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A B S T R A C T   

Forest landscape restoration is a global priority to mitigate negative effects of climate change, conserve biodi
versity, and ensure future sustainability of forests, with international pledges concentrated in tropical forest 
regions. To hold restoration efforts accountable and monitor their outcomes, traditional strategies for monitoring 
tree cover increase by field surveys are falling short, because they are labor-intensive and costly. Meanwhile 
remote sensing approaches have not been able to distinguish different forest types that result from utilizing 
different restoration approaches (conservation versus production focus). Unoccupied Aerial Vehicles (UAV) with 
light detection and ranging (LiDAR) sensors can observe forests` vertical and horizontal structural variation, 
which has the potential to distinguish forest types. In this study, we explored this potential of UAV-borne LiDAR 
to distinguish forest types in landscapes under restoration in southeastern Brazil by using a supervised classifi
cation method. The study area encompassed 150 forest plots with six forest types divided in two forest groups: 
conservation (remnant forests, natural regrowth, and active restoration plantings) and production (monoculture, 
mixed, and abandoned plantations) forests. UAV-borne LiDAR data was used to extract several Canopy Height 
Model (CHM), voxel, and point cloud statistic based metrics at a high resolution for analysis. Using a random 
forest classification model we could successfully classify conservation and production forests (90% accuracy). 
Classification of the entire set of six types was less accurate (62%) and the confusion matrix showed a divide 
between conservation and production types. Understory Leaf Area Index (LAI) and the variation in vegetation 
density in the upper half of the canopy were the most important classification metrics. In particular, LAI un
derstory showed the most variation, and may help advance ecological understanding in restoration. The dif
ference in classification success underlines the difficulty of distinguishing individual forest types that are very 
similar in management, regeneration dynamics, and structure. In a restoration context, we showed the ability of 
UAV-borne LiDAR to identify complex forest structures at a plot scale and identify groups and types widely 
distributed across different restored landscapes with medium to high accuracy. Future research may explore a 
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fusion of UAV-borne LiDAR with optical sensors, and include successional stages in the analyses to further 
characterize and distinguish forest types and their contributions to landscape restoration.   

1. Introduction 

Forest restoration has become increasingly important to reverse 
forest cover losses and forest degradation. There are global ambitions to 
restore 3.5 million km2 of forests, especially in tropical regions where 
population densities are low, many areas are degraded, and the potential 
for biodiversity conservation and climate change mitigation is high 
(Brancalion et al., 2019). A portfolio of restoration strategies is being 
used depending on local opportunities, site conditions, and needs 
(Chazdon et al., 2016). These strategies may either have a stronger 
conservation focus (e.g. by focusing on remnant forests, natural 
regrowth or active restoration plantings) or a stronger production focus 
(e.g. by focusing on monoculture plantations, mixed plantations, or 
abandoned plantations) (Hua et al., 2022). The balance between con
servation and production forests in restoration initiatives has been an 
important controversy, as established and planned production forests 
with exotic tree species predominate in many global regions (Lewis 
et al., 2019). Until now tree cover loss and gain has been the central 
indicator used to evaluate restoration and reforestation advancement at 
large scales (Nanni et al., 2019), but it has critical limitations to un
derstanding how restoration has been implemented and for estimating 
its potential benefits to nature and people (Marshall et al., 2022). In the 
context of the unprecedented scale of forest restoration and monitoring 
their outcomes, distinguishing between these restoration approaches 
and establishing a baseline for monitoring their outcomes is a first step 
towards a more meaningful accountability of these restoration initia
tives. Here, we evaluate the potential of Unoccupied Aerial Vehicles 
equipped with Light and Detection Ranging (UAV-LiDAR) to distinguish 
between six different tropical forest restoration types based on their 
structural attributes and leaf area components with supervised 
classification. 

1.1. Different restoration types 

Different forest restoration approaches can be used to match project 
objectives in varying socio-ecological conditions (Fig. 1). For instance, 
restoring native forest functions, by means of natural regeneration or 
restoration plantations, maximizes biodiversity conservation and key 
ecosystem services (e.g. carbon storage, soil erosion control, water 
provisioning) compared to exotic tree plantations, but results in lower 
contribution to wood supply (Hua et al., 2022). Mixed and abandoned 
plantations provide higher environmental benefits than monoculture 
tree plantations (Feng et al., 2022). Furthermore, active management in 
plantations, including the removal or suppression of understory vege
tation and the planting of trees in rows, leads to different forest struc
tures than in naturally regenerated forests (Chazdon and Guariguata, 
2016). Regarding native forests, natural regeneration is advantageous 
because it is cheaper, more scalable, and maximizes biodiversity re
covery compared to mixed plantations of native trees (Chazdon et al., 
2020; Crouzeilles et al., 2017), but this restoration approach is unsuit
able for more degraded areas, with lower resilience (Holl and Aide, 
2011). As landscapes undergoing forest restoration are often a hetero
geneous mosaic of different restoration approaches, with different ages, 
species composition, and management, qualifying the restored tree 
cover is crucial, yet underdeveloped in technical terms. 

1.2. The importance of forest structure 

Forest structure is an important indicator for forest functioning and 
ecosystem processes (Poorter et al., 2021; Zolkos et al., 2013). For 
example, structural attributes (e.g. leaf area index (LAI), height, and 
basal area) are main drivers of carbon storage and accumulation, which 
are critical attributes for climate change mitigation (Lohbeck et al., 
2015; van der Sande et al., 2017; Almeida et al., 2019a). In contrast to 
species diversity, structural attributes are less sensitive to sampling area, 

Fig. 1. New forest types that result from different 
restoration approaches. These six types are 
included in this study. Monoculture plantations 
consist of a single tree species, abandoned 
monoculture consists of a single tree species with 
naturally regenerating understory, mixed planta
tions consist of two or a few commercial tree 
species, restoration plantations consist of mixed 
plantations of several native tree species, second- 
growth forests consist of spontaneous recoloni
zation of tree species, forest remnants consist of 
mostly disturbed and fragmented old-growth 
forest.   
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and hence, monitoring structural attributes has more potential for 
restoration outcomes (Chazdon et al., 2022; Marshall et al., 2022). Also, 
increased forest structure, including height and height variation, is 
associated with higher species diversity, because of increased 
complexity in the canopy and biomass and vertical niche occupation 
(Almeida et al., 2021; Marselis et al., 2019). LAI, which is the one-sided 
leaf area per unit ground area, is an important feature, because the total 
leaf area plays a critical role in forest primary production, nutrient cy
cles, and respiration (Asner et al., 2003; Clark et al., 2008; Fang et al., 
2019). Therefore, monitoring forest structure with UAV-LiDAR can be a 
viable, integrative strategy to operationalize the indirect assessment of 
forest diversity and functioning at larger scales. 

