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• Retrospective land subsidence of 117
years is investigated with respect to the
impact on flood inundation.

• Hydrodynamic simulation reveals the im-
pacts from land subsidence regarding
flood depth, inundation extent, and flow
velocity.

• The effects of land subsidence on flooding
are not only heterogeneous but even
mixed with both positive and negative
impacts.
Schematic flowchart of flood inundation modeling with land subsidence information. First, one hundred and seven-
teen years of land subsidence is simulated by a physics-based modeling considering groundwater withdrawal and
the consequent aquifer-system compaction. Then flood inundation mapping from Hurricane Harvey is conducted by
a hydrodynamic model over the topologies in different historical times from 1900 to 2017 to investigate the impacts
from land subsidence.
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As one of the most devastating tropical storms, 2017 Hurricane Harvey caused severe flooding and damage in Houston,
Texas. Besides enormous rainfall amount, land subsidencemight be another contributing factor to the Harvey flood. How-
ever, few studies have numerically quantified the evolvement of land subsidence over decades, largely due to the lack of
reliable methods to realistically estimate land subsidence both continuously and at high spatial resolution. Therefore,
this study aims to investigate retrospective changes of regional topology due to 117 years (1900 to 2017) of land subsi-
dence and the consequent impacts on flood inundation. Based on continuous land subsidence, we conduct a series of sim-
ulations on the 2017HurricaneHarvey in Brays Bayou, Texas using a hydrodynamic/hydraulicmodel. The results indicate
that the overall change of flood depth caused by land subsidence is relatively minor with the flood water deepened by six
centimeters per onemeter of subsided land at theworst impacted location. The impact from land subsidence onflooddepth
exhibits strong nonlinearity in time,where effects fromprevious land subsidence hotspots could be altered by later continu-
ing land subsidence. Spatially, changes in flood depth due to the land subsidence are not only heterogeneous but mixed
with coexisting increased and reduced flood depths. The results of this study improve the understanding of the dynamic
evolvement of flood inundation due to continuous land subsidence so that better planning can be initiated for sustainable
urban development for coastal communities, which is imperative under ongoing climate change and sea level rise.
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1. Introduction

Flood is one of the most destructive natural disasters throughout the
world (Kellens et al., 2013; Munawar et al., 2019; Ahmadlou et al., 2021;
Shareef and Abdulrazzaq, 2021). Not only does it pose a great threat to
human beings and their living environment, but it also causes severe dam-
age to the economy (Penning-Rowsell et al., 2005; Khan et al., 2010;
Michel-Kerjan and Kunreuther, 2011; Patel et al., 2017; Farooq et al.,
2019; Kim et al., 2020). Based on the international disaster database,
flooding has resulted in a total loss of over $870 billion globally since
1900 (EM-DAT, 2020). In the United States (U.S.) alone, flooding has
caused more than $68 billion in loss between 1970 and 2019 (FEMA,
2020). As one of the most devastating events, 2017 Hurricane Harvey pro-
duced the largest rainfall of any U.S. hurricane on record (Emanuel, 2017)
with the maximum four-day rainfall exceeding 1000-year return period in
most of Houston-Beaumont region (HDSC, 2017). During the severe
flooding caused by Hurricane Harvey, numerous houses damaged are lo-
cated even outside of the 500-year floodplain areas (Jonkman et al.,
2018; Miller and Shirzaei, 2019). The unprecedent nature of the Harvey
floods calls for a significant advancement in understanding of the processes
of determining flood risk and severity.

Besides climate variability and changes, several studies have shown that
anthropogenic and natural changes to the land surface (e.g., land subsi-
dence) might exacerbate flooding issues (e.g., Rodolfo and Siringan,
2006; Hanson et al., 2011; Viero et al., 2019; Ouyang et al., 2020). Espe-
cially for theflat-lying coastal areas, land subsidencewould increase the po-
tential for flooding caused by tides and storm surges (Holzer and Johnson,
1985). Dixon et al. (2006) found the failure of the levees during Hurricane
Katrina could be caused by land subsidence in New Orleans. A study done
by Wang et al. (2012) indicated land subsidence affects coastal seawalls
and flood-control levees in Shanghai, leading to changes in floodplain
boundaries. Moreover, Ouyang et al. (2020) analyzed the local land subsi-
dence caused by 2011 Tohoku earthquake in Japan and found the inunda-
tion areas would be underestimated by around 10 % if only considering
rainfalls without considering the effect of land subsidence. In the U.S.,
land subsidence happens in many urbanized areas with over 44,000 km2

across 45 states, and among all the affected areas, the Houston-Galveston
area experienced land subsidence as early as 1900s (Stork and Sneed,
2002). The main causes of land subsidence in this area are the exploitation
of groundwater, extraction of oil and gas, and depletion of hydrocarbon res-
ervoirs (Holzer and Bluntzer, 1984; Galloway et al., 1999). Based on a re-
port conducted by the United States Geological Survey (USGS), land
subsidence in Houston-Galveston region continued throughout the 20th
century (Stork and Sneed, 2002). Even until recent years, land subsidence
of >10 mm/year and up to 25 mm/year is still happening in inland areas
north and west of the City of Houston (Yu et al., 2014). Hence, it is impor-
tant to evaluate flood impacts in regions prone to land subsidence.

To investigate the impacts of land subsidence on inundation, remote
sensing observation has been utilized by previous studies. For instance,
Shirzaei and Bürgmann (2018) utilized interferometric synthetic aperture
radar (InSAR) and global navigation satellite system to estimate the land
subsidence rate in the San Francisco Bay Area and generated the future
100-year inundation maps based on probabilistic projections of sea level
rise. Similarly, Catalao et al. (2020) also used InSAR measurements to
estimate land subsidence and combined with future sea level rise scenarios
to identify the projected flood inundation areas in Singapore. Other than
these projection/scenario-based studies, Miller and Shirzaei (2019)
analyzed the flood inundation extent of Hurricane Harvey derived from
satellite images and correlated it with land subsidence data in two different
historical periods estimated from InSAR. Ito et al. (2015) used the digi-
tal elevation model (DEM) data obtained from the airborne laser scan-
ning and flood inundation area recorded from the report to examine
the relationship between land subsidence and floods in Japan. However,
a major limitation by observation-driven approaches is that inundation
is often captured via ‘snapshots’ without fully characterizing its tempo-
ral dynamics.
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An alternative to remote sensing is to conduct hydrodynamic modeling
of flood inundation. Hsu et al. (2010) utilized HEC-RAS 1D and FLO-2D
models to analyze the influence of the land subsidence for flood hazards
based on two designed flow rates with 1994 and 2004 DEM data. Yin
et al. (2013) conducted a scenarios-based study using a 1D/2D coupled
flood inundation model to investigate compound effects of land subsidence
and sea level rise on fluvial flooding in Shanghai, China. Carisi et al. (2017)
investigated the flooding intensity in Italy for four different terrain config-
urations using a hydrodynamic model which includes both 1D and 2D sim-
ulations. Dang et al. (2018) used the hydrodynamic model MIKE 11 to
study the impact of land subsidence, sea level rise, and water infrastructure
development in Vietnam based on some designed scenarios. Ouyang et al.
(2020) applied MIKE models over two periods (before and after land subsi-
dence caused by the Tohoku earthquake) to quantify the effects of land
subsidence on the inundation areas in Japan. Hydraulic/hydrodynamic
modeling approach provides significant advantages over remote sensing
methods due to its ability to capture the flood dynamics spatially and
temporally.

Nonetheless, both remote sensing and hydrodynamic approaches to
quantify the effects of land subsidence on flood inundation heavily rely
on the surveyed DEM (Hsu et al., 2010; Ito et al., 2015; Carisi et al.,
2017; Ouyang et al., 2020), field measurements/monitoring (Miller et al.,
2008; Wang et al., 2012; Yin et al., 2013, 2016;), and remote sensing tech-
niques (Dixon et al., 2006; Dang et al., 2018) to represent land subsidence
information. The infrequent, short-duration, topology surveys/monitoring
inevitably requires assuming a linear land subsidence at some constant
rate, which could be unrealistic especially when the anthropogenic activi-
ties like groundwater pumping drive the land subsidence. Therefore, few at-
tentions have been paid to quantifying the evolution of land subsidence
influence on flood extent and depth over an extended historical period.
This is largely due to the lack of reliable methods to realistically estimate
land subsidence both continuously and at high spatial resolution.

