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ABSTRACT

Forest landscape restoration is a global priority to mitigate negative effects of climate change, conserve biodi-
versity, and ensure future sustainability of forests, with international pledges concentrated in tropical forest
regions. To hold restoration efforts accountable and monitor their outcomes, traditional strategies for monitoring
tree cover increase by field surveys are falling short, because they are labor-intensive and costly. Meanwhile
remote sensing approaches have not been able to distinguish different forest types that result from utilizing
different restoration approaches (conservation versus production focus). Unoccupied Aerial Vehicles (UAV) with
light detection and ranging (LiDAR) sensors can observe forests™ vertical and horizontal structural variation,
which has the potential to distinguish forest types. In this study, we explored this potential of UAV-borne LiDAR
to distinguish forest types in landscapes under restoration in southeastern Brazil by using a supervised classifi-
cation method. The study area encompassed 150 forest plots with six forest types divided in two forest groups:
conservation (remnant forests, natural regrowth, and active restoration plantings) and production (monoculture,
mixed, and abandoned plantations) forests. UAV-borne LiDAR data was used to extract several Canopy Height
Model (CHM), voxel, and point cloud statistic based metrics at a high resolution for analysis. Using a random
forest classification model we could successfully classify conservation and production forests (90% accuracy).
Classification of the entire set of six types was less accurate (62%) and the confusion matrix showed a divide
between conservation and production types. Understory Leaf Area Index (LAI) and the variation in vegetation
density in the upper half of the canopy were the most important classification metrics. In particular, LAI un-
derstory showed the most variation, and may help advance ecological understanding in restoration. The dif-
ference in classification success underlines the difficulty of distinguishing individual forest types that are very
similar in management, regeneration dynamics, and structure. In a restoration context, we showed the ability of
UAV-borne LiDAR to identify complex forest structures at a plot scale and identify groups and types widely
distributed across different restored landscapes with medium to high accuracy. Future research may explore a
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fusion of UAV-borne LiDAR with optical sensors, and include successional stages in the analyses to further
characterize and distinguish forest types and their contributions to landscape restoration.

1. Introduction

Forest restoration has become increasingly important to reverse
forest cover losses and forest degradation. There are global ambitions to
restore 3.5 million km? of forests, especially in tropical regions where
population densities are low, many areas are degraded, and the potential
for biodiversity conservation and climate change mitigation is high
(Brancalion et al., 2019). A portfolio of restoration strategies is being
used depending on local opportunities, site conditions, and needs
(Chazdon et al., 2016). These strategies may either have a stronger
conservation focus (e.g. by focusing on remnant forests, natural
regrowth or active restoration plantings) or a stronger production focus
(e.g. by focusing on monoculture plantations, mixed plantations, or
abandoned plantations) (Hua et al., 2022). The balance between con-
servation and production forests in restoration initiatives has been an
important controversy, as established and planned production forests
with exotic tree species predominate in many global regions (Lewis
et al., 2019). Until now tree cover loss and gain has been the central
indicator used to evaluate restoration and reforestation advancement at
large scales (Nanni et al., 2019), but it has critical limitations to un-
derstanding how restoration has been implemented and for estimating
its potential benefits to nature and people (Marshall et al., 2022). In the
context of the unprecedented scale of forest restoration and monitoring
their outcomes, distinguishing between these restoration approaches
and establishing a baseline for monitoring their outcomes is a first step
towards a more meaningful accountability of these restoration initia-
tives. Here, we evaluate the potential of Unoccupied Aerial Vehicles
equipped with Light and Detection Ranging (UAV-LiDAR) to distinguish
between six different tropical forest restoration types based on their
structural attributes and leaf area components with supervised
classification.

Production
Monoculture plantation

Abandoned monoculture

% |

Conservation
Restoration plantation

1.1. Different restoration types

Different forest restoration approaches can be used to match project
objectives in varying socio-ecological conditions (Fig. 1). For instance,
restoring native forest functions, by means of natural regeneration or
restoration plantations, maximizes biodiversity conservation and key
ecosystem services (e.g. carbon storage, soil erosion control, water
provisioning) compared to exotic tree plantations, but results in lower
contribution to wood supply (Hua et al., 2022). Mixed and abandoned
plantations provide higher environmental benefits than monoculture
tree plantations (Feng et al., 2022). Furthermore, active management in
plantations, including the removal or suppression of understory vege-
tation and the planting of trees in rows, leads to different forest struc-
tures than in naturally regenerated forests (Chazdon and Guariguata,
2016). Regarding native forests, natural regeneration is advantageous
because it is cheaper, more scalable, and maximizes biodiversity re-
covery compared to mixed plantations of native trees (Chazdon et al.,
2020; Crouzeilles et al., 2017), but this restoration approach is unsuit-
able for more degraded areas, with lower resilience (Holl and Aide,
2011). As landscapes undergoing forest restoration are often a hetero-
geneous mosaic of different restoration approaches, with different ages,
species composition, and management, qualifying the restored tree
cover is crucial, yet underdeveloped in technical terms.

1.2. The importance of forest structure

Forest structure is an important indicator for forest functioning and
ecosystem processes (Poorter et al., 2021; Zolkos et al., 2013). For
example, structural attributes (e.g. leaf area index (LAI), height, and
basal area) are main drivers of carbon storage and accumulation, which
are critical attributes for climate change mitigation (Lohbeck et al.,
2015; van der Sande et al., 2017; Almeida et al., 2019a). In contrast to
species diversity, structural attributes are less sensitive to sampling area,

Fig. 1. New forest types that result from different
restoration approaches. These six types are
included in this study. Monoculture plantations
consist of a single tree species, abandoned
monoculture consists of a single tree species with
naturally regenerating understory, mixed planta-
tions consist of two or a few commercial tree
species, restoration plantations consist of mixed
plantations of several native tree species, second-
growth forests consist of spontaneous recoloni-
zation of tree species, forest remnants consist of
mostly disturbed and fragmented old-growth
forest.
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and hence, monitoring structural attributes has more potential for
restoration outcomes (Chazdon et al., 2022; Marshall et al., 2022). Also,
increased forest structure, including height and height variation, is
associated with higher species diversity, because of increased
complexity in the canopy and biomass and vertical niche occupation
(Almeida et al., 2021; Marselis et al., 2019). LAI, which is the one-sided
leaf area per unit ground area, is an important feature, because the total
leaf area plays a critical role in forest primary production, nutrient cy-
cles, and respiration (Asner et al., 2003; Clark et al., 2008; Fang et al.,
2019). Therefore, monitoring forest structure with UAV-LiDAR can be a
viable, integrative strategy to operationalize the indirect assessment of
forest diversity and functioning at larger scales.

