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Abstract: Accurate modeling of infiltration losses is vital for runoff estimation and thus the development of flood design/protection criteria
and water management schemes, etc. In design flood practices, the initial abstraction and constant loss (IACL) method has been widely
applied due to its simplicity. However, due to a lack of physical equivalent properties, the IACL method is often subject to issues in para-
metrization and has large dependency on calibration efforts for storm events. Despite the wide range/variability of IACL values, a single set of
IA and CL values is normally adopted for specific flood frequency, which may introduce uncertainty and bias in resulting peak streamflow.
In this study, we identified a total of 2,036 rainfall-runoff events for 18 watersheds in North Central Texas to estimate the total losses with their
IA and CL components based on time-series of mean areal precipitation (MAP) and streamflow data. Threshold behavior is found for all
studied subbasins between the summation of gross rainfall and antecedent soil moisture versus runoff depth: below the threshold, runoff depth
is minimal; whereas above it, runoff is largely linearly correlated with the summation of rainfall and antecedent soil moisture. This finding
provides a convenient way to estimate/predict total loss or runoff depth given MAP and antecedent soil moisture. In addition, this study shows
that the IA and CL values can be approximated by the gamma and Weibull distributions, respectively. The fitted distributions of IA and CL
values can be applied in a Monte Carlo simulation framework to stochastically simulate numerous rainfall-runoff events for a flood frequency
analysis. DOI: 10.1061/JHYEFF.HEENG-5883. © 2023 American Society of Civil Engineers.

Author keywords: Infiltration losses; Antecedent soil moisture (ASM); Rainfall and runoff; Threshold behavior; Initial abstraction (IA);
Constant loss (CL); Distribution; Design event; Flood frequency.

Introduction

As a fundamental component in hydrologic cycle, infiltration losses
have drawn much research attention throughout the history of
hydrology. Accurate modeling of infiltration losses is important
for runoff estimation and can facilitate the development of flood
design/protection criteria and water management schemes, etc.
Infiltration models can be generally classified as three types (Mishra
et al. 2003): physically based (or theoretical/mechanistic), semiem-
pirical, and empirical/conceptual models. Physically based models
refer to an approach that is close to physical theory and has an ana-
lytical solution, such as Green and Ampt (1911), Richards (1931),
Phillip (1957, 1969), Mein and Larson (1971, 1973), and Smith
(1972), etc. Semiempirical models are based on simplified continu-
ity equations with certain hypotheses (e.g., Horton 1938; Holtan
1961; Overton 1964; Burnash et al. 1973; Singh and Yu 1990).
Empirical/conceptual models are derived from experimental obser-
vations and represent the overall infiltration process (Singh and Yu

1990). Examples of such models are SCS-Curve (Mockus and
Hjelmfelt 1972), Collis-George (1977), initial abstraction and con-
stant loss (IACL) models (USACE 1992), etc.

Among numerous infiltration loss models, the IACL method is
applied in many engineering practices (USACE 1992; Heneker
2002; Rahman et al. 2002a; Hill et al. 2016). The concept of IACL
is that any watershed is assumed to store an absolute depth of rain-
fall at the beginning of a storm as initial abstraction (IA) and then
reduce the rainfall at a constant loss (CL) rate (Asquith and Roussel
2007). Therefore, in IACL method, two different losses are used:
(1) the initial loss/initial abstraction (IA) in mm which must be sat-
isfied before any runoff occurs; and (2) a constant loss (CL) in
mm-per-hour which continues after the initial loss has been satisfied.
If a storm event generates rainfall less than IA, no runoff will be
produced. For any runoff-generating storm events, the total loss con-
sists of two loss components resulted from IA and CL, respectively.

Due to its simplicity and ability to approximate overall catch-
ment runoff behavior, IACL is usually adopted to estimate infiltra-
tion losses for design frequency storms (USACE 1992; Hill et al.
2016). For ungauged areas, estimating losses to convert the design
rainfall into design peak streamflow is known as the design event
approach in flood frequency studies (USACE 1992; Rahman et al.
2002a; USACE 2013). The design event approach, or rainfall-based
design flood estimation method, assumes that the frequency of the
input rainfall depth can be preserved in the final flood output
(streamflow) by selecting design values of other model parameters
(e.g., infiltration loss, unit hydrograph, and routing parameters)
in the rainfall-runoff modeling (Charalambous et al. 2013). At
present, there is no specific guidelines on how to select the proper
IACL values for design and the choice highly depends on certain
assumptions and individual designers.
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The design IACL values recommended by US Army Corps of
Engineers (USACE 1992) are based on the percentage of sandy and
clayey soils. These standard values vary with storm frequencies and
are documented in a reconnaissance report (USACE 1992) as
shown in Table S1. This recommendation follows the design event
approach, assuming the equality of return periods among rainfall,
discharge, and IACL parameters. For instance, 100-yr rainfall can
generate 100-year peak discharge with 100-year IACL values.
Other than USACE, Texas Department of Transportation (TxDOT)
and United States Geological Survey (USGS) have conducted com-
putational and statistical analyses to parametrize IACL values for
92 applicable watersheds in Texas (Asquith and Roussel 2007;
Thompson et al. 2008). They first utilized the observed rainfall
and runoff to compute the storm-specific IACL values using a
custom-built software. Then, for each watershed, multiple water-
shed characteristics were selected, e.g., main-channel length, curve
numbers, etc. as predictors, and used to develop regression equa-
tions for estimating the optimal values of the mean IA and CL.
In the USGS and TxDOT studies, it should be noted that estimation
of IA and CL is for developing watershed-specific gamma unit
hydrograph, which is rather different to the role in the design event
approach.