1.3. Need to upscale monitoring across space and time using remote 
sensing 

Forest monitoring is traditionally done using conventional forest 
inventories and permanent sample plots. However, with the global 
ambitions to scale up restoration efforts, it is also important to upscale 
monitoring efforts across space and time (de Almeida et al., 2019). The 
first step to upscale these monitoring efforts is to establish a baseline of 
the landscapes under restoration, starting with distinguishing different 
restoration approaches (this study). UAVs are suitable for classifying 
different restoration approaches and monitoring forest restoration, 
because they 1) cover large areas within one flight, 2) provide high 
spatial resolution, and 3) give information about key ecological in
dicators, such as vegetation structural attributes and species identifica
tion. Multispectral technologies allow to identify species and estimate 
biomass and primary productivity, but have the disadvantage that many 
vegetation reflectance indices saturate with dense canopies, and that 
they cannot adequately describe forest structure. LiDAR has the ability 
to capture the three dimensional structure of sub-canopy layers and to 
accurately quantify canopy height, canopy cover, LAI, and above- 
ground biomass (Drake et al., 2002; Luo et al., 2019; van Leeuwen 
and Nieuwenhuis, 2010). UAV-LiDAR systems are light-weight, field- 
portable, have a relatively low cost, can acquire imagery at fine spatial 
and temporal resolutions, and are more flexible in use than other LiDAR 
systems (Sankey et al., 2017; Zahawi et al., 2015). They are expected to 
revolutionize forest monitoring considering their potential for identifi
cation and monitoring of restoration forest types (Almeida et al., 2019, 
2019d and 2021; Camarretta et al., 2020; Sankey et al., 2017). However, 
the application of UAV-borne LiDAR for monitoring in a tropical forest 
restoration context is relatively new (but see Almeida et al., 2019a, 
2019b, 2021b). 

1.4. Forest type classification for monitoring with LiDAR 

Typically, tree cover classification is accomplished by using super
vised machine learning algorithms in combination with multispectral 
images. Supervised classification with machine-learning algorithms 
exploded during the past two decades, because they can handle complex 
data structures and make no assumptions about the data distribution 
(Maxwell et al., 2018). Specifically the Random Forest (RF) algorithm 
gained in popularity because of its reliable classification results and 
ability to rank the importance of input variables on the classification 
result (Belgiu and Drăguţ, 2016). To date, however, combining UAV- 
LiDAR based vegetation structural attributes with supervised classifi
cation for distinguishing forest types and monitoring restoration is 
relatively unexplored, but is gaining momentum. 

To this end, we explored the potential of UAV-LiDAR-derived 
structural metrics to distinguish six tropical forest restoration types 
that differ in their conservation and production value in landscapes 
undergoing restoration. More specifically, we evaluate how structural 
attributes are associated with tropical forest restoration types (six types 
and two groups based on conservation and production value) by 
applying supervised classification methods. We also discuss monitoring 

forest restoration outcomes with UAV and LiDAR systems. 

2. Methods 

2.1. Study area and field data 

The study areas are located in the ecotone zone between the Atlantic 
Forest and Cerrado in southeastern Brazil, which are considered biodi
versity hotspots for conservation priorities (Myers et al., 2000). We 
selected four human-modified tropical landscapes that are representa
tive for landscapes under restoration in the southeast of Brazil. These 
landscapes range between 4 and 10 km2 each. These landscapes expe
rienced a recent increase in tree cover resulting from the expansion of 
commercial tree plantations, restoration plantations, and second-growth 
forests (Fig. 2). Within the studied landscapes, we grouped all new 
forests into six different forest types, because these forest types represent 
a gradient of human interference on ecosystem composition, structure 
and functioning, and these types are increasingly expanding into the 
anthropized landscapes in the southeast of Brazil (Fig. 1, Table 1). The 
four landscapes are experimental areas of the University of São Paulo. 
Two landscapes are experimental stations (Anhembi and Itatinga), one 
landscape is an experimental farm (Areão), and one landscape is at a São 
Paulo university campus (ESALQ in Piracicaba) (Fig. 2). The elevation of 
landscapes varies between 450 and 850 m above sea level with <100 m 
variability within landscape. The native vegetation is mostly seasonal 
semi-deciduous forests, the regional climate has dry winters and wet 
summers, with a mean annual precipitation ranging from 1100 to 1367 
mm, and mean temperatures from 20 ◦C to 23 ◦C (Köppen climate type 
Cwa) (César et al., 2018). 

The six forest types were based on information from local partners, 
land use and land cover maps, and visual interpretation of satellite im
agery (or products thereof, e.g. MapBiomas). The definitions of the six 
types in this study are (see Fig. 1 for a visual overview):  

- Monoculture plantation: plantations of a single tree species, native or 
exotic, permanently managed for commercial purposes, including 
understory clearing.  

- Abandoned monoculture: monoculture plantations without understory 
clearing, which may have allowed spontaneous recolonisation by 
native tree species.  

- Mixed plantation: plantations of two or a few more commercial tree 
species managed for production, including understory clearing. 

- Restoration plantation: mixed plantations of several native tree spe
cies, managed for restoring native forest ecosystems. 

- Second-growth forests: established through the spontaneous recolo
nization of tree species following land abandonment, without tree 
planting or human assistance.  

- Remnant forests: old-growth forests, which were mostly disturbed by 
fragmentation and human disturbances. They do not represent a 
conserved forest and might have suffered from biodiversity losses. 

Next, we grouped the six types in two simplified groups: (1) con
servation - remnant forests, second-growth forests, and restoration 
plantation, and (2) production forests - monoculture plantation, aban
doned plantation, and mixed plantation (Fig. 1; Table 1). 

