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A B S T R A C T   

Controversy surrounds the reported dry season greening of the Central Amazon forests based on the Enhanced 
Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). As the solar zenith 
angle decreases during the dry season, it affects the sub-pixel shade content and artificially increases Near- 
infrared (NIR) reflectance and EVI. MODIS’ coarse resolution also creates a challenge for cloud and terrain 
filtering. To reduce these artifacts and then validate MODIS seasonal spectral patterns we use 16 years of 1 km 
resolution MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction) images, corrected to a nadir 
view and 45◦ solar zenith angle, together with an improved cloud filter. Then we show that the 30 m Landsat-8 
Operational Land Imager (OLI) surface reflectance over two Landsat scenes provides independent evidence 
supporting the MODIS-MAIAC seasonality for EVI, NIR, and GCC (an additional important vegetation index, 
green chromatic coordinate). Our empirical method for controlling for sun-sensor geometry effects in Landsat 
scenes encompasses the use of seasonally distinct images that have similar solar zenith angles and cloud-free 
pixels on flat uplands having the same phase angle. We extended this validation to nine Amazon sub-basins 
comprising ~546 Landsat-8 images. Our study shows that the dry-season green-up pattern observed by 
MODIS is corroborated by Landsat-8, and is independent of satellite data artifacts. To investigate the mechanisms 
driving these seasonal changes we further used Central Amazon tower-mounted RGB cameras providing a 4-year 
record at the Amazon Tall Tower (ATTO, 2◦8′36′′S, 59◦0′2′′W) and a 7-year record at the Manaus k34 tower 
(2◦36′33′′ S, 60◦12′33′′W) to obtain monthly upper canopy green leaf cover (a proxy for Leaf Area Index - LAI) 
and monthly leaf age class abundances (based on the age since leaf flushing, by crown). These were compared to 
seasonal patterns of GCC and EVI in small MODIS-MAIAC windows centered on each tower. MODIS-MAIAC GCC 
was positively correlated with newly flushed leaves (R2 

= 0.76 and 0.44 at ATTO and k34, respectively). EVI 
correlated strongly with the abundance of mature leaves (R2 = 0.82 and 0.80) but was poorly correlated with LAI 
(R2 = 0.20 and 0.41, respectively). Therefore, seasonal spectral patterns in the Central Amazon are likely 
controlled by leaf age variation, not quantity of leaf area.   

1. Introduction 

Sun-sensor geometry influences vegetation canopy reflectance and 

can cause seasonal artifacts, a problem that underlies a long-lasting 
debate about the detection and magnitude of leaf phenological phe
nomena in Amazon evergreen forests (Saleska et al., 2007; Galvão et al., 
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2011; Morton et al., 2014; Bi et al., 2015; Saleska et al., 2016; Hashi
moto et al., 2021). The resolution of this controversy is crucial for future 
efforts to understand how climate anomalies may affect leaf phenology 
and primary productivity in the Amazon. The main issue arises from the 
fact that when the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Terra (and Landsat-8 OLI) platforms pass over the Central 
Amazon during the drier months from July to November, solar zenith 
angles decrease by approximately 15◦. This causes a progressive 
decrease in sub-pixel shade content and consequent increase in the Near- 
infrared (NIR) reflectance and Enhanced Vegetation Index (EVI), which 
may cause apparent greening as an artifact. According to Morton et al. 
(2014), sun-sensor effects may fully explain the dry season green-up 
observed in MODIS EVI. 

The MAIAC (multi-angle atmospheric correction) adjustment to 
MODIS (Lyapustin et al., 2012; Dalagnol et al. 2022) removes artifacts of 
view and illumination geometry and has improved cloud detection and 
filtering. Band reflectances are corrected to a nadir view and a fixed 
solar zenith angle by applying a Bidirectional Reflectance Distribution 
Function (BRDF) inversion model that requires a minimum set of three 
observations of each pixel within each 8-day temporal mosaic. Appar
ently free of sun-sensor artifacts, MODIS-MAIAC confirms that about 
half the amplitude of the uncorrected MODIS dry-season green-up 
pattern for EVI in the Central Amazon is real (Bi et al., 2015, Guan et al., 
2015, Saleska et al., 2016). However, MODIS data is captured at 250 m 
resolution and MAIAC is generated with a spatial resolution of 1 km, 
leaving doubts as to the full removal of clouds and of the influence of 
topographic shade in the BRDF inversion (Galvão et al., 2016). Cloud 
cover can also influence the BRDF inversion, as only a few pixels are 
available during the wettest periods. 

Therefore, it is important to confirm the coarse resolution of MODIS- 
MAIAC-derived seasonal spectral patterns with independent sensors 
with a finer spatial resolution, as haze, clouds, cloud shadows, and 
terrain artifacts are more easily detected. To this end, we gathered data 
from Landsat-8 OLI imager – we used specifically Landsat-8 OLI due to 
its superior radiometric resolution when compared to past Landsat 
missions – and two tower-mounted RGB cameras. The 30 m Landsat-8 
Operational Land Imager (OLI) provides a bridge between the small 
area (<10 ha) of tower-based detections of seasonal changes in crown 
color, leaf age mix and leaf amount at one spatial resolution extreme and 
coarse spatial-resolution MODIS at the other extreme. 

Robust BRDF corrections of Landsat-8 OLI for seasonal comparisons 
are, nevertheless, still not feasible because of the 16 day revisit time and 
the extremely cloudy Amazon wet season. In spite of efforts to correct 
Landsat based on MODIS BRDF parameters (Roy et al., 2016), it would 
not be meaningful to compare MODIS MAIAC and corrected Landsat 
because they both use the similar Ross-Thick Li-Sparse model derived 
from MODIS (though MAIAC retrieves BRDF parameters differently; 
Lyapustin et al., 2012). A simpler and more reliable solution, to compare 
both products, takes advantage of the fact that the Landsat view angle is 
approximately fixed for each pixel and that the same solar zenith angle 
repeats four times per year at the hour of Landsat overflight near the 
equator. Landsat images having identical or very similar sun-sensor 
geometry are therefore available from different seasons of the year 
(Gonçalves et al., 2019). No BRDF correction is required for their 
comparison, so these Landsat images can be used to effectively validate 
the seasonal spectral patterns of MODIS-MAIAC. 

