climate-driven variations in erosional efficiency (K), 198 

anytime large and small rivers exhibit this pattern a lower θref will decrease the channel steepness disparity 199 

between them. Optimizing collinearity between rivers in χ-z space will return the θref value that best 200 

approximates assumptions required for equal ksn: spatially uniform K and U. Under such conditions, 201 

differences in slope are directly related to differences in upstream drainage area. In practice, enforcing this 202 

condition optimizes convolution of any environmental variations that exist with drainage area, and 203 

systematic spatial gradients in K and/or U will bias optimized values. This of course is problematic if the 204 

goal is to extract meaningful information about controls on channel steepness. Further, rather than true 205 

variability in θref, variability in optimized values likely reflects spatially variable K and/or U (i.e., violations 206 

of collinearity requirements, not variations in factors controlling intrinsic profile concavity represented by 207 

m/n in the SPM). This same reasoning applies to ksnQ. However, unlike ksn where orographic rainfall can 208 

systematically affect K between catchments across large areas and effects of these rainfall variations can 209 

propagate downstream (e.g., integrating dry headwaters)(11), lithology (~Kp) and data resolution limitations 210 

primarily affect ksnQ only locally. Collinearity optimization algorithms are better-equipped to handle 211 

localized perturbations (36), decreasing potential for biased θref estimates based on χQ-z collinearity.  212 

Despite these strengths, we do not necessarily expect all landscapes are in quasi-equilibrium with modern 213 

MAP. These exceptions may reflect important complexities of the local hydroclimate or recent climate 214 

changes that have substantially altered modern rainfall patterns (e.g., refs(47–49)). Also, spatial gradients 215 

in uplift can differently influence trunk and tributary ksnQ. In all these cases, optimizing χQ-z collinearity 216 

may also give biased θref estimates, the use of which may complicate ksnQ-erosion rate relationships and 217 

distort the apparent influence of different environmental variables. As such, we caution that these factors 218 

should considered when interpreting χQ-z collinearity.  219 
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We conclude that ksnQ based on MAP with θref ≈ 0.45-0.5 provides the best remote estimate of spatial 220 

variations in erosion at the landscape sale. Calibrated with erosion rate measurements it can dramatically 221 

improve understanding of primary environmental controls on landscape evolution. These findings are 222 

unaffected by the diverse climatic, tectonic, and morphologic conditions across >1500 km along strike on 223 

the eastern flank of the central Andes, demonstrating that climate exerts a strong, ubiquitous influence on 224 

erosional efficiency and topography.  225 

MATERIALS AND METHODS 226 

Topographic Analysis 227 

We use one-arcsecond (~30 m) Shuttle Radar Topography Mission digital elevation model (50) and 228 

TRMM-2B31 (Tropical Rainfall Measuring Mission) rainfall data (51), which has ~4.5 km horizontal 229 

resolution at this latitude. We extracted and analyzed river profiles from 104 transversely draining 230 

catchments (> 100 km2) that span >1500 km north-to-south along the eastern margin of the northern-central 231 

Andes using built-in functions in TopoToolbox and the Topographic Analysis Kit (52, 53). We extract the 232 

longest (trunk) river from each of the 104 transverse catchments and all tributaries that drain directly into 233 

the trunk stream with drainage area between 5 and 100 km2 (1694 total). Then we apply the χ-transform 234 

(34) to stream networks to linearize profiles in χ-elevation plots: 235 

𝜒 = ∫ . '$
'())

/
$!"#

𝑑𝑥,)
)%

     (3a) 236 

𝑧(𝑥) = 𝑧(𝑥+) + 𝑘!" ∙ 𝜒,     (3b) 237 

where x is distance upstream; xb is the outlet position; A0 is a reference drainage area, here set equal to 1 238 

km2; and z is elevation. The above equations can similarly be cast in terms of discharge (Q) rather than 239 

drainage area to arrive at χQ and ksnQ (11, 40):  240 

𝜒# = ∫ . #$
#())