We then established inventory plots in polygons covered by each 
forest type, with a size of 900 m2 (30 × 30 or 20 × 45 m). We measured 
the Diameter Breast Height (DBH), identified all trees DBH >5 cm within 
each plot, and sampled the GPS positions of the four corners for each 
plot with a GNSS device when possible and otherwise a handheld Gar
min device. Plots were separated at least 60 m from each other, and to 
avoid large edge effects, we located plots at least 30 m from the forest 
edge. Whenever possible, we avoided forested areas <1 ha. In total, 150 
plots were sampled between 2018 and 2020 (Table 1). More details 
about summary statistics of the plots per forest type can be found in 
Supplementary Materials B. 
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Fig. 2. Study landscapes and plots in southeastern Brazil. A, B, C, D are the landscapes ESALQ, Itatinga, Areão, and Anhembi, respectively. The colored dots represent 
the plots in each landscape. Map sources: Esri World Imagery; Global Forest Watch “Brazil biomes”; AmeriGEOSS datahub - Brazil subnational administra
tive boundaries. 
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2.2. UAV-borne LiDAR data acquisition 

We used UAV-borne LiDAR data which was acquired with the 
GatorEye system from the Spatial Ecology & Conservation Lab at the 
University of Florida, United States. The data is available on the 
GatorEye data access platform (http://www.speclab.org/gatoreye. 
html). The GatorEye system includes a vertical takeoff and landing 
DJI Matrice 600 Pro hexacopter. The GatorEye ‘Gen 2’ system contained 
a Phoenix Scouth computational core, which integrates a Velodyne VLP- 
32c dual-return laser scanner which can record up to 600,000 returns 
per second and has a functional range of up to 200 m as well as time- 
synchronized and co-aligned visual and hyperspectral sensors. The 
LiDAR is a discrete-return sensor that captures the strongest return (first 
return) and last return from each pulse, or it captures one single ‘com
bined’ strongest return if both occur simultaneously. 

We collected the data per landscape in three consecutive days (27th, 
28th and 29th of August 2019). Flights were conducted 100 m above- 
ground level and at a velocity of 10 m/s. Most flight lines overlapped 
>50% and each plot was covered by 2 to 4 different flight lines with an 
average point density of 237 points per m2. Visual examples of point 
clouds of each forest type can be found in Supplementary Materials C. 

2.3. UAV-borne LiDAR data processing 

To calculate forest metrics from LiDAR data, we first extracted the 
point clouds representing the forest plots from the full flight lines with 
LAStools in R (Fig. 3). Next, we computed LiDAR metrics from Canopy 
Height Models (CHM), ground-normalized point clouds, and voxelized 
point clouds. We removed highly correlated metrics. 

We used data from 150 field plots of 30 × 30 m. We used polygons to 
clip the point clouds per plot. Then, we classified ground points and 
interpolated with a Triangular Irregular Network (TIN) to produce the 
digital terrain model (DTM). Subsequently, we normalized the point 
clouds by replacing the elevation of each point (i.e., the z coordinate) 
with its height above the ground. This process produced clipped height 
normalized point clouds for each plot. The point density and average 
spacing of point clouds clipped by the locations of the plots per land
scape can be found in Table 2. 

We derived three types of LiDAR metrics on plot scale: Canopy 
Height Model (CHM) based metrics, point cloud-based statistics, and 
voxel-based metrics (see Table 3). The CHM and point cloud based 
metrics were calculated with a grid resolution of 0.25 m after which we 
calculated the mean and variation on plot scale. The standard deviations 
were calculated as follows: 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − μ)
2

N

√

(1)  

where xi are the values of the grid cells and μ is their average. In total, 33 
metrics for all 150 plots were calculated (Table 3). We processed all data 
in R (R Core Team R Foundation for Statistical Computing, 2022). 

First, we computed CHMs with the normalized point clouds based on 
the spike-free algorithm of Khosravipour et al. (2016) with a grid res
olution of 0.25 m. This resolution was chosen based on the point spacing 
value of the point clouds with the lowest point density (see Table 2), 

which is approximately twice the highest point spacing distance. To 
reduce edge effects while generating the CHM, we added a plot shapefile 
buffer of 10 m. Thereafter, we calculated the mean CHM per plot from 
the gridded height values in the plot; conceptually, this is the average 
tree top height above the ground (visual overview see Supplementary 
Materials D). Papa et al. (2020) found that this metric captured variation 
in forest types well and had a high correlation with basal area. Next, we 
calculated canopy rugosity as the standard deviation (SD) of the gridded 
height values. Rugosity represents the canopy heterogeneity and was a 
useful discriminator in forest type classification in another study 
(Almeida et al., 2019b). Next, we calculated the gap fraction with the 
ForestGapR package (Silva et al., 2019) as the fraction of cells with 
height values lower than 10 m and a threshold size of at least 10 m2 

(Stark et al., 2012). Gap fraction represents the canopy openness in 
general, and is highly correlated with the number of large openings (or 
forest gaps) in the forest canopy. Gap fraction is a good indicator of 
restoration effectiveness and commercial plantations and second- 
growth forests, because they can considerably differ in gap fraction 
(Almeida et al., 2019c). Additionally, we have identified gap fraction as 

Table 1 
Number of sampled plots per forest type in each of the four sites.  

Forest type Areão Anhembi ESALQ Itatinga Total 

Monoculture plantation 4 36 1 20 61 
Abandoned monoculture 1 12 0 7 20 
Mixed plantation 4 2 0 2 8 
Restoration plantation 4 10 5 11 30 
Second-growth forest 0 17 1 6 24 
Forest remnant 1 2 3 1 7 
Total     150  

Fig. 3. General overview of the data, processes, and outcomes of the processing 
and analysis methodology. 

Table 2 
Point density and average spacing details for the processed point clouds of the 
four sampling areas.  

Landscape Point density (points/m2) Point spacing (m)  

mean SD mean SD 

Anhembi 84.20 71.46 0.13 0.04 
Areão 397.09 124.20 0.05 0.01 
ESALQ 180.67 89.57 0.09 0.03 
Itatinga 286.52 143.30 0.07 0.02  
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a strong predictor of biomass growth and recruitment (Stark et al., 
2012). 