To explain seasonal spectral patterns seen by MODIS-MAIAC, in 
terms of changing canopy leaf phenology, tower-mounted RGB cameras 
provide useful local-scale high-frequency data. While these operate only 
in the visible portion of the spectrum, RGB cameras provide data on 
upper canopy leaf age and leaf amount, which are jointly responsible for 
a large part of seasonal change in optical region canopy spectra. Tower- 
mounted RGB cameras have already contributed to elucidating the 
phenological drivers of seasonality in photosynthesis and photosyn
thetic efficiency at tower sites (Wu et al., 2016). The Leaf area index 
(LAI) seasonal variation in Central Amazon is small, ranging from 5.5 to 

6.2 m2/m2 levels (Brando et al., 2010), at which the spectral response to 
change in LAI nearly saturates (Ponzoni, Shimabukuro & Kuplich, 
2007). On the other hand, leaf demography varies greatly across sea
sons, as also shown by tower-mounted cameras (Lopes et al., 2016). 
Together this suggests that seasonal differences in EVI are induced 
mainly by leaf age and less by seasonal changes in leaf amount. Sup
porting this expectation, Wu et al. (2018) drove a radiative transfer 
model with changes in leaf amount and leaf age from camera data, 
combined with bare branch spectral and leaf spectra for different leaf 
age classes . The radiative transfer model showed consistent seasonal 
patterns between predicted EVI and MODIS-MAIAC EVI seasonal pat
terns, with primary attribution to changing leaf age. 

Nonetheless, an empirical comparison of canopy spectral attributes 
at the scales of tower cameras (~1 m), Landsat-8 (30 m) and MODIS- 
MAIAC (1 km) has yet to be undertaken and will contribute to our un
derstanding of the reliability of the seasonal spectral patterns detected 
by MODIS (Maeda et al., 2016) and the leaf- and canopy- scale drivers of 
these seasonal patterns in tropical forests. Our objectives address two 
major questions that, if properly answered, offer a much more complete 
understanding of the Amazon seasonal green-up by examining different 
spectral remote sensing instruments and platforms from coarse to very 
high resolutions: 

First, we ask if the Landsat-8 OLI (finer resolution) confirms the 
seasonal patterns observed in the main spectral indices and bands of 
interest from the MODIS-MAIAC (coarser resolution) related to the dry 
season green-up debate. We examine the Green chromatic coordinate 
(GCC), NIR reflectance and EVI. Here, we use several Landsat-8 OLI 
image dates with pixel subsets selected to show clear seasonal contrast in 
these MODIS-MAIAC indicators, but also having minimal differences in 
their view and illumination geometries while controlling for a series of 
artifacts. Second, having reinforced our confidence in the MODIS- 
MAIAC spectral signal, we ask which biophysical attributes of the can
opy – leaf amount or leaf age – derived from two Phenocam systems in 
the central Amazon best explain the seasonal spectral patterns of GCC 
and EVI. 

2. Material and methods 

2.1. Landsat-8 OLI processing 

Our first question is addressed by employing three different ap
proaches to account for sun-sensor geometry in Landsat-8 data so that 
we could compare spectral information between images acquired during 
different seasons. 

2.1.1. Approach 1 - controlling for phase angle, while allowing minor 
differences (< ~4◦) in solar zenith angle 

In this approach, we looked for surface reflectance Landsat-8 OLI 
images in the central Amazon acquired from the same Worldwide 
Reference System (WRS) scene at various times of the year and with 
similar solar zenith angles. Seasonal BRDF artifacts are mostly caused by 
the solar zenith angle (Galvão et al., 2011; Morton et al., 2014). Up to 
four times during the year, the solar zenith is identical within a few 
degrees of the equator and during the 10:00 h local Landsat passing. As 
view angles vary across the image, BRDF artifacts are also likely to be 
present. In order to represent the effects of sun-sensor geometry, the 
phase angle of each pixel could be calculated (Maeda and Galvão, 2015). 
This is the angle between a pixel’s sensor view vector and its solar 
illumination vector (Bi et al., 2015). Phase angle of each pixel combines 
the main components of sun-sensor geometry effects on a pixel’s 
reflectance into one variable (Maeda and Galvão, 2015). The calculation 
is (Eq. (1)): 

Phase_angle = ACOS[(COS(SVZ) × COS(SZA) ) + (SIN(SVZ)

× SIN(SZA) × COS(RAA) ] (1) 
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where SVZ is the sensor view zenith angle, SZA is the sun zenith 
angle and RAA is the relative azimuth angle. SIN and COS are sine and 
cosine respectively. 

When the difference in SZA between image acquisitions – from 
different seasons that are to be compared – is small at the scene center, it 
is possible to find pixels with the same phase angle in distinct parts of the 
different images. Pixels with the same phase angle can have different 
solar azimuth angles, thus different amounts of topographic shade, but 
there should be no bias in this noise if topographic features have no 
preferred azimuthal orientations. In the Central Amazon, image dates 
with small (<~ 4◦) difference in solar zenith and having pixels with 
shared phase angles were chosen to coincide with strong seasonal dif
ferences in the EVI and GCC vegetation indices from local MODIS- 
MAIAC on those same dates, and to also coincide with seasonally 
distinct phenological periods detected in tower RGB camera data (Lopes 
et al., 2016). 

Given the restrictions we mentioned above and the intense cloud 
cover towards the wet season we were only able to obtain three usable 
images with similar solar zenith angles and in three distinct phenolog
ical periods for the Landsat scene 230_63 (Fig. 1B, Fig.S9), centered at 
4◦12’S, 59◦12’W which is 160 km south-southeast of Manaus city, 
Brazil. One image was from the mid wet season (Feb 11, 2016 - DOY 42) 
when tower-mounted cameras at Manaus-k34 and Amazon Tall Tower 
Observatory (ATTO) sites show very little leaf flushing or pre-flush leaf 
abscission (few bare crowns). Dark green leafy crowns predominate 
across the phenocam views. A second image was from the wet to dry 
season transition (May 25, 2013 - DOY 145), when old leaves are 
abundant and LAI is near its annual mean (Wu et al., 2016). The third 
image was from the dry season (August 03, 2015 - DOY 215), when 
leafless crowns are most abundant and recently flushed crowns (0, 1 or 
2 months since flush) are even more abundant. The image region 
selected for this approach has an average dry season length of 2.9 
months based on (from TRMM 3b43 v7) product. This is close to the dry 
season length at both the ATTO and Manaus k34 tower sites (Fig. 1B), 
where phenocams we analyzed here were installed. Solar zenith angles 
at the scene center for the selected Wet (DOY 42), Wet-to-Dry (DOY 145) 
and Dry (DOY 215) season images were 32.15◦, 36.18◦ and 36.13◦. Only 

pixels with the same phase angles were compared. EVI was calculated as 
in (Huete et al., 2006; Solano et al., 2010; Galvão et al., 2011) and GCC 
was calculated as in phenological monitoring RGB cameras but using 
reflectance instead of digital number (Sonnentag et al., 2012; Lopes 
et al., 2016) (Eq. S1 and Eq. S2, Supplementary data). 

2.1.2. Approach 2 - fixed nadir view and fixed solar zenith angle for NIR 
and EVI 

In some cases, two sets of pixels may have the same phase angle, but 
different relative azimuth angles, such that one date’s pixels are 
observed under forward scattering geometry (Bi et al., 2015), while the 
other date’s under backscatter, which can affect spectral data (Moura 
et al., 2012). We therefore use a more conservative method. We now 
compare two images with nearly identical solar zenith (based on met
adata for the scene center) and restricted the sensor view angle to < 0.5◦

off-nadir, i.e., to a narrow strip of pixels close to the orbital track (Gray 
rectangle in Fig. 1B and in Fig.S9). Pitfalls of sun-sensor geometry are 
theoretically fully resolved. 