/
$!"#

𝑑𝑥,)
)%

     (4a) 241 

𝑧(𝑥) = 𝑧(𝑥+) + 𝑘!"# ∙ 𝜒# .    (4b) 242 

Collinearity is defined as the degree to which two river segments collapse to a single line in χ-z (or χQ-z), 243 

which we quantify in two ways. The first method directly compares average channel steepness (ksn and ksnQ) 244 

of tributaries with equivalent segments of its trunk river: lines may only be collinear if they have equal 245 

slopes. We calculate average channel steepness for each tributary as its fluvial relief divided by the change 246 

in χ (or χQ), both of which are measured from the tributary confluence with the trunk river upstream to a 247 

minimum drainage area of 1 km2 (i.e., ksn=Δz/Δχ). Average ksn and ksnQ for comparable segments of the 248 
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trunk river are calculated using Δχ (or ΔχQ) along the trunk river over the same elevation range as for each 249 

tributary. Results and interpretations are not sensitive to different methods of calculating average ksn or ksnQ, 250 

for example with a fixed segment smoothing distance.  251 

The second method optimizes θref values for both for ksn and ksnQ that maximize collinearity in χ-z and χQ-252 

z, respectively, in individual catchments using the ‘mnoptimvar’ function in TopoToolbox (52) (c.f.,(36, 253 

39)). It operates by segmenting stream networks from each catchment into bins of equal χ (or χQ). The 254 

function then searches for the θref value that minimizes elevation differences as quantified by a user-defined 255 

variability statistic among stream segments across all bins. Optimization results presented in the main text 256 

use the ‘robustcov’ function in MATLAB, which implements an efficient algorithm to estimate the 257 

minimum covariance determinant (54). Minimizing interquartile range and standard deviation yield 258 

comparable results. Results do not appear sensitive to the number of bins or to the minimum number of 259 

stream segments within each bin. As discussed in the main text, optimized values reflect those that best 260 

align with assumptions for collinearity, which are not necessarily equivalent to the most appropriate θref 261 

value, particularly in catchments with spatially varying environmental factors (Supplementary Material).  262 

Interpolated maps for ksn and ksnQ are all generated from the same stream network. Color ramps for ksn and 263 

ksnQ maps are normalized to reflect equivalent data ranges that include ~99.5% of pixel values. This range 264 

was determined to exclude outliers that saturate color maps. The normalized difference map was calculated 265 

by first normalizing values in ksn and ksnQ maps between 0 and 1. Color ramp was then optimized for 266 

visualization centered on a value of 0 with symmetrical ranges above and below. 267 

10Be Sample Preparation 268 

Southern Peru samples were collected in 2018 from active channel deposits of quasi-steady state trunk-269 

stream tributaries, and processes at the WOMBAT laboratory at the School of Earth and Space Exploration 270 

at Arizona State University. Samples were first rinsed and dry-sieved to yield 250-1000 µm fraction. Sieved 271 

samples were cleaned using a 2:1 solution of hydrochloric acid (HCl) and nitric acid (HNO3). Samples 272 

underwent density separation using lithium polytungstate (LST) to remove heavy minerals, which was then 273 

diluted to separate quartz from less dense minerals. Samples were leached using 1-2% hydrofluoric acid 274 

(HF) and HNO3 solution and rolled on heat for 6-8 hours. Samples underwent a minimum of 10 leaches to 275 

eliminate mineral species other than quartz and ensure complete etching of quartz grains. Once quartz 276 

fractions were purified, samples were spiked with a commercial 9Be solution and dissolved in HF and 277 

HNO3. Beryllium was extracted through standard anion and cation chromatography techniques, oxidized 278 

in a muffle furnace, and mixed with a niobium matrix and loaded into cathodes for analysis on the 279 
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accelerator mass spectrometer at Purdue Rare Isotope Measurement Laboratory. Reported 10Be/9Be ratios 280 

are blank corrected. 281 

Erosion Rate Calculation, Curation, and Regression Analysis 282 

Published erosion rates were recalculated using a common workflow to ensure robust comparisons and 283 

curated to exclude catchments unlikely to reflect quasi-steady state conditions. We exclude catchments with 284 

large slope-break knickpoints, which unfortunately includes a considerable fraction of catchments from the 285 

various published datasets. Overwhelmingly, remaining catchments are composed of a single lithology (15, 286 