Second, we extracted 25 metrics directly from the normalized point 
clouds. For each 0.25 m grid cell, we calculated the 25 metrics and 
thereafter derived the plot-scale mean and SD from all grid cells within 
the corresponding plot. The 25 plot-scale metrics were: six mean and six 
SD height percentile cloud metrics hpnmean and hpnSD, where n =

[5,10,25,50,75,90]; four mean and four SD cloud return density above 
quantile metrics dqimean and dqiSD, where i = [20,40,60,80]; mean 
and SD minimum return height Cminmean and CminSD; mean and SD 
maximum return height Cmaxm and CmaxSD; and Gini coefficient (GC) 
(Table 3, visual overview see Supplementary Materials D). The height 
percentile metrics based on the height normalized point clouds repre
sent the distribution of vegetation through the canopy, specifically at 
which height a proportion of vegetation is concentrated, i.e. the mean 
height percentile, and the horizontal variation in that height distribu
tion, i.e. the SD height percentile. Cao et al. (2014) used height per
centiles as predictors of biomass, and found that they explained most 

variability in forest structural attributes. The return density metrics 
represent the average (mean) and variation (SD) in vegetation density in 
a proportion of the canopy. Thus, these metrics can indicate whether the 
vegetation is most dense in the top of the canopy or is more evenly 
distributed. Maltamo et al. (2005) found that these density metrics could 
capture structural layers in heterogeneous forests and Cao et al. (2014) 
used them to predict structural attributes. Minimum return heights 
above the estimated ground surface at the plot level are influenced by 
the presence and variation of vegetation beneath the canopy: low mean 
values indicate a continuous cover of understory vegetation, while 
higher values indicate a more open, and likely more heterogeneous, 
understory. Maximum return heights indicate the canopy height (mean) 
and variation in canopy height. These were used by Shi et al. (2018a) as 
individual tree characteristics to identify tree species. GC is a measure of 
inequality, which can capture height inequality variation in forest 
stands. Valbuena et al. (2016) used the GC to emphasize differences in 
forests created by different management. 

We calculated the height percentile metrics as the plot mean and SD 
of the height at n% of the returns of all grid cells (n =

[5,10,25,50,75,90]). We calculated the return density metrics as the plot 
mean and SD of the density fraction of all cells as the portion of returns 
above the quantiles (i = [20,40,60,80]) divided by the total number of 
returns. We calculated the minimum and maximum returns as the plot 
mean and SD of the height at the minimum or maximum returns of all 
grid cells. We calculated GC with the leafR package (Almeida, 2021a) 
following the variation by Valbuena et al. (2017), who used the L-co
efficient of variation. This coefficient is computed with L-moments, 
which are order statistics of probability density distributions (Valbuena 
et al., 2017). It was calculated as the ratio between the L-moment 
analogous to standard deviation and the L-moment analogous to mean. 

Third, we calculated five voxel-based metrics based on MacArthur- 
Horn equations to estimate LAI and LAI derived metrics. Compared to 
the other two metric types, voxel-based metrics offer volumetric esti
mations of the variation in vegetation density and leaf area throughout 
the canopy (Almeida et al., 2019a). Voxel matrices contain the distri
bution of LiDAR returns captured by stacked voxels, which are units of 
canopy volume (Almeida et al., 2019c). Here, we computed voxels of 1 
m3 based on the MacArthur-Horn equation with the leafR package in R 
and summed the voxels per unit ground area (1 m2) to obtain the esti
mated LAI per unit ground area (MacArthur and Horn, 1969; Almeida, 
2021a). We extracted the voxel-based metrics from all three- 
dimensional voxel matrices within each plot: mean and SD of under
story LAI, leaf area height volume (LAHV), and foliage height diversity 
(FHD) (visual overview in Supplementary Materials D). In a forest, leaf 
area controls primary productivity (photosynthesis) and is a useful in
dicator of structural layering in the canopy (Asner et al., 2003). LAI is 
the leaf area per unit ground area, and is a frequently used metric to 
assess forest productivity and canopy cover (Asner et al., 2003). LAI 
understory is the leaf area in the understory of the forest. In this study, 
we considered vegetation up to 5 m understory. LAHV is an indicator of 
average vegetation volume and is a useful metric for biomass estima
tions and for assessing forest function. FHD is a measure of structural 
diversity and can predict some of the variation in biomass growth in 
forests. 

2.4. Data analysis 

Many of the 33 metrics described height levels in the canopy, espe
cially the height percentiles, with potentially high correlation. To pre
vent overfitting and improve model stability, we removed the highly 
correlated input metrics (Shi et al., 2018b). To select metrics, we used 
Pearson’s r correlation coefficient to select the strongest correlating 
metrics and we applied the Boruta algorithm to determine a ranking 
based on Mean Decrease Accuracy (MDA). For the metrics with a cor
relation coefficient of r > 0.9, we removed the metric(s) with the lower 
MDA value. Hereafter, we continued the analysis with 18 metrics: mean 

Table 3 
A summary of all derived LiDAR metrics. CHM-derived metrics and point cloud 
statistics are calculated with a grid cell resolution of 0.25 m. Voxel-derived 
metrics are calculated with a grid cell resolution of 1.0 m and voxels of 1 m3.  

Metric Definition Reference 

CHM derived (N ¼
3)   

Mean CHM Average of CHM Papa et al. (2020) 
Canopy rugosity Standard deviation of CHM Almeida et al. 

(2019b) and Papa 
et al. (2020) 

Gap fraction Fraction of CHM cells below 10 m 
with threshold size of 10 m2 

Almeida et al. 
(2019a) and Stark 
et al. (2012) 

Point cloud 
statistics (N ¼
25)   

Mean height 
percentile 
(hpnmean) 

Average height at n percentile (n =
5, 10, 25, 50, 75, 90) of returns 

Cao et al. (2014) 

SD height 
percentiles 
(hpnSD 

Standard deviation of height at n 
percentile (n = 5, 10, 25, 50, 75, 90) 
of returns 

Cao et al. (2014) 

Mean cloud return 
density (dqimean) 

Average of the proportion of points 
above i quantile height (i = 20, 40, 
60, 80) to total points 

Cao et al. (2014) and  
Maltamo et al. 
(2005) 

Variation cloud 
return density 
(dqiSD) 

Standard deviation of the 
proportion of points above i 
quantile height (i = 20, 40, 60, 80) 
to total points 

Cao et al. (2014) and  
Maltamo et al. 
(2005) 

Mean minimum 
returns 
(Cminmean) 

Average of minimum height of 
returns 

Shi et al. (2018b) 

SD minimum 
returns (CminSD) 

Standard deviation of minimum 
height of returns 

Shi et al. (2018b) 

Mean maximum 
returns 
(Cmaxmean) 

