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A Levine–Tristram invariant for knotted tori

DANIEL RUBERMAN

We define a new topological invariant of an embedded torus in a homology S1 �S3,
analogous to the Levine–Tristram invariant of a knot. We compare it to an invariant
of smooth tori, defined recently by Echeverria using gauge theory for singular
connections.

57K41, 57K45

1 Introduction

The Levine–Tristram invariant, �˛.K/, of an odd-dimensional knot — see Levine [30],
Tristram [53] (also Conway’s survey [8]) — is a function from the unit circle to the
integers. We will use this invariant in dimension 3, where it is defined for a knot K in
an oriented homology 3–sphere. By definition, �˛.Y;K/ is the signature of a certain
Hermitian form (constructed from the Seifert form) that depends on ˛2S1. The Levine–
Tristram invariant plays a central role in the calculation of the knot concordance groups
in higher dimensions, and has interesting connections to gauge theory in dimension 3.

In this paper we construct, by topological means, a 4–dimensional version of the
Levine–Tristram invariant for certain knotted tori, and discuss its relationship to a
gauge-theoretic invariant of embedded tori introduced by Echeverria [11]. To state
our result, let us define a homology S1 � S3 to be an oriented 4–manifold X with
the homology of S1 �S3. A homology orientation of X (usually suppressed in the
notation, but still lurking in the background) is a choice, 
 , of generator of the first
cohomology H 1.X /Š Z.

Theorem A Let T be a locally flat torus in a homology oriented homology S1 �S3

such that the inclusion map induces a surjection on the first homology groups. Then ,
for any ˛ 2 S1, there is an invariant �˛.X;T / 2 Z with the following properties:

(1) If K is a knot in a homology 3–sphere Y , then �˛.S
1 �Y;S1 �K/D �˛.Y;K/.

(2) Reversing either the orientation or the homology orientation of X changes the
sign of �˛.X;T /.
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The signature invariant �˛.X;T / in Theorem A will be constructed as follows. From a
torus, as in Theorem A, we will construct an oriented manifold V with the cohomology
of T 2 �S2 and with a distinguished class in H3.V /. If ˛ has prime-power order, then
�˛.X;T / will be a standard Atiyah–Singer invariant of a 3–manifold carrying that
homology class, together with a U.1/ representation determined by ˛. The function
�˛.X;T / will be extended to all ˛ using a standard averaging argument.

1.1 Motivation and background

To motivate Theorem A we briefly discuss the interpretation of �˛.Y;K/ in terms
of 3–dimensional gauge theory. This comes from independent work of Herald [20]
and Heusener and Kroll [22], building on an insightful paper of X-S Lin [32] and a
suggestion of the author (see also Heusener [21]). They identified 1

2
�˛2.K/ with a

(signed) count of flat SU.2/ connections on the knot complement having holonomy
conjugate to the matrix

(1)
�
N̨ 0

0 ˛

�
on the meridian of K. The signs are determined using spectral flow, as in Taubes’
gauge-theoretic interpretation [52] of the Casson invariant. In Herald’s version, the
knot can lie in a homology sphere Y , and the Casson invariant — see Akbulut and
McCarthy [1], Saveliev [50] — of Y enters into the formula.

A recent preprint by Echeverria [11] constructs an invariant �FO.X;T; ˛/ of knotted
tori, similar to the count used in [20; 22]. (Our notation is not quite the same as in [11],
where ˛ denotes an element of .0; 1/; here, ˛ is the corresponding element of S1.)
The context, extending work of Furuta and Ohta [16], is the following. Consider an
oriented 4–manifold X with the homology of S1 �S3, with a choice of generator of
H 1.X /. One is given a torus T 2 embedded in X so that the map H1.T /! H1.X / is
surjective; let us call that an essential embedding of T . Then Echeverria shows how to
count flat SU.2/ connections on X �T having specified holonomy (1) on the meridian
�T of T , by interpreting such flat connections as elements of moduli spaces introduced
by Kronheimer and Mrowka [27; 28].

There are some restrictions on the scope of Echeverria’s invariant. One is a restriction on
the topology of X �T , analogous to the condition introduced by Furuta and Ohta [16]
in defining a Casson-type invariant �FO associated to a homology S1 �S3. Moreover,
�FO.X;T; ˛/ is defined only for ˛ of finite order, or, in other words, of the form
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˛ D e2� iq=n. The restriction stems from the use of orbifold instanton theory in the
basic setup. In the product case,

.X;T /D S1
� .Y;K/;

Echeverria [11, Corollary 41] shows that

(2) �FO.X;T; ˛/D 8�.Y /C �˛2.Y;K/;

where �.Y / is the Casson invariant [1] of Y .