1.3. Need to upscale monitoring across space and time using remote
sensing

Forest monitoring is traditionally done using conventional forest
inventories and permanent sample plots. However, with the global
ambitions to scale up restoration efforts, it is also important to upscale
monitoring efforts across space and time (de Almeida et al., 2019). The
first step to upscale these monitoring efforts is to establish a baseline of
the landscapes under restoration, starting with distinguishing different
restoration approaches (this study). UAVs are suitable for classifying
different restoration approaches and monitoring forest restoration,
because they 1) cover large areas within one flight, 2) provide high
spatial resolution, and 3) give information about key ecological in-
dicators, such as vegetation structural attributes and species identifica-
tion. Multispectral technologies allow to identify species and estimate
biomass and primary productivity, but have the disadvantage that many
vegetation reflectance indices saturate with dense canopies, and that
they cannot adequately describe forest structure. LiDAR has the ability
to capture the three dimensional structure of sub-canopy layers and to
accurately quantify canopy height, canopy cover, LAI, and above-
ground biomass (Drake et al., 2002; Luo et al., 2019; van Leeuwen
and Nieuwenhuis, 2010). UAV-LiDAR systems are light-weight, field-
portable, have a relatively low cost, can acquire imagery at fine spatial
and temporal resolutions, and are more flexible in use than other LiDAR
systems (Sankey et al., 2017; Zahawi et al., 2015). They are expected to
revolutionize forest monitoring considering their potential for identifi-
cation and monitoring of restoration forest types (Almeida et al., 2019,
2019d and 2021; Camarretta et al., 2020; Sankey et al., 2017). However,
the application of UAV-borne LiDAR for monitoring in a tropical forest
restoration context is relatively new (but see Almeida et al., 2019a,
2019b, 2021b).

1.4. Forest type classification for monitoring with LiDAR

Typically, tree cover classification is accomplished by using super-
vised machine learning algorithms in combination with multispectral
images. Supervised classification with machine-learning algorithms
exploded during the past two decades, because they can handle complex
data structures and make no assumptions about the data distribution
(Maxwell et al., 2018). Specifically the Random Forest (RF) algorithm
gained in popularity because of its reliable classification results and
ability to rank the importance of input variables on the classification
result (Belgiu and Dragut, 2016). To date, however, combining UAV-
LiDAR based vegetation structural attributes with supervised classifi-
cation for distinguishing forest types and monitoring restoration is
relatively unexplored, but is gaining momentum.

To this end, we explored the potential of UAV-LiDAR-derived
structural metrics to distinguish six tropical forest restoration types
that differ in their conservation and production value in landscapes
undergoing restoration. More specifically, we evaluate how structural
attributes are associated with tropical forest restoration types (six types
and two groups based on conservation and production value) by
applying supervised classification methods. We also discuss monitoring
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forest restoration outcomes with UAV and LiDAR systems.
2. Methods
2.1. Study area and field data

The study areas are located in the ecotone zone between the Atlantic
Forest and Cerrado in southeastern Brazil, which are considered biodi-
versity hotspots for conservation priorities (Myers et al., 2000). We
selected four human-modified tropical landscapes that are representa-
tive for landscapes under restoration in the southeast of Brazil. These
landscapes range between 4 and 10 km? each. These landscapes expe-
rienced a recent increase in tree cover resulting from the expansion of
commercial tree plantations, restoration plantations, and second-growth
forests (Fig. 2). Within the studied landscapes, we grouped all new
forests into six different forest types, because these forest types represent
a gradient of human interference on ecosystem composition, structure
and functioning, and these types are increasingly expanding into the
anthropized landscapes in the southeast of Brazil (Fig. 1, Table 1). The
four landscapes are experimental areas of the University of Sao Paulo.
Two landscapes are experimental stations (Anhembi and Itatinga), one
landscape is an experimental farm (Areao), and one landscape is at a Sao
Paulo university campus (ESALQ in Piracicaba) (Fig. 2). The elevation of
landscapes varies between 450 and 850 m above sea level with <100 m
variability within landscape. The native vegetation is mostly seasonal
semi-deciduous forests, the regional climate has dry winters and wet
summers, with a mean annual precipitation ranging from 1100 to 1367
mm, and mean temperatures from 20 °C to 23 °C (Koppen climate type
Cwa) (César et al., 2018).

The six forest types were based on information from local partners,
land use and land cover maps, and visual interpretation of satellite im-
agery (or products thereof, e.g. MapBiomas). The definitions of the six
types in this study are (see Fig. 1 for a visual overview):

- Monoculture plantation: plantations of a single tree species, native or
exotic, permanently managed for commercial purposes, including
understory clearing.

- Abandoned monoculture: monoculture plantations without understory

clearing, which may have allowed spontaneous recolonisation by

native tree species.

Mixed plantation: plantations of two or a few more commercial tree

species managed for production, including understory clearing.

Restoration plantation: mixed plantations of several native tree spe-

cies, managed for restoring native forest ecosystems.

Second-growth forests: established through the spontaneous recolo-

nization of tree species following land abandonment, without tree

planting or human assistance.

- Remnant forests: old-growth forests, which were mostly disturbed by
fragmentation and human disturbances. They do not represent a
conserved forest and might have suffered from biodiversity losses.

Next, we grouped the six types in two simplified groups: (1) con-
servation - remnant forests, second-growth forests, and restoration
plantation, and (2) production forests - monoculture plantation, aban-
doned plantation, and mixed plantation (Fig. 1; Table 1).