Apart from the design events, IA and CL values associated with
real storms are found to have a high degree of variability, indicating
that watersheds may exhibit a wide range of antecedent soil mois-
ture conditions (Rahman et al. 2002a), The parametrization of IA
and CL values therefore largely depends on model calibrations
from events to events, which may be subject to the simplicity
and the lack of physical equivalent properties of IACL method.
Despite this known variability, a single set of deterministic IA and
CL values for specific design frequency is usually adopted in cur-
rent design event approach. Because of the nonlinear behavior of
the rainfall-runoff process, this may introduce a large degree of un-
certainty and bias in the resulting design flood estimation (Rahman
et al. 2002a; Loveridge et al. 2013). Furthermore, using a single set
of IA and CL values ignores the probabilistic aspects of model var-
iables, and the assumption of return period equality has been ques-
tioned and argued by many studies (e.g., Pilgrim and Cordery
1975; Kuczera et al. 2006; Viglione et al. 2009). Thus, considering
probability aspects of IACL values without assuming an equality in
return period could bring a substantial improvement of flood
frequency analysis.

In contrast to the design event approach, which is to generate
frequency flood from a single combination (Eagleson 1972; Beran
1973), the joint probability approach (JPA) recognizes that any
design flood characteristics (e.g., peak streamflow) could result
from different combinations of rainfall input and other flood pro-
ducing factors (e.g., loss-related variables). For example, the same
peak streamflow can be generated by a small rainfall event with
wet antecedent soil moisture condition or a large rainfall with
dry antecedent condition of the watershed (e.g., Rahman et al.
2002b; Viglione et al. 2009; Charalambous et al. 2013). Thus,
from the joint probability approach, the distribution of the model
outputs (e.g., streamflow and stage) can be directly estimated by
simulating the likely combinations of inputs and parameter values,
leading to better estimation of frequency design flows. Meanwhile,
subjective criteria used to specify model inputs can be eliminated
since the JPA treats model input and parameters as random vari-
ables (Rahman et al. 2002a). For frequency analyses using JPA, it
is critical to accurately prescribe probability distributions of
parameters (e.g., IA and CL) that can represent observed loss
values.

In sum, whether it be the design event approach or the joint
probability approach, it is imperative to ensure a close relevance

of the IA and CL parameters to observed infiltration loss. There-
fore, a rigorous, effective IACL retrieval scheme could help over-
come the lack of physical equivalent properties to IA and CL.
To this end, this study aims to facilitate regional IACL-related prac-
tices via an improved characterization of the parameters’ probabi-
listic nature based on numerous retrieved values from rainfall and
runoff observations. As a contribution to the field, this investigation
will set a knowledge base and create incentives for building a prob-
abilistic approach as an alternative to the currently employed
deterministic IACL parametrization. This study is performed for
the 18 headwater catchments located in North Central Texas via
achieving the following objectives: (1) to build a rainfall-runoff
event catalog using long-term observations of precipitation and
streamflow and investigate the relationships among total rainfall
depth, total loss and runoff volume; and (2) to retrieve IA and
CL values based on the identified rainfall-runoff events and char-
acterize their regional, probabilistic features by fitting to probabil-
ity distributions.

The paper is organized as follows: The next section describes the
methodology with the study area, data utilized, and event selection;
the following section summarizes the results and conducts discus-
sions; the final section provides the conclusions and suggestions for
future work from this study.

Methodology

Study Area

The study area is in the Upper Trinity River Basin (UTRB), where
undeveloped areas are located at headwaters while urban areas (the
Greater Dallas-Fort Worth Metroplex) reside at mid- and down-
stream of the basin [Fig. 1(a)]. Since a large portion of the area
within UTRB is pervious, it is challenging to account for infiltra-
tion loss in the hydrologic processes. Moreover, sitting in a region
of temperate mean climatological conditions (USACE 2013),
UTRB experiences occasional extremes of temperature and rainfall
with relatively short durations. The complexity of the infiltration
process combining with the climate variability brings challenges
to engineering practices, especially in flood frequency analysis
and flood forecasting. Fig. 1(b) shows the location of 18 USGS
stream gauges with the corresponding contributing watershed.
The terrain slope of these 18 subbasins ranges from 0.31% to
1.12% with an average of 0.64% and the area varies from 16 km2

to 1,734 km2 with an average of 328 km2. In this paper, these sub-
basins are represented by the USGS gauge number.

Data

Rainfall data is obtained from the National Centers for Environ-
mental Prediction (NCEP) quality-controlled Stage IV multisensor
precipitation estimates (MPE) at 4 km=h spatiotemporal resolution
(Du 2011). Fifteen years of data (2005–2019) is analyzed in this
study with a mean annual precipitation of 912 mm for these sub-
basins among the study period. The streamflow observations are
obtained from USGS gauges (https://waterdata.usgs.gov/nwis/rt)
covering the same fifteen-year period as the precipitation data.

