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ARTICLE INFO ABSTRACT
Keywords: Controversy surrounds the reported dry season greening of the Central Amazon forests based on the Enhanced
Tropical forest Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). As the solar zenith

Dry season green-up
Enhanced Vegetation Index
Green chromatic coordinate

angle decreases during the dry season, it affects the sub-pixel shade content and artificially increases Near-
infrared (NIR) reflectance and EVI. MODIS’ coarse resolution also creates a challenge for cloud and terrain
Phenocam filtering. To reduce these artifacts and then validate MODIS seasonal spectral patterns we use 16 years of 1 km
Leaf demography resolution MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction) images, corrected to a nadir
Central Amazon view and 45° solar zenith angle, together with an improved cloud filter. Then we show that the 30 m Landsat-8
Drought Operational Land Imager (OLI) surface reflectance over two Landsat scenes provides independent evidence
supporting the MODIS-MAIAC seasonality for EVI, NIR, and GCC (an additional important vegetation index,
green chromatic coordinate). Our empirical method for controlling for sun-sensor geometry effects in Landsat
scenes encompasses the use of seasonally distinct images that have similar solar zenith angles and cloud-free
pixels on flat uplands having the same phase angle. We extended this validation to nine Amazon sub-basins
comprising ~546 Landsat-8 images. Our study shows that the dry-season green-up pattern observed by
MODIS is corroborated by Landsat-8, and is independent of satellite data artifacts. To investigate the mechanisms
driving these seasonal changes we further used Central Amazon tower-mounted RGB cameras providing a 4-year
record at the Amazon Tall Tower (ATTO, 2°8'36”S, 59°0'2"W) and a 7-year record at the Manaus k34 tower
(2°36'33" S, 60°12'33"W) to obtain monthly upper canopy green leaf cover (a proxy for Leaf Area Index - LAI)
and monthly leaf age class abundances (based on the age since leaf flushing, by crown). These were compared to
seasonal patterns of GCC and EVI in small MODIS-MAIAC windows centered on each tower. MODIS-MAIAC GCC
was positively correlated with newly flushed leaves (R> = 0.76 and 0.44 at ATTO and k34, respectively). EVI
correlated strongly with the abundance of mature leaves (R? = 0.82 and 0.80) but was poorly correlated with LAI
(R? = 0.20 and 0.41, respectively). Therefore, seasonal spectral patterns in the Central Amazon are likely
controlled by leaf age variation, not quantity of leaf area.

1. Introduction can cause seasonal artifacts, a problem that underlies a long-lasting
debate about the detection and magnitude of leaf phenological phe-
Sun-sensor geometry influences vegetation canopy reflectance and nomena in Amazon evergreen forests (Saleska et al., 2007; Galvao et al.,
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2011; Morton et al., 2014; Bi et al., 2015; Saleska et al., 2016; Hashi-
moto et al., 2021). The resolution of this controversy is crucial for future
efforts to understand how climate anomalies may affect leaf phenology
and primary productivity in the Amazon. The main issue arises from the
fact that when the Moderate Resolution Imaging Spectroradiometer
(MODIS) Terra (and Landsat-8 OLI) platforms pass over the Central
Amazon during the drier months from July to November, solar zenith
angles decrease by approximately 15°. This causes a progressive
decrease in sub-pixel shade content and consequent increase in the Near-
infrared (NIR) reflectance and Enhanced Vegetation Index (EVI), which
may cause apparent greening as an artifact. According to Morton et al.
(2014), sun-sensor effects may fully explain the dry season green-up
observed in MODIS EVI.

The MAIAC (multi-angle atmospheric correction) adjustment to
MODIS (Lyapustin et al., 2012; Dalagnol et al. 2022) removes artifacts of
view and illumination geometry and has improved cloud detection and
filtering. Band reflectances are corrected to a nadir view and a fixed
solar zenith angle by applying a Bidirectional Reflectance Distribution
Function (BRDF) inversion model that requires a minimum set of three
observations of each pixel within each 8-day temporal mosaic. Appar-
ently free of sun-sensor artifacts, MODIS-MAIAC confirms that about
half the amplitude of the uncorrected MODIS dry-season green-up
pattern for EVI in the Central Amazon is real (Bi et al., 2015, Guan et al.,
2015, Saleska et al., 2016). However, MODIS data is captured at 250 m
resolution and MAIAC is generated with a spatial resolution of 1 km,
leaving doubts as to the full removal of clouds and of the influence of
topographic shade in the BRDF inversion (Galvao et al., 2016). Cloud
cover can also influence the BRDF inversion, as only a few pixels are
available during the wettest periods.

Therefore, it is important to confirm the coarse resolution of MODIS-
MAIAC-derived seasonal spectral patterns with independent sensors
with a finer spatial resolution, as haze, clouds, cloud shadows, and
terrain artifacts are more easily detected. To this end, we gathered data
from Landsat-8 OLI imager — we used specifically Landsat-8 OLI due to
its superior radiometric resolution when compared to past Landsat
missions — and two tower-mounted RGB cameras. The 30 m Landsat-8
Operational Land Imager (OLI) provides a bridge between the small
area (<10 ha) of tower-based detections of seasonal changes in crown
color, leaf age mix and leaf amount at one spatial resolution extreme and
coarse spatial-resolution MODIS at the other extreme.

Robust BRDF corrections of Landsat-8 OLI for seasonal comparisons
are, nevertheless, still not feasible because of the 16 day revisit time and
the extremely cloudy Amazon wet season. In spite of efforts to correct
Landsat based on MODIS BRDF parameters (Roy et al., 2016), it would
not be meaningful to compare MODIS MAIAC and corrected Landsat
because they both use the similar Ross-Thick Li-Sparse model derived
from MODIS (though MAIAC retrieves BRDF parameters differently;
Lyapustin et al., 2012). A simpler and more reliable solution, to compare
both products, takes advantage of the fact that the Landsat view angle is
approximately fixed for each pixel and that the same solar zenith angle
repeats four times per year at the hour of Landsat overflight near the
equator. Landsat images having identical or very similar sun-sensor
geometry are therefore available from different seasons of the year
(Gongalves et al., 2019). No BRDF correction is required for their
comparison, so these Landsat images can be used to effectively validate
the seasonal spectral patterns of MODIS-MAIAC.