Finding cloud-free Landsat-8 image areas that meet these more 
conservative conditions is even more challenging than approach 1. We 
found a pair of images of the scene 230_61 for 2015 (Fig. 1B), centered at 
1◦ 27’S, 58◦ 44’W (225 km NE of Manaus, and 90 km NNE of the ATTO 
tower phenocam), having SZA difference of only 0.6◦. The average dry 
season length is 3.4 months (from TRMM 3b43 v7). One image was from 
the late Wet season (15 May 2015, DOY 135) with 33.00◦SZA. The other 
was from the early Wet season (09 December 2015, DOY 343) with a 
scene center SZA of 32.44◦. These two Landsat dates are useful for 
confirming a very large expected difference in EVI and NIR (as seen in 
local MODIS-MAIAC), but no strong seasonal difference in GCC is ex
pected, as seen in the nearby tower phenocam data. We therefore 
extracted only EVI and NIR reflectance from Landsat and from MODIS- 
MAIAC for these two dates. NIR is a proxy for EVI and is less affected by 
haze than other bands that comprise EVI (Morton et al., 2014; Bi et al., 
2015). 

All five Landsat-8 images analyzed for both approaches 1 and 2, were 
surface reflectance collection 1 level 2 products downloaded from the 
USGS Earth Explorer platform. For all five dates we used only upland 

Fig. 1. A) Location of the 54 Landsat scenes analysed in approach 3, stratified into eight Amazon sub-basins (Madeira, Minor Amazon Jutaí, Negro, Purus, Tapajós, 
Trombetas, Xingu, and Minor Amazon Uatumã); The base image shows the long-term mean of the local MCWD (Maximum climate water deficit), a combined 
measure of dry season length and intensity (Malhi et al., 2009). B) The two Landsat scenes used in approaches 1 and 2; B1) 230_61 and B2) 230_63 scene, the two 
tower-mounted RGB cameras: k34 and ATTO, and the small windows considered in MAIAC analysis (to Q2); The bottom image in is a grayscale HAND (height above 
the nearest drainage). The RGB images are Landsat Look Natural Color Images. B1 also depicts the near nadir region of interest (ROI) in gray used to analyze data on 
scene 230_61 with approach 2. 
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areas, i.e., excluding rivers, streams, and floodplains. To this end, we 
filtered all 30 m Landsat pixels having less than 15 m Vertical Distance 
to Channel Network (Conrad et al., 2015), an algorithm which uses 30 m 
Shuttle Radar Topography Mission (SRTM) elevation data as the input. 
To minimize the effects of topographic shade, we accepted only those 
Landsat pixels with slope < 4◦. We masked all clouds and cloud shadows 
in Landsat using an adaptation of the Multi-temporal Cloud Masking 
(MCM) method of Candra et al. (2016). This algorithm uses the differ
ence of the reflectance between a target image, free from clouds and 
cloud shadows, and a cloud-contaminated image in order to distinguish 
between clear pixels and cloud-contaminated pixels. To detect clouds, 
we used the difference thresholds for band 3 (Green) and for band 4 
(Red). For cloud shadows we used the difference threshold of band 6 
(Swir 1). For each difference image, we selected an empirical threshold 
that maximized cloud and cloud shadow detection. We followed up with 
a careful visual inspection of unmasked areas to detect errors of omis
sion. We further accepted only pixels with NDVI > 0.75. The 0.75 NDVI 
threshold ensures that no cloud or cleared forest area will be included in 
the analysis if prior masking or visual inspection fails. For comparisons 
and models, only non-masked pixels from both seasonally distinct im
ages were used. We assume that the sets of usable pixels available on 
each date represent the average scene signal on that date. Since we are 
always comparing flat, well-drained old-growth upland forests within 
the same 185 km × 185 km scene, this is a reasonable assumption. In all 
cases, the sampled pixels are from the same forest type and have very 
similar climatic and edaphic characteristics. Furthermore, at this spatial 
scale, BRDF-corrected MODIS EVI spatial variations are very low 
(Dalagnol et al., 2022). This assumption is also necessary because over 
the acceptable dates, only a small number of pixel positions are cloud- 
free. Aside from that, the phase angle of a pixel rarely stays the same 
throughout the year given the significant variation in solar azimuth, 
particularly in approach 1, where we do not have an almost Nadir view. 
It is therefore challenging, if not impossible, to compare the same pixel 
over time with the same phase angle. 

Given the above-mentioned limitation of not spatially matched 
pixels being compared through time, we also investigated whether any 
spatial structure was influencing our results by running general additive 
models including pixels‘ coordinates as a smooth term while accounting 
for other undesirable variables (Eq. S3, Supplementary data). We have 
now analyzed only the pixels that are available, following the masking 
procedure explained before, intersecting the three images in approach 1 
and the two images in approach 2. 

All analyses were performed using the statistical and computational 
platform R. the raster package (Hijmans, 2016; R Development Core 
Team, 2017). GAM models were run using mgcv and visualized using 
mgcViz (Wood, 2017; Fasiolo et al., 2019) 

2.1.3. Approach 3 - fixed nadir view at the sub-basin scale: 
In approaches 1 and 2, just two Landsat scenes and five dates, 

respectively, were examined. Four of the dates fell during the 
2015–2016 El Nino drought years. There is evidence that inter- and 
intra-annual greenness are impacted by Amazonian droughts (Saleska 
et al., 2007; Yang et al., 2018; Gonçalves et al., 2020). To amplify our 
findings to the continental scale of the Central Amazon wet forests, two 
Landsat scenes are likely insufficient. We used Google Earth Engine 
(GEE) to broaden our investigation to more Landsat scenes and also 
circumvent several limitations of approaches 1 and 2 (Fig. 1A). We 
utilized the USGS Landsat-8 Surface Reflectance (Collection and Tier 1) 
product at the native 30 m resolution for the period 2013 to 2021, 
omitting the extreme drought of 2015–2016. The current focus is on 
confirming the MODIS-MAIAC seasonal patterns of EVI alone. 

Based on image metadata supplied by GEE for the scene centers, we 
searched all Landsat-8 images with solar zenith angles between 29◦ and 
38◦ and cloud cover < 45% in the Central Amazon (Fig. 1A). For each 
scene, 60,000 pixel positions were randomly selected based on a single 
image date within an area of +/- 0.5◦ off the nadir view angle (see 

Fig. 1B and Fig. S10 for an illustration). In the following step, we 
extracted Landsat-8 spectral data from the same 60,000 pixels postions 
from each image within each scene of a total of 546 images. The near- 
nadir ROIs were defined using the same single image date from each 
path-row scene. We here assume that the nadir ground track line and the 
view angle for any pixel on the ground to be constant over time. Addi
tionally, we assume that the solar zenith angle remains constant during 
the brief time (~30 s) it takes to acquire each image. As with approach 2, 
by limiting the analysis to a near-nadir view, this approach maintains a 
nearly fixed phase angle for any solar zenith angle regardless of the solar 
azimuth and theoretically resolves the forward-scatter / backscatter 
issue. Due to the fact that only the solar zenith angle will contribute 
significantly to reflectance anisotropy, we only need to control for this 
single covariate. 