Due to the limited in situ soil moisture observations in the study
area, model-simulated soil moisture data are utilized to provide ini-
tial conditions. The initial soil moisture content (kg=m2) data are
obtained from the North American Land Data Assimilation System
Version 2 (NLDAS-v2) land surface model (LSM) at 0–40 cm
depth with a spatiotemporal resolution of 12.5 km at hourly scale.
Among three LSM outputs (Mosaic, Noah, and VIC LSM) from
NLDAS-v2, Noah LSM is selected since it is commonly used as
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 J. Hydrol. Eng., 2023, 28(5): 04023013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Zh
en

g 
Fa

ng
 o

n 
03

/0
2/

23
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.

http://ascelibrary.org/doi/10.1061/JHYEFF.HEENG-5883#supplMaterial
https://waterdata.usgs.gov/nwis/rt


the land surface component in multiple weather forecast systems
(e.g., weather research and forecasting (WRF) regional atmos-
pheric model, the NOAA NCEP coupled climate forecast system,
and the global forecast system) (Niu et al. 2011; Yang et al. 2011).
To estimate mean areal precipitation (MAP) and soil moisture at
basin scale, we first resample the raw data to 1-km resolution using
the nearest neighbor method, then calculate the areal average values
over each subbasin. The resampling essentially increases sample
size of the zonal averaging, which is especially necessary for small
subbasins.

Events Selection

Runoff events are identified throughout the entire study period
(2005–2019) and we use the revised constant-k method (Mei and
Anagnostou 2015) to separate the baseflow from long-term hydro-
graphs. By assuming the baseflow storage is linear, streamflow at
the recession curve can be defined as in Eq. (1):

Q ¼ Q0e−kt ð1Þ
where Q = streamflow at time t (m3=s); Q0 = streamflow at the
beginning of recession; and k = recession coefficient and can be
rearranged as in Eq. (2)

k ¼ − 1

Q
dQ
dt

ð2Þ

Then the change rate of k (Δk) can be calculated as in Eq. (3)

Δkt ¼
kt − kt−1

Δt
ð3Þ

As shown in Fig. 2(a), the rising limb and falling limb carry
negative and positive k values, respectively. Given that k approx-
imately reaches constant along the recession (Blume et al. 2007),
the ending time of the runoff event can be identified when the
change rate of k (Δk) is small enough to be considered as “no
change.” Fig. 2(b) illustrates the variation of Δk during a sample
flow period for the watershed 08048800. Δk is stable during the
recession while it shows large variation during the rising and
the crest. From the variation of Δk, starting time of the event can

also be identified. Then the straight-line method is applied by con-
necting the beginning and ending time to separate the baseflow.

Rainfall events are identified based on time series of mean areal
precipitation (MAP) for each gauge/subbasin. This requires prop-
erly defining a threshold value for the minimum inter-arrival time
(MIT) between any two storm events. Then we can determine
whether any two positive rainfall values separated by zeros belong
to the same storm event via checking whether the number of zeros
is greater than MIT or not. To automate the optimization of MIT,
we take the following steps as shown in Fig. 3. First, MIT is ini-
tialized at a small inter-arrival value, say 1 h. Second, a list of storm
events can be identified from the MAP time series based on the
initialized MIT value. Third, the inter-arrival times of the list of
storm events can be calculated and fitted to an exponential distri-
bution, which is done by assuming that storm occurrence fol-
lows Poisson process (Bove et al. 1998; Katz 2002). Fourth, the
goodness-of-fit is evaluated to determine if the MIT is proper. If
current MIT is not satisfactory, it will be updated by slightly in-
creasing the value, e.g., by 1 h, and the procedure enters the next
iteration starting from the first step until the updated MIT is proper.
After identifying rainfall and runoff events independently, we
match them by examining their overlay while minding that rainfall
events should precede the runoff events.

Loss Estimation

With rainfall and runoff events identified, the total loss for each
event can be calculated by subtracting surface runoff volume
(i.e., the integral of hydrograph after removal of baseflow) from
gross rainfall. Considering the nonlinear nature of hydrological
process, a family of previous studies have discovered that surface
runoff is a threshold process controlled by the antecedent wetness
of the catchment (van Meerveld and McDonnell 2005; James and
Roulet 2007, 2009; Latron and Gallart 2008; Penna et al. 2011).
Furthermore, Detty and McGuire (2010a, b) found a clear threshold
relationship between the summation of antecedent wetness and
gross rainfall and runoff volume: above certain threshold, runoff
volume becomes linearly correlated with the sum of antecedent
soil moisture and rainfall. One of the benefits of quantifying the
threshold behavior is that total loss can be easily calculated/
predicted given antecedent soil moisture and gross rainfall.

Fig. 1. Study area in the Upper Trinity River Basin (UTRB): (a) imperviousness; and (b) 18 USGS stream gauges and the corresponding contributing
watershed (location data for stream gauges from USGS, n.d.).
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Therefore, we evaluate this threshold behavior of the studied catch-
ments based on observations of streamflow, rainfall and antecedent
soil moisture.