To explain seasonal spectral patterns seen by MODIS-MAIAC, in
terms of changing canopy leaf phenology, tower-mounted RGB cameras
provide useful local-scale high-frequency data. While these operate only
in the visible portion of the spectrum, RGB cameras provide data on
upper canopy leaf age and leaf amount, which are jointly responsible for
a large part of seasonal change in optical region canopy spectra. Tower-
mounted RGB cameras have already contributed to elucidating the
phenological drivers of seasonality in photosynthesis and photosyn-
thetic efficiency at tower sites (Wu et al., 2016). The Leaf area index
(LAI) seasonal variation in Central Amazon is small, ranging from 5.5 to
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6.2 m%/m? levels (Brando et al., 201 0), at which the spectral response to
change in LAI nearly saturates (Ponzoni, Shimabukuro & Kuplich,
2007). On the other hand, leaf demography varies greatly across sea-
sons, as also shown by tower-mounted cameras (Lopes et al., 2016).
Together this suggests that seasonal differences in EVI are induced
mainly by leaf age and less by seasonal changes in leaf amount. Sup-
porting this expectation, Wu et al. (2018) drove a radiative transfer
model with changes in leaf amount and leaf age from camera data,
combined with bare branch spectral and leaf spectra for different leaf
age classes . The radiative transfer model showed consistent seasonal
patterns between predicted EVI and MODIS-MAIAC EVI seasonal pat-
terns, with primary attribution to changing leaf age.

Nonetheless, an empirical comparison of canopy spectral attributes
at the scales of tower cameras (~1 m), Landsat-8 (30 m) and MODIS-
MAIAC (1 km) has yet to be undertaken and will contribute to our un-
derstanding of the reliability of the seasonal spectral patterns detected
by MODIS (Maeda et al., 2016) and the leaf- and canopy- scale drivers of
these seasonal patterns in tropical forests. Our objectives address two
major questions that, if properly answered, offer a much more complete
understanding of the Amazon seasonal green-up by examining different
spectral remote sensing instruments and platforms from coarse to very
high resolutions:

First, we ask if the Landsat-8 OLI (finer resolution) confirms the
seasonal patterns observed in the main spectral indices and bands of
interest from the MODIS-MAIAC (coarser resolution) related to the dry
season green-up debate. We examine the Green chromatic coordinate
(GCCQC), NIR reflectance and EVI. Here, we use several Landsat-8 OLI
image dates with pixel subsets selected to show clear seasonal contrast in
these MODIS-MAIAC indicators, but also having minimal differences in
their view and illumination geometries while controlling for a series of
artifacts. Second, having reinforced our confidence in the MODIS-
MAIAC spectral signal, we ask which biophysical attributes of the can-
opy - leaf amount or leaf age — derived from two Phenocam systems in
the central Amazon best explain the seasonal spectral patterns of GCC
and EVIL.

2. Material and methods
2.1. Landsat-8 OLI processing

Our first question is addressed by employing three different ap-
proaches to account for sun-sensor geometry in Landsat-8 data so that
we could compare spectral information between images acquired during
different seasons.

2.1.1. Approach 1 - controlling for phase angle, while allowing minor
differences (< ~4°) in solar zenith angle

In this approach, we looked for surface reflectance Landsat-8 OLI
images in the central Amazon acquired from the same Worldwide
Reference System (WRS) scene at various times of the year and with
similar solar zenith angles. Seasonal BRDF artifacts are mostly caused by
the solar zenith angle (Galvao et al., 2011; Morton et al., 2014). Up to
four times during the year, the solar zenith is identical within a few
degrees of the equator and during the 10:00 h local Landsat passing. As
view angles vary across the image, BRDF artifacts are also likely to be
present. In order to represent the effects of sun-sensor geometry, the
phase angle of each pixel could be calculated (Maeda and Galvao, 2015).
This is the angle between a pixel’s sensor view vector and its solar
illumination vector (Bi et al., 2015). Phase angle of each pixel combines
the main components of sun-sensor geometry effects on a pixel’s
reflectance into one variable (Maeda and Galvao, 2015). The calculation

is (Eq. (1)):
Phase_angle = ACOS[(COS(SVZ) x COS(SZA)) + (SIN(SVZ)

x SIN(SZA) x COS(RAA)] (€]
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where SVZ is the sensor view zenith angle, SZA is the sun zenith
angle and RAA is the relative azimuth angle. SIN and COS are sine and
cosine respectively.

When the difference in SZA between image acquisitions — from
different seasons that are to be compared - is small at the scene center, it
is possible to find pixels with the same phase angle in distinct parts of the
different images. Pixels with the same phase angle can have different
solar azimuth angles, thus different amounts of topographic shade, but
there should be no bias in this noise if topographic features have no
preferred azimuthal orientations. In the Central Amazon, image dates
with small (<~ 4°) difference in solar zenith and having pixels with
shared phase angles were chosen to coincide with strong seasonal dif-
ferences in the EVI and GCC vegetation indices from local MODIS-
MAIAC on those same dates, and to also coincide with seasonally
distinct phenological periods detected in tower RGB camera data (Lopes
et al., 2016).

Given the restrictions we mentioned above and the intense cloud
cover towards the wet season we were only able to obtain three usable
images with similar solar zenith angles and in three distinct phenolog-
ical periods for the Landsat scene 230_63 (Fig. 1B, Fig.59), centered at
4°12’S, 59°12°W which is 160 km south-southeast of Manaus city,
Brazil. One image was from the mid wet season (Feb 11, 2016 - DOY 42)
when tower-mounted cameras at Manaus-k34 and Amazon Tall Tower
Observatory (ATTO) sites show very little leaf flushing or pre-flush leaf
abscission (few bare crowns). Dark green leafy crowns predominate
across the phenocam views. A second image was from the wet to dry
season transition (May 25, 2013 - DOY 145), when old leaves are
abundant and LAI is near its annual mean (Wu et al., 2016). The third
image was from the dry season (August 03, 2015 - DOY 215), when
leafless crowns are most abundant and recently flushed crowns (0, 1 or
2 months since flush) are even more abundant. The image region
selected for this approach has an average dry season length of 2.9
months based on (from TRMM 3b43 v7) product. This is close to the dry
season length at both the ATTO and Manaus k34 tower sites (Fig. 1B),
where phenocams we analyzed here were installed. Solar zenith angles
at the scene center for the selected Wet (DOY 42), Wet-to-Dry (DOY 145)
and Dry (DOY 215) season images were 32.15°, 36.18° and 36.13°. Only
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pixels with the same phase angles were compared. EVI was calculated as
in (Huete et al., 2006; Solano et al., 2010; Galvao et al., 2011) and GCC
was calculated as in phenological monitoring RGB cameras but using
reflectance instead of digital number (Sonnentag et al., 2012; Lopes
et al., 2016) (Eq. S1 and Eq. S2, Supplementary data).