We then established inventory plots in polygons covered by each
forest type, with a size of 900 m? (30 x 30 or 20 x 45 m). We measured
the Diameter Breast Height (DBH), identified all trees DBH >5 cm within
each plot, and sampled the GPS positions of the four corners for each
plot with a GNSS device when possible and otherwise a handheld Gar-
min device. Plots were separated at least 60 m from each other, and to
avoid large edge effects, we located plots at least 30 m from the forest
edge. Whenever possible, we avoided forested areas <1 ha. In total, 150
plots were sampled between 2018 and 2020 (Table 1). More details
about summary statistics of the plots per forest type can be found in
Supplementary Materials B.
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Fig. 2. Study landscapes and plots in southeastern Brazil. A, B, C, D are the landscapes ESALQ, Itatinga, Areao, and Anhembi, respectively. The colored dots represent
the plots in each landscape. Map sources: Esri World Imagery; Global Forest Watch “Brazil biomes”; AmeriGEOSS datahub - Brazil subnational administra-
tive boundaries.
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Table 1
Number of sampled plots per forest type in each of the four sites.

Forest type Areao Anhembi ESALQ Itatinga Total
Monoculture plantation 4 36 1 20 61
Abandoned monoculture 1 12 0 7 20
Mixed plantation 4 2 0 2 8
Restoration plantation 4 10 5 11 30
Second-growth forest 0 17 1 24
Forest remnant 1 2 3 1 7
Total 150

2.2. UAV-borne LiDAR data acquisition

We used UAV-borne LiDAR data which was acquired with the
GatorEye system from the Spatial Ecology & Conservation Lab at the
University of Florida, United States. The data is available on the
GatorEye data access platform (http://www.speclab.org/gatoreye.
html). The GatorEye system includes a vertical takeoff and landing
DJI Matrice 600 Pro hexacopter. The GatorEye ‘Gen 2’ system contained
a Phoenix Scouth computational core, which integrates a Velodyne VLP-
32c dual-return laser scanner which can record up to 600,000 returns
per second and has a functional range of up to 200 m as well as time-
synchronized and co-aligned visual and hyperspectral sensors. The
LiDAR is a discrete-return sensor that captures the strongest return (first
return) and last return from each pulse, or it captures one single ‘com-
bined’ strongest return if both occur simultaneously.

We collected the data per landscape in three consecutive days (27th,
28th and 29th of August 2019). Flights were conducted 100 m above-
ground level and at a velocity of 10 m/s. Most flight lines overlapped
>50% and each plot was covered by 2 to 4 different flight lines with an
average point density of 237 points per m2. Visual examples of point
clouds of each forest type can be found in Supplementary Materials C.

2.3. UAV-borne LiDAR data processing

To calculate forest metrics from LiDAR data, we first extracted the
point clouds representing the forest plots from the full flight lines with
LAStools in R (Fig. 3). Next, we computed LiDAR metrics from Canopy
Height Models (CHM), ground-normalized point clouds, and voxelized
point clouds. We removed highly correlated metrics.

We used data from 150 field plots of 30 x 30 m. We used polygons to
clip the point clouds per plot. Then, we classified ground points and
interpolated with a Triangular Irregular Network (TIN) to produce the
digital terrain model (DTM). Subsequently, we normalized the point
clouds by replacing the elevation of each point (i.e., the z coordinate)
with its height above the ground. This process produced clipped height
normalized point clouds for each plot. The point density and average
spacing of point clouds clipped by the locations of the plots per land-
scape can be found in Table 2.

We derived three types of LiDAR metrics on plot scale: Canopy
Height Model (CHM) based metrics, point cloud-based statistics, and
voxel-based metrics (see Table 3). The CHM and point cloud based
metrics were calculated with a grid resolution of 0.25 m after which we
calculated the mean and variation on plot scale. The standard deviations
were calculated as follows:

2
S IEE o

where x; are the values of the grid cells and p is their average. In total, 33
metrics for all 150 plots were calculated (Table 3). We processed all data
in R (R Core Team R Foundation for Statistical Computing, 2022).
First, we computed CHMs with the normalized point clouds based on
the spike-free algorithm of Khosravipour et al. (2016) with a grid res-
olution of 0.25 m. This resolution was chosen based on the point spacing
value of the point clouds with the lowest point density (see Table 2),
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Fig. 3. General overview of the data, processes, and outcomes of the processing
and analysis methodology.

Table 2
Point density and average spacing details for the processed point clouds of the
four sampling areas.

Landscape Point density (points/m?) Point spacing (m)
mean SD mean SD
Anhembi 84.20 71.46 0.13 0.04
Areao 397.09 124.20 0.05 0.01
ESALQ 180.67 89.57 0.09 0.03
Itatinga 286.52 143.30 0.07 0.02

which is approximately twice the highest point spacing distance. To
reduce edge effects while generating the CHM, we added a plot shapefile
buffer of 10 m. Thereafter, we calculated the mean CHM per plot from
the gridded height values in the plot; conceptually, this is the average
tree top height above the ground (visual overview see Supplementary
Materials D). Papa et al. (2020) found that this metric captured variation
in forest types well and had a high correlation with basal area. Next, we
calculated canopy rugosity as the standard deviation (SD) of the gridded
height values. Rugosity represents the canopy heterogeneity and was a
useful discriminator in forest type classification in another study
(Almeida et al., 2019b). Next, we calculated the gap fraction with the
ForestGapR package (Silva et al., 2019) as the fraction of cells with
height values lower than 10 m and a threshold size of at least 10 m?
(Stark et al., 2012). Gap fraction represents the canopy openness in
general, and is highly correlated with the number of large openings (or
forest gaps) in the forest canopy. Gap fraction is a good indicator of
restoration effectiveness and commercial plantations and second-
growth forests, because they can considerably differ in gap fraction
(Almeida et al., 2019c¢). Additionally, we have identified gap fraction as
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Table 3

A summary of all derived LiDAR metrics. CHM-derived metrics and point cloud
statistics are calculated with a grid cell resolution of 0.25 m. Voxel-derived
metrics are calculated with a grid cell resolution of 1.0 m and voxels of 1 m>.