To this end, our study investigates retrospective changes of regional to-
pology due to 117 years (1900 to 2017) of land subsidence, which is en-
abled by a high-resolution, physics-based modeling of groundwater
withdrawal and the consequent aquifer-system compaction. By analyzing
the spatial heterogeneity of land subsidence and the consequent change
over flood inundation using a hydrodynamic model in different historical
periods, we have an unprecedented chance to better understand the com-
plex of flood inundation and its relationship with land subsidence. The out-
come of this study can help people better understand the dynamic
evolvement of flood inundation due to land subsidence so that better plan-
ning can be initiated for sustainable urban development for coastal commu-
nities. Research objectives of this study are (1) to examine the change in
topology due to a historical 117-year land subsidence, (2) to establish a hy-
drodynamicmodel that accurately reproduces the flood inundation of 2017
Hurricane Harvey, and (3) to investigate the change in Harvey flood inun-
dation due to the historical land subsidence in Brays Bayou, Texas.

The rest of this paper is organized as follows: Section 2 introduces the
study area and materials utilized including land subsidence data, DEM,
channel bathymetry, precipitation, and observation data; Section 3
describes the methodology of model development, model calibration and
validation, and designed simulation scenarios; Section 4 presents the results
of the model simulations for different scenarios; Section 5 discusses the re-
sults, underlines the main findings and limitations in this study, and recom-
mends future directions for other similar studies; The conclusions with
insights gained from this study are summarized in Section 6.

2. Study area and materials

2.1. Study area

Harris County, located in the southeastern of Texas (Fig. 1a), has expe-
rienced tremendous increases in development in the past decades (Walker
and Shelton, 2016; Chun et al., 2021). Owing to the rapid growth and
groundwater withdrawal, land subsidence in this region has been occurring



Fig. 1. (a) Location of the study area (Brays Bayou) with land subsidence during the period of 1900 to 2017 in Harris County and (b) Flowline, stream gauges and the digital
elevation model (DEM) in Brays Bayou. Land subsidence due to groundwater withdrawal is simulated using the Houston Area Groundwater Model (HAGM).
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for years (Kasmarek et al., 2009) and Fig. 1a shows the cumulative land
subsidence simulated using the Houston Area Groundwater Model
(HAGM, Kasmarek, 2013) from 1900 to 2017 in this region. Not only has
the increased urbanization caused subsidence, but it also has aggravated
this region's flood vulnerability (Garcia et al., 2020). From 1996 to 2019,
there are over one hundred flood events that occurred in Harris County
(FEMA), with about 10.3 billion US dollars of the total estimated losses to
property damage (NOAA, 2020).

Located close to the land subsidence center (Fig. 1a), the Brays Bayou
watershed is selected as the study area with a drainage area of approxi-
mately 330 km2. 95 % of Brays Bayou is developed land (Fig. S1) and it is
one of the most urbanized watersheds in Harris County (Bass, 2017; Gao
et al., 2021). The climatology in this region is wet and subtropical with
humid, hot summers and mild winters (Li et al., 2021). This area is vulner-
able to floods due to its flat terrain, impermeable land surface (Fig. S2),
clayey soil (Fig. S3), and frequent, extreme rainfall from tropical storms
and hurricanes (Bedient et al., 2003; Bass et al., 2017; Li et al., 2021). Pre-
vious studies have shown that land subsidencemade the overland and chan-
nel slopes flatter than 0.001 % downstream from Main Street to the East in
Brays Bayou (Vieux and Bedient, 2004). Fig. 1b shows the Brays Bayou
watershed with the digital elevation model (DEM) and five stream gauges.

2.2. Data

2.2.1. Land subsidence and topography data
In this study, land subsidence caused by groundwater withdrawal is

simulated using the Houston Area Groundwater Model (HAGM) updated
by Kasmarek (2013) with the Subsidence and Aquifer-System Compaction
(SUB) package (Hoffmann et al., 2003). HAGM can simulate groundwater
flow and land subsidence in the northern part of the Gulf Coast aquifer sys-
tem in Texas from predevelopment (before 1891) through 2009. Land sub-
sidence from 2009 to 2017 is simulated with HAGM by using the 2009
groundwater pumping plan of a total 3 million m3/day since no significant
primary compaction subsidence was observed during the stable groundwa-
ter level period in trend for the Chicot and Evangeline aquifers (Liu et al.,
2019). As much as 3.05 m of land subsidence was observed in 1979 in
the Houston-Galveston region as a result of inelastic compaction of
aquitards in the Chicot and Evangeline aquifers between 1937 and 1979
(Galloway et al., 1999) and simulated subsidence up to 3.0 m (300 cm)
can be found in Fig. 1a.

The spatial and temporal distribution of land subsidence rates from
1900 to 2017 in the Brays Bayou watershed can be seen in Figs. S4a-S4f
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(Supplementary Materials). No significant subsidence is found for the
period of 1900 to 1930 in the study area (Fig. S4a). Then the pre-
consolidation pressure heads within the Chicot and Evangeline aquifers
continuously reacted to lowering groundwater levels, which in turn was
caused by continuously increasing groundwater withdrawal rates from
0.57 to 4.28 million m3/day by 1979 (Liu et al., 2019). Figs. S4b, S4c and
S4d show simulated subsidence rates up to 40 to 55 mm/year in a small
border area during 1930 to 1960, up to 40 to 55 mm/year in an extended
area during 1960 to 1970, and up to 75 to 95 mm/year in a big central
area during 1970 to 1980. This land subsidence occurredwithout anyman-
agement over groundwater levels before 1979. However, it is found that the
management of recovering groundwater levels in the Galveston-Houston
region from 1979 to 2000 (Kasmarek, 2013; Liu et al., 2019) successfully
decreased inelastic primary compaction from up to 79 to 95 mm/year
due to increasing groundwater withdrawals from 2.5 to 4.3 million m3/
day during 1970 to 1980 (Fig. S4d) down to up to 40 to 55 mm/year due
to decreasing groundwater withdrawals from 4.3 to 3.5 million m3/day
during 1980 to 1990 (Fig. S4e) and further down to <5 mm/year with
some land rebound (less than zero mm/year) through further decreasing
groundwater withdrawals from 4.3 to 3.0 million m3/day during 1990 to
2017. Land subsidence rates of 0.08 to 8.49 mm/year since 2005 observed
by 13 borehole extensometers is due to creep compaction of the Gulf Coast
aquifer system (Liu et al., 2019), which is out of simulated subsidence only
due to groundwater pumping (Kasmarek, 2013). Overall, land subsidence
increases rapidly, especially from 1960 to 1970 with the mean areal rate
of 38.2 mm/year and from 1970 to 1980 with the mean areal rate of 58.8
mm/year. Then the land subsidence rate almost stopped increasing after
1980 and ended with the rate of 1.9 mm/year during the period of 1990
to 2017.

DEM with 10-m spatial resolution is obtained from the USGS website
(https://apps.nationalmap.gov/downloader/#/). Since DEM cannot repre-
sent sufficient information on channel cross-sections, bathymetry data
needs to be combined with DEM if available to better represent channel
shape (Goodell, 2014). In this study, channel bathymetry data is obtained
from the Model and Map Management (M3) system (HCFCD, 2020a).

2.2.2. Precipitation and observation data
Precipitation data used in this study is the hourly Stage IV product with

4-km spatial resolution obtained from theNational Centers for Environmen-
tal Prediction (NCEP), which combines multi-sensor (quality-controlled
radar, satellite, and rain gauge) precipitation estimates (Lin and Mitchell,
2005; Habib et al., 2009; Nelson et al., 2016). The Stage IV radar data

https://apps.nationalmap.gov/downloader/#/
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during Hurricane Harvey have been systematically validated by Gao et al.
(2021) and showed close match with ground truths from a dense rain-
gauge network.