2.1.2. Approach 2 - fixed nadir view and fixed solar zenith angle for NIR
and EVI

In some cases, two sets of pixels may have the same phase angle, but
different relative azimuth angles, such that one date’s pixels are
observed under forward scattering geometry (Bi et al., 2015), while the
other date’s under backscatter, which can affect spectral data (Moura
et al., 2012). We therefore use a more conservative method. We now
compare two images with nearly identical solar zenith (based on met-
adata for the scene center) and restricted the sensor view angle to < 0.5°
off-nadir, i.e., to a narrow strip of pixels close to the orbital track (Gray
rectangle in Fig. 1B and in Fig.S9). Pitfalls of sun-sensor geometry are
theoretically fully resolved.

Finding cloud-free Landsat-8 image areas that meet these more
conservative conditions is even more challenging than approach 1. We
found a pair of images of the scene 230_61 for 2015 (Fig. 1B), centered at
1° 27’S, 58° 44°W (225 km NE of Manaus, and 90 km NNE of the ATTO
tower phenocam), having SZA difference of only 0.6°. The average dry
season length is 3.4 months (from TRMM 3b43 v7). One image was from
the late Wet season (15 May 2015, DOY 135) with 33.00°SZA. The other
was from the early Wet season (09 December 2015, DOY 343) with a
scene center SZA of 32.44°. These two Landsat dates are useful for
confirming a very large expected difference in EVI and NIR (as seen in
local MODIS-MAIAC), but no strong seasonal difference in GCC is ex-
pected, as seen in the nearby tower phenocam data. We therefore
extracted only EVI and NIR reflectance from Landsat and from MODIS-
MAIAC for these two dates. NIR is a proxy for EVI and is less affected by
haze than other bands that comprise EVI (Morton et al., 2014; Bi et al.,
2015).

All five Landsat-8 images analyzed for both approaches 1 and 2, were
surface reflectance collection 1 level 2 products downloaded from the
USGS Earth Explorer platform. For all five dates we used only upland

Fig. 1. A) Location of the 54 Landsat scenes analysed in approach 3, stratified into eight Amazon sub-basins (Madeira, Minor Amazon Jutai, Negro, Purus, Tapajos,
Trombetas, Xingu, and Minor Amazon Uatuma); The base image shows the long-term mean of the local MCWD (Maximum climate water deficit), a combined
measure of dry season length and intensity (Malhi et al., 2009). B) The two Landsat scenes used in approaches 1 and 2; B1) 230_61 and B2) 230_63 scene, the two
tower-mounted RGB cameras: k34 and ATTO, and the small windows considered in MAIAC analysis (to Q2); The bottom image in is a grayscale HAND (height above
the nearest drainage). The RGB images are Landsat Look Natural Color Images. B1 also depicts the near nadir region of interest (ROI) in gray used to analyze data on

scene 230_61 with approach 2.
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areas, i.e., excluding rivers, streams, and floodplains. To this end, we
filtered all 30 m Landsat pixels having less than 15 m Vertical Distance
to Channel Network (Conrad et al., 2015), an algorithm which uses 30 m
Shuttle Radar Topography Mission (SRTM) elevation data as the input.
To minimize the effects of topographic shade, we accepted only those
Landsat pixels with slope < 4°. We masked all clouds and cloud shadows
in Landsat using an adaptation of the Multi-temporal Cloud Masking
(MCM) method of Candra et al. (2016). This algorithm uses the differ-
ence of the reflectance between a target image, free from clouds and
cloud shadows, and a cloud-contaminated image in order to distinguish
between clear pixels and cloud-contaminated pixels. To detect clouds,
we used the difference thresholds for band 3 (Green) and for band 4
(Red). For cloud shadows we used the difference threshold of band 6
(Swir 1). For each difference image, we selected an empirical threshold
that maximized cloud and cloud shadow detection. We followed up with
a careful visual inspection of unmasked areas to detect errors of omis-
sion. We further accepted only pixels with NDVI > 0.75. The 0.75 NDVI
threshold ensures that no cloud or cleared forest area will be included in
the analysis if prior masking or visual inspection fails. For comparisons
and models, only non-masked pixels from both seasonally distinct im-
ages were used. We assume that the sets of usable pixels available on
each date represent the average scene signal on that date. Since we are
always comparing flat, well-drained old-growth upland forests within
the same 185 km x 185 km scene, this is a reasonable assumption. In all
cases, the sampled pixels are from the same forest type and have very
similar climatic and edaphic characteristics. Furthermore, at this spatial
scale, BRDF-corrected MODIS EVI spatial variations are very low
(Dalagnol et al., 2022). This assumption is also necessary because over
the acceptable dates, only a small number of pixel positions are cloud-
free. Aside from that, the phase angle of a pixel rarely stays the same
throughout the year given the significant variation in solar azimuth,
particularly in approach 1, where we do not have an almost Nadir view.
It is therefore challenging, if not impossible, to compare the same pixel
over time with the same phase angle.

Given the above-mentioned limitation of not spatially matched
pixels being compared through time, we also investigated whether any
spatial structure was influencing our results by running general additive
models including pixels‘ coordinates as a smooth term while accounting
for other undesirable variables (Eq. S3, Supplementary data). We have
now analyzed only the pixels that are available, following the masking
procedure explained before, intersecting the three images in approach 1
and the two images in approach 2.

All analyses were performed using the statistical and computational
platform R. the raster package (Hijmans, 2016; R Development Core
Team, 2017). GAM models were run using mgcv and visualized using
mgcViz (Wood, 2017; Fasiolo et al., 2019)

2.1.3. Approach 3 - fixed nadir view at the sub-basin scale:

In approaches 1 and 2, just two Landsat scenes and five dates,
respectively, were examined. Four of the dates fell during the
2015-2016 El Nino drought years. There is evidence that inter- and
intra-annual greenness are impacted by Amazonian droughts (Saleska
et al., 2007; Yang et al., 2018; Gongalves et al., 2020). To amplify our
findings to the continental scale of the Central Amazon wet forests, two
Landsat scenes are likely insufficient. We used Google Earth Engine
(GEE) to broaden our investigation to more Landsat scenes and also
circumvent several limitations of approaches 1 and 2 (Fig. 1A). We
utilized the USGS Landsat-8 Surface Reflectance (Collection and Tier 1)
product at the native 30 m resolution for the period 2013 to 2021,
omitting the extreme drought of 2015-2016. The current focus is on
confirming the MODIS-MAIAC seasonal patterns of EVI alone.