Average of maximum height of 
returns 

Cao et al. (2014) 

SD maximum 
returns (CmaxSD) 

Standard deviation of maximum 
height of returns 

Cao et al. (2014) 

Gini coefficient 
(GC) 

L-coefficient of variation of heights Valbuena et al. 
(2017) 

Voxel derived (N 
¼ 5)   

LAI mean Average of leaf area per unit ground 
area 

Almeida et al. 
(2019a) 

LAI SD Standard deviation of leaf area per 
unit ground area 

Almeida et al. 
(2019a) 

LAI understory Leaf area at all heights <5 m Almeida et al. 
(2019b) 

Leaf Area Height 
Volume (LAHV) 

Sum of average leaf volume at each 
height interval over all heights 

Almeida et al. 
(2019b) 

Foliage Height 
Diversity (FHD) 

Shannon’s diversity calculated over 
Leaf Area Density (LAD) profiles 

Stark et al. (2012)  
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CHM, canopy rugosity, gap fraction, hp10SD, hp50SD, dq60mean, 
dq80mean, dq20SD, dq40SD, dq60SD, dq80SD, Cminmean, GC, LAI 
mean, LAI SD, LAI understory, LAHV, and FHD. The metrics dqimean 
and dqiSD are the cloud return density mean and cloud return density 
variation of the ith percentile, respectively. hpiSD is the variation in 
height of the ith percentile. Next, we created a biplot with a PCA scoring 
plot and a corresponding plot of the loadings of variables to assess how 
the six types were associated with the 18 LiDAR -derived structural 
metrics. 

To distinguish the forest types using the LiDAR metrics with a su
pervised classification approach, we defined two classification prob
lems. One was to classify the forest plots into six classes in line with the 
six types. The other was to classify the plots into two simplified types: 
conservation forest and production forest (section 2.2). For both cases, 
we used the RF algorithm. RF is a non-parametric machine learning 
algorithm with internal cross-validation that uses several decision trees 
to make predictions for classification and regression (Belgiu and Drăguţ, 
2016). Additionally, the algorithm handles high data dimensionality 
well and is insensitive to multicollinearity, data noise, outliers, and 
overfitting (Belgiu and Drăguţ, 2016). 

For the supervised classification of the six types, we tested different 
combinations of the RF parameters’Ntree’ and’Mtry’ in classification 
with all 18 metrics. We continued with the parameter values that pro
duced the highest overall classification accuracy. Then, to find the most 
important metrics for the classification problem and to keep the model 
as simple as possible, we reduced the number of metrics based on the 
importance value. The importance value was calculated as the mean 
increase in the MDA divided by its SD for each metric, as implemented in 
the Caret package (Kuhn, 2008). The greater the decrease in accuracy of 
the classifier due to the removal of a single metric, the more important 
that metric is to the model (Liu et al., 2017). To optimize the supervised 
classification model, we removed the metric with the lowest importance 
value from the model, until the model accuracy stabilized with the 
lowest number of metrics. This process has been shown to reduce the 
number of less relevant predictors and has been successful in several 
classification problems (Belgiu and Drăguţ, 2016). The metrics in the 
final model were thus the most important for the supervised classifica
tion of the six types. We calculated their importance values to further 
quantify the added value of the most important metrics in classification. 
We applied the same process of parameter tuning and metric removal to 
the groups classification (simplified model) to get a final supervised RF 
classification model with the most important metrics. 

Due to the large differences in sample sizes between types (section 
2.1) the data is unbalanced. During training of RF models, there can be 
learning problems with unbalanced data, because RF is developed to 
minimize the overall error rate and will tend to focus more on the ma
jority class in the data (Chen and Breiman, 2004). We chose Leave One 
Out Cross Validation (LOOCV) to make best use of all samples in the 
sample sets with the lowest number of samples and minimize the bias 
from training RF with the unbalanced data. Although LOOCV will not 
avoid biases, making the best use of the training data affects the clas
sification accuracy the least. LOOCV is a special type of k-fold cross 
validation technique. LOOCV splits the data into training and validation 
sets by using all but one sample for training the model and using one 
sample for validating the model. This process is repeated until all sam
ples have been used once for validating the model. 

We assessed the performance of the six typologies and simplified 
group model to answer how accurately the types could be classified. We 
built a confusion matrix with the test data predictions and calculated the 
Producer’s Accuracy (PA), User’s Accuracy (UA), and Overall Accuracy 
(OA) (Xu et al., 2015). Besides these performance metrics, we used the 
mean LOOCV overall accuracy. We used the same metrics and confusion 
matrix to assess the simplified groups model. We used the ranked 
importance values for the metrics, as described in section 2.5.3, in both 
the classification models to answer which metrics were most effective in 
classification. 

The variables that were used in the final models were statistically 
analyzed. For the six type model, we used nonparametric Kruksal-Wallis 
tests and Dunn’s post hoc tests to test the differences between groups for 
each variable. For the simplified model, we used nonparametric Mann- 
Whitney U tests. All analyses were performed in R (R Core Team R 
Foundation for Statistical Computing, 2022). 

3. Results 

3.1. Supervised classification performance assessment 

The classification model for the six types resulted in a LOOCV mean 
accuracy of 62% (Table 4). The overall accuracy calculated from the 
collective outcomes was 62% too. Monoculture plantation was better 
classified than the other types, with both the highest UA (78.8%) and PA 
(85.2%), however, it was least distinguishable from abandoned mono
culture, with 8% of the plots wrongly classified as that category. 
Restoration plantation was the second best classified, but had 17% of 
plots wrongly classified as second-growth forest. Next, 54% of second- 
growth forest was correctly classified, while 33% of these plots were 
wrongly classified as restoration plantation. Thus, second-growth forest 
and restoration plantation were difficult to distinguish from each other. 
Many of the abandoned monoculture plots were classified in their 
original (post management) state as monoculture plantation (50%), and 
just 25% were correctly classified as abandoned. Forest remnants were 
classified with a very low accuracy, and appeared very difficult to 
distinguish from abandoned monoculture, second-growth forest and 
restoration plantation. Lastly, mixed plantation was not accurately 
classified, and was frequently confused with monoculture plantation 
(38%) and abandoned monoculture (38%). 