Observational stage hydrographs at five (5) stream gauges (Fig. 1b) are
retrieved from the Harris County Flood Warning System website (HCFCD,
2020b). Except the most downstream gauge which is used as the down-
streamboundary condition for the hydrodynamicmodel, the rest four stream
gauges are utilized as benchmarks to calibrate the model in this study.
Ninety-nine (99) highwater marks surveyed during the 2017 Hurricane
Harvey are obtained from the Harris County Flood Control District (HCFCD,
2020c) and this information is used to validate the model simulation.

3. Methodologies

3.1. Terrain data preparation

Since the year of 2017 is selected as the starting point, the 2017 terrain
data is developed by combining the DEM of 2017 with channel bathymetry
in RAS Mapper. Then terrain data of other years (1900, 1930, 1945, 1960,
1970, 1980, 1990, 2000, 2010) are developed using the projected land sub-
sidence of that year superimposed upon the 2017 condition as shown in
Eq. (1) below:

TY ¼ T2017 þ LSY‐2017 (1)

where T means Terrain, LS is Land Subsidence, and Y is year.

3.2. Model set-up, calibration, and simulation scenarios

In this study, the Hydrologic Engineering Center-River Analysis System
2D (HEC-RAS version 5.0) is utilized as a modeling tool to simulate the
flood inundation due to its broad applications in both industrial and aca-
demic fields (e.g., Tayefi et al., 2007; Shustikova et al., 2019; Costabile
et al., 2020; Ongdas et al., 2020; Shrestha et al., 2020; Karim et al.,
2021). HEC-RAS 2D solves either the two-dimensional Saint Venant
equations (with optional momentum additions for turbulence and Coriolies
effects) or the diffusion wave equations (Brunner et al., 2016a, 2016b).
Fig. 2. Overarching flowchart of m
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Fig. 2 illustrates the input data and workflow of the model set-up and
simulations.

The HEC-RAS 2D model is built by first importing the prepared terrain
data (DEM combinedwith channel bathymetry) into the RASMapper. A 2D
flow areawith grid dimensions of 30-m×30-m is then created as a compu-
tational mesh, and this cell size is selected in respect to computation time
and model stability. The Manning's roughness is assigned based on the
land use and land cover data from the 2016 National Land Cover Database
(NLCD, https://www.mrlc.gov).

To provide precipitation input, we process the hourly Stage IV rainfall
by calculating the areal average values over the watershed (Fig. S5a)
since the HEC-RAS (version 5.0) only accepts a time series of spatially uni-
form precipitation as input. The total rainfall from Harvey (Fig. S6) shows
little spatial variability with the coefficient of variation being 0.05 for
Stage IV rainfall values within the watershed boundary. Therefore, we con-
sider it acceptable to adopt the watershed-averaged precipitation for HEC-
RAS input. Another limitation of HEC-RAS v 5.0 is the inability to represent
infiltration. For Hurricane Harvey, Gao et al. (2021) estimated the runoff
coefficient in Brays Bayou to be 91 % based the runoff volume received
by the most downstream USGS gauge and total rainfall, which is largely
due to the 95 % urbanization rate and 72 % imperviousness of Brays
Bayou as well as the enormous rain volume from Hurricane Harvey.
Given the high runoff coefficient, neglecting loss caused by infiltration
and interception is also considered reasonable in this study.

The stage hydrograph, as shown in Fig. S5b at gauge 410 (Fig. 1b), is
utilized as the downstream boundary condition for the unsteady simula-
tion. Additionally, an initial condition with ramp-up option is set in order
to let the flow go through the 2D area and establish the initial wet condi-
tions before the beginning of the simulations. Detailed model specification
can be found in Table 1.

To consider the land subsidence, the authors build respective HEC-RAS
2D models to represent the corresponding topography from 1900 to 2017
through modifications of terrain data. The model of 2017 is manually cali-
brated for Hurricane Harvey (8/25/2017-8/30/2017) by comparing the
simulated and observed stage hydrographs at four-gauge locations (gauges
465, 440, 420, and 08075110). The Manning's roughness coefficients are
modified via a uniformmultiplicative factor during the calibration process.
odel set-up and simulations.

https://www.mrlc.gov


Table 1
HEC-RAS 2D model settings.

Parameters Settings

Boundary Conditions Rainfall and downstream stage hydrograph
2D Flow Equation Set Diffusion Wave
Maximum Iterations 20
Initial Conditions Ramp up Time (hrs) 120
Boundary Condition Ramp Up Fraction 0.5
Model Computation Interval 3-min
Model Output Interval 15-min

Table 2
Statistics of calibration results at four stream gauges along Brays Bayou.

Gauge ID RMSE (m) NSE CC Absolute Error at
Peak Timing (m)

465 0.87 0.84 0.95 0.28
440 1.11 0.81 0.90 0.44
420 0.99 0.87 0.94 0.40
08075110 1.07 0.88 0.94 0.36
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Once the calibration is satisfactory, we use 99 surveyed highwater marks
during Hurricane Harvey to validate the calibration results. After the
model calibration and validation, the optimizedManning's roughness is im-
plemented for models of other years between 1900 and 2017. Thus, each
simulation scenario has the same model settings except the associated ter-
rain to represent only the impacts caused by the land subsidence.

3.3. Quantitative statistics

Calibration results are evaluated using the root mean squared error
(RMSE), Nash-Sutcliffe Efficiency (NSE), and correlation coefficient (CC).
RMSE describes the discrepancy between the simulation and observation,
quantifying the scale of the error (Mediero et al., 2011). The closer the
RMSE value to 0, the more accurate the model is. While NSE shows how
well the plot of observation results versus the simulation fits the 1:1 diago-
nal line. The higher NSE value is, the better the simulation performance
(Legates and McCabe, 1999). CC measures the linear correlation between
simulation and observation. Because in this study we intend to analyze
the maximum flood inundation, the absolute error at the flood peak timing
is evaluated. The equations of computing RMSE, NSE, CC, and absolute
error at peak timing are shown in Eqs. (2)-(5):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
i¼1 Hi

sim � Hi
obs

� �2
n

s
(2)

NSE ¼ 1 � ∑n
i¼1 Hi

sim � Hi
obs

� �2
∑n
i¼1 Hi

obs � Hobs
� �2 (3)

CC ¼ 1
n � 1

∑n
i¼1

Hi
sim � μsim
σ sim

� �
Hi

obs � μobs
σobs

� �
(4)

Absolute Error ¼ ∣Hpeak
sim � Hpeak

obs ∣ (5)

where Hsim
i is the simulated flood depth of the ith data, Hobs

i is the observed
flood depth of the ith data, andHobs is themean of the observedflood depth.
μsim and σsim are the mean and standard deviation of simulated data, respec-
tively. μobs and σobs are those of observation, and n is number of the total
data points. Hsim

peak and Hobs
peak are the simulated and observed flood depth at

peak timing, respectively.
To compare the changes in maximum flood depth caused by the land

subsidence, the authors calculate the flood depth difference (FDD) by
subtracting the maximum flood depth simulated using the scenario for
1900 from the maximum flood depth simulated from other years (e,g,
year Y). Since the 1900 scenario is the baseline flood condition without
land subsidence, the subtrahend is always the maximum flood depth in
the Year 1900 for this quantification, as shown in Eq. (6) below:

FDD ¼ DY
sim � D1900

ref (6)

where Dsim
Y is the simulated flood depth in year Y and Dref

1900 is the reference
flood depth in 1900. The positive FDD means the maximum flood depth in
year Y is deeper than the baseline condition (1900), indicating the adverse
impacts caused by the land subsidence between 1900 and year Y. A
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negative value of FDDmeans the maximum flood depth in year Y is smaller
than the year 1900.

After simulating all scenarios, two indices are calculated to analyze the
temporal difference in flood inundation results, which are Fit Statistic and
Root Mean Square Deviation (RMSD). The Fit Statistic exhibits the
inundated areas of simulation as a fraction of the reference, which repre-
sents a meaningful assessment of the inundation extents (Bates and De
Roo, 2000; Yin et al., 2016; Rajib et al., 2020). The metric is calculated as
follows:

Fit ¼ Ao

Ar þ As � Ao
(7)

where Ao refers to the overlapped inundated area of the reference and sim-
ulation, Ar refers to the reference inundated area (in this case the reference
is the inundated area in 1900) and As refers to area of simulated flood ex-
tent. The Fit index ranges from 0 if none of the simulated areas matches
the reference to 1 for a perfect fit.