When the total loss is calculated, as the components of total loss,
the corresponding initial loss and constant loss can be then esti-
mated. Based on the concept of the IACL, IA can be calculated
as the amount of rainfall that occurs before the start of the runoff
(Rahman et al. 2002a)

IA ¼
Xt0
i¼1

Ii ð4Þ

where Ii = hourly rainfall amount in mm; and t0 = time duration (h)
between rainfall starts and runoff starts as shown in Fig. 4.

The total loss volume can be expressed as:

LOSS ¼ Rainfall − Runoff ¼ IAþ CL × ðt − t0Þ ð5Þ

Fig. 3. Flowchart of the rainfall event identification using the minimum
inter-arrival time (MIT) method.

Fig. 4. Initial abstraction (IA) and constant loss (CL) for a given
rainfall-runoff event.

Fig. 2. Streamflow and variation of (a) recession coefficient (k); and (b) change rate of the recession coefficient (Δk) for a sample flow period of the
watershed 08048800 in the Upper Trinity River Basin (UTRB).

© ASCE 04023013-4 J. Hydrol. Eng.
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where t = rainfall duration. Note that evapotranspiration during
the flood event is considered negligible, making the loss term
equivalent to infiltration loss.

Then the CL can be calculated as:

CL ¼ LOSS − IA
t − t0

ð6Þ

Distribution Fitting

To analyze the probabilistic characteristics of the loss parameters,
we use both parametric and non-parametric probability distribu-
tions to fit the calculated IA and CL values. Maximum likelihood
estimates method is applied to fit the possible parametric distribu-
tions. Goodness-of-fit tests and plots, including the probability
density function (PDF), probability-probability (P-P) and quantile-
quantile (Q-Q) plots, are used to determine whether the fitted
distribution is reasonable. For each fitted distribution, 10,000 ran-
dom values are generated to calculate the descriptive statistics
(e.g., minimum and maximum values, mean, median, standard
deviation, and skewness). These statistics from fitted distributions
are compared to the descriptive statistics of the sample dataset. The
best fitting distribution is selected based on the results from the
goodness-of-fit tests, P-P and Q-Q plots, and relative errors of
the descriptive statistics. Previous studies have identified and inves-
tigated three probability distributions for IA and CL values, includ-
ing gamma, Weibull and lognormal distributions (Caballero 2013;
Gamage et al. 2013; Loveridge et al. 2013; Hill et al. 2016), which
are therefore selected as candidates for probability distribution fit-
ting in this study (Table 1).

In this study, Anderson-Darling test (Anderson and Darling
1952) is adopted as the goodness-of-fit test based on the empirical
density function to measure how well the data fits a specified dis-
tribution. Small p-values means the data does not come from that
specified distribution. When comparing with several distributions,
one should choose the distribution that gives the largest p-value,
which is the closet match to the data.

Results and Discussions

Rainfall-Runoff Events

Following the hydrograph separation and rainfall identification
methods, we identify and pair a total of 2,036 events for 18 sub-
basins in UTRB. Table 2 shows the detailed number of rainfall-
runoff events for each subbasin over the 15-year observation
period. As shown in the rainfall and runoff statistics, a large variety
of events have been covered including both small and big events.

Threshold Behavior

From the identified rainfall-runoff events for 18 subbasins in
UTRB, we calculate the gross rainfall (MAP), runoff volume and
total loss, and extract the antecedent soil moisture content from the
top 40 cm depth of soil layer for each event. A clear threshold
behavior is found for all 18 subbasins, where linear relationship
of the sum of MAP and ASM gets statistically stronger beyond a
threshold value (of MAPþ ASM). This behavior has been reported
and examined in previous studies (Detty and McGuire 2010a, b;
Fu et al. 2013; Saffarpour et al. 2016). Fig. 5 shows an example
(gauge 08057200) of how goodness-of-fit, indicated by the coef-
ficient of determination R2, changes when different threshold is
selected. The R2 is calculated based on a linear regression fit to
sample points above the moving threshold. With the moving
threshold increasing, the R2 value almost increases exponentially
as illustrated in Fig. 5, which means the linear relationship between
MAPþ ASM and runoff improves abruptly near some threshold.
Therefore, one can estimate this MAPþ ASM threshold accurately
and conveniently by choosing some value at a high R2.

As shown in Fig. 6, below a certain threshold, the sum of ASM
and gross rainfall is poorly correlated with runoff depth, and little
runoff is generated. Above this threshold value, the relationship
betweenMAPþ ASM and runoff depth becomes highly linear with
R2 values above 0.8 for most gauges in the study region (Fig. S1).
The detailed statistics including the parameters of regression equa-
tions and the threshold values for each subbasin can be found in
Table S2. The threshold behavior has been discovered in previous
studies using small headwater catchments (area less than 10 km2)
(Detty and McGuire 2010a; Penna et al. 2011; Fu et al. 2013;
Saffarpour et al. 2016). In this study, we confirm and expand the
threshold behavior using more and larger-sized basins based on
long-term rainfall, soil moisture, and streamflow observations. The
threshold behavior can be used to estimate runoff and loss based on
total rainfall and antecedent soil moisture. For example, one can
predict the runoff volume for a basin using the real time soil mois-
ture and quantitative precipitation forecast (QPF) ahead of a storm
event based on the threshold behavior.