Echeverria [11] posed the problem of finding a topological invariant �˛.X;T /, defined
in a fashion similar to the Levine–Tristram invariant, that satisfies a version of (2)
with �.Y / replaced by �FO.X / (when defined) and the knot signature replaced by
�˛.X;T /. One might even hope to establish such a relation via methods similar
to [20; 22]. Such a Levine–Tristram invariant should have the property that, in the
product case, �˛.X;T / D �˛.Y;K/. In this paper, we construct such a topological
invariant �˛.X;T /.

After the posting of the first version of this paper, Langte Ma [36] showed that our
topological invariant is related to Echeverria’s gauge-theoretic invariant �FO.X;T; ˛/

in the hoped-for fashion.

Theorem (Ma 2021) When both invariants �FO.X;T; ˛/ and �FO.X / are defined ,

(3) �FO.X;T; ˛/D 8�FO.X /C �˛2.X;T /:

To state the main theorem, we make use of a special case of an invariant of Atiyah
and Singer [3]. There is a good deal of variation in the terminology and notation for
such invariants; we follow the version in Atiyah, Patodi and Singer [2]. Let Y be an
oriented 3–manifold and choose a representation ' W �1.Y /! U.1/. Assume that there
is an oriented 4–manifold W with boundary Y and that the representation ' extends to
�1.W /. Then define

(4) �'.Y /D sign.W /� sign'.W /;

where sign'.W / denotes the signature of the Hermitian intersection form on the twisted
homology H2.W IC'/. For example, if Y is 0–framed surgery on an oriented knot K

with meridian �K and '˛.�K /D ˛, then �'˛
.Y / is — see Kauffman and Taylor [23]

and Viro [54] — exactly the Levine–Tristram invariant �.K; ˛/.
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Now we can outline the definition of our invariant �˛.X;T /, with the proof that it
is well defined discussed in the following sections. Let T be an oriented embedded
torus, as in Theorem A. One can perform (see Ma [37, Section 2.3]) the analogue of
“0–framed surgery” on X along this torus to obtain a manifold V having the homology
of T 2 �S2. (This process is not canonical, but in Section 3.1 we will show that the
resulting invariant is independent of all choices.) A simple but crucial observation is
that in fact V is a cohomology T 2 �S2, or, in other words, has the same cohomology
ring as T 2 �S2. A second observation is that the homology orientation 
 2 H 1.X /

gives rise to a primitive cohomology class in H 1.V /. We will continue to call this
class 
 .

Let g 2 H1.T / be a homology class for which h
;gi D 1. Then g, together with
the meridian � D �T , give a basis for H1.V /. For any ˛ 2 S1, consider the U.1/
representation ' with '.g/D 1 and '.�/D˛. Choose a connected oriented 3–manifold
M � V that is Poincaré dual to 
 . Then ' restricts to a U.1/ representation of �1.M /,
and we will continue to use the same notation for the restriction. Note that while the
choice of g is not canonical, the restriction of ' to �1.M / is still uniquely determined.

The definition then proceeds in two steps. First we show (Proposition 2.5) that if ˛ has
prime-power order, then �'.M / is independent of the choice of 3–manifold dual to 
 .
The second step is to extend this definition to arbitrary characters ', using the fact that
�'.M / is a piecewise-constant function of ˛, with finitely many jumps.

As it turns out, it is not essential that V come from surgery on a torus, so we start by
defining invariants for a pair .V; 
 / consisting of an arbitrary cohomology T 2 �S2

and a primitive class 
 2 H 1.V /. We detail the properties needed in the next section.

1.2 Notation and conventions

Throughout the paper, V will denote an oriented cohomology T 2 � S2. We fix a
primitive element 
 2 H 1.V / and choose a second class � so that f
; �g is a basis for
H 1.V /. Write fg; hg for the dual basis for H1.V /. The condition on the cohomology
of V amounts to saying that 
 [ � generates a summand of H 2.V /. A complementary
summand is generated by a class � 2 H 2.V / such that � [ � D 0 and 
 [ �[ � gives
the orientation of V .