The RMSD compares flood depth between simulated results and the ref-
erence upon a cell-by-cell basis (Yu and Lane, 2011; Grimaldi et al., 2019).
It is calculated as in the following Eq. (8):

RMSD depthð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
i¼0 Di

sim � Di
ref

� �2

n

vuut
(8)

where Dsim
i and Dref

i are the simulated and reference flood depth of the ith

cell, and n is the number of inundated cells.

4. Results

4.1. Model calibration and validation

The calibration results for Hurricane Harvey (Table 2) show a good fit
between the simulated and observed with CC larger than 0.9 and NSE
higher than 0.8 at four gauges. The comparisons of stage hydrographs can
be found in Fig. S7 (Supplementary Materials).

Fig. 3a shows the locations of the surveyed highwater marks used for
validation. The comparison between the observed and simulated is pre-
sented in Fig. 3b. Overall, the correlation of determination of 0.95 between
the simulated flood depths and highwater marks indicates that the model is
reliable to reproduce the flood depth well and allows us to further investi-
gate the impacts of land subsidence on flood inundation.

4.2. Spatial-temporal patterns of maximum flood extent and depth

Examining the spatial and temporal patterns of the maximum flood ex-
tent and flood depth allows the authors to identify varying degrees of the
impacts of land subsidence on flood inundation in the study area. The sim-
ulated results from the calibrated HEC-RAS 2D model for the maximum
flood depth based on the topography of 1900 and 2017 are shown in
Fig. 4a and b, respectively. To decipher the changes of the corresponding
flood inundation with respect to the impacts from the land subsidence,
the authors calculate the flood depth difference (FDD) between 2017 and
1900 (Fig. 4c), alongside land subsidence contours for the corresponding
years (Fig. 4d). Overall, the spatial patterns of changes in flood depth are



Fig. 3. (a) Highwater marks in the Brays Bayou watershed and (b) Comparison of the surveyed and simulated water depth of Hurricane Harvey.
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found to be consistent with land subsidence. For example, compared to the
simulated flood depth under the 1900 condition, the areas within Zones A
and B are observed with much deeper water under the 2017 condition,
which coincides with the higher subsidence found locally in those areas
(Zones A and B).

In addition, the spatial differences in maximum flood depth between
the baseline condition (1900) and the subsequent years (1960, 1970,
1980, 1990) for Hurricane Harvey are also calculated, as shown in
Figs. 5a to h. The substantial changes in flood depth can be identified
near the subsidence centers (labeled as Zone A in Figs. 5a to h, Zone B in
Fig. 5e to h) for various time periods. From the time-series of change in
land subsidence, as shown in Fig. 5b, d, f, and h, one can see that the land
subsidence started from the downstream to upstream sections of the water-
shed with non-uniform subsidence rates. It is found that the changes in
flood depth within Zone B became significant after 1980 (Fig. 5e and g),
Fig. 4. (a)Maximum flood depth in 1900, (b) Maximum flood depth in 2017, (c) Flood d
the period of 1900 to 2017.
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which corresponds well with the larger land subsidence occurring in mid-
stream (Fig. 5f and h).

Besides assessing spatial changes in land subsidence and flood depth in-
dividually, an evaluation of the relationship between FDD and land subsi-
dence from 1900 to 2017 is also conducted. Fig. 6 illustrates the ratio of
the flood depth difference (FDD) to land subsidence in the period 1900 to
2017. It can be found that the highest ratio of FDD over land subsidence
is about 10 %, indicating that the flood impacts caused by land subsidence
are relatively minor compared to the magnitude of land subsidence itself.
For example, the maximum land subsidence can reach approximately 2-
m, while the changes in flood depth are significantly less with 12 cm at
the same location.

Table 3 quantifies and summarizes the area and percentage changes in
FDD for different time periods, in which the negative value of FDD refers to
a decrease in maximum flood depth compared to the year 1900. The results
epth difference (FDD) between 1900 and 2017, and (d) Land subsidence contours in



Fig. 5. (a) Flood depth difference (FDD) between 1900 and 1960, (b) Land subsidence contours in the period of 1900 to 1960, (c) FDD between 1900 and 1970, (d) Land
subsidence contours in the period of 1900 to 1970, (e) FDD between 1900 and 1980, (f) Land subsidence contours in the period of 1900 to 1980, (g) FDD between 1900
and 1990, and (h) Land subsidence contours in the period of 1900 to 1990.
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demonstrate that land subsidence may bring beneficial impacts with nega-
tive FDD for at least 48 % of the total inundated area of all six scenarios. In
1930 when land subsidence had just started, beneficial impacts could be
found for 87 % of the total inundated area with negative FDD. The reason
could be that minor land subsidence may help flood water drain faster
downstream, resulting in shallower water depth for some places within
the watershed. Areas with the increased FDD (0 to 9 cm) constitute only
13 % of the study domain in the period 1900 to 1930, then account for
7

approximately 34 %, 37 %, 49 %, and 51 % in 1960, 1970, 1980, and
1990 respectively. It can be seen that major changes of FDD happened be-
tween 1970 and 1980 (37 % to 49 %), which corresponds the same period
with the largest land subsidence rate (Fig. S4d). The areas with relatively
large flood depth difference (>9 cm)make up the rest 1% atmost in the pe-
riod of 1900 to 1990.

Table 3. Changes of flood depth difference (cm) in the area (km2) and
percentage (%) of the simulation domain for various time periods.



Fig. 6. Ratio of the flood depth difference (FDD) to land subsidence in the period of 1900 to 2017.
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Fit statistics and RMSD of flood depth for various scenarios using the
1900 condition as baseline are determined and presented in Fig. 7a and
b, respectively. The Fit value indicates how similar two inundation areas
are. Fig. 7a shows that the land subsidence does have an influence on the
extent of the inundated area, yet the changes appear to be limited since
the values are always above 0.97. RMSD measures the difference in flood
depth on a cell-by-cell basis between simulated results and reference.
Fig. 7b shows that compared to the 1900 condition, flood depth increases
starting from 1930 and reaches its climax in 1980, followed by a plateau.
These two indices (Fit and RMSD) demonstrate a similar trend in terms of
inundation extent and flood depth, and the rapid changes in Fit and
RMSD values between 1970 and 1980 coincide with the fast rate of land
subsidence of the same time period as illustrated in Fig. S4d.

Fig. 7c presents the temporal changes of the area in terms of flood depth
difference (FDD). The blue bars represent the total inundated areas, and no
significant changes are found over the years, indicating the impact of land
subsidence on flood extent is minor in this study. The green and red bars
represent the area of grids where the FDD is negative and positive, respec-
tively. The area with positive and negative FDD show opposite trends over
the years: the areawith negative/positive FDD (green/red bars) tends to de-
crease/increase rapidly before 1980 and become stable after 1980. Areas
with negative FDD (green) represent places that gain benefits from the
land subsidence compared to the baseline condition (1900), and the benefit
diminishes as land subsidence gets worse. To better quantify the relative
area changes in FDD, the authors further calculate percentages of positive
Table 3
Changes of flood depth difference (cm) in the area (km2) and percentage (%) of the sim

Flood depth difference (cm) 1900–1930 1900–1960 1900–197

Area (km2) Pct (%) Area (km2) Pct (%) Area (km2

<−3.0 0.09 0.05 23.04 12.55 27.96
−3.0–0.0 160.82 86.84 98.17 53.47 86.86
0.0–3.0 24.17 13.05 56.89 30.99 63.49
3.1–6.0 0.07 0.04 3.82 2.08 4.01
6.1–9.0 0.02 0.01 1.46 0.8 0.94
9.1–12.0 0.01 0.01 0.15 0.08 0.07
>12.0 0.02 0 0.07 0.03 0.03
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and negative FDD as shown in Fig. 7d. Both percentages of positive and neg-
ative FDD show steeper slopes during 1970 to 1980 than any other decades,
which displays an agreement with the previous results of having the largest
land subsidence rate between the same period (Fig. S4d). After 1980, these
two percentages begin to stabilize due to the deceleration in land subsi-
dence. Overall, the results imply that land subsidence has little impact on
causing the change of flood inundation areas but does have an impact on
the change of flood depth.