Similar to approach 1 and 2, we implemented the Candra et al. 
(2016) cloud masking procedure. Given the large data set, we could not 
inspect the mask manually. Therefore, we added a mask buffer of 500 m 
to all pixels classified as clouds or cloud shadows. We also employed 
Landsat-8 QABits to filter pixels with cloud, cloud shadow, or aerosol 
contamination. We further only considered pixels with NDVI > 0.75 and 
reduced terrain slope artifacts by considering only pixels with slope < 4◦

and Height Above Nearest Drainage (HAND) > 10 m. We used the global 
30X30m HAND product (Donchyts et al., 2016) available on the GEE 
platform. To mask flooding areas not completely removed by HAND (e. 
g., areas associated with interfluvial perched water tables, flat areas 
where the channel network required by HAND is nonexistent or poorly 
defined), we relied on Hess et al. (2015). Lastly, we used PRODES 
(Brazilian Amazon Deforestation Monitoring Program) data (Valeriano 
et al., 2004) to mask deforestation and/or secondary forest. 

Due to the combined limitations imposed by near-nadir view, flat 
upland terrain, cloud-free pixels, and the GEE platform limit on 
exporting data, Landsat-8 image pairs having usable pixels with the 
same SZA were rarely available from the same scene in different seasons. 
Hence, we decided to cluster Landsat-8 scenes into Amazon sub-basins 
(Fig. 1A, Fig. S10, Venticinque et al., 2016). 

We focused on eight Amazon sub-basins, shown in Fig. 1A, with 54 
scenes and 546 usable Landsat-8 images acquisitions. In order to test if 
Landsat-8 EVI seasonality is consistent with MODIS-MAIAC EVI, we 
started by identifying contrasting MODIS-MAIAC EVI seasonal periods 
(See methods for MODIS-MAIAC) and categorizing them as either HIGH 
or LOW EVI time periods for each clustered sub-basin (Fig. S10). It is 
crucial to emphasize that this categorization was carried out because, 
despite the clustering of numerous Landsat-8 scenes by sub-basins, there 
were not enough pixels available for all months of the year, especially 
during the wettest months, preventing us from being able to accurately 
model Landsat-8 EVI continuous monthly averages while controlling for 
the sun zenith angle using conventional linear models. 

We follow the analyses by running mixed effects models for each sub- 
basin including all available pixels, after the masking procedure delin
eated before. We used the pixel identity as a random effect and 
controlled for several confounding factors. We used the local EVI time 
periods (HIGH/LOW) as a categorical variable, based on MODIS-MAIAC 
data (Eq. (2)) and statistically controlled the solar zenith angle and 
HAND elevation. Additionally, we allowed the categorical time periods 
for local EVI to interact with the solar zenith angle. The variable pixel 
fraction (Eq. (2)) takes into account the possibility of varying numbers 
of cloud-free pixels between HIGH and LOW time periods. Furthermore, 
we compared changes in MODIS-MAIAC seasonal amplitude with 
changes in Landsat-8 across all sub-basins. To calculate and display the 
partial effects of each category (HIGH/LOW) while other predictors are 
held constant, we used the R package effects (Fox, 2003). 
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Landsat8 EVI = α + β1*(MODIS HIGH/LOW) + β2*(Solar Zenith)

+ β3*(HAND) + β4*(Fraction) + β5*(Scene)

+ β6*(MODIS HIGH/LOW)*(Solar Zenith) + (1|ID)

+ ε
(2) 

where Landsat8_EVI (continuous) is the dependent variable; MOD
IS_HIGH/LOW (categorical variable) are the two contrasting local EVI 
time periods for each sub_basin analyzed as seen by MODIS-MAIAC (See 
Fig. S10 for further explanation); Solar zenith (continuous) is the solar 
zenith angle at the center of each analyzed image; HAND (continuous) is 
the height above the nearest drainage; Fraction (continuous) is the 
fraction of usable pixels within a Landsat image near-nadir ROI; Scene 
(categorical) is the WRS scene that a certain pixel belongs to; and ID 
(categorical) is the unique pixel identity throughout the time series. 

To determine whether any spatial structure was affecting our 
modeling and to be able to generate temporal continuous seasonal 
curves, we also ran generalized additive models (GAM), but only for the 
Madeira sub-basin, in which we were able to obtain more usable data 
and therefore could make more consistent predictions. We used GAMs 
because they are more flexible to non-linear data and less memory 
intensive when including the spatial structure. The spatial structure in 
the model is now incorporated via a smooth term using the pixels’ co
ordinates, along with the day of the year (DOY) and sun zenith angle, 
following Eq (3). Only the seasonality of the first 250 days of the year is 
modeled given the lack of data in months with sun zeniths < 29◦. We set 
the number of basis functions (k) to 5 for the variable DOY, given the 
lack of data in several parts of the period to limit the smoothness and 
overfit. We additionally modeled GCC seasonality within the same 
period and same area using a similar method. 

Landsat8 VI = α + s(DOY) + s(Lat, Long) + s(Solar Zenith) + (HAND)

+ (Fraction) + (Scene) + ε
(3) 

where Landsat8_VI (continuous) is the dependent vegetation index 
variable (EVI or GCC); DOY is the continuous day of the year; Solar 
zenith (continuous) is the solar zenith angle at the center of each 
analyzed image; HAND (continuous) is the height above the nearest 
drainage; Fraction (continuous) is the fraction of usable pixels within a 
Landsat image near-nadir ROI. S term denotes the smooth term. K is the 
number of basis functions that was set to 3 for solar zenith since an 
almost linear relationship is expected and set to 5 to DOY to allow more 
wiggling, however limiting the same due to lack of data in some periods. 