16), and those comprising more than one lithology are classified according to the dominant lithology by 287 

extent within the catchment. Channel steepness for new and published samples in quasi-steady state 288 

catchments were calculated with a minimum drainage area of 1 km2 and 500 m smoothing distances. 289 

Erosion rates were recalculated using a production-rate weighted elevation following procedures of 290 

Portenga and Bierman (55) and published 10Be concentrations were scaled to all be consistent with 291 

07KNSTD standard (56). Erosion rates were then calculated using the CRONUS online calculator (version 292 

3.0)(57, 58). We assume no topographic shielding, 0 cm sediment thickness, and density of 2.65 g/cm3, and 293 

use the ‘std’ elevation flag. Erosion rates are calculated using time-invariant production rate scaling (59), 294 

and are quoted with 1σ external uncertainty.  295 

Regressions analysis was conducted following methods from Adams et al.(1). Quality of fits was evaluated 296 

using the MSWD, which can account for uncertainties on individual measurements in both x and y 297 

directions. Well fit models should approach 1 ± 2σ, with higher values indicating that data are over-298 

dispersed and the degree to which uncertainties are likely underestimated (60). Models are fit using 2σ 299 

external uncertainties on erosion rate measurements and 2 SE on ksn and ksnQ. We fit distinct relationships 300 

apparent in ksn-E and ksnQ-E in two ways using the ‘MC York’ MATLAB function from Adams et al.(1). In 301 

the first, we allow both the power-law coefficient (K or Kp) and exponent (n) vary freely to arrive at the 302 

best-fit pair of parameter values. In the second, we fix n to find the best-fit K or Kp value. These different 303 

approaches yield similar parameter values with indistinguishable differences in quality of fits. However, an 304 

advantage to fixing the n exponent allows for direct comparison of K or Kp values between trends and is 305 

therefore preferred. Five samples with Neogene-Paleogene age bedrock from Hippe et al.(45) were 306 

excluded from all fitting because they do not correlate with rocks of similar age across the study area, unlike 307 

other rock units, and were not fit separately due to their small population and narrow ranges of both channel 308 

steepness and erosion rate.   309 
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Figures 465 

 466 

Figure 1. Map synthesizing topography, rainfall, subduction regime, and channel steepness patterns from 467 

the north-central Andes of Peru and Bolivia. Topographic analysis based on catchments outlined in white. 468 

Locations of 10Be erosion rate measurements used for this study shown with yellow circles (54 total). 469 

Comparisons between χ-z (red), and χQ-z (blue) profiles for representative catchments along-strike. Trunk 470 

profiles are highlighted in black. All panels plotted with θref = 0.5 and show optimized θref values determined 471 

using stream networks with minimum upstream drainage area of 5 km2 (and 1 km2) – see text for details. 472 

Numbered lines 1-4 on maps show centerline locations of 50 km wide swath profiles of topography and 473 

rainfall, depicted top-right. Swaths show mean, minimum, and maximum values; vertical dashed lines show 474 

position where mean elevation reaches 2 km – see text for details.  475 
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 476 

Figure 2. Comparison between trunk and tributary ksn for θref = 0.5 (A-C), θref = 0.3 (D-F), and ksnQ (θref = 477 

0.5; G-I). Dashed lines show 1:1 relationship. Solid black lines show total least-squares (A, D, G) and 478 
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ordinary-least-squares (B, E, H) regressions with 95% confidence intervals in gray. Spatial pattern of 479 

erosion predicted by trunk and tributary rivers shown in C,F, and I.  480 

 481 

 482 

Figure 3. Analysis of optimized θref values individually fit to χ-z profiles (red) and χQ-z (blue) for each 483 

catchment along-strike, and comparison between stream networks calculated with minimum drainage areas 484 

of 1 km2 (A), 5km2 (B), and 10km2 (C). Optimized θref values are plotted alongside catchment rainfall 485 

characteristics and drainage area. Histogram shows frequency of optimized values – see Materials and 486 

Methods and Supplementary Material. 487 
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 488 