The simplified classification model (Conservation vs. Production) 
resulted in a LOOCV mean accuracy of 89% (Table 5). The overall ac
curacy calculated from the collective outcomes was 90%. In the 
simplified classification, both groups were classified with higher accu
racy than the six types model. Conservation plots were classified as 
production plots 8% of the time and production plots were classified as 
conservation plots 11% of the time. 

3.2. Importance of the supervised classification metrics 

First, we assessed how the forest types were associated with the 
LiDAR-derived structural metrics (Fig. 4). The first principal component 
of the three clusters accounts for 31.55% of the total variance, and was 
formed mainly by height metrics: LAHV, hp10SD and hp50SD, CHM 
mean, Cminmean, and Gini index. The second principal component 
accounted for 25.51% of the total variance, and was a “cloud density and 
leaf area variation” axis, with highest loadings on dq60mean, 
dq80mean, dq60SD, dq80SD, FHD and LAI SD. 

From the RF classification, LAI understory showed the most effective 
metric in both six types and simplified classification models (Fig. 5). 

In the six types model, three predictors were left over after the var
iable reduction (LAI understory, canopy rugosity, and dq60SD). LAI 
understory displayed the highest variation between all types (Figs. 6, 7) 
and was the most important variable for classifying monoculture plan
tation, restoration plantation, and second-growth forests . In the 
simplified model, two predictors were left over after variable reduction 
(LAI understory and hp50SD). 

Canopy rugosity was the second most important metric in the six 
types classification. It was important for the classification of abandoned 
monoculture, second-growth forests, and restoration plantation. In the 
simplified classification, the high plantation hp50SD values showed a 
clear distinction with the low natural type values (Fig. 7). 

Variation in vegetation density in the upper half of the forest plot 
(dq60SD) had very similar ranges for all types (Fig. 6). Nevertheless, the 
different mean values indicate this metric was useful in distinguishing 
types within the natural group and plantation group types. Lastly, 
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regarding canopy rugosity, ecological restoration plantation had the 
lowest mean value and abandoned monoculture the highest, which 
made them stand out from the others. 

4. Discussion and conclusions 

In this study, we explored the potential of UAV-LiDAR-derived 

metrics to distinguish six tropical forest restoration types that differ in 
their conservation and production value in landscapes undergoing 
restoration. We found that the conservation and production groups 
could be classified with high accuracy (90%), however, classifying the 
six forest types separately resulted in medium accuracy (62%). LAI un
derstory, canopy rugosity and a metric that expressed horizontal vari
ability of plot point clouds (dq60SD) were most important in 
distinguishing types. 

4.1. Distinction of types with supervised classification 

We found that forest types could be distinguished with high accuracy 
(90%) while using a simplified model in which the types were grouped 
in a conservation and a production group (Table 5). However, forest 
types could only be distinguished with moderate accuracy (62%) when 
the six types were in separate classes (Table 4). In both, the six types and 
simplified classification model, the metric LAI understory (voxel derived 
metric) was most important (Figs. 6, 7). The other important predictors, 
canopy rugosity (CHM derived metric) and the variation in vegetation 
density in the upper half of the forest plot (dq60SD, point cloud statistic) 
in the six types classification and hp50SD (point cloud statistic) in the 

Table 4 
Confusion matrix for classification of six types with User’s Accuracy (UA), Producer’s Accuracy (PA), and overall accuracy. The correctly classified plots are in bold.   

Predicted   

Forest 
remnant 

Second-growth 
forest 

Restoration 
plantation 

Mixed 
plantation 

Abandoned 
monoculture 

Monoculture 
plantation 

PA 
(%) 

Reference Forest remnant 0 2 1 0 4 0 0.0 
Second-growth forest 1 13 8 0 2 0 54.2 
Restoration 
plantation 

0 5 23 0 1 1 76.7 

Mixed plantation 1 0 1 0 3 3 0.0 
Abandoned 
plantation 

1 2 1 1 5 10 25.0 

Monoculture 
plantation 

0 2 2 0 5 52 85.2  

UA (%) 0.0 54.2 63.9 0.0 25.0 78.8 62.0  

Table 5 
Confusion matrix for classification of the clustered types with User’s Accuracy 
(UA), Producer’s Accuracy (PA), and overall accuracy. The correctly classified 
plots are in bold. Conservation contained forest remnant, second-growth forest 
and restoration plantation. Production contained mixed plantation, abandoned 
monoculture and monoculture plantation.  

Predicted   

Conservation Production PA (%) 

Reference Conservation 56 5 91.8 
Production 10 79 88.8  
UA (%) 84.8 94.0 90.0  

Fig. 4. Biplot of all data points on the first and second Principal Component analysis (PCA) axes. The true types are indicated by shapes. The axes were named by the 
metrics that had the highest loadings on that PCA component. 
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simplified model, were based on horizontal variation in vegetation 
structure. These three metrics reflected how dissimilar the horizontal 
vegetation distribution is at small distances at different heights in the 
forest stand. This corresponds with the loadings in the PCA biplot, where 
the vectors of the selected classification metrics show either negative 
correlation (angle close to 180 degrees) or close to no correlation (angle 
close to 90 degrees) (Fig. 4). Below we discuss the four metrics that were 
important to distinguish the forest types. 

LAI understory. LAI understory was the most important predictor 
for the six type model and the simplified model. Monoculture planta
tions consistently had the lowest understory values and therefore were 
the best-classified. Abandoned monoculture plantations were generally 
misclassified for monoculture plantations, which may have been caused 
by whether abandoned monoculture plantations were abandoned before 
or after harvest of the production species (Chazdon and Guariguata, 
2016). Second-growth forests and restoration plantation plots had a 
similar range in LAI understory values, but the mean was higher for 
second-growth forests (Fig. 6). Approximately 17% of restoration 
plantation plots were misidentified as second-growth forest plots and 
33% of second-growth forest plots were misidentified as restoration 
plantation plots (Table 4). Restoration plantations can have less regen
erating vegetation in the understory than second-growth forests, due to 
both local and landscape inhibitors of establishment and the design of 
the restoration plantations (César et al., 2018). For understanding the 
effect of restoration efforts and costs, it is especially important to 
distinguish second-growth forest and restoration plantations (Molin 
et al., 2018). Although forest remnants and mixed plantations performed 
poorly in the six type model (for both PA = 0%), they were predomi
nantly classified in line with the conservation and production groups, 

respectively. Their poor performance is most likely due to the low 
sample sizes of both types. 