Based on image metadata supplied by GEE for the scene centers, we
searched all Landsat-8 images with solar zenith angles between 29° and
38° and cloud cover < 45% in the Central Amazon (Fig. 1A). For each
scene, 60,000 pixel positions were randomly selected based on a single
image date within an area of +/- 0.5° off the nadir view angle (see

96

ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 93-104

Fig. 1B and Fig. S10 for an illustration). In the following step, we
extracted Landsat-8 spectral data from the same 60,000 pixels postions
from each image within each scene of a total of 546 images. The near-
nadir ROIs were defined using the same single image date from each
path-row scene. We here assume that the nadir ground track line and the
view angle for any pixel on the ground to be constant over time. Addi-
tionally, we assume that the solar zenith angle remains constant during
the brief time (~30 s) it takes to acquire each image. As with approach 2,
by limiting the analysis to a near-nadir view, this approach maintains a
nearly fixed phase angle for any solar zenith angle regardless of the solar
azimuth and theoretically resolves the forward-scatter / backscatter
issue. Due to the fact that only the solar zenith angle will contribute
significantly to reflectance anisotropy, we only need to control for this
single covariate.

Similar to approach 1 and 2, we implemented the Candra et al.
(2016) cloud masking procedure. Given the large data set, we could not
inspect the mask manually. Therefore, we added a mask buffer of 500 m
to all pixels classified as clouds or cloud shadows. We also employed
Landsat-8 QABits to filter pixels with cloud, cloud shadow, or aerosol
contamination. We further only considered pixels with NDVI > 0.75 and
reduced terrain slope artifacts by considering only pixels with slope < 4°
and Height Above Nearest Drainage (HAND) > 10 m. We used the global
30X30m HAND product (Donchyts et al., 2016) available on the GEE
platform. To mask flooding areas not completely removed by HAND (e.
g., areas associated with interfluvial perched water tables, flat areas
where the channel network required by HAND is nonexistent or poorly
defined), we relied on Hess et al. (2015). Lastly, we used PRODES
(Brazilian Amazon Deforestation Monitoring Program) data (Valeriano
et al., 2004) to mask deforestation and/or secondary forest.

Due to the combined limitations imposed by near-nadir view, flat
upland terrain, cloud-free pixels, and the GEE platform limit on
exporting data, Landsat-8 image pairs having usable pixels with the
same SZA were rarely available from the same scene in different seasons.
Hence, we decided to cluster Landsat-8 scenes into Amazon sub-basins
(Fig. 1A, Fig. S10, Venticinque et al., 2016).

We focused on eight Amazon sub-basins, shown in Fig. 1A, with 54
scenes and 546 usable Landsat-8 images acquisitions. In order to test if
Landsat-8 EVI seasonality is consistent with MODIS-MAIAC EVI, we
started by identifying contrasting MODIS-MAIAC EVI seasonal periods
(See methods for MODIS-MAIAC) and categorizing them as either HIGH
or LOW EVI time periods for each clustered sub-basin (Fig. S10). It is
crucial to emphasize that this categorization was carried out because,
despite the clustering of numerous Landsat-8 scenes by sub-basins, there
were not enough pixels available for all months of the year, especially
during the wettest months, preventing us from being able to accurately
model Landsat-8 EVI continuous monthly averages while controlling for
the sun zenith angle using conventional linear models.

We follow the analyses by running mixed effects models for each sub-
basin including all available pixels, after the masking procedure delin-
eated before. We used the pixel identity as a random effect and
controlled for several confounding factors. We used the local EVI time
periods (HIGH/LOW) as a categorical variable, based on MODIS-MAIAC
data (Eq. (2)) and statistically controlled the solar zenith angle and
HAND elevation. Additionally, we allowed the categorical time periods
for local EVI to interact with the solar zenith angle. The variable pixel
fraction (Eq. (2)) takes into account the possibility of varying numbers
of cloud-free pixels between HIGH and LOW time periods. Furthermore,
we compared changes in MODIS-MAIAC seasonal amplitude with
changes in Landsat-8 across all sub-basins. To calculate and display the
partial effects of each category (HIGH/LOW) while other predictors are
held constant, we used the R package effects (Fox, 2003).
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Landsat8_EVI = a + 1*(MODIS_HIGH/LOW) + 2*(Solar Zenith)
+ p3*(HAND) + p4*(Fraction) + 5*(Scene)
+ 6*(MODIS_HIGH/LOW)*(Solar Zenith) + (1|ID)
+ €
(2)

where Landsat8_EVI (continuous) is the dependent variable; MOD-
IS_HIGH/LOW (categorical variable) are the two contrasting local EVI
time periods for each sub_basin analyzed as seen by MODIS-MAIAC (See
Fig. S10 for further explanation); Solar zenith (continuous) is the solar
zenith angle at the center of each analyzed image; HAND (continuous) is
the height above the nearest drainage; Fraction (continuous) is the
fraction of usable pixels within a Landsat image near-nadir ROI; Scene
(categorical) is the WRS scene that a certain pixel belongs to; and ID
(categorical) is the unique pixel identity throughout the time series.

To determine whether any spatial structure was affecting our
modeling and to be able to generate temporal continuous seasonal
curves, we also ran generalized additive models (GAM), but only for the
Madeira sub-basin, in which we were able to obtain more usable data
and therefore could make more consistent predictions. We used GAMs
because they are more flexible to non-linear data and less memory
intensive when including the spatial structure. The spatial structure in
the model is now incorporated via a smooth term using the pixels’ co-
ordinates, along with the day of the year (DOY) and sun zenith angle,
following Eq (3). Only the seasonality of the first 250 days of the year is
modeled given the lack of data in months with sun zeniths < 29°. We set
the number of basis functions (k) to 5 for the variable DOY, given the
lack of data in several parts of the period to limit the smoothness and
overfit. We additionally modeled GCC seasonality within the same
period and same area using a similar method.

Landsat8_VI = a + s(DOY) + s(Lat, Long) + s(Solar Zenith) + (HAND)
+ (Fraction) + (Scene) + &
3

where Landsat8 VI (continuous) is the dependent vegetation index
variable (EVI or GCC); DOY is the continuous day of the year; Solar
zenith (continuous) is the solar zenith angle at the center of each
analyzed image; HAND (continuous) is the height above the nearest
drainage; Fraction (continuous) is the fraction of usable pixels within a
Landsat image near-nadir ROI. S term denotes the smooth term. K is the
number of basis functions that was set to 3 for solar zenith since an
almost linear relationship is expected and set to 5 to DOY to allow more
wiggling, however limiting the same due to lack of data in some periods.