In the course of the proof, we will need to compare the cohomology of V with that of
the actual T 2 �S2. To that end, we denote the corresponding cohomology classes in
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T 2 �S2 as follows. The basis for H 1.T 2 �S2/ is written as f�; ˇg; we can assume
that h�[ˇ; ŒT �iD 1, where ŒT � is the homology class of the torus in H2.T

2�S2/. The
distinguished element of H 1.T 2�S2/ will be � . The other generator ı 2H 2.T 2�S2/

is the Poincaré dual of ŒT �.

We will denote by Ax the infinite cyclic covering space of a space A determined by a
cohomology class x 2H 1.AIZ/. Similarly, if ˇ 2H 1.AIZd / then Ax will denote the
corresponding finite cyclic covering. If x 2H 1.AIZ/ then xd will denote its reduction
mod d , lying in H 1.AIZd /. For the rest of the paper, p will denote a prime, and Fp

the field with p elements.

Acknowledgements

Thanks to Andrei Pajitnov and Alex Suciu for explaining their work on the homology of
infinite cyclic covers; to Nikolai Saveliev and Langte Ma for comments on preliminary
versions of the ideas in this paper; and to Anthony Conway, Stefan Friedl, and Chuck
Livingston for some helpful correspondence. This paper was inspired by the paper of
Mariano Echeverria, and I thank Mariano for explaining his work as it developed and
for comments on an earlier draft of this paper. The author was partially supported by
NSF grant DMS-1811111.

2 Infinite cyclic coverings

Our approach is based on Milnor’s duality theorem [38] which states that the infinite
cyclic cover of an .nC1/–manifold has, under some circumstances, the homological
properties of a closed n–manifold. We will also make use of an extension of this
principle [46; 47] that says that, under appropriate hypotheses, the infinite cyclic cover
of a 2n–manifold can have � invariants for a U.1/ representation ' as if it were a closed
.2n�1/–manifold. The main point to establish is that the cyclic cover (corresponding
to ') of the infinite cyclic cover also satisfies Poincaré duality. One might say that this
extends Milnor’s theorem to certain twisted coefficients.

In this section, we prove such an extended duality theorem for V , a cohomology
T 2 �S2. We need a preliminary lemma.

Lemma 2.1 There is a degree one map from V to T 2 �S2 inducing isomorphisms on
integral homology and cohomology, preserving the distinguished generators of the first
cohomology group.
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Proof First choose maps f1 and f2 from V to S1 such that f �
1
.�/D 
 and f �

1
.ˇ/D �.

The product of these two gives a map f from V to T 2. We claim that there is a map
h W V ! S2 such that h� of the generator of H 2.S2/ is �. By standard obstruction
theory, there is a map h1 W V ! CP2 such that h�

1
.ı0/D �, where ı0 is the generator of

H 2.CP2/. But the degree of h1 must be 0, as the following calculation shows.

deg.h1/D hı0[ ı0; deg.h1/ŒCP2�i D hı0[ ı0; .h1/�.ŒV �/i

D hh�
1.ı

0
[ ı0/; ŒV �i D h� [ �; ŒV �i D 0:

It follows (possibly [44] is the original reference) that h1 is homotopic to a map that
misses a point of CP2, and hence is homotopic to a map h W V ! S2 with the desired
property. Now the map f1 � f2 � h is a degree one map that induces an isomorphism
on homology (and hence on cohomology).

Now we consider the infinite cyclic covering space � W V
 ! V induced by the class

 2 H 1.V /. The homology groups (resp. mod p homology groups) of V
 are modules
over the ring ƒD ZŒt; t�1� (resp. ƒp D Fp Œt; t

�1�). Note that while ƒp is a PID, ƒ is
not.

Lemma 2.2 V
 satisfies 3–dimensional Poincaré duality with coefficients in any
field F . Moreover , if M � V is Poincaré dual to 
 , then it lifts to V
 and represents
the fundamental class of V
 .

Proof According to Milnor’s duality theorem [38], the conclusions of the lemma hold
whenever H�.V
 IF/ is finitely generated. (The fact that M carries the fundamental
class of V
 is implicit in Milnor’s paper, and is proved explicitly in [24].) Papadima
and Suciu [41] and Pajitnov [42] (see also [12]) show that this finite generation holds
if the Aomoto complex

(5) � � � ! H j .V IF/
[

�! H jC1.V IF/

[

�! H jC2.V IF/! � � �

is exact. (Rather strikingly, an analytic version of this fact, which applies when F D R

or C, is part of Taubes’ theory of Fredholm complexes for manifolds with periodic
ends [51, Theorem 3.1]; compare [39].) Exactness of (5) for T 2 �S2 follows directly
from the Künneth theorem; so, by hypothesis, it holds for V as well.