4.3. Sectional analyses of flood inundation

To further evaluate the spatial and temporal patterns of flood inunda-
tion at a local scale, the authors divide the Brays Bayou watershed into
three sections: upstream (123.7 km2) from its headwater to S. Gessner
Rd., midstream (97.3 km2) from S. Gessner Rd. to Main St., and down-
stream (56.9 km2) of Main St. (Fig. 8a) (Bedient et al., 2002). Fig. 8b
shows the temporal changes in median values of FDD for the upstream,
midstream, and downstream sections. It can be found that median values
show a decreasing trend from 1930 to 1945 in all three sections with neg-
ative FDD, indicating that flood water in these years is shallower than
that in 1900 condition. Median values of FDD at the downstream section
start to increase since 1945 and become stable after 1980. Median values
of FDD in the midstream section are observed to increase from 1960 and
reach to their highest in 1980. Overall, median values of the upstream,
midstream, and downstream sections show similar trends among years
ulation domain for various time periods (Pct means Percentage).

0 1900–1980 1900–1990 1900–2017

) Pct (%) Area (km2) Pct (%) Area (km2) Pct (%) Area (km2) Pct (%)

15.25 26.85 14.68 22.37 12.21 20.8 11.35
47.37 65.67 35.91 65.34 35.66 68.22 37.23
34.62 70.9 38.77 74.75 40.8 75.98 41.46
2.19 13.4 7.33 13.39 7.31 11.33 6.18
0.51 4.82 2.64 5.59 3.05 5.77 3.15
0.04 1.15 0.63 1.71 0.93 1.07 0.58
0.02 0.07 0.04 0.07 0.04 0.09 0.05



Fig. 7. (a) Trend of the Fit Statistics of inundation area, (b) Trend of the flood depth RMSD, (c) Bar chart of inundation area changes, and (d) Trends of percentages of positive
and negative flood depth difference (FDD).
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(first decrease and then increase) while the time of turning points varies.
This may be associated with the non-uniform changes of land subsidence
in various locations. As shown in Table 4, the midstream section features
the highest annual subsidence rate during 1970 to 1980, consequently
the median value of FDD in midstream shows the largest increase (from
−0.26 cm to 0.45 cm) than those in the other two sections. After 1990,me-
dian values of FDD in all sections showminor changes, corresponding to the
decreasing land subsidence rate at the same time (Table 4).

A similar analysis is also conducted for themaximum flow velocity ratio
(FVR) in the upstream, midstream, and downstream sections of Brays
Bayou. FVR is calculated by taking the maximum flow velocity simulated
in 1900 and other years (e.g., the year 2017) as denominator and numera-
tor, respectively. As shown in Fig. 8c, median values of FVR in all three sec-
tions show an increasing trend from 1930 to 1970, while FVR inmidstream
increases faster than up- and downstream sections. Overall, the changes of
FVR in upstream show some latency. In other words, the median value in
upstream always reaches its climax/dip later than those of the other two
sections. These findings further suggest that land subsidence contributes
to the change offlood depth and flow velocity at different sections with var-
iant patterns, resulted from the non-uniform land subsidence rates over the
Brays Bayou watershed.

5. Discussions

Our results indicate that land subsidence in general has a relatively
minor influence on flood inundation compared to the magnitude of land
subsidence itself. As shown in Fig. 6, the ratio of positive FDD values to cor-
responding land subsidence is mostly from 0 to 5 %, with the highest being
about 10%, Thisfinding is similarwithYin et al. (2016), where their results
show that the change in inundation depth is about 10%of themagnitude of
land subsidence. Also, we find that flood water is deepened in places
9

featuring evident land subsidence at a local scale. As illustrated in Fig. 4,
changes of flood depth in Zone A and Zone B are higher than in the sur-
rounding areas. Similar findings are also reported by Hsu et al. (2010)
and Ito et al. (2015). Hsu et al. (2010) found that areas with serious land
subsidence have increased inundation depth based on hydrodynamic
modeling with hypothetical design flow rates. Ito et al. (2015) analyzed
three flood events (occurred in 1970, 2004, and 2013) and concluded
that water tends to accumulate in the area surrounded by slightly highlands
(relative elevation +1–2 m).

In our analyses, some unique characteristics in the flood inundation are
revealed due to the spatial heterogeneity and decadal evolution of land sub-
sidence, which would otherwise be prohibited using traditional methods
(e.g., surveyed DEM, field measurements/monitoring, remote sensing) to
represent land subsidence. First, the effects of land subsidence are not
only heterogeneous but even mixed with coexisting positive and negative
impacts on flood inundation (Figs. 5, Fig. 7c and d). The spatial heterogene-
ity is also reported by Yin et al. (2016), where they found land subsidence
may have a non-linear impact on flooding. This is mainly due to the non-
uniform rates of land subsidence between different time periods (Fig. S4).
In 1930, approximately 88 % of inundated area features negative FDD
compared to 1900 baseline condition (Fig. 7c), indicating most places
actually gain benefits from land subsidence. As illustrated in Fig. 7d,
these benefits (green line) decline as land subsidence continues increas-
ing until 1980. Percentages of negative (green line) and positive (red
line) FDD intersect 1980, which marks a turning point when adverse im-
pacts on flood depth caused by land subsidence outweigh the benefits in
the study region. After 1980, land subsidence slows down and tends to
cease, causing the areas with positive and negative impacts to stabilize
till the present.

Second, the decadal evolution of land subsidence exerts cumulative ef-
fects on flood inundation, where previous land subsidence hotspots could



Fig. 8. (a) Example map of dividing the Brays Bayou watershed into three sections, (b) Median values of the flood depth difference (FDD), and (c) median values of the flood
velocity ratio (FVR) for upstream, midstream, and downstream sections. Red shaded area represents the period with the largest land subsidence rate (1960–1980). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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be altered by later continuing land subsidence, i.e., emergence of new land
subsidence hotspots in the watershed. As shown in Fig. 5, we can find that
land subsidence hotspots have been drifting from downstream towards up-
stream over time, causing previously impacted areas to ‘recover and even
benefit’. From analyses of three sections (up-, mid-, and downstream) in
Brays Bayou, flooding condition in midstream are the worst after 1970,
where the median value of FDD is higher compared to the up- and down-
stream sections (Fig. 8b). The reason is that when the new land subsidence
hotspot appeared at midstream, flood water generated from upstream
would accumulate and be held locally before flowing downstream. Unique
from any other previous studies, the sectional evaluation reveals the locally
deepened flood inundation and accelerated flood waves near the main
channel, which could be overlooked if only the net impact (aggregated
over the watershed) were considered.

Finally, the way land subsidence affects flood inundation in this study
sharply contrasts how coastal inundation is exacerbated by land subsidence
(e.g., Shirzaei and Bürgmann, 2018; Catalao et al., 2020). For instance, the
future 100-yr inundationmaps estimated by Shirzaei and Bürgmann (2018)
showed that land subsidencewould amplifyflood risk up to 90% compared
Table 4
Average annual land subsidence rate (mm/yr.) for the up-, mid-, and downstream
sections in Brays Bayou during different time periods.

Time range Upstream Midstream Downstream

1900–1930 0.0114 0.0133 0.0153
1930–1960 3.0435 17.2324 33.1066
1960–1970 28.6643 43.9189 44.7039
1970–1980 54.8193 73.9991 42.3358
1980–1990 36.0366 18.8718 6.1340
1990–2017 5.0227 0.0275 −0.1547
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with scenarios only considering the sea level rise. Catalato et al. (2020)
compared DEM with the sum of tide height, sea level rise, and cumulative
land subsidence and estimated 25% increase inflood area for future scenar-
ios. In contrast, flood inundation areas simulated in this study for different
years do not show significant changes due to land subsidence (blue bars in
Fig. 7c), while areas with positive and negative FDD internally vary
throughout years. The reason is that flood inundation is dynamic due to
the movement of flood wave, while coastal inundation is static and con-
trolled by the elevation difference between land and sea. This explains
our findings where certain levels of land subsidence could reduce overland
flood depth by accelerating flood velocity, whereas worse coastal inunda-
tion is almost definite given land subsidence (Wang et al., 2012; Yin
et al., 2013; Shirzaei and Bürgmann, 2018; Catalao et al., 2020).