2.2. MODIS-MAIAC processing

The MAIAC product was generated with empirical BRDF corrections
to an apparent view zenith angle of 0° (nadir view) and an apparent
solar zenith of 45°. Temporal resolution was 16 days and spatial reso-
lution of 1 km. MAIAC BRDF correction relies on several cloud-free
measurements of a pixel for each of the eight days, during which the
sun-sensor geometry must vary widely (Lyapustin et al., 2012; Moura
et al., 2015; Dalagnol et al. 2022). The dataset used here is part of the
early versions of the AnisoVeg product (https://zenodo.
org/record/6561351#.YyxaEHbMJPY, Dalagnol et al. 2022). In order
to compare MODIS-MAIAC and Landsat-8 to answer our first question,
we obtained MODIS observations that geographically match the usable
areas of two or more seasonally distinct Landsat-8 images within a scene
as mentioned in the previous section. We used the official Brazilian
deforestation data known as PRODES (Valeriano et al., 2004) to mask
deforestation and secondary forest in both MODIS and Landsat We used
1 km resolution HAND data (Height Above Nearest Drainage) available
at www.dpi.inpe.br/Ambdata to mask rivers, streams and seasonally
flooded areas (Renno et al., 2008) in the MODIS images. We did not
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apply a slope restriction to the MODIS data.

We calculated the spatial average of each spectral index or band over
the usable Landsat scene area for each 16-day MODIS-MAIAC period in
the time series from January 2001 to September 2016. We chose the five
MODIS-MAIAC 16d periods that included the five dates on which usable
Landsat images were collected for approaches 1 and 2. In approach 2 of
the scene 230_61 only MAIAC data within the near nadir ROI was
analyzed. EVI and GCC calculations for MODIS-MAIAC were the same as
for Landsat-8 data.

In approach 3, in order to obtain MODIS-MAIAC EVI seasonality we
used the same near-nadir ROI (Region of Interest) established in each of
the analyzed Landsat-8 scenes to gather the EVI data within each sub-
basin (see Fig. 1B and Fig. S10 for an illustration). At each sub-basin,
we modeled MAIAC-EVI seasonality using a mixed modeling
approach, excluding times of droughts and controlling for undesirable
variables (Eq. (4)). Based on the MAIAC EVI seasonality, we identified
contrasting HIGH/LOW seasonal EVI periods for each sub-basin. Con-
trasting HIGH/LOW seasonal EVI periods were selected based on the
trade-off of more overlapping pixels and more variation in solar zenith
angle in the Landsat-8 dataset (Fig. S10).

MODIS_EVI = « + 1*(month) + 2*(HAND) + 3*(Scene) + (1|ID)
+ €
4)

Where MODIS_EVI is the dependent variable (continuous) month is the
month of the year; HAND is the height above the nearest drainage at 1
km resolution; ID is the MODIS pixel identity throughout the time series.

Additionally, we run generalized additive models (GAM) only for the
Madeira sub-basin to check whether spatial structure impacted our
modeling and to generate continuous seasonal curves for the same time
period as the Landsat-8 data (between 2013 and 2021). We only
included the first 250 days of the year, following the same method as
described in Eq. (3).

To answer our second question, regarding possible biophysical
drivers or triggers of MODIS spectral data, we used the spatial average
from two windows of 8x11 MODIS-MAIAC pixels, each centered on a
tower-mounted phenocam described in the next section. The window
size was empirically chosen. Larger windows are likely to decrease
noise, but may also include undesired cover types (e.g., open water,
riparian forests, deforestation, and secondary forests). We used MODIS-
MAIAC long run 16y seasonal averages as most years had limited data
for the rainy season given the small window being considered. Using 16y
averages also reduced the short-term noise which is common in MODIS
data.

2.3. Leaf demography processing

We monitored the upper canopy leaf phenology from July 2013 to
mid-2016 at the ATTO tower site (2° 8°36"S and 59° 0°2"W) with an RGB
Stardot Netcam model XL 3MP camera, set to an interpolated resolution
of 2048 x 1536 pixels. The camera was mounted 81 m above the ground
and ~ 50 m above the forest canopy. Each of 270 upper canopy tree
crowns was followed daily, always using images obtained under diffuse
light (dense cloud shadow or overcast sky). At the k34 tower site
(2°36°33" S, 60°12°33" W), we monitored from September 2010 to
September 2016, with the same camera model, but mounted 51 above
the ground. The image area at k34 included 42 upper canopy crowns.
Using the date of each crown’s abrupt leaf flush (which usually occurs
once per year) as a marker, the age of each leaf cohort was determined
(Lopes et al., 2016). We divided crowns that flushed monthly into three
leaf age classes as suggested by Wu et al. (2016). Different transition
ages were tested to find the abundance class that best correlated with
MODIS derived local EVI for the two tower sites. We calculated a
camera-based Leaf Area Index (LAI) as a linear function (y = 8.24*x-
1.99) of the fraction of crowns that were leafy, following Wu et al.
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(2016).

We compared the two correlations (EVI x leaf age class abundance
and EVI x leaf amount) to determine which was the better predictor
(and possible driver) of EVI seasonality. Additionally, we used the
ProSAIL radiative transfer model (a combination of the PROSPECT leaf
optical properties model and SAIL canopy bidirectional reflectance
model) via the Hsdar package to examine the sensitivity of EVI to
changes in LAI (Jacquemoud et al., 2009; Lehnert et al., 2019). Input
leaf reflectance spectrum (and therefore the leaf age effect on EVI) was
fixed in this model. Under these conditions, if LAI is a weak driver of a
vegetation index with strong seasonality, then the seasonality is likely to
be driven mainly by spectral changes in leafy canopies that are related to
leaf age classes (Wu et al., 2018). We kept all other model parameters
constant (Observer zenith angle = 0°, Solar zenith angle = 45°, Relative
azimuth angle = 45°, Leaf angle distribution = Plagiophile) and let LAI
vary. Note that the Relative azimuth angle parameter is not relevant
when the observer’s zenith angle is 0° (Nadir View). We simulated how
EVI would vary with seasonal variations in LAI in four sites in the
Amazon (Table S1). The Geoscience Laser Altimeter System (GLAS) LAI
is from Tang and Dubayah (2017) for the central Amazon region in
general; K67 LAI in the western Amazon is from Wu et al. (2016), k34
and ATTO LAI were estimated from the green crown fraction utilizing
the equation of Wu et al. (2016).