The main result of this section is a version of Lemma 2.2 for some further d–fold
covering spaces of V
 , where d D pr and p is a prime. We continue (and slightly
extend) the notation from above. Consider the covering space V�d

! V , where �d is
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the mod d reduction of the generator � 2 H 1.V /. This fits into a diagram of covering
spaces, where the vertical arrows are infinite cyclic coverings and the horizontal ones
are Zpr coverings,

V
;�d

pr –fold cover
//

Z–cover
��

V


Z–cover
��

V�d

pr –fold cover
// V

Proposition 2.3 The homology groups H�.V
;�d
IC/ are finite-dimensional. In partic-

ular , V
;�d
satisfies 3–dimensional Poincaré duality with complex coefficients.

Proposition 2.3 will be proved by comparing H�.V
;�d
IC/ with H�.V
;�d

IFp/, where
Fp denotes the field with p elements. The first step is to investigate the mod p

cohomology of V�d
.

Lemma 2.4 V�d
is an Fp cohomology T 2 �S2.

Before embarking on the proof, it is worth considering what happens for the actual
T 2�S2. Recall the convention that 
 for a general V corresponds to � 2H 1.T 2�S2/.
Then .T 2 �S2/� D R�S1 �S2 and so .T 2 �S2/�;ˇd

D R�S1 �S2 has finitely
generated homology.

Proof The infinite cyclic cover V� corresponding to � factors through the cyclic
pr –fold cover V�d

! V :

(6)

V�
Z–cover

//

Z–cover   

V�d

pr –fold cover~~

V

If t denotes the generator of the covering transformations of V� !V , then td generates
the covering transformations of V� ! V�d

.

The mod p cohomology of V� is a finitely generated module over the PID ƒp D

Fp Œt; t
�1�, and hence splits as a finite sum of free ƒp modules and cyclic modules of

the form ƒp=hq.t/i. It is easy to see that the fact that V is an Fp cohomology T 2�S2

implies that the Aomoto complex (5) is acyclic. According to [41, Proposition 9.4],
this means that each homology group Hk.V Iƒp/ is finite-dimensional, and moreover
any summand of the form ƒp=..t � 1/j / has j D 1.
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To compute the homology of V�d
, we examine the Milnor exact sequences with Fp

coefficients for the two infinite cyclic covering spaces in (6), taking account of the
relationship between their covering transformations. (To simplify the notation, the
coefficient groups are not indicated.) The first reads

(7) H2.V /! H1.V�/
t�1
��! H1.V�/

��
�! H1.V /! H0.V�/

t�1
��! H0.V�/:

Since H0.V�/Š Fp and t acts by the identity, the first sequence ends

� � � ! H1.V /D Fp ˚Fp ! Fp ! 0:

In particular, we must have that cokerŒt � 1 W H1.V�/! H1.V�/�Š Fp.

We remark that if the Laurent polynomial q.t/ is relatively prime to t � 1, then t � 1

is an isomorphism on ƒp=.q.t//. We conclude that H1.V�/ must have exactly one
summand of the form ƒp=.t �1/Š Fp and none of the form ƒp=..t �1/j / with j > 1.

Now we look at the Milnor sequence relating the homology of V�d
to that of V�,

(8) H2.V�d
/! H1.V�/

td�1
���! H1.V�/

��
�! H1.V�d

/! H0.V�/
td�1
���! H0.V�/:

It is standard that (mod p, of course!) td � 1 D .t � 1/d , which is an isomorphism
on all but one summand in H1.V�/. On the other hand, the cokernel of .t � 1/d on
ƒp=.t �1/ is again Fp , and so the homology group H1.V�d

/ is isomorphic to Fp ˚Fp .

Since V�d
finitely covers V�, which has Euler characteristic 0, the Euler characteristic

of V�d
must be 0 as well. By Poincaré duality, we see that the mod p homology groups

of V�d
are the same as those of T 2 �S2. So it remains to be seen that the cup product

H 1.V�d
/�H 1.V�d

/! H 2.V�d
/ is nonsingular.