2.2. MODIS-MAIAC processing 

The MAIAC product was generated with empirical BRDF corrections 
to an apparent view zenith angle of 0◦ (nadir view) and an apparent 
solar zenith of 45◦. Temporal resolution was 16 days and spatial reso
lution of 1 km. MAIAC BRDF correction relies on several cloud-free 
measurements of a pixel for each of the eight days, during which the 
sun-sensor geometry must vary widely (Lyapustin et al., 2012; Moura 
et al., 2015; Dalagnol et al. 2022). The dataset used here is part of the 
early versions of the AnisoVeg product (https://zenodo. 
org/record/6561351#.YyxaEHbMJPY, Dalagnol et al. 2022). In order 
to compare MODIS-MAIAC and Landsat-8 to answer our first question, 
we obtained MODIS observations that geographically match the usable 
areas of two or more seasonally distinct Landsat-8 images within a scene 
as mentioned in the previous section. We used the official Brazilian 
deforestation data known as PRODES (Valeriano et al., 2004) to mask 
deforestation and secondary forest in both MODIS and Landsat We used 
1 km resolution HAND data (Height Above Nearest Drainage) available 
at www.dpi.inpe.br/Ambdata to mask rivers, streams and seasonally 
flooded areas (Rennó et al., 2008) in the MODIS images. We did not 

apply a slope restriction to the MODIS data. 
We calculated the spatial average of each spectral index or band over 

the usable Landsat scene area for each 16-day MODIS-MAIAC period in 
the time series from January 2001 to September 2016. We chose the five 
MODIS-MAIAC 16d periods that included the five dates on which usable 
Landsat images were collected for approaches 1 and 2. In approach 2 of 
the scene 230_61 only MAIAC data within the near nadir ROI was 
analyzed. EVI and GCC calculations for MODIS-MAIAC were the same as 
for Landsat-8 data. 

In approach 3, in order to obtain MODIS-MAIAC EVI seasonality we 
used the same near-nadir ROI (Region of Interest) established in each of 
the analyzed Landsat-8 scenes to gather the EVI data within each sub- 
basin (see Fig. 1B and Fig. S10 for an illustration). At each sub-basin, 
we modeled MAIAC-EVI seasonality using a mixed modeling 
approach, excluding times of droughts and controlling for undesirable 
variables (Eq. (4)). Based on the MAIAC EVI seasonality, we identified 
contrasting HIGH/LOW seasonal EVI periods for each sub-basin. Con
trasting HIGH/LOW seasonal EVI periods were selected based on the 
trade-off of more overlapping pixels and more variation in solar zenith 
angle in the Landsat-8 dataset (Fig. S10). 

MODIS EVI = α + β1*(month) + β2*(HAND) + β3*(Scene) + (1|ID)

+ ε
(4) 

Where MODIS_EVI is the dependent variable (continuous) month is the 
month of the year; HAND is the height above the nearest drainage at 1 
km resolution; ID is the MODIS pixel identity throughout the time series. 

Additionally, we run generalized additive models (GAM) only for the 
Madeira sub-basin to check whether spatial structure impacted our 
modeling and to generate continuous seasonal curves for the same time 
period as the Landsat-8 data (between 2013 and 2021). We only 
included the first 250 days of the year, following the same method as 
described in Eq. (3). 

To answer our second question, regarding possible biophysical 
drivers or triggers of MODIS spectral data, we used the spatial average 
from two windows of 8x11 MODIS-MAIAC pixels, each centered on a 
tower-mounted phenocam described in the next section. The window 
size was empirically chosen. Larger windows are likely to decrease 
noise, but may also include undesired cover types (e.g., open water, 
riparian forests, deforestation, and secondary forests). We used MODIS- 
MAIAC long run 16y seasonal averages as most years had limited data 
for the rainy season given the small window being considered. Using 16y 
averages also reduced the short-term noise which is common in MODIS 
data. 

2.3. Leaf demography processing 

We monitored the upper canopy leaf phenology from July 2013 to 
mid-2016 at the ATTO tower site (2◦ 8’36"S and 59◦ 0’2"W) with an RGB 
Stardot Netcam model XL 3MP camera, set to an interpolated resolution 
of 2048 × 1536 pixels. The camera was mounted 81 m above the ground 
and ~ 50 m above the forest canopy. Each of 270 upper canopy tree 
crowns was followed daily, always using images obtained under diffuse 
light (dense cloud shadow or overcast sky). At the k34 tower site 
(2◦36’33" S, 60◦12’33" W), we monitored from September 2010 to 
September 2016, with the same camera model, but mounted 51 above 
the ground. The image area at k34 included 42 upper canopy crowns. 
Using the date of each crown’s abrupt leaf flush (which usually occurs 
once per year) as a marker, the age of each leaf cohort was determined 
(Lopes et al., 2016). We divided crowns that flushed monthly into three 
leaf age classes as suggested by Wu et al. (2016). Different transition 
ages were tested to find the abundance class that best correlated with 
MODIS derived local EVI for the two tower sites. We calculated a 
camera-based Leaf Area Index (LAI) as a linear function (y = 8.24*x- 
1.99) of the fraction of crowns that were leafy, following Wu et al. 
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(2016). 
We compared the two correlations (EVI × leaf age class abundance 

and EVI × leaf amount) to determine which was the better predictor 
(and possible driver) of EVI seasonality. Additionally, we used the 
ProSAIL radiative transfer model (a combination of the PROSPECT leaf 
optical properties model and SAIL canopy bidirectional reflectance 
model) via the Hsdar package to examine the sensitivity of EVI to 
changes in LAI (Jacquemoud et al., 2009; Lehnert et al., 2019). Input 
leaf reflectance spectrum (and therefore the leaf age effect on EVI) was 
fixed in this model. Under these conditions, if LAI is a weak driver of a 
vegetation index with strong seasonality, then the seasonality is likely to 
be driven mainly by spectral changes in leafy canopies that are related to 
leaf age classes (Wu et al., 2018). We kept all other model parameters 
constant (Observer zenith angle = 0◦, Solar zenith angle = 45◦, Relative 
azimuth angle = 45◦, Leaf angle distribution = Plagiophile) and let LAI 
vary. Note that the Relative azimuth angle parameter is not relevant 
when the observer’s zenith angle is 0◦ (Nadir View). We simulated how 
EVI would vary with seasonal variations in LAI in four sites in the 
Amazon (Table S1). The Geoscience Laser Altimeter System (GLAS) LAI 
is from Tang and Dubayah (2017) for the central Amazon region in 
general; K67 LAI in the western Amazon is from Wu et al. (2016), k34 
and ATTO LAI were estimated from the green crown fraction utilizing 
the equation of Wu et al. (2016). 

3. Results 

3.1. Testing if Landsat-8 OLI seasonal patterns of GCC, EVI and NIR are 
consistent with MODIS-MAIAC utilizing three different approaches 

3.1.1. Approach 1 - controlling for phase angle, while allowing minor 
differences (< ~4◦) in solar zenith angle 

Within the region of Landsat scene 230_63, 160 km SE of Manaus 
(Fig. 1B), we found strong seasonal change in GCC , peaking in the mid- 
dry season (Fig. 2B, Fig. S1). For the three test dates, Landsat-8 
corroborated MODIS-MAIAC GCC, showing the same temporal 
ordering of low-intermediate-high GCC for Wet (DOY 42) to Wet to Dry 
transition (DOY 145) to Dry (DOY 215) images (Fig. 2B, 2D). Amplitude 
changes were also similar, the low and high extremes of GCC were from 
the Wet (DOY 42) to Dry (DOY 215) dates of Landsat acquisitions 
(Fig. 2D). Over the same time period, the closest dates of MODIS-MAIAC 
GCC observations at the same area increased 3.8 ± 0.07% (95% 

Confidence interval). While we found a larger Landsat-8 GCC increase 
from the Wet (DOY 42) to Dry (DOY 215) images, 5.9 ± 0.3% (Fig. 2B). 
Landsat-8 data show that season has a clear effect on GCC when con
trolling for the phase angle (p < 0.001, F = 1182) (Fig. 2B). However, 
the narrow range of Landsat phase angles shared between the three 
image dates (35-37◦) had no influence on the temporal separation of 
GCC (p = 0.9, F = 0.008). In other words, it is not necessary to control 
for the effect of phase angle on GCC when using seasonally distinct 
Landsat images with very similar solar zenith angles. 