3. Results

3.1. Testing if Landsat-8 OLI seasonal patterns of GCC, EVI and NIR are
consistent with MODIS-MAIAC utilizing three different approaches

3.1.1. Approach 1 - controlling for phase angle, while allowing minor
differences (< ~4°) in solar zenith angle

Within the region of Landsat scene 230_63, 160 km SE of Manaus
(Fig. 1B), we found strong seasonal change in GCC, peaking in the mid-
dry season (Fig. 2B, Fig. S1). For the three test dates, Landsat-8
corroborated MODIS-MAIAC GCC, showing the same temporal
ordering of low-intermediate-high GCC for Wet (DOY 42) to Wet to Dry
transition (DOY 145) to Dry (DOY 215) images (Fig. 2B, 2D). Amplitude
changes were also similar, the low and high extremes of GCC were from
the Wet (DOY 42) to Dry (DOY 215) dates of Landsat acquisitions
(Fig. 2D). Over the same time period, the closest dates of MODIS-MAIAC
GCC observations at the same area increased 3.8 + 0.07% (95%
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Confidence interval). While we found a larger Landsat-8 GCC increase
from the Wet (DOY 42) to Dry (DOY 215) images, 5.9 + 0.3% (Fig. 2B).
Landsat-8 data show that season has a clear effect on GCC when con-
trolling for the phase angle (p < 0.001, F = 1182) (Fig. 2B). However,
the narrow range of Landsat phase angles shared between the three
image dates (35-37°) had no influence on the temporal separation of
GCC (p = 0.9, F = 0.008). In other words, it is not necessary to control
for the effect of phase angle on GCC when using seasonally distinct
Landsat images with very similar solar zenith angles.

Within the region of the same 230_63 Landsat-8 scene 160 km SE of
Manaus, EVI of MODIS-MAIAC showed a ranking of high-low-
intermediate for Wet (DOY 42) to Wet to Dry transition (DOY 145) to
Dry (DOY 215) (Fig. 2A). Over the whole scene the Wet (DOY 42) image
was on average 3.14 £+ 0.02% higher than Wet to Dry transition (DOY
145) for the closest dates of MODIS-MAIAC EVI. The three Landsat-8 EVI
images corroborated the MODIS-MAIAC seasonality and the observation
for the closest dates, showing the same temporal ordering of high-low-
intermediate EVI respectively for Wet (DOY 42) - Wet-Dry (DOY 145)
- Dry (DOY 215) (Fig. 2A, Fig. 22C). The increase observed from Wet
(DOY 42) to Wet-Dry (DOY 145) was higher for Landsat-8 EVI 6.9 +
0.4% compared to MODIS-MAIAC.

The same patterns and similar magnitudes for Landsat-8 EVI and
GCC shown before are observed when using generalized additive models
controlling for spatial structure and phase angle (Fig. S11)

3.1.2. Approach 2 - fixed nadir view and fixed solar zenith angle for NIR
and EVI

For the Landsat-8 image pair from scene 230_61(Fig. 1B), 225 km NE
of Manaus, for which solar zenith angles were nearly identical and
spectral comparisons were restricted to < 0.5° off-nadir view, we found
an increase of 8.4 + 0.13% for EVI from May (DOY 135) to December
(DOY 343) (Fig. 3B). Driving this EVI behavior was an increase of 13 +
0.16 % in Landsat-8 NIR reflectance from May to December (Fig. 3A).
This was again consistent with expectations from MODIS-MAIAC sea-
sonality and with the values obtained with the closest temporal dates in
2015 where MODIS-MAIAC EVI increased 10.87 + 0.42% from May
(DOY 144) to Dec (DOY 352) (Fig. S1, Fig. 3C).

While accounting for spatial structure and phase angle, Landsat-8
EVI and NIR results were also in line with previous findings (Fig. S12,
just for NIR), displaying the similar pattern and magnitude of difference.
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3.1.3. Approach 3 -Fixed nadir view at the sub-basin scale

Landsat-8 EVI controlled for sun-sensor geometry at sub-basin scale
was consistent with BRDF corrected MODIS-MAIAC EVI seasonal spec-
tral patterns throughout all sub-basins analyzed when comparing local
periods categorized as HIGH and LOW EVI (Fig. 4; Fig. S5; Fig. S6;
Fig. S7; Fig. S8; all p < 0.001) (The results remained the same when
using only the NIR band and EVI without the blue band (Jiang et al.,
2008), not shown). However, the percentage difference between periods
was not always consistent. At some sub-basins the percentage difference
between HIGH and LOW periods deviated from the 1:1 line (Fig. S3, red
dots). Sub-basins in which the solar zenith angles of the available ob-
servations were broadly variable, on the other hand, the difference was
numerically consistent between MODIS-MAIAC EVI and Landsat-8 EVI
following the 1:1 line (Fig. S3, Black dots). EVI and GCC seasoality for
both MAIAC and Landsat-8 were also consistent when controlling for the
spatial structure while using generalized additive models (Fig. S13)
within the Madeira sub-basin. EVI and GCC seasonal curves for both
sensors were highly correlated within the first 250 days of the year for
the same period between 2013 and 2021.

3.2. Which biophysical attribute of canopy (leaf amount and leaf age)
best explains the seasonal spectral patterns of GCC and EVI?

3.2.1. Biophysical control of MODIS-MAIAC GCC in the Central Amazon

We use the abundance of crowns with 0-1-month age to represent
the seasonal leaf flush at both sites with tower mounted RGB cameras
(k34 and ATTO). Peaks in the abundance of recently flushed crowns are
expected in the dry season. As shown by Fig. 5, seasonal MODIS-MAIAC
GCC closely followed the abundance of leaves with 0-1 mo at ATTO site
(R? = 0.76, p < 0.001) and at Manaus k34 (R? = 0.43, p < 0.001), after
applying a one-month forward shift to the camera data. We also
analyzed litter trap data for the k34 site in a normal rainfall year
(Ourique et al. 2016). Litter production was collected between 2012 and
2013, about two kilometers from the k34 tower. The seasonal MODIS-
MAIAC GCC (see. Fig. S4) also showed strong association with litter
production (R2 = 0.84, p < 0.001).