This study demonstrates the capability of HEC-RAS 2D for modeling the
changes of flood inundation caused by land subsidence. However, due to
some limitations related to the model itself (HEC-RAS version 5.0), the uni-
form rainfall is applied, and infiltration is neglected by our simulation, as
explained before in detail (Section 3.2). These limitations/assumptions,
though acceptable in this study, might be problematic for a different
study region or storm events. As a remedy, newer versions of HEC-RAS
will allow spatially varied precipitation as input as well as more realistic
representation of the infiltration process, which is promising for broaden-
ing the applicability of our approaches (Brunner, 2021). Additionally, pre-
vious studies have reported sea level rise exacerbates coastal flooding, as
another major contributor (besides land subsidence) to the total relative
elevation difference between land and sea (Wang et al., 2012; Dang et al.,
2018; Zeiger and Hubbart, 2021; Zhao et al., 2021; El Shinawi, 2022).
Therefore, one clear future direction is to incorporate sea level rise into
the analysis framework of this study. We expect storm surge, as another
hazard from tropical cyclones, will be aggravated by sea level rise and
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jointly impact a coastal region along with the rainfall-induced inland
flooding.

6. Conclusion

This study provides fresh insights on the impact from land subsidence
on flood inundation, which is uniquely enabled by a retrospective, 117-
year, physics-based modeling by Liu et al. (2020) considering groundwater
withdrawal and the consequent aquifer-system compaction. Hydrodynamic
simulation of flood inundation from Hurricane Harvey over the topologies
in different historical times from 1900 to 2017 depicts realistic pictures of
howHarveyflood could have evolved over the 117 years due to continuous
land subsidence in Brays Bayou, Texas. This research is among the first to
shed light on the consequence of land subsidence on flooding that is contin-
uous both in space and time.

Specifically, our results show that the overall change of flood depth
caused by land subsidence is relatively minor compared to the magnitude
of land subsidence itself. Over the course of 117 years, the worst impacted
location in Brays Bayou experiences only 12 cm deepened flood water
due to approximately 2-m subsidence at the same location. However, the
impact from land subsidence on flood depth is non-linear in time, where ef-
fects from previous land subsidence hotspots could be altered by later con-
tinuing land subsidence, i.e., emergence of new land subsidence hotspots in
the watershed. Specifically in Brays Bayou, later-occurring subsidence in
upstream counteracts the preceding downstream subsidence, mitigating
previously increased flood depth. Spatially, change in flood depth due to
the land subsidence is not only heterogeneous but also mixed with
coexisting deeper and shallower flood water. Land subsidence could reduce
flood depth but accelerate flood velocity locally, while causing flood water
to pond in other locations, e.g., lower main stem with mild slope.

The analyses established in this study can be replicated and expanded to
regions with land subsidence and flooding issues. With the ongoing sea
level rise due to a warming climate, the outcome of this research promises
to enhance preparedness and resilience of coastal communities against
future flooding hazards.

CRediT authorship contribution statement

Han Jiang: Conceptualization; Data curation; Investigation; Methodol-
ogy; Software; Validation; Formal analysis; Writing-original draft,
Reviewing and Editing

Jiaqi Zhang: Conceptualization; Data curation; Investigation; Method-
ology; Software; Validation; Formal analysis; Writing-original draft,
Reviewing and Editing

Yi Liu: Conceptulization; Data curation; Software; Formal analysis;
Writing, Reviewing and Editing; Supervision

Jiang Li: Conceptualization
Zheng N. Fang: Conceptualization; Investigation; Methodology; For-

mal analysis; Writing, Reviewing and Editing; Supervision

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgments

This research is supported by the National Science Foundation (Project
number: 1832065). We would like to thank the six anonymous reviewers
for providing insightful comments that help us make significant improve-
ments to the earlier version of this manuscript.
11
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.161072.
References

Ahmadlou, M., Al-Fugara, A.K., Al-Shabeeb, A.R., Arora, A., Al-Adamat, R., Pham, Q.B., ...
Sajedi, H., 2021. Flood susceptibility mapping and assessment using a novel deep learn-
ing model combining multilayer perceptron and autoencoder neural networks. J. Flood
Risk Manag. 14 (1), e12683.

Bass, B., Juan, A., Gori, A., Fang, Z., Bedient, P., 2017. 2015 Memorial Day flood impacts for
changing watershed conditions in Houston. Natur. Hazards Rev. 18 (3), 05016007.

Bates, P.D., De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simula-
tion. J. Hydrol. 236 (1–2), 54–77.

Bedient, P.B., Holder, A., Vieux, B.E., 2002. A radar-based flood alert system (FAS) designed
for Houston, Texas. Global Solutions for Urban Drainage, pp. 1–10.

Bedient, P.B., Holder, A., Benavides, J.A., Vieux, B.E., 2003. Radar-based flood warning sys-
tem applied to Tropical Storm Allison. J. Hydrol. Eng. 8 (6), 308–318.

Brunner, G.W., 2016a. HEC-RAS River Analysis System, 2D Modeling user’s Manual Version
5.0. US Army Corps of Engineers, hydrologic engineering center, Davis.

Brunner, G.W., 2016b. HEC-RAS River Analysis System, Hydraulic Reference Manual,
Ver. 5.0. Davis, CA, USA: US Army Corps of Engineers, Hydrologic Engineering
Center, cpd-69.

Brunner, G.W., 2021. HEC-RAS River Analysis System, 2D Modeling user’s Manual Version
6.0. Davis: US Army Corps of Engineers, hydrologic engineering center.

Carisi, F., Domeneghetti, A., Gaeta, M.G., Castellarin, A., 2017. Is anthropogenic land subsi-
dence a possible driver of riverine flood-hazard dynamics? A case study in Ravenna,
Italy. Hydrol. Sci. J. 62 (15), 2440–2455.

Catalao, J., Raju, D., Nico, G., 2020. InSAR maps of land subsidence and sea level scenarios to
quantify the flood inundation risk in coastal cities: the case of Singapore. Remote Sens. 12
(2), 296.

Chun, B., Hur, M., Won, J., 2021. Impacts of thermal environments on health risk: a case study
of Harris County, Texas. Int. J. Environ. Res. Public Health 18 (11), 5531.

Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., Petaccia, G., 2020. Performances of the
new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin
scale: comparison with a state-of-the art model. Water 12 (9), 2326.

Dang, T.D., Cochrane, T.A., Arias, M.E., 2018. Future hydrological alterations in the Mekong
Delta under the impact of water resources development, land subsidence and sea level
rise. J. Hydrol. Reg. Stud. 15, 119–133.

Dixon, T.H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., ... Whitman, D., 2006.
Subsidence and flooding in New Orleans. Nature 441 (7093), 587–588.

El Shinawi, A., Kuriqi, A., Zelenakova, M., Vranayova, Z., Abd-Elaty, I., 2022. Land subsidence
and environmental threats in coastal aquifers under sea level rise and over-pumping
stress. J. Hydrol. 608, 127607.

Emanuel, K., 2017. Assessing the present and future probability of Hurricane Harvey’s rain-
fall. Proc. Natl. Acad. Sci. 114 (48), 12681–12684.

EM-DAT. Disaster Profiles, 2020. The OFDA/CRED International Disaster Database, Dec 2020.
Retrieved from https://public.emdat.be/.

Farooq, M., Shafique, M., Khattak, M.S., 2019. Flood hazard assessment and mapping of River
Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM).
Natural Hazards 97 (2), 477–492.

FEMA, 2020. FIMA NFIP Redacted Claims Data Set, Dec 2020. Retrieved from https://www.
fema.gov/openfema-data-page/fima-nfip-redacted-claims.

Galloway, D.L., Jones, D.R., Ingebritsen, S.E. (Eds.), 1999. Land Subsidence in the United
States. vol. 1182. US Geological Survey.