Within the region of the same 230_63 Landsat-8 scene 160 km SE of 
Manaus, EVI of MODIS-MAIAC showed a ranking of high-low- 
intermediate for Wet (DOY 42) to Wet to Dry transition (DOY 145) to 
Dry (DOY 215) (Fig. 2A). Over the whole scene the Wet (DOY 42) image 
was on average 3.14 ± 0.02% higher than Wet to Dry transition (DOY 
145) for the closest dates of MODIS-MAIAC EVI. The three Landsat-8 EVI 
images corroborated the MODIS-MAIAC seasonality and the observation 
for the closest dates, showing the same temporal ordering of high-low- 
intermediate EVI respectively for Wet (DOY 42) - Wet-Dry (DOY 145) 
- Dry (DOY 215) (Fig. 2A, Fig. 22C). The increase observed from Wet 
(DOY 42) to Wet-Dry (DOY 145) was higher for Landsat-8 EVI 6.9 ±
0.4% compared to MODIS-MAIAC. 

The same patterns and similar magnitudes for Landsat-8 EVI and 
GCC shown before are observed when using generalized additive models 
controlling for spatial structure and phase angle (Fig. S11) 

3.1.2. Approach 2 - fixed nadir view and fixed solar zenith angle for NIR 
and EVI 

For the Landsat-8 image pair from scene 230_61(Fig. 1B), 225 km NE 
of Manaus, for which solar zenith angles were nearly identical and 
spectral comparisons were restricted to < 0.5◦ off-nadir view, we found 
an increase of 8.4 ± 0.13% for EVI from May (DOY 135) to December 
(DOY 343) (Fig. 3B). Driving this EVI behavior was an increase of 13 ±
0.16 % in Landsat-8 NIR reflectance from May to December (Fig. 3A). 
This was again consistent with expectations from MODIS-MAIAC sea
sonality and with the values obtained with the closest temporal dates in 
2015 where MODIS-MAIAC EVI increased 10.87 ± 0.42% from May 
(DOY 144) to Dec (DOY 352) (Fig. S1, Fig. 3C). 

While accounting for spatial structure and phase angle, Landsat-8 
EVI and NIR results were also in line with previous findings (Fig. S12, 
just for NIR), displaying the similar pattern and magnitude of difference. 

Fig. 2. EVI (A) and GCC (B) from 
Landsat-8 for upland forests in scene 
230_63, controlling for phase angle (X- 
axis). Error bars are 95% CI for each of 
five phase angle bins for each Landsat 8 
date. Blue, brown and red colors repre
sent Wet, Wet-to-Dry and Dry season 
image dates. (C) and (D) are the values 
of MODIS-MAIAC EVI and GCC for the 
closest day of the year relative to 
Landsat-8 acquisitions in which the 
Landsat-8 data acquisitions’ date are 
included in the MODIS-MAIAC 16 day 
aggregation period. Vertical bars in (A) 
and (B) are meant to aid the visualiza
tion that regardless of phase angle 
Landsat-8 EVI and GCC show the same 
ordering of magnitude with the BRDF 
corrected MAIAC on the right (C) and 
(D). The lines linking the error bars in 
(A) and (B) are also intended to improve 
visualization showing the effect of phase 
angle on EVI and GCC. (For interpreta
tion of the references to color in this 
figure legend, the reader is referred to 
the web version of this article.)   
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3.1.3. Approach 3 -Fixed nadir view at the sub-basin scale 
Landsat-8 EVI controlled for sun-sensor geometry at sub-basin scale 

was consistent with BRDF corrected MODIS-MAIAC EVI seasonal spec
tral patterns throughout all sub-basins analyzed when comparing local 
periods categorized as HIGH and LOW EVI (Fig. 4; Fig. S5; Fig. S6; 
Fig. S7; Fig. S8; all p < 0.001) (The results remained the same when 
using only the NIR band and EVI without the blue band (Jiang et al., 
2008), not shown). However, the percentage difference between periods 
was not always consistent. At some sub-basins the percentage difference 
between HIGH and LOW periods deviated from the 1:1 line (Fig. S3, red 
dots). Sub-basins in which the solar zenith angles of the available ob
servations were broadly variable, on the other hand, the difference was 
numerically consistent between MODIS-MAIAC EVI and Landsat-8 EVI 
following the 1:1 line (Fig. S3, Black dots). EVI and GCC seasoality for 
both MAIAC and Landsat-8 were also consistent when controlling for the 
spatial structure while using generalized additive models (Fig. S13) 
within the Madeira sub-basin. EVI and GCC seasonal curves for both 
sensors were highly correlated within the first 250 days of the year for 
the same period between 2013 and 2021. 

3.2. Which biophysical attribute of canopy (leaf amount and leaf age) 
best explains the seasonal spectral patterns of GCC and EVI? 

3.2.1. Biophysical control of MODIS-MAIAC GCC in the Central Amazon 
We use the abundance of crowns with 0–1-month age to represent 

the seasonal leaf flush at both sites with tower mounted RGB cameras 
(k34 and ATTO). Peaks in the abundance of recently flushed crowns are 
expected in the dry season. As shown by Fig. 5, seasonal MODIS-MAIAC 
GCC closely followed the abundance of leaves with 0–1 mo at ATTO site 
(R2 = 0.76, p < 0.001) and at Manaus k34 (R2 = 0.43, p < 0.001), after 
applying a one-month forward shift to the camera data. We also 
analyzed litter trap data for the k34 site in a normal rainfall year 
(Ourique et al. 2016). Litter production was collected between 2012 and 
2013, about two kilometers from the k34 tower. The seasonal MODIS- 
MAIAC GCC (see. Fig. S4) also showed strong association with litter 
production (R2 = 0.84, p < 0.001). 

3.2.2. Biophysical control of MODIS-MAIAC EVI in the Central Amazon 
Seasonal MODIS-MAIAC EVI was strongly correlated with the 

abundance of the ‘mature’ leaf class in the upper canopy, of 2–7 months 
age (Fig. 6), at both ATTO (R2 = 0.82, p < 0.001) and 2–8 months age at 
Manaus k34 (R2 = 0.80, p < 0.001). Total LAI, on the other hand, was a 
poor predictor of EVI at ATTO (R2 = 0.20, p = 0.018) and moderate 
predictor at Manaus – k34 (R2 = 0.41, p = 0.002). 