The LAI understory findings in our study clearly reflect the differ
ences between even-aged, regular spaced, and managed tree plantations 
on the one hand, and naturally regrowing types with little to no man
agement on the other hand. Typically, tree plantations are managed so 
that there is no understory and only regeneration of the planted species. 
Although restoration plantations are planted, their management typi
cally differs in that understory vegetation is allowed to grow there. 
Findings by Almeida et al. (2019b) support that LAI understory is 
important to characterize and distinguish tropical restoration forests 
where monoculture tree plantations were classified accurately (100%). 
Tymen et al. (2017) also confirmed that distinction of forest types by 
understory is important, because there are consistent micro- 
environmental differences in forest types. However, in general, the 
estimation of the understory with LiDAR has received little attention 
(Wing et al., 2012). A certain pulse density, penetration, and sensor 
sensitivity are needed to properly estimate understory vegetation, 
especially with dense canopy covers such as in tropical forests, which 
have only become available recently. Almeida et al. (2019a) recom
mended that a point density of at least 15 points m−2 is needed for a 
reasonable LAD estimation to compute LAI. Still, this point density 
leaves a noteworthy amount of variation in understory volume unex
plained (Campbell et al., 2018). Densities of at least 170 points m−2 

would be necessary to identify understory tree crowns in a mixed forest 
(Campbell et al., 2018). Furthermore, Almeida et al. (2019c) and Silva 
et al. (2017) found that for vegetation structural attributes the bias for 
estimating LAD is small after 20 points/m2 and further decreases with 
increasing pulse density, and that estimating canopy heights stabilize 

Importance

dq.60SD

Canopy rugosity

LAI understory

0 20 40 60 80 100

Abandoned monoculture Forest remnant

0 20 40 60 80 100

Mixed plantation

dq.60SD

Canopy rugosity

LAI understory

Monoculture plantation

0 20 40 60 80 100

Restoration plantation Second−growth forest

Fig. 5. The variable importance values of the three metrics in the six types model per forest type, sorted from largest importance to lowest. The importance is the 
mean increase in MDA divided by its SD. 
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after 4 points/m2. In this study, the average point densities ranged be
tween 80 and 300 points m−2 (Table 2), which proved to be sufficient for 
a volume estimation of understory and indicates that the effect of the 
variation of point densities and point spacing (Table 2) between plots is 
small. In general, it is important to note a limitation that LAI understory 
derived from LiDAR only indicates the volume of understory vegetation, 
but nothing about the quality or diversity of the understory community. 
After large disturbances (like a harvest), lianas or invasive species can 
completely overgrow the cleared area and can lead to a permanently 
degraded state that will only change with the help of active management 
(Chazdon and Guariguata, 2016). 

Canopy rugosity. Many LiDAR metrics are often focused on vertical 
structure or variation, while specific horizontal heterogeneity is rarely 
addressed (Hardiman et al., 2018). Canopy rugosity is more frequently 
used (Almeida et al., 2019b; Camarretta et al., 2020a), but only captures 
variation in the top of the canopy. For canopy rugosity (and hp50SD, see 
below) the higher SD values can be explained by the regular spacing of 
even-aged plantation trees, which is a typical characteristic for the 
production types (Fig. 6). For the conservation types, lower SD values 
indicate a more constant and homogeneous distribution of vegetation in 
the horizontal space. 

dq60SD. Our results showed that the dq60SD height metric in the six 

type model, which represents the variation in vegetation density in the 
60th height percentile of the forest plots, was the least differentiating 
metric of the metrics included in the models (Fig. 6). Although not as 
clear as canopy rugosity, dq60SD also divided the six types into two 
groups: planted trees (including restoration plantation) vs non-planted 
trees (forest remnant and second-growth forest). In contrast to canopy 
rugosity and hp50SD, the planted tree types showed less variation 
compared to the non-planted tree types. This contrast can be explained 
by the different vertical vegetation distributions of the six types. Typi
cally, non-planted types are more likely to have equally distributed 
vertical vegetational structure and thus the proportion of return point 
density above the 60th percentile tends to have more variation. This is 
also in line with the differences in LAI understory. In contrast, planted 
types are more homogenous where vertical vegetational structure is 
more concentrated (typically in the canopy). Previous studies have 
found that these proportions of return point densities can be used to 
identify structural layers in heterogeneous forests and capture structural 
attributes (Cao et al., 2014; Maltamo et al., 2005). 

hp50SD. The metric hp50SD in the simplified classification model, 
which represents the horizontal variation of the average height at the 
50th percentile, captures subcanopy vegetation variation. Similar to 
canopy rugosity, the higher SD values of hp50SD can be explained by the 

Fig. 6. Boxplots of the three metrics used in the six types model after variable reduction in order of importance: (a) LAI understory; (b) canopy rugosity; (c) variation 
in vegetation density in the upper half of the forest plot (dq60SD). The statistical analyses consisted of nonparametric Kruksal-Wallis H tests with Dunn’s post hoc 
tests to determine which forest types are different. 
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regular spacing of even-aged plantation trees and lower SD values 
indicate a more constant and homogeneous distribution of vegetation in 
the horizontal space. There are no studies that used such SD metrics at a 
similarly small grid size (0.25 m). With a larger grid size, the pattern 
may have been reversed, as Almeida et al. (2019b) found. Robinson et al. 
(2018), in a tropical forest in Costa Rica, found that the SD of the 25th 
height percentile could predict species richness. Moreover, Hardiman 
et al. (2018) showed that spatial variation in canopy structure metrics 
may reflect important processes between forest types and landscapes. 
Therefore, such variation metrics could be of use in restoration 
monitoring. 

In summary, differences in vegetation structure between conserva
tion and production types clearly reflect differences in management. 
Active management in production types, including the removal or sup
pression of understory vegetation (although not for abandoned mono
cultures) and the planting of trees in rows, leads to a very different forest 
structure than management allowing for naturally regenerated forest 
(Chazdon and Guariguata, 2016). Distinguishing these two groups is 
important at a landscape scale: in large scale restoration initiatives or 
general forest assessments, forest cover has been the primary indicator 
with no distinction between natural and planted forests (Almeida et al., 
2019b; Chazdon et al., 2016), even while these forests differ signifi
cantly in ecological functioning, biodiversity and the provisioning of 
services (Chazdon, 2008). 