3.2.2. Biophysical control of MODIS-MAIAC EVI in the Central Amazon

Seasonal MODIS-MAIAC EVI was strongly correlated with the
abundance of the ‘mature’ leaf class in the upper canopy, of 2-7 months
age (Fig. 6), at both ATTO ®R%= 0.82, p < 0.001) and 2-8 months age at
Manaus k34 (R? = 0.80, p < 0.001). Total LAI, on the other hand, was a
poor predictor of EVI at ATTO (R? = 0.20, p = 0.018) and moderate
predictor at Manaus — k34 R2 = 0.41, p = 0.002).

In our ProSail radiative transfer model, we used a fixed sun-sensor
geometry consistent with MODIS-MAIAC (nadir view and 45° SZA),
fixed leaf spectra and the LAI annual amplitude reported in Wu et al.
(2016), of 5.5 to 6.2 mz/mz, valid for the K67 site. The model results
showed an LAI forcing effect of only 1.4% on predicted EVI. When using
the GLAS Lidar-derived LAI amplitude reported in Tang and Dubayah
(2017) for the Central Amazon region with an increase of 0.22 m?/m>
from June to October, our ProSail model detected LAI forcing of only 1%
on the predicted EVI (Table S1).

4. Discussion

Our findings confirm the dry season green-up effect over a large area
in the Central Amazon as well as show strong associations between leaf
phenology attributes measured at the canopy scale and satellite mea-
surements. To our knowledge this is the most comprehensive study to
date confirming the green-up phenomenon: we enact unprecedented
experimental controls for sun-sensor geometry artifacts utilizing two
independent orbital sensors (Landsat-8 and MODIS), thus combining
high and coarse resolution remote sensing data, while also carefully
accounting for topography and cloud contamination artifacts. Under all
of these controls and data sources, results are consistent with green-up.
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Fig. 4. (A) Modeled MODIS-MAIAC EVI seasonality controlling for HAND, Scene, and pixel ID as random effect (Eq. 4; we used 99% confidence levels) at the Madeira
Basin comprising WRS scenes (Path_row): 229_66, 230_63, 230_64, 230_65, 230_66, 230_67, 231_64, 231_65, 231_66. MODIS-MAIAC data were collected within the
same near Nadir view geometries used in the Landsat-8 analysis; Vertical lines identify periods in which EVI (HIGH/LOW) seasonal difference is more pronounced.
Using these periods, Landsat-8 data is grouped to test if the seasonal predictions from MODIS-MAIAC are consistent with Landsat-8 when sun geometry is controlled.
(B) Landsat-8 EVI at the near Nadir view within the scenes discussed in (A) comprising 99 images plotted against the Solar zenith angle. As mentioned before,
Landsat-8 data were grouped into periods of the year with HIGH (JAN, FEB, JUL, AUG, SEP, OCT, NOV and DEC) and LOW EVI (MAR, APR, MAY, JUN) as predicted
by MODIS-MAIAC EVI. Red dots represent periods of HIGH EVI and blue low EVI; (C) The partial effect of categorical variables (HIGH/LOW) and the solar zenith
angle on Landsat-8 EVI (Eq. (2)) when the other predictors (HAND, fraction of free pixels, scene, and Pixel identity) are held constant. The error bars indicate
confidence intervals with 99% of significance; (D) Same as (A) but now for the Minor Amazon Jutai basin comprising Landsat-8 WRS scenes: 2 62, 2 63, 3_63, 3_64;
(E) Same as (B) but for the Minor Amazon Jutai basin comprising 35 Landsat-8 images; These scenes were grouped into periods of the year with HIGH (JAN, FEB,
OCT, NOV and DEC) and LOW EVI (MAR, APR, MAY, JUN,JUL, AUG, SEP) (F) Same as (C) but for the Minor Amazon Jutaf basin. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Our findings provide a robust biophysical interpretation of VIs season-
ality, which has previously been lacking (Maeda et al., 2016). Robust
biophysical interpretation was achieved in primarily two ways: first, by
validating BRDF-corrected MODIS-MAIAC seasonality signal using a 30
m resolution sensor while performing very robust controls of off-nadir
view angles of Landsat; Second, by showing consistent links in obser-
vations from leaf demography derived from phenocams with
MODIS-MAIAC. In conjunction with other recent and past studies, the
present study contributes to a large body of evidence showing that
Amazon dry-season green-up is real, with leaf phenology most likely the
dominant driving force (Bi et al., 2015; Guan et al., 2015; Saleska et al.,
2016; Lopes et al., 2016; Moura et al. 2017; Wu et al., 2018; Gongalves
et al., 2019; Gongalves et al., 2020; Wang et al., 2020; Hashimoto et al.,
2021).

4.1. GCC, EVI and NIR for MODIS-MAIAC and Landsat-8, when
controlling sun-sensor geometry:

Using approach 1 — Comparing pixels with the same phase angle in
different parts of the images — we found evidence that in the Central
Amazon the average landscape greenness in the visible portion of the
spectrum, as represented by GCC, is highest in mid dry season, lowest in
mid wet season and intermediate at the wet to dry transition. The
Landsat-8 seasonal ranking of GCC follows the same ranking observed
for both seasonal and the closest date MODIS-MAIAC GCC. In the
continuous MODIS data this seasonal ranking is part of a monomodal
visible spectrum green-up, with a peak in the early to mid-dry season.
We also found evidence that EVI seasonality is consistent in both
Landsat-8 and MODIS-MAIAC showing the same ranking for approach 1
at scene 230_63, where EVI was lower in the late wet season, interme-
diate at the dry season, and higher in the early wet season illustrating the
seasonal green-up.

Our approach 2 for addressing our first question — with near-nadir
view and nearly identical solar zeniths for the two Landsat dates of a
single scene (230_61) that includes the ATTO tower — also showed strong
NIR and EVI seasonality, both increasing from May to December in the
same year of 2015, as also seen in local MODIS-MAIAC data. The NIR
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increase was large, about 13%. Fully eliminating sun-sensor geometry
differences between the two Landsat seasonal acquisitions leaves little
doubt about EVI and NIR seasonal green-up. These results do not support
the conclusions of Morton et al. (2014) that EVI greenness is consistent
throughout the year after artifacts are taken into account. This
approach, instead, shows the consistency of the seasonality within the
same year, while approach 1 uses images from different years that could
be affected by interannual variations.