In our ProSail radiative transfer model, we used a fixed sun-sensor 
geometry consistent with MODIS-MAIAC (nadir view and 45◦ SZA), 
fixed leaf spectra and the LAI annual amplitude reported in Wu et al. 
(2016), of 5.5 to 6.2 m2/m2, valid for the K67 site. The model results 
showed an LAI forcing effect of only 1.4% on predicted EVI. When using 
the GLAS Lidar-derived LAI amplitude reported in Tang and Dubayah 
(2017) for the Central Amazon region with an increase of 0.22 m2/m2 

from June to October, our ProSail model detected LAI forcing of only 1% 
on the predicted EVI (Table S1). 

4. Discussion 

Our findings confirm the dry season green-up effect over a large area 
in the Central Amazon as well as show strong associations between leaf 
phenology attributes measured at the canopy scale and satellite mea
surements. To our knowledge this is the most comprehensive study to 
date confirming the green-up phenomenon: we enact unprecedented 
experimental controls for sun-sensor geometry artifacts utilizing two 
independent orbital sensors (Landsat-8 and MODIS), thus combining 
high and coarse resolution remote sensing data, while also carefully 
accounting for topography and cloud contamination artifacts. Under all 
of these controls and data sources, results are consistent with green-up. 

Fig. 3. Increase in near-nadir EVI (A) and NIR reflectance (B) in Landsat-8 
scene 230_61 from May 2015 (DOY-135, brown) to December 2015 (DOY- 
343, blue), two images with nearly identical solar zenith angles and restricted 
sensor view angle (<0.5◦ off-nadir), to a narrow strip of pixels close to the 
orbital track. (C) MODIS-MAIAC EVI for the closest dates that include the two 
Landsat-8 acquisitions dates within the same near-nadir ROI. (For interpreta
tion of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 4. (A) Modeled MODIS-MAIAC EVI seasonality controlling for HAND, Scene, and pixel ID as random effect (Eq. 4; we used 99% confidence levels) at the Madeira 
Basin comprising WRS scenes (Path_row): 229_66, 230_63, 230_64, 230_65, 230_66, 230_67, 231_64, 231_65, 231_66. MODIS-MAIAC data were collected within the 
same near Nadir view geometries used in the Landsat-8 analysis; Vertical lines identify periods in which EVI (HIGH/LOW) seasonal difference is more pronounced. 
Using these periods, Landsat-8 data is grouped to test if the seasonal predictions from MODIS-MAIAC are consistent with Landsat-8 when sun geometry is controlled. 
(B) Landsat-8 EVI at the near Nadir view within the scenes discussed in (A) comprising 99 images plotted against the Solar zenith angle. As mentioned before, 
Landsat-8 data were grouped into periods of the year with HIGH (JAN, FEB, JUL, AUG, SEP, OCT, NOV and DEC) and LOW EVI (MAR, APR, MAY, JUN) as predicted 
by MODIS-MAIAC EVI. Red dots represent periods of HIGH EVI and blue low EVI; (C) The partial effect of categorical variables (HIGH/LOW) and the solar zenith 
angle on Landsat-8 EVI (Eq. (2)) when the other predictors (HAND, fraction of free pixels, scene, and Pixel identity) are held constant. The error bars indicate 
confidence intervals with 99% of significance; (D) Same as (A) but now for the Minor Amazon Jutaí basin comprising Landsat-8 WRS scenes: 2_62, 2_63, 3_63, 3_64; 
(E) Same as (B) but for the Minor Amazon Jutaí basin comprising 35 Landsat-8 images; These scenes were grouped into periods of the year with HIGH (JAN, FEB, 
OCT, NOV and DEC) and LOW EVI (MAR, APR, MAY, JUN,JUL, AUG, SEP) (F) Same as (C) but for the Minor Amazon Jutaí basin. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 
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Our findings provide a robust biophysical interpretation of VIs season
ality, which has previously been lacking (Maeda et al., 2016). Robust 
biophysical interpretation was achieved in primarily two ways: first, by 
validating BRDF-corrected MODIS-MAIAC seasonality signal using a 30 
m resolution sensor while performing very robust controls of off-nadir 
view angles of Landsat; Second, by showing consistent links in obser
vations from leaf demography derived from phenocams with 
MODIS-MAIAC. In conjunction with other recent and past studies, the 
present study contributes to a large body of evidence showing that 
Amazon dry-season green-up is real, with leaf phenology most likely the 
dominant driving force (Bi et al., 2015; Guan et al., 2015; Saleska et al., 
2016; Lopes et al., 2016; Moura et al. 2017; Wu et al., 2018; Gonçalves 
et al., 2019; Gonçalves et al., 2020; Wang et al., 2020; Hashimoto et al., 
2021). 

4.1. GCC, EVI and NIR for MODIS-MAIAC and Landsat-8, when 
controlling sun-sensor geometry: 

Using approach 1 – Comparing pixels with the same phase angle in 
different parts of the images – we found evidence that in the Central 
Amazon the average landscape greenness in the visible portion of the 
spectrum, as represented by GCC, is highest in mid dry season, lowest in 
mid wet season and intermediate at the wet to dry transition. The 
Landsat-8 seasonal ranking of GCC follows the same ranking observed 
for both seasonal and the closest date MODIS-MAIAC GCC. In the 
continuous MODIS data this seasonal ranking is part of a monomodal 
visible spectrum green-up, with a peak in the early to mid-dry season. 
We also found evidence that EVI seasonality is consistent in both 
Landsat-8 and MODIS-MAIAC showing the same ranking for approach 1 
at scene 230_63, where EVI was lower in the late wet season, interme
diate at the dry season, and higher in the early wet season illustrating the 
seasonal green-up. 

Our approach 2 for addressing our first question – with near-nadir 
view and nearly identical solar zeniths for the two Landsat dates of a 
single scene (230_61) that includes the ATTO tower – also showed strong 
NIR and EVI seasonality, both increasing from May to December in the 
same year of 2015, as also seen in local MODIS-MAIAC data. The NIR 

increase was large, about 13%. Fully eliminating sun-sensor geometry 
differences between the two Landsat seasonal acquisitions leaves little 
doubt about EVI and NIR seasonal green-up. These results do not support 
the conclusions of Morton et al. (2014) that EVI greenness is consistent 
throughout the year after artifacts are taken into account. This 
approach, instead, shows the consistency of the seasonality within the 
same year, while approach 1 uses images from different years that could 
be affected by interannual variations. 