Gao, S., Zhang, J., Li, D., Jiang, H., Fang, Z.N., 2021. Evaluation of multiradar multisensor and
stage IV quantitative precipitation estimates during hurricane Harvey. Natur. Hazards
Rev. 22 (1), 04020057.

Garcia, M., Juan, A., Bedient, P., 2020. Integrating reservoir operations and flood modeling
with HEC-RAS 2D. Water 12 (8), 2259.

Goodell, C., 2014, December 8. Including Channel Bathymetry into your Terrain. The RAS So-
lution. https://www.kleinschmidtgroup.com/ras-post/including-channel-bathymetry-
into-your-terrain/.

Grimaldi, S., Schumann, G.P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019. Challenges, op-
portunities, and pitfalls for global coupled hydrologic-hydraulic modeling of floods.
Water Resour. Res. 55 (7), 5277–5300.

Habib, E., Larson, B.F., Graschel, J., 2009. Validation of NEXRADmultisensor precipitation es-
timates using an experimental dense rain gauge network in south Louisiana. J. Hydrol.
373 (3–4), 463–478.

Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., Chateau,
J., 2011. A global ranking of port cities with high exposure to climate extremes. Clim.
Chang. 104 (1), 89–111.

HCFCD, Harris County Flood Control District, 2020a. Model and Map Management (M3) Sys-
tem. accessed in 2020. Retrieved from https://www.hcfcd.org/Interactive-Mapping-
Tools/MODEL-AND-MAP-MANAGEMENT-M3-SYSTEM.

HCFCD, Harris County Flood Control District, 2020b. Harris County Flood Warning System.
accessed in 2020. https://www.harriscountyfws.org/?View=full.

HCFCD, Harris County Flood Control District, 2020c. Historical High Water Marks.
accessed in 2020. Available at https://www.arcgis.com/home/item.html?id=
bd266d344dab42b993c5d4f0b4599282.

HDSC, Hydrometeorological Design Studies Center, 2017. Hurricane Harvey, 25–31 August
2017 Annul Exceedance Probabilities for the Worst Case 4-day Rainfall. Available at

https://doi.org/10.1016/j.scitotenv.2022.161072
https://doi.org/10.1016/j.scitotenv.2022.161072
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0005
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0005
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0005
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0010
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0010
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0015
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0015
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0020
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0020
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0025
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0025
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0030
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0030
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0035
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0035
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0035
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0040
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0040
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0045
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0045
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0045
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0050
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0050
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0050
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0065
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0065
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0070
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0070
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0070
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0075
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0075
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0075
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0085
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0090
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0090
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0090
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0095
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0095
https://public.emdat.be/Farooq
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0105
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0105
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0105
https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims
https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0115
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0115
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0120
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0120
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0120
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0125
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0125
https://www.kleinschmidtgroup.com/ras-post/including-channel-bathymetry-into-your-terrain/
https://www.kleinschmidtgroup.com/ras-post/including-channel-bathymetry-into-your-terrain/
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0135
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0135
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0135
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0145
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0145
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0145
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0155
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0155
https://www.hcfcd.org/Interactive-Mapping-Tools/MODEL-AND-MAP-MANAGEMENT-M3-SYSTEM
https://www.hcfcd.org/Interactive-Mapping-Tools/MODEL-AND-MAP-MANAGEMENT-M3-SYSTEM
https://www.harriscountyfws.org/?View=full
https://www.arcgis.com/home/item.html?id=bd266d344dab42b993c5d4f0b4599282
https://www.arcgis.com/home/item.html?id=bd266d344dab42b993c5d4f0b4599282


H. Jiang et al. Science of the Total Environment 865 (2023) 161072
https://hdsc.nws.noaa.gov/pub/hdsc/data/aep/201708_Harvey/AEP_HurricaneHarvey_
August2017.pdf.

Hoffmann, J., Leake, S.A., Galloway, D.L., Wilson, A.M., 2003. MODFLOW-2000 groundwater
Model–User Guide to the Subsidence and Aquifer-system Compaction (SUB) Package.
Geological Survey Washington DC.

Holzer, T.L., Bluntzer, R.L., 1984. Land subsidence near oil and gas fields, Houston, Texas a.
Groundwater 22 (4), 450–459.

Holzer, T.L., Johnson, A.I., 1985. Land subsidence caused by ground water withdrawal in
urban areas. GeoJournal 11 (3), 245–255.

Hsu, P.H., Su, W.R., Tsai, C.H., 2010, July. Land subsidence analysis and inundation predic-
tion based on multi-temporal digital elevation model data. 2010 IEEE International Geo-
science and Remote Sensing Symposium. IEEE, pp. 3339–3342.

Ito, Y., Chen, H., Sawamukai, M., Su, T., Tokunaga, T., 2015. An analysis on the relationship
between land subsidence and floods at the Kujukuri Plain in Chiba Prefecture, Japan. Pro-
ceedings of the International Association of Hydrological Sciences. vol. 372, pp. 163–167.

Jonkman, S.N., Godfroy, M., Sebastian, A., Kolen, B., 2018. Brief communication: loss of life
due to Hurricane Harvey. Nat. Hazards Earth Syst. Sci. 18 (4), 1073–1078.

Karim, I.R., Hassan, Z.F., Abdullah, H.H., Alwan, I.A., 2021. 2D-HEC-RAS modeling of flood
wave propagation in a semi-arid area due to dam overtopping failure. Civil Eng. J. 7
(9), 1501–1514.

Kasmarek, M.C., 2013. Hydrogeology and Simulation of Groundwater Flow and Land-Surface
Subsidence in the Northern Part of the Gulf Coast Aquifer System, Texas, 1891–2009,
U.S. Geological Survey Scientific Investigations Report 2012–5154.

Kasmarek, M.C., Gabrysch, R.K., Johnson, M.R., 2009. Estimated Land-surface Subsidence in
Harris County, Texas, 1915–17 to 2001. US Department of the Interior, US Geological
Survey.

Kellens, W., Terpstra, T., De Maeyer, P., 2013. Perception and communication of flood risks: a
systematic review of empirical research. Risk Anal. 33 (1), 24–49.

Khan, S.I., Hong, Y., Wang, J., Yilmaz, K.K., Gourley, J.J., Adler, R.F., Irwin, D., 2010. Satellite
remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria
basin: implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Re-
mote Sens. 49 (1), 85–95.

Kim, V., Tantanee, S., Suparta, W., 2020. GIS-based flood hazard mapping using HEC-RAS
model: a case study of Lower Mekong River, Cambodia. Geogr. Tech. 15 (1).

Legates, D.R., McCabe Jr., G.J., 1999. Evaluating the use of “goodness-of-fit” measures in hy-
drologic and hydroclimatic model validation. Water Resour. Res. 35 (1), 233–241.

Li, X., Rankin, C., Gangrade, S., Zhao, G., Lander, K., Voisin, N., ... Gao, H., 2021. Evaluating
precipitation, streamflow, and inundation forecasting skills during extreme weather
events: a case study for an urban watershed. J. Hydrol. 603, 127126.

Lin, Y., Mitchell, K.E., 2005. 1.2 the NCEP stage II/IV hourly precipitation analyses: Develop-
ment and applications. Proceedings of the 19th Conference Hydrology, American Meteo-
rological Society, San Diego, CA, USA. vol. 10.

Liu, Y., Li, J., Fang, Z.N., 2019. Groundwater level change management on control of land
subsidence supported by borehole extensometer compaction measurements in the
Houston-Galveston Region, Texas. Geosciences 9 (5), 223.

Liu, Y., Li, J., Fasullo, J., Galloway, D.L., 2020. Land subsidence contributions to relative sea
level rise at tide gauge Galveston Pier 21, Texas. Sci. Rep. 10 (1), 1–11.

Mediero, L., Garrote, L., Martín-Carrasco, F.J., 2011. Probabilistic calibration of a distributed
hydrological model for flood forecasting. Hydrol. Sci. J. 56 (7), 1129–1149.

Michel-Kerjan, E., Kunreuther, H., 2011. Redesigning flood insurance. Science 333 (6041),
408–409.