Metric

Definition

Reference

CHM derived (N =
3)

Mean CHM

Canopy rugosity

Gap fraction

Point cloud
statistics (N =
25)

Mean height
percentile
(hp,mean)

SD height
percentiles
(hp,SD

Mean cloud return
density (dgimean)

Variation cloud
return density
(dgq;SD)

Mean minimum
returns
(Cininmean)

SD minimum
returns (C,,;;SD)

Mean maximum
returns
(Craxmean)

SD maximum
returns (CpgSD)

Gini coefficient
(GO)

Voxel derived (N
=15)

LAI mean

LAI SD

LAI understory

Leaf Area Height
Volume (LAHV)

Foliage Height
Diversity (FHD)

Average of CHM
Standard deviation of CHM

Fraction of CHM cells below 10 m
with threshold size of 10 m?

Average height at n percentile (n =
5, 10, 25, 50, 75, 90) of returns

Standard deviation of height at n
percentile (n =5, 10, 25, 50, 75, 90)
of returns

Average of the proportion of points
above i quantile height (i = 20, 40,
60, 80) to total points

Standard deviation of the
proportion of points above i
quantile height (i = 20, 40, 60, 80)
to total points

Average of minimum height of
returns

Standard deviation of minimum
height of returns

Average of maximum height of
returns

Standard deviation of maximum
height of returns
L-coefficient of variation of heights

Average of leaf area per unit ground
area

Standard deviation of leaf area per
unit ground area

Leaf area at all heights <5 m

Sum of average leaf volume at each
height interval over all heights
Shannon’s diversity calculated over
Leaf Area Density (LAD) profiles

Papa et al. (2020)
Almeida et al.
(2019b) and Papa
et al. (2020)
Almeida et al.
(2019a) and Stark
et al. (2012)

Cao et al. (2014)

Cao et al. (2014)

Cao et al. (2014) and
Maltamo et al.
(2005)

Cao et al. (2014) and
Maltamo et al.
(2005)

Shi et al. (2018b)

Shi et al. (2018b)

Cao et al. (2014)

Cao et al. (2014)

Valbuena et al.
(2017)

Almeida et al.
(2019a)

Almeida et al.
(2019a)

Almeida et al.
(2019b)

Almeida et al.
(2019b)

Stark et al. (2012)

a strong predictor of biomass growth and recruitment (Stark et al.,

2012).

Second, we extracted 25 metrics directly from the normalized point
clouds. For each 0.25 m grid cell, we calculated the 25 metrics and
thereafter derived the plot-scale mean and SD from all grid cells within
the corresponding plot. The 25 plot-scale metrics were: six mean and six
SD height percentile cloud metrics hpnmean and hpnSD, where n =
[5,10,25,50,75,90]; four mean and four SD cloud return density above
quantile metrics dqimean and dqiSD, where i = [20,40,60,80]; mean
and SD minimum return height Cminmean and CminSD; mean and SD
maximum return height Cmaxm and CmaxSD; and Gini coefficient (GC)
(Table 3, visual overview see Supplementary Materials D). The height
percentile metrics based on the height normalized point clouds repre-
sent the distribution of vegetation through the canopy, specifically at
which height a proportion of vegetation is concentrated, i.e. the mean
height percentile, and the horizontal variation in that height distribu-
tion, i.e. the SD height percentile. Cao et al. (2014) used height per-
centiles as predictors of biomass, and found that they explained most

Remote Sensing of Environment 290 (2023) 113533

variability in forest structural attributes. The return density metrics
represent the average (mean) and variation (SD) in vegetation density in
a proportion of the canopy. Thus, these metrics can indicate whether the
vegetation is most dense in the top of the canopy or is more evenly
distributed. Maltamo et al. (2005) found that these density metrics could
capture structural layers in heterogeneous forests and Cao et al. (2014)
used them to predict structural attributes. Minimum return heights
above the estimated ground surface at the plot level are influenced by
the presence and variation of vegetation beneath the canopy: low mean
values indicate a continuous cover of understory vegetation, while
higher values indicate a more open, and likely more heterogeneous,
understory. Maximum return heights indicate the canopy height (mean)
and variation in canopy height. These were used by Shi et al. (2018a) as
individual tree characteristics to identify tree species. GC is a measure of
inequality, which can capture height inequality variation in forest
stands. Valbuena et al. (2016) used the GC to emphasize differences in
forests created by different management.

We calculated the height percentile metrics as the plot mean and SD
of the height at n% of the returns of all grid cells (n =
[5,10,25,50,75,90]). We calculated the return density metrics as the plot
mean and SD of the density fraction of all cells as the portion of returns
above the quantiles (i = [20,40,60,80]) divided by the total number of
returns. We calculated the minimum and maximum returns as the plot
mean and SD of the height at the minimum or maximum returns of all
grid cells. We calculated GC with the leafR package (Almeida, 2021a)
following the variation by Valbuena et al. (2017), who used the L-co-
efficient of variation. This coefficient is computed with L-moments,
which are order statistics of probability density distributions (Valbuena
et al., 2017). It was calculated as the ratio between the L-moment
analogous to standard deviation and the L-moment analogous to mean.

Third, we calculated five voxel-based metrics based on MacArthur-
Horn equations to estimate LAI and LAI derived metrics. Compared to
the other two metric types, voxel-based metrics offer volumetric esti-
mations of the variation in vegetation density and leaf area throughout
the canopy (Almeida et al., 2019a). Voxel matrices contain the distri-
bution of LiDAR returns captured by stacked voxels, which are units of
canopy volume (Almeida et al., 2019c). Here, we computed voxels of 1
m° based on the MacArthur-Horn equation with the leafR package in R
and summed the voxels per unit ground area (1 m?) to obtain the esti-
mated LAI per unit ground area (MacArthur and Horn, 1969; Almeida,
2021a). We extracted the voxel-based metrics from all three-
dimensional voxel matrices within each plot: mean and SD of under-
story LAI leaf area height volume (LAHV), and foliage height diversity
(FHD) (visual overview in Supplementary Materials D). In a forest, leaf
area controls primary productivity (photosynthesis) and is a useful in-
dicator of structural layering in the canopy (Asner et al., 2003). LAI is
the leaf area per unit ground area, and is a frequently used metric to
assess forest productivity and canopy cover (Asner et al., 2003). LAIL
understory is the leaf area in the understory of the forest. In this study,
we considered vegetation up to 5 m understory. LAHV is an indicator of
average vegetation volume and is a useful metric for biomass estima-
tions and for assessing forest function. FHD is a measure of structural
diversity and can predict some of the variation in biomass growth in
forests.