For both approach 1 and 2 the seasonal amplitudes for EVI and GCC
from the two sensors were slightly different, with Landsat-8 consistently
higher (Fig. 2A, 2B) than MODIS-MAIAC (Fig. 2C, 2D). This was ex-
pected for several reasons. First, the MODIS-MAIAC BRDF correction
emulates a phase angle of 45° while our Landsat-8 scenes use pixels that
have phase angles of about 36°. For example a larger phase angle in-
creases sub-pixel shade, reducing NIR reflectance, which in turn reduces
EVL Second, the phase angle effects may not be completely linear such
that the ratio of increase/decrease could be different when the same area
under comparison has distinct phase angles in both products. Third, we
used single date EVI values with Landsat, but 16 day mosaics for MODIS,
which could cause smoothing and add noise to the data. Fourth, the
coarse resolution of MODIS-MAIAC, 1 km x 1 km, could still include
small clouds, topographic shadow, and floodplain forests of small
streams phenologically out of phase with upland forest. With Landsat 30
m data, we were able to limit analysis to flat, well-drained soils free from
topographic shadows, clouds and cloud shadow. Finally, minor dis-
crepancies in bandwidth between Landsat-8 and MODIS may also play a
role and need to be investigated further.

Our third approach for addressing our first question extends the re-
sults of the two previous approaches to a much larger area of the
Amazon Basin, while also considering possible caveats previously
mentioned. The seasonal green-up patterns for Landsat-8 and MODIS-
MAIAC were consistent across all sub-basins. Five sub-basins
(Madeira, Purus 2, Negro, Tapajos, and Trombetas) show similar
changes in EVI values between HIGH and LOW local EVI time periods in
terms of percentage change for both Landsat-8 and MODIS-MAIAC
(Fig. S3, black dots). The other four sub-basins (Purus 1, Minor
Uatuma, Jutai, and Xingu) also exhibited a directional seasonal change
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Fig. 6. Black solid line on the top represents the camera-based total canopy Leaf area index (LAI) and the green solid line is LAI for mature leaves (2 to 7 months of
age) derived from the RGB camera mounted at the ATTO site. The gray shaded lines are the seasonal MODIS-MAIAC EVI (95% CI) repeated from March of 2014 to
December 2015 also for the ATTO site. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

in EVI for both products, although percentage changes were less
numerically consistent. Two reasons are suggested here, while the ar-
guments advanced in the last paragraph for approaches 1 and 2 apply as
well. First, the overlapping pixels available for the two sensors encom-
passed only a small variation in solar zenith angle. Therefore, the sta-
tistical model may not be capable of accounting for the full effect of solar
zenith angle on EVI. Second, the Landsat-8 time series spans 2013 to
2021 while the MODIS-MAIAC data window has a larger temporal
overlap (2001-2016) and excludes some drought periods.

Given that we are consistently comparing flat, well-drained old-
growth upland forests within the same scene, the consideration of spatial
structure did not affect our main results, as shown by generalized ad-
ditive models for all three of our approaches. This supports our first
assumption that sets of usable pixels available on each date represent the
average scene signal on that date.

4.2. EVI and canopy leaf demography in the Central Amazon

EVI may be sensitive to changes in LAI, and canopy leaf area struc-
ture. While this is not easy to measure in the Amazon, the most advanced
approaches to date that capture vertical shifts in leaf area over season-
ality (Tang and Dubayah, 2017; Smith et al., 2019) show relatively little
change in total leaf area. Our Prosail Modeling effort showed that this
was too little to account for the 9% change detected with MODIS-MAIAC
at the ATTO site. Furthermore, monthly values of upper canopy LAI
(based on the monthly fraction of green crowns in tower camera view)
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were a poor predictor of seasonal variability in MODIS-MAIAC EVI.
Upper canopy LAI thus appears not to be the main driver of change in the
spectral signal, at least in the Central Amazon. Instead, our results
strongly suggest that upper canopy leaf age — especially the fraction of
crowns having mature leaves 2-7 months old — drives seasonality of the
EVI signal. Laboratory spectra of tropical forest leaves of known age also
show higher NIR reflectance for mature leaves (Roberts er al., 1998;
Chavana-Bryant et al., 2016; Moura et al., 2017; Wu et al., 2018). This
study also confirms and extends observations by Lopes et al. (2016) and
Wu et al. (2018), that leaf quality, not leaf amount, is the main control
over the seasonal remote sensing signal. In regions with longer dry
seasons, however, where the LAI has a larger range of seasonal variation,
EVI could be effectively controlled more by canopy LAI than by leaf
demography (Restrepo-Coupe et al., 2013; Song et al., 2021). EVI-based
inversions that use canopy biophysical parameters such as the LAI
(Hilker et al., 2017) should therefore be considered cautiously.

4.3. Biophysical control of GCC in the Central Amazon

GCC was also associated with the year-round upper canopy leaf
demography derived from tower-mounted RGB cameras. Lopes et al.
(2016) found that recently flushed crowns have high GCC relative to
other crown phenostages. In the three drier months of June to August,
close to 50% of all crowns flushed new leaves at their ATTO tower study
site, while in the three months of December to February only about 8%
of crowns flushed out new leaves. Our results also confirm and extend
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those of Gongalves et al., 2019 regardng GCC seasonality in Landsat-8
OLL

4.4. Implications for photosynthetic seasonality modeling in Amazon
evergreen forests

Our results strongly indicate that the MODIS GCC signal at the
ecosystem scale is sensitive to the abundance of crowns with recently
flushed a cohort of new leaves while the MODIS EVI is sensitive to the
abundance of mature leaves. Young leaves have lower intrinsic photo-
synthetic capacity (Vemax), compared to mature leaves (Wu et al., 2016;
Albert et al., 2018). Future efforts should leverage this information to
model basin-wide seasonal primary productivity from coupled GCC and
EVI MODIS data.

5. Conclusions

Across two Landsat-8 OLI scenes, we validate BRDF corrected
MODIS-MAIAC EVI and GCC seasonality, obtained under fixed sun-
sensor geometry at different seasons. We extend the validation of
MODIS-based EVI seasonality, including dry season EVI green-up, to
eight large sub-basins of the Amazon, and show that it is consistent with
EVI seasonality derived from Landsat-8. At two additional Central
Amazon tower sites, we corroborate the radiative transfer model-based
conclusions of Wu et al (2018), previously shown for only a single tower
site: LAI is a poor or minor driver of the seasonal change in Central
Amazon Forest EVI as detected by orbital sensors, while the change in
leaf reflectance spectra with leaf age and change in the seasonal abun-
dance of mature leaves, 2-7 months old as detected by phenocams are
the main drivers of seasonal EVI. We also found a novel result that
MODIS GCC seasonality is consistent with the seasonal abundance of the
recently flushed (0-1 mo old) age class as detected by tower-mounted
RGB cameras and seasonal leaf litter production.
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