To this end, recall the homology equivalence f WV !T 2�S2 constructed in Lemma 2.1.
It lifts to a degree one map f�d

W V�d
! .T 2 � S2/ˇd

. Being a degree one map,
f�d

induces a surjection in homology with any coefficients. But with Fp coefficients,
the homology groups of V�d

and .T 2�S2/ˇd
are isomorphic, so this surjection must in

fact be an isomorphism. Dually, it is an isomorphism in cohomology, so, by naturality,
the cup product on H 1.V�d

/ is nonsingular.

With these preliminaries in hand, we can now establish the finite-dimensionality of the
homology of V
;�d

, which is a Z�Zd cover of a cohomology T 2 �S2.

Proof of Proposition 2.3 By construction, V
;�d
is an infinite cyclic cover of V�d

,
which is itself a Zd cover of a cohomology T 2 �S2. We showed in Lemma 2.4 that
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V�d
is an Fp cohomology torus, from which it follows that the cohomology of V
;�d

with coefficients in Fp is finite-dimensional. But by [6, Lemma 6] this implies that
the homology of V
;�d

with complex coefficients is also finite-dimensional. Milnor’s
duality theorem [38] shows that V
;�d

satisfies Poincaré duality over C.

2.1 The � invariant of a cohomology T 2 � S 2

From the preceding discussion, we can now define � invariants of a cohomology
T 2 � S2 with distinguished generator 
 2 H 1.V /. We continue with the notation
established in Section 1.2, and consider the character ' with '.h/D ˛ and '.g/D 1.
Suppose that M is an oriented 3–manifold embedded in V that is Poincaré dual to 
 .

Proposition 2.5 Suppose that ˛ has prime-power order. Then the quantity

(9) �˛.V /D �˛.M /

is independent of the choice of M .

Proof Let M and N be two such choices, and choose lifts of M and N , say M 0

and N 0, to the infinite cyclic cover V
 ! V of V corresponding to 
 . Taking the
image N 0 under a high positive power of the covering transformation, we may assume
that M 0 and N 0 are disjoint, and that N 0 is to the right of M 0. Composing ' with the
maps induced by the projection � , we get that �'.M / D �'ı��

.M 0/, and similarly
for N .

Now M 0 and N 0 cobound a compact submanifold W of V
 , and ' ı �� extends to
�1.W /. So by definition (cf (4)) we know

�'ı��
.N 0/� �'ı��

.M 0/D sign.W /� sign'ı��
.W /:

We make a final appeal to Milnor’s duality theorem: M 0 carries the fundamental class
of V
 , thought of as a space satisfying 3–dimensional Poincaré duality. In other words,
the inclusion map of M 0 into V
 is a degree one map, and hence induces a surjection
in rational homology. It follows that the intersection form on H2.V
 IQ/ vanishes. The
same is true for W , and so sign.W /D 0. Similarly, Proposition 2.3 implies that the
pr –fold cover of V
 coming from ' has vanishing intersection form. It follows that
the twisted signature sign'ı��

.W / vanishes as well, so that

�'.N /D �'ı��
.N 0/D �'ı��

.M 0/D �'.M /:
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In applications to knot concordance [34] it is sometimes convenient to replace the
Levine–Tristram invariant by its average value around points on the circle where it
jumps. We record a similar definition for the torus version of the invariant. Choose
a submanifold M as above and note that �'.M / is defined for arbitrary ˛ 2 S1. As
a function on the circle, it is piecewise constant, with finitely many jumps at those
characters '˛0

for which

dim H 1.M IC'˛0
/ > lim

˛!˛�
0

dim H 1.M IC'˛
/ or lim

˛!˛
C

0

dim H 1.M IC'˛
/:

Informally, this means that the twisted cohomology jumps at ˛0, and there are finitely
many ˛0 2 S1 where this happens. Let us normalize by defining N�'.M / to be the
average value of the one-sided limits as ˇ! ˛˙. In other words,

N�'.M /D 1
2

�
lim

ˇ!˛�
�'ˇ

.M /C lim
ˇ!˛C

�'ˇ
.M /

�
:

It is again a piecewise-constant function on S1 with finitely many jumps.

Since N� is an average of integers, it is possible that it takes values in 1
2
Z, rather than

in Z. The following lemma shows that it is in fact an integer.

Lemma 2.6 Let Y be an oriented 3–manifold , � 2 H 1.Y /, and '˛ be the U.1/
representation of �1.Y / given by the composition � WH1.Y /!Z!U.1/ where 12Z

is sent to ˛ 2 U.1/. Then the parity of the invariant �'˛
is constant off of a finite set. In

particular , N�˛.Y / is an integer for all values of ˛.