2.4. Data analysis

Many of the 33 metrics described height levels in the canopy, espe-
cially the height percentiles, with potentially high correlation. To pre-
vent overfitting and improve model stability, we removed the highly
correlated input metrics (Shi et al., 2018b). To select metrics, we used
Pearson’s r correlation coefficient to select the strongest correlating
metrics and we applied the Boruta algorithm to determine a ranking
based on Mean Decrease Accuracy (MDA). For the metrics with a cor-
relation coefficient of r > 0.9, we removed the metric(s) with the lower
MDA value. Hereafter, we continued the analysis with 18 metrics: mean
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CHM, canopy rugosity, gap fraction, hp10SD, hp50SD, dq60mean,
dq80mean, dq20SD, dq40SD, dq60SD, dq80SD, Cminmean, GC, LAI
mean, LAI SD, LAI understory, LAHV, and FHD. The metrics dqgimean
and dqiSD are the cloud return density mean and cloud return density
variation of the ith percentile, respectively. hpiSD is the variation in
height of the ith percentile. Next, we created a biplot with a PCA scoring
plot and a corresponding plot of the loadings of variables to assess how
the six types were associated with the 18 LiDAR -derived structural
metrics.

To distinguish the forest types using the LiDAR metrics with a su-
pervised classification approach, we defined two classification prob-
lems. One was to classify the forest plots into six classes in line with the
six types. The other was to classify the plots into two simplified types:
conservation forest and production forest (section 2.2). For both cases,
we used the RF algorithm. RF is a non-parametric machine learning
algorithm with internal cross-validation that uses several decision trees
to make predictions for classification and regression (Belgiu and Dragut,
2016). Additionally, the algorithm handles high data dimensionality
well and is insensitive to multicollinearity, data noise, outliers, and
overfitting (Belgiu and Dragut, 2016).

For the supervised classification of the six types, we tested different
combinations of the RF parameters’Ntree’ and’Mtry’ in classification
with all 18 metrics. We continued with the parameter values that pro-
duced the highest overall classification accuracy. Then, to find the most
important metrics for the classification problem and to keep the model
as simple as possible, we reduced the number of metrics based on the
importance value. The importance value was calculated as the mean
increase in the MDA divided by its SD for each metric, as implemented in
the Caret package (Kuhn, 2008). The greater the decrease in accuracy of
the classifier due to the removal of a single metric, the more important
that metric is to the model (Liu et al., 2017). To optimize the supervised
classification model, we removed the metric with the lowest importance
value from the model, until the model accuracy stabilized with the
lowest number of metrics. This process has been shown to reduce the
number of less relevant predictors and has been successful in several
classification problems (Belgiu and Dragut, 2016). The metrics in the
final model were thus the most important for the supervised classifica-
tion of the six types. We calculated their importance values to further
quantify the added value of the most important metrics in classification.
We applied the same process of parameter tuning and metric removal to
the groups classification (simplified model) to get a final supervised RF
classification model with the most important metrics.

Due to the large differences in sample sizes between types (section
2.1) the data is unbalanced. During training of RF models, there can be
learning problems with unbalanced data, because RF is developed to
minimize the overall error rate and will tend to focus more on the ma-
jority class in the data (Chen and Breiman, 2004). We chose Leave One
Out Cross Validation (LOOCV) to make best use of all samples in the
sample sets with the lowest number of samples and minimize the bias
from training RF with the unbalanced data. Although LOOCV will not
avoid biases, making the best use of the training data affects the clas-
sification accuracy the least. LOOCV is a special type of k-fold cross
validation technique. LOOCV splits the data into training and validation
sets by using all but one sample for training the model and using one
sample for validating the model. This process is repeated until all sam-
ples have been used once for validating the model.

We assessed the performance of the six typologies and simplified
group model to answer how accurately the types could be classified. We
built a confusion matrix with the test data predictions and calculated the
Producer’s Accuracy (PA), User’s Accuracy (UA), and Overall Accuracy
(OA) (Xu et al., 2015). Besides these performance metrics, we used the
mean LOOCYV overall accuracy. We used the same metrics and confusion
matrix to assess the simplified groups model. We used the ranked
importance values for the metrics, as described in section 2.5.3, in both
the classification models to answer which metrics were most effective in
classification.
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The variables that were used in the final models were statistically
analyzed. For the six type model, we used nonparametric Kruksal-Wallis
tests and Dunn’s post hoc tests to test the differences between groups for
each variable. For the simplified model, we used nonparametric Mann-
Whitney U tests. All analyses were performed in R (R Core Team R
Foundation for Statistical Computing, 2022).

3. Results
3.1. Supervised classification performance assessment

The classification model for the six types resulted in a LOOCV mean
accuracy of 62% (Table 4). The overall accuracy calculated from the
collective outcomes was 62% too. Monoculture plantation was better
classified than the other types, with both the highest UA (78.8%) and PA
(85.2%), however, it was least distinguishable from abandoned mono-
culture, with 8% of the plots wrongly classified as that category.
Restoration plantation was the second best classified, but had 17% of
plots wrongly classified as second-growth forest. Next, 54% of second-
growth forest was correctly classified, while 33% of these plots were
wrongly classified as restoration plantation. Thus, second-growth forest
and restoration plantation were difficult to distinguish from each other.
Many of the abandoned monoculture plots were classified in their
original (post management) state as monoculture plantation (50%), and
just 25% were correctly classified as abandoned. Forest remnants were
classified with a very low accuracy, and appeared very difficult to
distinguish from abandoned monoculture, second-growth forest and
restoration plantation. Lastly, mixed plantation was not accurately
classified, and was frequently confused with monoculture plantation
(38%) and abandoned monoculture (38%).