For both approach 1 and 2 the seasonal amplitudes for EVI and GCC 
from the two sensors were slightly different, with Landsat-8 consistently 
higher (Fig. 2A, 2B) than MODIS-MAIAC (Fig. 2C, 2D). This was ex
pected for several reasons. First, the MODIS-MAIAC BRDF correction 
emulates a phase angle of 45◦ while our Landsat-8 scenes use pixels that 
have phase angles of about 36◦. For example a larger phase angle in
creases sub-pixel shade, reducing NIR reflectance, which in turn reduces 
EVI. Second, the phase angle effects may not be completely linear such 
that the ratio of increase/decrease could be different when the same area 
under comparison has distinct phase angles in both products. Third, we 
used single date EVI values with Landsat, but 16 day mosaics for MODIS, 
which could cause smoothing and add noise to the data. Fourth, the 
coarse resolution of MODIS-MAIAC, 1 km × 1 km, could still include 
small clouds, topographic shadow, and floodplain forests of small 
streams phenologically out of phase with upland forest. With Landsat 30 
m data, we were able to limit analysis to flat, well-drained soils free from 
topographic shadows, clouds and cloud shadow. Finally, minor dis
crepancies in bandwidth between Landsat-8 and MODIS may also play a 
role and need to be investigated further. 

Our third approach for addressing our first question extends the re
sults of the two previous approaches to a much larger area of the 
Amazon Basin, while also considering possible caveats previously 
mentioned. The seasonal green-up patterns for Landsat-8 and MODIS- 
MAIAC were consistent across all sub-basins. Five sub-basins 
(Madeira, Purus 2, Negro, Tapajos, and Trombetas) show similar 
changes in EVI values between HIGH and LOW local EVI time periods in 
terms of percentage change for both Landsat-8 and MODIS-MAIAC 
(Fig. S3, black dots). The other four sub-basins (Purus 1, Minor 
Uatuma, Jutai, and Xingu) also exhibited a directional seasonal change 

Fig. 5. Light green lines represent young leaves (0 to 1 month of age) abundance registered at the phenocam at the ATTO tower site from 2013 to 2015; The gray 
shaded area the is the seasonal MODIS-MAIAC GCC (95% CI) at the same site using a small 8X11km window centered at the ATTO site. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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in EVI for both products, although percentage changes were less 
numerically consistent. Two reasons are suggested here, while the ar
guments advanced in the last paragraph for approaches 1 and 2 apply as 
well. First, the overlapping pixels available for the two sensors encom
passed only a small variation in solar zenith angle. Therefore, the sta
tistical model may not be capable of accounting for the full effect of solar 
zenith angle on EVI. Second, the Landsat-8 time series spans 2013 to 
2021 while the MODIS-MAIAC data window has a larger temporal 
overlap (2001–2016) and excludes some drought periods. 

Given that we are consistently comparing flat, well-drained old- 
growth upland forests within the same scene, the consideration of spatial 
structure did not affect our main results, as shown by generalized ad
ditive models for all three of our approaches. This supports our first 
assumption that sets of usable pixels available on each date represent the 
average scene signal on that date. 

4.2. EVI and canopy leaf demography in the Central Amazon 

EVI may be sensitive to changes in LAI, and canopy leaf area struc
ture. While this is not easy to measure in the Amazon, the most advanced 
approaches to date that capture vertical shifts in leaf area over season
ality (Tang and Dubayah, 2017; Smith et al., 2019) show relatively little 
change in total leaf area. Our Prosail Modeling effort showed that this 
was too little to account for the 9% change detected with MODIS-MAIAC 
at the ATTO site. Furthermore, monthly values of upper canopy LAI 
(based on the monthly fraction of green crowns in tower camera view) 

were a poor predictor of seasonal variability in MODIS-MAIAC EVI. 
Upper canopy LAI thus appears not to be the main driver of change in the 
spectral signal, at least in the Central Amazon. Instead, our results 
strongly suggest that upper canopy leaf age – especially the fraction of 
crowns having mature leaves 2–7 months old – drives seasonality of the 
EVI signal. Laboratory spectra of tropical forest leaves of known age also 
show higher NIR reflectance for mature leaves (Roberts er al., 1998; 
Chavana-Bryant et al., 2016; Moura et al., 2017; Wu et al., 2018). This 
study also confirms and extends observations by Lopes et al. (2016) and 
Wu et al. (2018), that leaf quality, not leaf amount, is the main control 
over the seasonal remote sensing signal. In regions with longer dry 
seasons, however, where the LAI has a larger range of seasonal variation, 
EVI could be effectively controlled more by canopy LAI than by leaf 
demography (Restrepo-Coupe et al., 2013; Song et al., 2021). EVI-based 
inversions that use canopy biophysical parameters such as the LAI 
(Hilker et al., 2017) should therefore be considered cautiously. 

4.3. Biophysical control of GCC in the Central Amazon 

GCC was also associated with the year-round upper canopy leaf 
demography derived from tower-mounted RGB cameras. Lopes et al. 
(2016) found that recently flushed crowns have high GCC relative to 
other crown phenostages. In the three drier months of June to August, 
close to 50% of all crowns flushed new leaves at their ATTO tower study 
site, while in the three months of December to February only about 8% 
of crowns flushed out new leaves. Our results also confirm and extend 

Fig. 6. Black solid line on the top represents the camera-based total canopy Leaf area index (LAI) and the green solid line is LAI for mature leaves (2 to 7 months of 
age) derived from the RGB camera mounted at the ATTO site. The gray shaded lines are the seasonal MODIS-MAIAC EVI (95% CI) repeated from March of 2014 to 
December 2015 also for the ATTO site. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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those of Gonçalves et al., 2019 regardng GCC seasonality in Landsat-8 
OLI. 

4.4. Implications for photosynthetic seasonality modeling in Amazon 
evergreen forests 

Our results strongly indicate that the MODIS GCC signal at the 
ecosystem scale is sensitive to the abundance of crowns with recently 
flushed a cohort of new leaves while the MODIS EVI is sensitive to the 
abundance of mature leaves. Young leaves have lower intrinsic photo
synthetic capacity (Vcmax), compared to mature leaves (Wu et al., 2016; 
Albert et al., 2018). Future efforts should leverage this information to 
model basin-wide seasonal primary productivity from coupled GCC and 
EVI MODIS data. 

5. Conclusions 

Across two Landsat-8 OLI scenes, we validate BRDF corrected 
MODIS-MAIAC EVI and GCC seasonality, obtained under fixed sun- 
sensor geometry at different seasons. We extend the validation of 
MODIS-based EVI seasonality, including dry season EVI green-up, to 
eight large sub-basins of the Amazon, and show that it is consistent with 
EVI seasonality derived from Landsat-8. At two additional Central 
Amazon tower sites, we corroborate the radiative transfer model-based 
conclusions of Wu et al (2018), previously shown for only a single tower 
site: LAI is a poor or minor driver of the seasonal change in Central 
Amazon Forest EVI as detected by orbital sensors, while the change in 
leaf reflectance spectra with leaf age and change in the seasonal abun
dance of mature leaves, 2–7 months old as detected by phenocams are 
the main drivers of seasonal EVI. We also found a novel result that 
MODIS GCC seasonality is consistent with the seasonal abundance of the 
recently flushed (0–1 mo old) age class as detected by tower-mounted 
RGB cameras and seasonal leaf litter production. 
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