Loss Values from Selected Events

Initial and constant losses have been calculated for each event as
summarized in Table 3 with the important statistics for individual
gauges. The mean IA and CL values for the 18 subbasins are
27 mm and 0.6 mm=h, respectively. The average skewness values
for IA and CL are 1.67 and 2.08, indicating the IA and CL distri-
butions are positively skewed. The reason is that the lower bounds
of IA and CL are zero or close to zero while the upper bounds are
varied and based on the data samples. For all subbasins, the average

Table 1. Continuous probability distributions: gamma, Weibull, and lognormal distributions

Distribution Probability density function Parameters

Gamma fXðxÞ ¼
λαxα−1e−λx

ΓðαÞ α is the shape parameter (α > 0)
λ is the scale parameter (λ > 0)
ΓðαÞ is the gamma function:
ΓðαÞ ¼ ∫∞

0 xα−1e−xdxðx > 0Þ

Weibull fXðxÞ ¼
α
λ

�x
λ

�
α−1

e−
�
x
λ

�
α

α is the shape parameter (α > 0)
λ is the scale parameter (λ > 0)

Lognormal fXðxÞ ¼
1

x
1

σ
ffiffiffiffiffiffi
2π

p e

h
− ðln x−μÞ2

2σ2

i
σ is the shape parameter
μ is the location parameter
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ranges of IA and CL are 0–177 mm and 0–3.89 mm=h, respectively.
Given such a wide range, using a single set of IACL values for
specific design frequency, which is to convert specific rainfall
(e.g., 100-year design rainfall) to streamflow (e.g., 100-year
peak streamflow), seems unreliable.

To better illustrate IA and CL values with varying precipitation,
we divide the data samples (2,036 events) into six groups based on
10%, 25%, 50%, 75%, and 100% percentiles of the total rainfall
amount and show the ranges of IA (mm), total CL (mm) and
CL (mm=h) in Figs. 7(a–c). It can be found that IA and total
CL feature a small range when rainfall is little, while as rain-
fall gets higher, the larger variations exhibit in IA and total CL
[Figs. 7(a and b)]. Here, total rainfall can be viewed as the possible
maximum of IA plus total CL: as total rainfall increases, more com-
binations of IA and CL values are allowed, hence the larger varia-
tion. This finding is important for design applications, especially

for extreme events with large rainfall amount. It may be reasonable
to apply a single set of IACL for small events due to their tight
ranges. However, for large events, the greater variations/ranges of
IA and total CL are observed, it is questionable to assign a single set
of IACL values for specific design scenario. The trend of variations
in CL values is mixed as the rainfall increases [Fig. 7(c)]. This can
be explained by the fact that CL is the loss rate, so it also depends
on the rainfall duration other than rainfall amount.

Distribution Fittings

Gamma, Weibull, and lognormal distributions are fitted to the cal-
culated IA and CL values for the 18 subbasins. As shown in Table 3,
identified events for some subbasins are not sufficient to generate a
reasonable distribution of calculated IA and CL values. Therefore,
we only show the results of distribution fittings for six subbasins
which have more than 150 events identified.

Fig. 8 shows the empirical and fitted probability density func-
tions (PDF) of gamma, Weibull, and lognormal distributions for IA
values. From the goodness-of-fit statistics (Table 4), lognormal dis-
tribution is found to have the lowest p-values (less than 0.05 for
most gauges), indicating poor evidence for the null hypothesis,
which means lognormal is not suitable for fitting the distribution
of IA. Gamma and Weibull distributions show the similar Anderson-
Darling statistics. Table 5 shows the comparison of the descriptive
statistics between the calculated and generated (sample size:
10,000 values) IA values from gamma and Weibull distributions.
Compared with the calculated mean of IA, the gamma-generated
and Weibull-generated mean both show 1% average differences
from six subbasins. For the standard deviation, the average differ-
ences between calculated with gamma-generated and Weibull-
generated IA are 8% and 10%, respectively. The upper limit of
gamma-generated IA is closer to the calculated upper limit than
Weibull. Overall, the generated IA values from gamma fitted dis-
tribution preserve statistics of the calculated IA data well.

Fig. 9 shows the empirical and fitted probability density func-
tions (PDF) of gamma, Weibull, and lognormal distributions for
CL values. From the goodness-of-fit statistics (Table 6), we can
see p-values of three distributions for six gauges are all larger than
0.05, indicating the null hypothesis is not rejected. However,
Anderson-Darling statistics of lognormal are always larger than

Table 2. Statistics of selected rainfall-runoff events for 18 subbasins

Gauge ID
Area
(km2)

Number of
events

Rainfall range (mm) Runoff range (mm)