For successful classification of forest types, the variation in structure 
within types should be less than the maximum variation between types 
captured by the high-resolution LiDAR metrics (Shi et al., 2018a). In 
addition, the low number of samples in the forest remnant and mixed 
plantation types, and therefore imbalanced classes, may have contrib
uted to the low classification accuracies in the six type model. The dif
ference in classification success between both models underlines the 
difficulty of distinguishing individual forest types that are very similar in 
management, regeneration dynamics, and structure. However, more 
noise was added to the classes, due to plots with different ages and with 
different tree species, which may have increased the heterogeneity of 
studied areas. Alternatively, when grouped by management and growth 
form type, the simplified conservation and production types were suf
ficiently different in structure to result in high classification accuracies. 

4.2. Monitoring forest restoration outcomes with remote sensing 

Successful monitoring of forest restoration, especially given the in
ternational ambitions to restore hundreds of millions of hectares of 
forest, requires more than upscaling conventional field inventory efforts 
(de Almeida et al., 2019; Camarretta et al., 2020). On the one hand, field 
inventories provide detailed information but are costly and time inten
sive. Alternatively, space-borne platforms are largely unable to provide 
the detail of information necessary to assess the success of forest resto
ration. Considering this gap, we believe that UAV-borne LiDAR can 
address the need for detailed information while upscaling monitoring 
efforts to meet the needs of large scale forest restoration. Below, we 
discuss the potential use of this study’s approach. 

Optimizing monitoring efforts. Our results and the results of other 
studies (e.g. Almeida et al., 2021; d’Oliveira et al., 2020) with similar 
systems and approaches showed that UAV-borne systems have a large 
potential to optimize forest restoration monitoring efforts in terms of 
costs and scalability. Although the initial investments to set up a UAV 
system are relatively high, the system is very flexible to use and can 
cover large areas in a day (up to 1000 ha) while collecting detailed data 
(e.g. structural attributes, functional attributes, diversity). Furthermore, 
pre-stratification of the structural attributes based on UAV-LiDAR can 
help to set up in situ plots for monitoring to cover the greatest variety in 
vegetational structure and at the same time reduce the number of plots 
needed by up to 41% (Papa et al., 2020). 

Assess structural attributes. UAV-LiDAR has the potential to 
measure structural attributes that are more difficult to measure with 
field campaigns, but contribute to restoration targets nonetheless 
(Camarretta et al., 2020). For example, LAI understory is difficult and 
laborious to assess in the field, however, UAV-LiDAR can quantify this 
metric and can support practitioners with adaptive management in
terventions. Furthermore, measuring structural attributes with UAV- 
LiDAR can provide more accurate results compared to in situ measure
ments, for example, to estimate tree height or gap dimensions (d’Oli
veira et al., 2020). 

Our results have shown that high-density discrete return UAV-LiDAR 
can identify detailed structural characteristics to distinguish broad 
tropical forest types, however, these structural characteristics alone 
were not enough to fully separate similar forest types. Part of this lim
itation may result from the assessment of plots with different ages and 

Fig. 7. Boxplots of the two metrics in the clustered type model after variable reduction in order of importance: (a) LAI understory; (b) hp50SD. The statistical 
analyses consisted of nonparametric Mann-Whitney U tests. Conservation forest and production forest differed significantly from each other for the model metrics LAI 
understory (P < .001, Nconservation = 61, Nproduction = 89) and hp50SD (P < .001, Nconservation = 61, Nproduction = 89). 
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with different tree species, which may increase the heterogeneity of 
studied areas. In general, more research is needed to deploy the full 
potential of UAV-borne monitoring in forest restoration. Here, we 
discuss a few potential steps forward. 

Fusion LiDAR and optical sensors. For further distinction of similar 
types, and avoiding noise from different successional stages and forest 
age, future research could explore LiDAR fusion with optical sensors. 
While LiDAR captures forest structure, optical sensors can be comple
mentary by providing information about the spectral signatures of the 
forest. For example, hyperspectral imagery has shown great potential for 
distinguishing vegetation classes and species, including features like 
alpha and beta diversity (Féret and Asner, 2012, 2014). 

Distinguish successional stage. In addition to increasing the clas
sification accuracy by fusing LiDAR and optical sensors, there is a need 
to distinguish the successional stage of plots within forest types with 
UAV-borne monitoring systems. The successional stage of forest types 
change over time (such as species composition and structural attributes), 
but the same successional stages of different forest types may look very 
similar in terms of structure (e.g. basal area) and, therefore, increase the 
difficulty of distinguishing them with LiDAR alone. Therefore, to in
crease the accuracy, one possible improvement would be to stratify 
classification by successional stages or to make a model that predicts 
both successional stage and forest type (Leutner et al., 2012). After this, 
it is possible to make the step towards actual monitoring and identifying 
which metrics are most relevant to track progress. Another potential 
option is to include very high resolution images (e.g. UAV-RGB) to 
identify tree species which are indicators of successional stage (Ferreira 
et al., 2020; Wagner et al., 2019). 

Accessibility to technology. To deploy UAV-based monitoring, it is 
crucial to have access to the financial resources to invest in the upfront 
costs of UAV monitoring systems and train people on how to use these 
systems and perform the analyses. In many tropical countries, high costs 
can be a bottleneck (e.g. high import tariffs and disadvantageous cur
rency exchange rates) and technical assistance can be lacking. Fortu
nately, UAV-based systems become more affordable and software 
packages and training are open source and freely available. 

Spaceborne LiDAR. Furthermore, NASA’s recent spaceborne Global 
Ecosystem Dynamics Investigation (GEDI) platform may have the po
tential to increase the spatial coverage compared to UAV-LiDAR sys
tems. However, accuracy and precision are lower, and the GEDI system 
only samples a limited portion of Earth’s land surface (Dubayah et al., 
2020). 

In conclusion, given the unprecedented scale of global forest resto
ration efforts, UAV-LiDAR, potentially in combination with other sen
sors and remote sensing systems, has a huge potential to meet the needs 
of monitoring landscapes under restoration by its ability to collect 
detailed information over large spatiotemporal scales, reduce costs and 
sampling efforts, inform stakeholders about the progress of restoration 
success and guide adaptive management where needed. This study 
highlighted that UAV-LiDAR can efficiently identify structural differ
ences in a broad range of forest restoration sites in the tropics and 
therefore can play a critical role in forest restoration monitoring and in 
the accountability of restoration initiatives. 
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