Figure 4. Comparison between interpolated maps – see Materials and Methods – of ksn and ksnQ illustrating 489 

distinct erosion rate patterns predicted by each (A-C), difference map highlighting contrasts between ksn 490 

and ksnQ (D) and simplified geologic map (E). Color stretches for panels (A-C) are linear minimum-491 

maximum scales cropped to the same data range to be directly comparable while excluding outliers (colors 492 

show lower ~99.5% of the full data ranges). Geology and faults simplified from ref.(15) and recent 493 

seismicity is from the USGS earthquake catalog.  494 

 495 
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 496 

Figure 5. Synthesis of 10Be catchment-average erosion rates (54 total) from the eastern flank and of 497 

northern-central Andes, including curated published data from northern and central Bolivia (43–46) and six 498 

new rates from southern Peru. EC and SA denote association with the Eastern Cordillera and Subandes, 499 
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respectively. Measurements shown with 1σ uncertainty. See Materials and Methods for details about data 500 

curation, lithologic classification, and regression analysis. Regressions based on the best-fit fixed n values 501 

are preferred because they allow direct comparison of K (or Kp) values between trends; results from 502 

regressions where both n and K (or Kp) values are allowed to vary are similar and shown for comparison. 503 

Samples from catchments with Plutonic bedrock and high rainfall (Wet Plutonic) excluded from fitting in 504 

(A) are shown with red error bars; however, these samples are not excluded from fitting in (B) because θref 505 

= 0.3 here implies K is independent from rainfall. Note, ksnQ resolves distinct trends among resistant rock 506 

types found in the EC that are not evident using ksn, and best-fit n values for ksn (both θref) are higher than 507 

for ksnQ. Further, note clustering of plutonic bedrock samples (squares) experiencing wide variations in 508 

rainfall in (C) compared with scattering exhibited by these same sample in (A) and (B).   509 
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Fig. S1. Comparison between best-fit optimized θref and fit residuals for χ-transformed catchments 
(top) and χQ-transformed catchments (bottom), for all minimum drainage area thresholds analyzed 
(see Figure 3 in main text). Color shows basin size: color stretch restricted to emphasize lower 
drainage areas. Note, each panel is normalized internally such that residuals for each catchment 
fall between 0 and 1, and residuals scale roughly with catchment size. Thus, relative characteristics 
between panels are not necessarily comparable and only comparisons within the same panel among 
catchments of similar sizes are appropriate. Within each panel, we can observe that catchments 
with anomalous (low) optimized θref exhibit similar residuals to catchments with values near 0.5, 
demonstrating these anomalous values are indeed effective in collapsing profiles and achieving 
collinearity, and therefore are not the result of relatively inferior fits. Because these catchments 
also tend to exhibit variable lithology (15, 16) and/or strong disequilibrium, this also demonstrates 
that adjusting θref alone can effectively compensate for and mask meaningful variations in channel 
steepness.  
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Fig. S2. Constraints on SPM exponent n from regressions for ksn with θref = 0.3 (A, B), ksn with θref 

= 0.5 (C, D) and ksnQ with θref = 0.5 (E-G). Each point records MSWD ± 2σ of best-fit regression 
(representing a distinct K(or Kp)-n pair) for given fixed n values, calculated over the range of 1-3 
at increments of 0.1 using methods from Adams et al. (1). Red horizontal lines bound MSWD ± 
2σ for the n value of the best-fit among all values (MSWD nearest to 1). Regressions for different 
n values with MSWD range that overlaps with best-fit n value are shown in red and interpreted to 
yield comparable goodness-of-fit, thus providing constraints on the range of possible n values. 
Note, n values for Eastern Cordillera (EC) trends evident using ksn (both θref) are higher and less 
well constrained than either of the EC trends that emerge using ksnQ. Subandean trends are 
unconstrained for both ksn and ksnQ. However, assuming an n value for Subandean trends equal to 
those calculated from EC trends, which are compatible with Subandean trends, implies a K or Kp 
value that can be directly compared. 
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Data S1. (separate file) 
Source data for all plots and analyses presented in the main text, comprising a spreadsheet with 
three tabs formatted in excel. Tabs are: 1) ‘Large Basin Stats’ with topographic characterizations 
of 104 basins depicted in main text Figs. 1 and 3; 2) ‘Trunk-Tributary Pairs’ with source data and 
relevant information for all catchments analyzed to create main text Fig. 2; and 3) ‘Erosion Rate 
Catchment Stats’ containing all information to reproduce analysis presented in main text Fig. 5. 
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