Miller, M.M., Shirzaei, M., 2019. Land subsidence in Houston correlated with flooding from
hurricane Harvey. Remote Sens. Environ. 225, 368–378.

Miller, R. L., Fram, M., Fujii, R., &Wheeler, G. (2008). Subsidence reversal in a re-established
wetland in the Sacramento-San Joaquin Delta, California, USA. San Francisco Estuary and
Watershed Science, vol. 6(3).

Munawar, H.S., Hammad, A., Ullah, F., Ali, T.H., 2019, December. After the flood: a novel ap-
plication of image processing and machine learning for post-flood disaster management.
Proceedings of the 2nd International Conference on Sustainable Development in Civil En-
gineering (ICSDC 2019), Jamshoro, Pakistan, pp. 5–7.

Nelson, B.R., Prat, O.P., Seo, D.J., Habib, E., 2016. Assessment and implications of NCEP Stage
IV quantitative precipitation estimates for product intercomparisons. Weather Forecast.
31 (2), 371–394.
12
NOAA, 2020. Storm Events Database. Available at NOAA site https://www.ncdc.noaa.gov/
stormevents/.

Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., Zinabdin, N., 2020. Application of
HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) river in Kazakhstan.
Water 12 (10), 2672.

Ouyang, M., Ito, Y., Tokunaga, T., 2020. Local land subsidence exacerbates inundation hazard
to the Kujukuri Plain, Japan. Proceedings of the International Association of Hydrological
Sciences 382, 657–661.

Patel, D.P., Ramirez, J.A., Srivastava, P.K., Bray, M., Han, D., 2017. Assessment of flood inun-
dation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case applica-
tion of the new HEC-RAS 5. Nat. Hazards 89 (1), 93–130.

Penning-Rowsell, E., Floyd, P., Ramsbottom, D., Surendran, S., 2005. Estimating injury and
loss of life in floods: a deterministic framework. Nat. Hazards 36 (1–2), 43–64.

Rajib, A., Liu, Z., Merwade, V., Tavakoly, A.A., Follum, M.L., 2020. Towards a large-scale lo-
cally relevant flood inundation modeling framework using SWAT and LISFLOOD-FP.
J. Hydrol. 581, 124406.

Rodolfo, K.S., Siringan, F.P., 2006. Global sea-level rise is recognized, but flooding from an-
thropogenic land subsidence is ignored around northern Manila Bay, Philippines. Disas-
ters 30 (1), 118–139.

Shareef, M.E., Abdulrazzaq, D.G., 2021. River flood modelling for flooding risk mitigation in
Iraq. Civil Eng. J. 7 (10), 1702–1715.

Shirzaei, M., Bürgmann, R., 2018. Global climate change and local land subsidence exacerbate
inundation risk to the San Francisco Bay Area. Sci. Adv. 4 (3), eaap9234.

Shrestha, A., Bhattacharjee, L., Baral, S., Thakur, B., Joshi, N., Kalra, A., Gupta, R., 2020, May.
Understanding suitability of MIKE 21 and HEC-RAS for 2D floodplain modeling. World
Environmental and Water Resources Congress 2020: Hydraulics, Waterways, and Water
Distribution Systems Analysis. American Society of Civil Engineers, Reston, VA,
pp. 237–253.

Shustikova, I., Domeneghetti, A., Neal, J.C., Bates, P., Castellarin, A., 2019. Comparing 2D ca-
pabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrol. Sci. J. 64 (14),
1769–1782.

Stork, S.V., Sneed, M., 2002. Houston-Galveston Bay area, Texas, from space—a new tool for
mapping land subsidence. US Geol. Survey Fact Sheet 110, 2.

Tayefi, V., Lane, S.N., Hardy, R.J., Yu, D., 2007. A comparison of one-and two-dimensional ap-
proaches to modelling flood inundation over complex upland floodplains. Hydrol. Proc.
21 (23), 3190–3202.

Viero, D.P., Roder, G., Matticchio, B., Defina, A., Tarolli, P., 2019. Floods, landscape
modifications and population dynamics in anthropogenic coastal lowlands: The Polesine
(northern Italy) case study. Sci. Tot. Environ. 651, 1435–1450.

Vieux, B.E., Bedient, P.B., 2004. Assessing urban hydrologic prediction accuracy through
event reconstruction. J. Hydrol. 299 (3–4), 217–236.

Walker, K., Shelton, K., 2016. Houston in Flux: Understanding a Decade of Bayou City Devel-
opment.

Wang, J., Gao, W., Xu, S., Yu, L., 2012. Evaluation of the combined risk of sea level rise, land
subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Chang. 115
(3), 537–558.

Yin, J., Yu, D., Yin, Z., Wang, J., Xu, S., 2013. Modelling the combined impacts of sea-level rise
and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai,
China. Clim. Chang. 119 (3–4), 919–932.

Yin, J., Yu, D., Wilby, R., 2016. Modelling the impact of land subsidence on urban pluvial
flooding: a case study of downtown Shanghai, China. Sci. Total Environ. 544, 744–753.

Yu, D., Lane, S.N., 2011. Interactions between subgrid-scale resolution, feature represen-
tation and grid-scale resolution in flood inundation modelling. Hydrol. Process. 25
(1), 36–53.

Yu, J., Wang, G., Kearns, T.J., Yang, L., 2014. Is there deep-seated subsidence in the Houston-
Galveston area? Int. J. Geophys. 2014.

Zeiger, S.J., Hubbart, J.A., 2021. Measuring and modeling event-based environmental flows:
an assessment of HEC-RAS 2D rain-on-grid simulations. J. Environ. Manag. 285, 112125.

Zhao, Q., Pan, J., Devlin, A., Xu, Q., Tang, M., Li, Z., ... Pepe, A., 2021. Integrated analysis of
the combined risk of ground subsidence, sea level rise, and natural hazards in coastal and
Delta River Regions. Remote Sens. 13 (17), 3431.

https://hdsc.nws.noaa.gov/pub/hdsc/data/aep/201708_Harvey/AEP_HurricaneHarvey_August2017.pdf
https://hdsc.nws.noaa.gov/pub/hdsc/data/aep/201708_Harvey/AEP_HurricaneHarvey_August2017.pdf
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0195
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0195
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0195
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0200
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0200
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0205
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0205
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0210
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0210
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0210
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0215
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0215
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0215
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0220
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0220
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0225
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0225
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0225
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0230
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0230
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0230
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0235
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0235
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0235
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0240
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0240
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0245
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0245
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0245
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0245
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0250
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0250
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0265
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0265
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0270
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0270
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0270
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0275
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0275
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0275
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0280
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0280
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0280
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0285
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0285
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0295
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0295
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0300
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0300
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0305
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0305
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0325
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0325
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0325
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0325
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0330
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0330
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0330
https://www.ncdc.noaa.gov/stormevents/
https://www.ncdc.noaa.gov/stormevents/
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0340
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0340
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0340
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0345
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0345
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0345
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0350
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0350
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0350
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0355
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0355
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0365
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0365
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0365
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0370
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0370
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0370
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0380
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0380
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0385
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0385
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0390
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0390
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0390
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0390
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0395
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0395
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0395
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0400
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0400
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0405
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0405
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0405
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf9000
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf9000
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf9000
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0420
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0420
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0430
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0430
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0435
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0435
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0435
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0455
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0455
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0455
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0460
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0460
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0465
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0465
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0465
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0470
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0470
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0475
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0475
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0480
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0480
http://refhub.elsevier.com/S0048-9697(22)08175-X/rf0480

	Does flooding get worse with subsiding land? Investigating the impacts of land subsidence on flood inundation from Hurrican...
	1. Introduction
	2. Study area and materials
	2.1. Study area
	2.2. Data
	2.2.1. Land subsidence and topography data
	2.2.2. Precipitation and observation data


	3. Methodologies
	3.1. Terrain data preparation
	3.2. Model set-up, calibration, and simulation scenarios
	3.3. Quantitative statistics

	4. Results
	4.1. Model calibration and validation
	4.2. Spatial-temporal patterns of maximum flood extent and depth
	4.3. Sectional analyses of flood inundation

	5. Discussions
	6. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References