The simplified classification model (Conservation vs. Production)
resulted in a LOOCV mean accuracy of 89% (Table 5). The overall ac-
curacy calculated from the collective outcomes was 90%. In the
simplified classification, both groups were classified with higher accu-
racy than the six types model. Conservation plots were classified as
production plots 8% of the time and production plots were classified as
conservation plots 11% of the time.

3.2. Importance of the supervised classification metrics

First, we assessed how the forest types were associated with the
LiDAR-derived structural metrics (Fig. 4). The first principal component
of the three clusters accounts for 31.55% of the total variance, and was
formed mainly by height metrics: LAHV, hpl10SD and hp50SD, CHM
mean, Cminmean, and Gini index. The second principal component
accounted for 25.51% of the total variance, and was a “cloud density and
leaf area variation” axis, with highest loadings on dq60mean,
dq80mean, dq60SD, dq80SD, FHD and LAI SD.

From the RF classification, LAI understory showed the most effective
metric in both six types and simplified classification models (Fig. 5).

In the six types model, three predictors were left over after the var-
iable reduction (LAI understory, canopy rugosity, and dq60SD). LAI
understory displayed the highest variation between all types (Figs. 6, 7)
and was the most important variable for classifying monoculture plan-
tation, restoration plantation, and second-growth forests . In the
simplified model, two predictors were left over after variable reduction
(LAI understory and hp50SD).

Canopy rugosity was the second most important metric in the six
types classification. It was important for the classification of abandoned
monoculture, second-growth forests, and restoration plantation. In the
simplified classification, the high plantation hp50SD values showed a
clear distinction with the low natural type values (Fig. 7).

Variation in vegetation density in the upper half of the forest plot
(dq60SD) had very similar ranges for all types (Fig. 6). Nevertheless, the
different mean values indicate this metric was useful in distinguishing
types within the natural group and plantation group types. Lastly,



J. Scheeres et al.

Remote Sensing of Environment 290 (2023) 113533

Table 4
Confusion matrix for classification of six types with User’s Accuracy (UA), Producer’s Accuracy (PA), and overall accuracy. The correctly classified plots are in bold.
Predicted
Forest Second-growth Restoration Mixed Abandoned Monoculture PA
remnant forest plantation plantation monoculture plantation (%)
Reference  Forest remnant 0 2 1 0 4 0 0.0
Second-growth forest 1 13 8 0 2 0 54.2
Restoration 0 5 23 0 1 1 76.7
plantation
Mixed plantation 1 0 1 0 3 0.0
Abandoned 1 2 1 1 5 10 25.0
plantation
Monoculture 0 2 2 0 5 52 85.2
plantation
UA (%) 0.0 54.2 63.9 0.0 25.0 78.8 62.0
bl metrics to distinguish six tropical forest restoration types that differ in
Table 5

Confusion matrix for classification of the clustered types with User’s Accuracy
(UA), Producer’s Accuracy (PA), and overall accuracy. The correctly classified
plots are in bold. Conservation contained forest remnant, second-growth forest
and restoration plantation. Production contained mixed plantation, abandoned
monoculture and monoculture plantation.

Predicted
Conservation Production PA (%)
Reference Conservation 56 5 91.8
Production 10 79 88.8
UA (%) 84.8 94.0 90.0

regarding canopy rugosity, ecological restoration plantation had the
lowest mean value and abandoned monoculture the highest, which
made them stand out from the others.

4. Discussion and conclusions

In this study, we explored the potential of UAV-LiDAR-derived

their conservation and production value in landscapes undergoing
restoration. We found that the conservation and production groups
could be classified with high accuracy (90%), however, classifying the
six forest types separately resulted in medium accuracy (62%). LAI un-
derstory, canopy rugosity and a metric that expressed horizontal vari-
ability of plot point clouds (dq60SD) were most important in
distinguishing types.

4.1. Distinction of types with supervised classification

We found that forest types could be distinguished with high accuracy
(90%) while using a simplified model in which the types were grouped
in a conservation and a production group (Table 5). However, forest
types could only be distinguished with moderate accuracy (62%) when
the six types were in separate classes (Table 4). In both, the six types and
simplified classification model, the metric LAI understory (voxel derived
metric) was most important (Figs. 6, 7). The other important predictors,
canopy rugosity (CHM derived metric) and the variation in vegetation
density in the upper half of the forest plot (dq60SD, point cloud statistic)
in the six types classification and hp50SD (point cloud statistic) in the
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4 Second-growth forest + Mixed plantation * Monoculture plantation
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s * i £
2 hp50SD H %
Te) : 1
& 2.5/ Canopy rugosity He¥ . ! ’: *§ * *
g Mean CHM * ¥ *
c * g ¥ * ’H: + * ]
ke hp10SD 3 * ek -
g U . s
= I * [ ]
= * | * [ ] * m
g . dq20SD . L xm . -t
__________________ I — i — e~ M _____
g 0.0 * : — " w7 AGini index
© LAHV | "
%5 x . /) 1 N a " Gap fraction
g = .A: A 4 . A
& dq40SD : A \a
S, 25 oo / /8 . s
= p.min.mean | Am
2 Lé*l mea 1 e LAl understory
(O]
© LAI SD o 4dq80megln
k] [N
3 FHD¥ | = dg60mean a
O 50 dq60SD dq0SD i A
I}
-6 -3 0 3 6

Height metrics (31.5% variance)

Fig. 4. Biplot of all data points on the first and second Principal Component analysis (PCA) axes. The true types are indicated by shapes. The axes were named by the

metrics that had the highest loadings on that PCA component.
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mean increase in MDA divided by its SD.

simplified model, were based on horizontal variation in vegetation
structure. These three metrics reflected how dissimilar the horizontal
vegetation distribution is at small distances at different heights in the
forest stand. This corresponds with the loadings in the PCA biplot, where
the vectors of the selected classification metrics show either negative
correlation (angle close to 180 degrees) or close to no correlation (angle
close to 90 degrees) (Fig. 4). Below we discuss the four metrics that were
important to distinguish the forest types.