Low High Mean Low High Mean

08042800 1,733.8 15 4.87 222.88 77.60 2.42 122.65 23.34
08044800 162.5 126 0.43 145.86 38.19 0.02 59.55 5.74
08047050 142.0 265 0.11 179.23 20.85 0.07 65.22 2.46
08048800 136.5 93 0.88 121.02 31.26 0.16 44.13 7.99
08048970 233.8 152 0.19 111.92 23.48 0.08 87.09 7.13
08049580 65.9 76 1.01 106.79 34.29 0.08 96.66 11.70
08049700 163.7 203 0.10 184.26 29.79 0.05 87.41 5.45
08050400 458.9 70 0.19 517.59 51.40 0.10 349.59 17.45
08050800 101.2 37 7.36 157.20 47.48 0.16 97.83 17.61
08050840 75.9 44 4.30 145.67 34.26 1.48 92.60 14.40
08051500 758.1 57 0.43 507.67 50.91 0.10 311.74 15.53
08052700 188.9 35 1.10 179.82 47.88 1.08 165.07 24.30
08052745 98.8 80 0.80 135.30 30.41 0.16 46.00 9.23
08052780 334.3 86 1.08 179.23 37.42 0.09 109.88 9.53
08053009 35.9 177 0.46 114.50 25.45 0.16 75.37 8.84
08053500 1,033.0 29 1.73 502.06 61.52 0.35 223.32 18.39
08056500 16.3 212 0.27 116.02 23.63 0.17 73.05 7.31
08057200 172.2 279 0.71 132.38 23.20 0.14 70.87 5.87

Fig. 5. Coefficient of determination R2 calculated for a linear regres-
sion between runoff volume and MAPþ ASM above a moving thresh-
old for a sample watershed 08057200.
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gamma and Weibull distributions, indicating lognormal is less
suitable for fitting CL compared with gamma and Weibull. Weibull
has smaller Anderson-Darling statistics than gamma, meaning
Weibull distribution fits CL better. Table 7 shows the comparison
of the descriptive statistics between the calculated and generated
(sample size: 10,000 values) CL values from gamma, Weibull, and
lognormal distributions. From the statistics, we can see the fitted
lognormal has much higher values for the upper limit of CL than
gamma and Weibull. Compared with the calculated mean of CL,

the gamma-generated and Weibull-generated mean show 1% and
2% average differences, respectively. For the standard deviation
(SD), the average differences are 18% and 11% between the calcu-
lated with gamma-generated and Weibull-generated CL, respec-
tively. The Weibull distribution is therefore found to be of best fit
and well preserves statistics of the calculated CL values.

All IA and CL values from the 18 subbasins are used to ex-
tract exceedance probabilities. Figs. 10 and 11 show the resulting
nonparametric distribution with 90% confidence interval for the IA

Fig. 6. Threshold behavior of the six example subbasins in UTRB.

Table 3. Statistics of IA and CL values for 18 subbasins (SD meaning standard deviation)

Gauge ID
Number of
events

IA (mm) CL (mm/h)

Range Mean Median SD Skew Range Mean Median SD Skew

08042800 15 5–112 49 47 33.45 0.22 0.04–0.36 0.20 0.24 0.11 −0.09
08044800 126 0–116 28 20 25.12 1.61 0.03–2.51 0.39 0.27 0.45 2.45
08047050 265 0–99 15 9 17.67 1.93 0.00–8.50 0.69 0.37 1.08 4.43
08048800 93 1–118 25 17 24.24 1.75 0.01–1.30 0.51 0.40 0.44 0.53
08048970 152 0–96 15 10 15.80 2.11 0.00–6.52 0.68 0.36 1.05 3.67
08049580 76 0–104 27 19 24.11 1.50 0.01–2.49 0.64 0.28 0.83 1.37
08049700 203 0–121 24 16 25.80 2.07 0.00–3.05 0.48 0.22 0.67 2.36
08050400 70 0–178 35 31 29.01 2.24 0.00–9.19 0.80 0.21 2.11 3.78
08050800 37 0–110 33 28 26.83 1.33 0.03–1.76 0.47 0.31 0.60 1.67
08050840 44 0–92 28 23 19.39 1.10 0.06–3.92 1.06 0.56 1.62 1.40
08051500 57 0–130 31 27 29.45 1.52 0.01–6.30 0.75 0.43 1.38 3.65
08052700 35 0–102 30 27 22.25 1.05 0.05–0.85 0.41 0.39 0.32 0.18
08052745 80 0–135 24 18 24.63 2.30 0.01–4.71 0.80 0.23 1.32 2.32
08052780 86 0–112 29 21 25.94 1.53 0.00–0.99 0.26 0.11 0.32 1.37
08053009 177 0–114 20 13 20.46 1.96 0.03–6.70 0.94 0.37 1.43 2.46
08053500 29 0–123 38 33 28.96 1.08 0.00–0.45 0.18 0.14 0.15 0.62
08056500 212 0–116 19 13 21.47 2.23 0.01–5.82 0.83 0.51 1.11 2.77
08057200 279 0–132 18 12 21.60 2.55 0.00–4.61 0.71 0.33 1.00 2.46
Average 113 0–117 27 21 24.23 1.67 0.00–3.89 0.60 0.32 0.89 2.08
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and CL values, respectively. As an alternative to the currently em-
ployed design event approach in the region (USACE 1992), ran-
dom IA(CL) values for the Upper Trinity River Basin can be
drawn from these statistical distributions as derived and then drive
the hydrologic simulations using a Monte Carlo framework. Its
main strength is that, as an event-based framework, Monte Carlo
allows processes that have a dominant influence on generating and
modifying floods to be represented more realistically while simpli-
fying other less influential processes. For each model run, a set of
input and parameter values (e.g., rainfall duration, rainfall intensity,
rainfall temporal pattern and losses) can be randomly drawn from
their respective distributions instead of choosing a default value for
each variable. In particular, the drawing of random IA(CL) values
can be independent by assuming no significant correlation with
other inputs (e.g., rainfall) or parameters. Consequently, a Monte
Carlo simulation via hydrologic modeling with the random combi-
nations of IA and CL can generate a large sample of streamflow for
deriving flood frequency curves, through which the probabilistic
nature of IA and CL and other key processes are properly reflected
in the design frequency flows.