Chuck Livingston pointed out the idea used in the proof of diagonalizing over the ring
of rational functions.

Proof Since the cobordism group �3.Z/ vanishes, we can choose a 4–manifold W

over which � extends. After doing surgery on loops in kerŒ�1.W /!Z� we may assume
that in fact �1.W /Š Z. It follows that all of the representations '˛ extend to W , and
so it suffices to show that the parity of the signatures sign'˛

.W / that appear in the
definition of �'˛

is constant on a dense set of ˛.

The local coefficient homology group H2.W Iƒ/, corresponding to the homomorphism
� W H1.W /! Z, supports the equivariant intersection form qƒ. It is Hermitian with
respect to the involution on ƒ given by Nt D t�1; see for instance [19; 55]. For ˛ 2U.1/,
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the form qƒ determines the intersection form on H2.W IC˛/ as follows. An application
of the Künneth spectral sequence as in [15] shows that

H2.W IC˛/Š H2.W Iƒ/˝ƒ C;

where t acts on C by multiplication by ˛. This isomorphism respects intersections.

To compute signatures, at least for generic values of ˛ (to be specified in a moment),
we pass to the quotient field Q.t/ of ƒ, and then tensor with R to get a form qR.t/.
The form qR.t/ can then be diagonalized [17; 25] in the following sense. With respect
to a basis, represent qR.t/ by a matrix B.t/. Then there is an invertible matrix A.t/

with AB.t/A� D D.t/, a diagonal matrix. Let the nonzero entries of D.t/ be rational
functions �1.t/; : : : ; �k.t/.

As long as ˛ is not a pole of any �j .t/ or of any entry in A.t/, then D.˛/ is a
representative for qƒ ˝C˛. Hence (with finitely many exceptions) sign˛.W / is the
number of positive values of �j .˛/ minus the number of negative ones. With the
exception of the (finitely many) zeros of the �j .t/, this is given by k .mod 2/.

The arguments in [17; 25] give more information about the location of the jumps in �'˛

and their relation to the Alexander polynomial in the special case when Y is 0–surgery
on a knot.

The extension of the � invariant of V to arbitrary characters is now a formal consequence
of what has come before.

Definition 2.7 Let T be a torus embedded in X , a homology S1 �S3. Let V be the
associated cohomology T 2 �S2 as before, and let M be an oriented 3–manifold dual
to 
 . Then, for any ˛ 2 U.1/, define

(10) �˛.V /D N�'.M /:

The final result of this section is then:

Theorem 2.8 Let V be a cohomology T 2 �S2, and let fg; hg be a basis for H1.V /.
Then , for any ˛ 2 S1, the quantity �˛.V / in (10) is well defined.

Proof To see that �˛.V; 
 / is well defined, suppose that M and N are submanifolds
of V dual to 
 . Then �'.M / and �'.N / are both well-defined piecewise-continuous
functions on S1 with finitely many discontinuities. On the other hand, Proposition 2.5
says that they agree on the dense subset of points of prime-power order. Hence the
normalized versions N�'.M / and N�'.N / must agree at all points.
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It is worth remarking that �˛.V; 
 /, while independent of the choice of 3–manifold M ,
may well depend on the choice of 
 .

Example 2.9 Consider V D S1�S3
0
.K/. Then, for 
 pulled back from the circle, we

will show below that �˛.V; 
 / is just the Levine–Tristram invariant of K and can well
be nonzero. On the other hand, if 
 is the pullback of the generator of H 1.S3

0
.K//,

then the dual to 
 is represented by S1�F , where F is a Seifert surface for K, capped
off in the surgered manifold. But S1 � F D @.S1 � H /, where H is a handlebody.
Since H2.S

1 �F /! H2.S
1 �H / is surjective, and the same is true for the twisted

homology, both the ordinary and twisted signatures vanish. Hence �˛.V; 
 /D 0 for
this choice of 
 .

3 The Levine–Tristram invariant of a torus

As described in the introduction, the idea is to construct, from a torus T � X where X

is an oriented and homology oriented S1 �S3, a cohomology T 2 �S2, say V . Then
the Levine–Tristram invariant of .X;T / will be defined as the � invariant of V from
the preceding section. A small complication is that we need to see that the homology
orientation gives rise to a particular class 
 2 H 1.V /. As observed in Example 2.9,
the � invariant of V may well depend on this choice.