LAI understory. LAI understory was the most important predictor
for the six type model and the simplified model. Monoculture planta-
tions consistently had the lowest understory values and therefore were
the best-classified. Abandoned monoculture plantations were generally
misclassified for monoculture plantations, which may have been caused
by whether abandoned monoculture plantations were abandoned before
or after harvest of the production species (Chazdon and Guariguata,
2016). Second-growth forests and restoration plantation plots had a
similar range in LAI understory values, but the mean was higher for
second-growth forests (Fig. 6). Approximately 17% of restoration
plantation plots were misidentified as second-growth forest plots and
33% of second-growth forest plots were misidentified as restoration
plantation plots (Table 4). Restoration plantations can have less regen-
erating vegetation in the understory than second-growth forests, due to
both local and landscape inhibitors of establishment and the design of
the restoration plantations (César et al., 2018). For understanding the
effect of restoration efforts and costs, it is especially important to
distinguish second-growth forest and restoration plantations (Molin
et al., 2018). Although forest remnants and mixed plantations performed
poorly in the six type model (for both PA = 0%), they were predomi-
nantly classified in line with the conservation and production groups,

respectively. Their poor performance is most likely due to the low
sample sizes of both types.

The LAI understory findings in our study clearly reflect the differ-
ences between even-aged, regular spaced, and managed tree plantations
on the one hand, and naturally regrowing types with little to no man-
agement on the other hand. Typically, tree plantations are managed so
that there is no understory and only regeneration of the planted species.
Although restoration plantations are planted, their management typi-
cally differs in that understory vegetation is allowed to grow there.
Findings by Almeida et al. (2019b) support that LAI understory is
important to characterize and distinguish tropical restoration forests
where monoculture tree plantations were classified accurately (100%).
Tymen et al. (2017) also confirmed that distinction of forest types by
understory is important, because there are consistent micro-
environmental differences in forest types. However, in general, the
estimation of the understory with LiDAR has received little attention
(Wing et al., 2012). A certain pulse density, penetration, and sensor
sensitivity are needed to properly estimate understory vegetation,
especially with dense canopy covers such as in tropical forests, which
have only become available recently. Almeida et al. (2019a) recom-
mended that a point density of at least 15 points m~2 is needed for a
reasonable LAD estimation to compute LAL Still, this point density
leaves a noteworthy amount of variation in understory volume unex-
plained (Campbell et al., 2018). Densities of at least 170 points m ™2
would be necessary to identify understory tree crowns in a mixed forest
(Campbell et al., 2018). Furthermore, Almeida et al. (2019c¢) and Silva
et al. (2017) found that for vegetation structural attributes the bias for
estimating LAD is small after 20 points/m? and further decreases with
increasing pulse density, and that estimating canopy heights stabilize
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tests to determine which forest types are different.

after 4 points/m?. In this study, the average point densities ranged be-
tween 80 and 300 points m~2 (Table 2), which proved to be sufficient for
a volume estimation of understory and indicates that the effect of the
variation of point densities and point spacing (Table 2) between plots is
small. In general, it is important to note a limitation that LAI understory
derived from LiDAR only indicates the volume of understory vegetation,
but nothing about the quality or diversity of the understory community.
After large disturbances (like a harvest), lianas or invasive species can
completely overgrow the cleared area and can lead to a permanently
degraded state that will only change with the help of active management
(Chazdon and Guariguata, 2016).

Canopy rugosity. Many LiDAR metrics are often focused on vertical
structure or variation, while specific horizontal heterogeneity is rarely
addressed (Hardiman et al., 2018). Canopy rugosity is more frequently
used (Almeida et al., 2019b; Camarretta et al., 2020a), but only captures
variation in the top of the canopy. For canopy rugosity (and hp50SD, see
below) the higher SD values can be explained by the regular spacing of
even-aged plantation trees, which is a typical characteristic for the
production types (Fig. 6). For the conservation types, lower SD values
indicate a more constant and homogeneous distribution of vegetation in
the horizontal space.

dq60SD. Our results showed that the dqg60SD height metric in the six

type model, which represents the variation in vegetation density in the
60th height percentile of the forest plots, was the least differentiating
metric of the metrics included in the models (Fig. 6). Although not as
clear as canopy rugosity, dq60SD also divided the six types into two
groups: planted trees (including restoration plantation) vs non-planted
trees (forest remnant and second-growth forest). In contrast to canopy
rugosity and hp50SD, the planted tree types showed less variation
compared to the non-planted tree types. This contrast can be explained
by the different vertical vegetation distributions of the six types. Typi-
cally, non-planted types are more likely to have equally distributed
vertical vegetational structure and thus the proportion of return point
density above the 60th percentile tends to have more variation. This is
also in line with the differences in LAI understory. In contrast, planted
types are more homogenous where vertical vegetational structure is
more concentrated (typically in the canopy). Previous studies have
found that these proportions of return point densities can be used to
identify structural layers in heterogeneous forests and capture structural
attributes (Cao et al., 2014; Maltamo et al., 2005).

hp50SD. The metric hp50SD in the simplified classification model,
which represents the horizontal variation of the average height at the
50th percentile, captures subcanopy vegetation variation. Similar to
canopy rugosity, the higher SD values of hp50SD can be explained by the
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regular spacing of even-aged plantation trees and lower SD values
indicate a more constant and homogeneous distribution of vegetation in
the horizontal space. There are no studies that used such SD metrics at a
similarly small grid size (0.25 m). With a larger grid size, the pattern
may have been reversed, as Almeida et al. (2019b) found. Robinson et al.
(2018), in a tropical forest in Costa Rica, found that the SD of the 25th
height percentile could predict species richness. Moreover, Hardiman
et al. (2018) showed that spatial variation in canopy structure metrics
may reflect important processes between forest types and landscapes.
Therefore, such variation metrics could be of use in restoration
monitoring.

In summary, differences in vegetation structure between conserva-
tion and production types clearly reflect differences in management.
Active management in production types, including the removal or sup-
pression of understory vegetation (although not for abandoned mono-
cultures) and the planting of trees in rows, leads to a very different forest
structure than management allowing for naturally regenerated forest
(Chazdon and Guariguata, 2016). Distinguishing these two groups is
important at a landscape scale: in large scale restoration initiatives or
general forest assessments, forest cover has been the primary indicator
with no distinction between natural and planted forests (Almeida et al.,
2019b; Chazdon et al., 2016), even while these forests differ signifi-
cantly in ecological functioning, biodiversity and the provisioning of
services (Chazdon, 2008).