Similar to the subject of this study, TxDOT and USGS also
investigated IA and CL estimation in Texas using observed rainfall
and runoff events. However, their derived IACL values are spe-
cifically tuned to develop gamma unit hydrographs (Asquith and
Roussel 2007; Thompson et al. 2008). Using 92 applicable water-
sheds that cover a variety of geographic features, their study corre-
lated some watershed characteristics (e.g., main-channel length,
curve numbers) with the mean IACL values. In contrast, the 18 catch-
ments in our study are too few to show any convincing relationships
between IACL and watershed characteristics, especially when di-
vided into multiple dimensions (multiple topographic characteris-
tics). In other words, IA and CL values vary significantly from
event to event, which overwhelms the variability across 18 catch-
ments. Although limited by the scope of this study, we do think it
would be a meaningful future effort to conduct catchment-specific
probability fitting of IA and CL in a large number of catchments
with a wide geographic variety and then relate distribution param-
eters with catchment features.

Finally, the uncertainty sources should be noted when interpret-
ing the IA and CL estimates from this study, which is discussed in
the following in the order of increasing significance. First, even
though gauge-corrected Stage IV radar rainfall and USGS gauged
streamflow are utilized, these quality-controlled observations are
essentially estimates (with remaining errors) of the unknown truths.
Second, the rainfall event separation scheme assumes that rainfall
occurrence follows a Poisson process; whereas the runoff iden-
tification assumes flow recession to be controlled by a storge-
discharge relationship. These statistical/empirical assumptions,
though widely adopted, add uncertainties to the estimation of rain-
fall depth and runoff volume for storm events. Last, we consider
the structural uncertainty of IACL method itself to be the greatest
uncertainty source. After all, the empirical nature of IACL method
deviates from the physics of infiltration process. What is more,
when applied at the catchment scale, the IACL method is expected
to lump the high spatial heterogeneity of the infiltration process,
which could exceed how much the method can realistically
approximate.

Conclusions and Future Work

This study focuses on loss estimation for the 18 headwater catch-
ments in North Central Texas based on 15 years (2005–2019) of
Stage IV rainfall and USGS streamflow data. By developing auto-
matic retrieving schemes, we identify a total of 2,036 rainfall-
runoff events and calculate the total loss with its initial abstraction
(IA) and constant loss (CL) components for each event. The stat-
istical behaviors of these IA and CL values are further explored and
three distributions (gamma, Webull, and lognormal) are tested. The
results of statistics and distribution fittings from this exhaustive list
of events establish a solid foundation for future Monte-Carlo
rainfall-runoff simulations, which promises to provide a better
estimation in derived flood frequency curves. The major findings
are summarized as follows:
1. Being unique from conventional approaches in identifying real

storms, the automatic identification of rainfall-runoff events
ensures that the occurrence of events follow a Poisson process,
which can generate a large number of events that suffice the
requirement in deriving statistical distribution of loss-related
variables.

2. Threshold behavior is found for all studied subbasins. In UTRB,
the relationship between MAPþ ASM and runoff is largely lin-
ear above certain threshold values for corresponding subbasins,

(a)

(b)

(c)

Fig. 7. Violin plots of (a) IA; (b) total CL; and (c) CL with rainfall.
SD means standard deviation.

© ASCE 04023013-8 J. Hydrol. Eng.

 J. Hydrol. Eng., 2023, 28(5): 04023013 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Zh
en

g 
Fa

ng
 o

n 
03

/0
2/

23
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



which indicates a convenient way to estimate/predict total loss
or runoff given gross rainfall and antecedent soil moisture.

3. IA and CL can be estimated based on hyetographs and
hydrographs through a simplistic framework. Estimated IA

and CL can be fit to positively skewed distributions. Out of
the tested distributions, Gamma is the most suitable distri-
bution for IA while Weibull distribution has the best fit
for CL.

Fig. 8. Probability density functions (PDFs) of the observed data and three fitted distributions of IA values for subbasins with identified events more
than 150.

Table 4. Goodness-of-fit test statistics of the fitted gamma, Weibull, and
lognormal distributions of the IA data

Gauge ID Distribution

Anderson-Darling

P-value Statistics

08047050 Gamma 0.813 0.435
Weibull 0.812 0.436

Lognormal 0.007 4.198

08048970 Gamma 0.997 0.165
Weibull 0.997 0.164

Lognormal 0.093 1.991

08049700 Gamma 0.442 0.857
Weibull 0.448 0.848

Lognormal 0.005 4.419

08053009 Gamma 0.983 0.222
Weibull 0.986 0.213

Lognormal 0.068 2.236

08056500 Gamma 0.212 1.367
Weibull 0.224 1.325

Lognormal 0.045 2.581

08057200 Gamma 0.223 1.329
Weibull 0.269 1.196

Lognormal 0.001 5.650

Table 5. Comparison of statistics for the calculated and generated IA
values from Gamma and Weibull distributions

Gauge ID
IA

number

Initial abstraction (IA) (mm)

Distribution Range Mean Median SD Skew

08047050 265 Calculated 0–99 15.20 9.18 17.67 1.93
Gamma 0–160 14.87 8.92 17.37 2.21
Weibull 0–279 15.42 8.62 19.30 2.79

08048970 152 Calculated 0–96 14.76 9.74 15.80 2.11
Gamma 0–153 14.71 9.51 15.85 2.18
Weibull 0–151 14.59 9.53 15.61 2.24

08049700 203 Calculated 0–121 23.76 16.17 25.80 2.07
Gamma 0–235 23.72 15.95 24.69 2.06
Weibull 0–248 23.52 15.06 25.54 2.17

08053009 177 Calculated 0–114 19.59 13.35 20.46 1.96
Gamma 0–197 19.36 13.21 19.65 2.14
Weibull 0–206 19.38 13.08 19.70 2.01

08056500 212 Calculated 0–116 19.17 12.61 21.47 2.23
Gamma 0–187 19.34 13.27 19.52 2.00
Weibull 0–226 19.05 12.94 19.62 2.12

08057200 279 Calculated 0–132 18.06 11.95 21.60 2.55
Gamma 0–151 17.76 11.30 19.26 2.08
Weibull 0–223 18.05 11.40 20.37 2.40

Note: SD = standard deviation.
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For future directions, we will implement the distributions of
IA and CL derived from this study in a Monte Carlo framework
to simulate numerous rainfall-runoff events for a flood frequency
analysis. Joint distribution of loss parameters with rainfall or other

Fig. 9. Probability density functions (PDFs) of the observed data and three fitted distributions of CL values for subbasins with identified events more
than 150.

Table 6. Goodness-of-fit test statistics of the fitted gamma, Weibull, and
lognormal distributions of the CL data

Gauge ID Distribution

Anderson-Darling

P-value Statistics

08047050 Gamma 0.666 0.581
Weibull 0.959 0.269

Lognormal 0.528 0.737

08048970 Gamma 0.759 0.487
Weibull 0.896 0.351

Lognormal 0.355 1.004

08049700 Gamma 0.895 0.351
Weibull 0.974 0.243

Lognormal 0.275 1.179

08053009 Gamma 0.331 1.050
Weibull 0.592 0.660

Lognormal 0.277 1.236

08056500 Gamma 0.955 0.276
Weibull 0.987 0.210

Lognormal 0.693 0.552

08057200 Gamma 0.548 0.713
Weibull 0.806 0.442

Lognormal 0.340 1.034

Table 7. Comparison of statistics for the calculated and generated CL
values from Gamma, Weibull, and Lognormal distributions

Gauge
ID

CL
number

Constant loss (CL) (mm/h)

Distribution Range Mean Median SD Skew

08047050 111 Calculated 0.00–8.50 0.69 0.37 1.08 4.43
Gamma 0.00–9.38 0.68 0.40 0.81 2.42
Weibull 0.00–12.76 0.68 0.37 0.89 2.92

Lognormal 0.00–94.70 0.91 0.29 2.76 15.31

08048970 52 Calculated 0.00–6.52 0.68 0.36 1.05 3.67
Gamma 0.00–11.29 0.68 0.37 0.85 2.53
Weibull 0.00–11.59 0.67 0.34 0.91 3.18

Lognormal 0.00–208.72 1.10 0.27 4.11 22.17

08049700 69 Calculated 0.00–3.05 0.48 0.22 0.67 2.36
Gamma 0.00–6.03 0.47 0.25 0.61 2.53
Weibull 0.00–12.01 0.49 0.23 0.73 3.90

Lognormal 0.00–558.81 0.94 0.17 6.88 60.90

08053009 40 Calculated 0.03–6.70 0.94 0.37 1.43 2.46
Gamma 0.00–13.07 0.94 0.53 1.14 2.47
Weibull 0.00–19.99 0.90 0.46 1.25 3.32

Lognormal 0.00–97.48 1.00 0.37 2.44 13.96

08056500 42 Calculated 0.00–5.82 0.83 0.51 1.11 2.77
Gamma 0.00–9.34 0.83 0.50 0.94 2.27
Weibull 0.00–11.87 0.82 0.47 1.02 2.79

Lognormal 0.00–86.59 1.11 0.38 2.67 10.05

08057200 77 Calculated 0.00–4.61 0.71 0.33 1.00 2.46
Gamma 0.00–7.54 0.70 0.39 0.85 2.37
Weibull 0.00–15.48 0.72 0.38 0.98 3.29

Lognormal 0.00–171.24 1.06 0.29 3.66 22.53

Note: SD = standard deviation.
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Fig. 10. Nonparametric distribution of all IA values.

Fig. 11. Non-parametric distribution of all CL values.
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influential inputs/parameters will also be considered as possible
ways to capture the probabilistic nature of loss-related variables
more accurately.

Data Availability Statement
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study are available from the corresponding author upon reasonable
request.
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