For successful classification of forest types, the variation in structure
within types should be less than the maximum variation between types
captured by the high-resolution LiDAR metrics (Shi et al., 2018a). In
addition, the low number of samples in the forest remnant and mixed
plantation types, and therefore imbalanced classes, may have contrib-
uted to the low classification accuracies in the six type model. The dif-
ference in classification success between both models underlines the
difficulty of distinguishing individual forest types that are very similar in
management, regeneration dynamics, and structure. However, more
noise was added to the classes, due to plots with different ages and with
different tree species, which may have increased the heterogeneity of
studied areas. Alternatively, when grouped by management and growth
form type, the simplified conservation and production types were suf-
ficiently different in structure to result in high classification accuracies.
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4.2. Monitoring forest restoration outcomes with remote sensing

Successful monitoring of forest restoration, especially given the in-
ternational ambitions to restore hundreds of millions of hectares of
forest, requires more than upscaling conventional field inventory efforts
(de Almeida et al., 2019; Camarretta et al., 2020). On the one hand, field
inventories provide detailed information but are costly and time inten-
sive. Alternatively, space-borne platforms are largely unable to provide
the detail of information necessary to assess the success of forest resto-
ration. Considering this gap, we believe that UAV-borne LiDAR can
address the need for detailed information while upscaling monitoring
efforts to meet the needs of large scale forest restoration. Below, we
discuss the potential use of this study’s approach.

Optimizing monitoring efforts. Our results and the results of other
studies (e.g. Almeida et al., 2021; d’Oliveira et al., 2020) with similar
systems and approaches showed that UAV-borne systems have a large
potential to optimize forest restoration monitoring efforts in terms of
costs and scalability. Although the initial investments to set up a UAV
system are relatively high, the system is very flexible to use and can
cover large areas in a day (up to 1000 ha) while collecting detailed data
(e.g. structural attributes, functional attributes, diversity). Furthermore,
pre-stratification of the structural attributes based on UAV-LiDAR can
help to set up in situ plots for monitoring to cover the greatest variety in
vegetational structure and at the same time reduce the number of plots
needed by up to 41% (Papa et al., 2020).

Assess structural attributes. UAV-LiDAR has the potential to
measure structural attributes that are more difficult to measure with
field campaigns, but contribute to restoration targets nonetheless
(Camarretta et al., 2020). For example, LAI understory is difficult and
laborious to assess in the field, however, UAV-LiDAR can quantify this
metric and can support practitioners with adaptive management in-
terventions. Furthermore, measuring structural attributes with UAV-
LiDAR can provide more accurate results compared to in situ measure-
ments, for example, to estimate tree height or gap dimensions (d’Oli-
veira et al., 2020).

Our results have shown that high-density discrete return UAV-LiDAR
can identify detailed structural characteristics to distinguish broad
tropical forest types, however, these structural characteristics alone
were not enough to fully separate similar forest types. Part of this lim-
itation may result from the assessment of plots with different ages and
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with different tree species, which may increase the heterogeneity of
studied areas. In general, more research is needed to deploy the full
potential of UAV-borne monitoring in forest restoration. Here, we
discuss a few potential steps forward.

Fusion LiDAR and optical sensors. For further distinction of similar
types, and avoiding noise from different successional stages and forest
age, future research could explore LiDAR fusion with optical sensors.
While LiDAR captures forest structure, optical sensors can be comple-
mentary by providing information about the spectral signatures of the
forest. For example, hyperspectral imagery has shown great potential for
distinguishing vegetation classes and species, including features like
alpha and beta diversity (Féret and Asner, 2012, 2014).

Distinguish successional stage. In addition to increasing the clas-
sification accuracy by fusing LiDAR and optical sensors, there is a need
to distinguish the successional stage of plots within forest types with
UAV-borne monitoring systems. The successional stage of forest types
change over time (such as species composition and structural attributes),
but the same successional stages of different forest types may look very
similar in terms of structure (e.g. basal area) and, therefore, increase the
difficulty of distinguishing them with LiDAR alone. Therefore, to in-
crease the accuracy, one possible improvement would be to stratify
classification by successional stages or to make a model that predicts
both successional stage and forest type (Leutner et al., 2012). After this,
it is possible to make the step towards actual monitoring and identifying
which metrics are most relevant to track progress. Another potential
option is to include very high resolution images (e.g. UAV-RGB) to
identify tree species which are indicators of successional stage (Ferreira
et al., 2020; Wagner et al., 2019).

Accessibility to technology. To deploy UAV-based monitoring, it is
crucial to have access to the financial resources to invest in the upfront
costs of UAV monitoring systems and train people on how to use these
systems and perform the analyses. In many tropical countries, high costs
can be a bottleneck (e.g. high import tariffs and disadvantageous cur-
rency exchange rates) and technical assistance can be lacking. Fortu-
nately, UAV-based systems become more affordable and software
packages and training are open source and freely available.

Spaceborne LiDAR. Furthermore, NASA’s recent spaceborne Global
Ecosystem Dynamics Investigation (GEDI) platform may have the po-
tential to increase the spatial coverage compared to UAV-LiDAR sys-
tems. However, accuracy and precision are lower, and the GEDI system
only samples a limited portion of Earth’s land surface (Dubayah et al.,
2020).

In conclusion, given the unprecedented scale of global forest resto-
ration efforts, UAV-LiDAR, potentially in combination with other sen-
sors and remote sensing systems, has a huge potential to meet the needs
of monitoring landscapes under restoration by its ability to collect
detailed information over large spatiotemporal scales, reduce costs and
sampling efforts, inform stakeholders about the progress of restoration
success and guide adaptive management where needed. This study
highlighted that UAV-LiDAR can efficiently identify structural differ-
ences in a broad range of forest restoration sites in the tropics and
therefore can play a critical role in forest restoration monitoring and in
the accountability of restoration initiatives.
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