In brief, we choose a diffeomorphism f W T 2 � @D2 ! @�. Then the manifold V is
defined to be

(11) Vf D T 2
� @D2

[f X � int.�/:

We refer to this operation as a torus surgery. A useful model to keep in mind is .X;T /D
S1 � .Y;K/ with Y an integral homology sphere, and to have the gluing represent
S1 times an ordinary 0–framed surgery on K. This model is a bit oversimplified, as
there are many gluing maps that will produce a homology T 2 �S2. Because many
self-diffeomorphisms of a 3–torus extend over T 2 �D2, many of these manifolds are
diffeomorphic. They are presumably not all diffeomorphic, but it will turn out that they
all give rise to the same � invariants.

3.1 Torus surgery

Surgery along a torus is a standard operation [4; 13] in 4–manifold topology, and is
thoroughly discussed in in [43]. We start with a copy of T 2 �D2, whose boundary is
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parametrized as a product of circles a�b�m, where m is the boundary of D2. One bit
of notation for this section: we will use the same letter for a circle and the homology
class that it carries.

The torus T � X may be parametrized as g � l , where g represents the preferred
generator of H1.X / and l is null-homologous in X . Note that l is determined by this
requirement, but g is only well defined up to replacing g by g C nl for an arbitrary
integer n. Pick a framing of �.T /, which is specified by a section  of the normal circle
bundle. In particular, @�.T / is now parametrized as  .g/� .l/��T , where T is the
(oriented) meridian circle. Note that there is an action of H 1.T / on the set of choices
for  . We can cut down this indeterminacy by choosing  .l/ to be null-homologous
in the complement of T (or in other words to have linking number 0 with T ). There
does not seem to be a canonical choice for  .g/.

It is not hard to check, via the Mayer–Vietoris sequence, that V is a cohomology
T 2 �S2 if and only if f .m/D .l/, and we choose one such gluing map. We refer to
any such choice as a 0–surgery on X along T . The next item to establish is that the
cohomology class 
 2H1.X / naturally leads to a cohomology generator, also called 
 ,
in H 1.V /. This can also be done by analyzing the Mayer–Vietoris sequence, but we
prefer the following more geometric argument.

Choose a connected oriented submanifold Y of X that is Poincaré dual to 
 and
transverse to T . Transversality implies that Y \K is an oriented link, which may be
simpliefied, as follows.

Lemma 3.1 One can choose Y so that Y \T D K, a knot with homology class l .

Proof The intersection Y \T is a union of oriented circles in T , and Poincaré duality
says that the sum of their homology classes is l . Hence Y \T consists of a collection
of circles that bound disks, together with a collection of 2nC 1 curves isotopic to l ,
with nC 1 having the same orientation as l , and n oriented the opposite way. By a
standard innermost disk/annulus argument, one can do surgery on Y along the disks
and an “annulus surgery” along pairs of oppositely oriented copies of l to remove all
but one curve.

A related argument is given in [37, Section 2.4].

Note that the normal bundle of K in Y is the restriction of the normal bundle of T

in X to K. In particular, the (canonical) framing of l induces a framing of K. Let M
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be the result of surgery on K � Y with that framing. Because of our choice of framing,
the surgery on Y can be done simultaneously with (and inside of) the torus surgery
on X .

It follows that, no matter what gluing f we choose, M becomes a submanifold of V .
Now we can define the cohomology class 
 to be the Poincaré dual of M . Because
M is connected and nonseparating, it follows that 
 is a primitive class, and hence
generates a summand of H 1.V /. Finally, we have our definition.

Definition 3.2 Let X be an oriented homology S1 � S3, and let 
 2 H 1.X / be a
homology orientation. Let V be any cohomology T 2 �S2 resulting from 0–surgery
along T , and let 
 2 H 1.V / be the cohomology generator described above. Then, for
˛ 2 S1, define

�˛.X;T; 
 /D �˛.V; 
 /;

where �˛.V; 
 / is defined in (10).

In using this definition, it is important to recall that for ˛ of prime-power order, �˛.V; 
 /

refers to the � invariant of the 3–manifold M , whereas, for general ˛, it refers to the
average of the one-sided limits.

With these preliminary results in hand, we can establish the main theorem.

Proof of Theorem A The discussion above shows that �˛.X;T; 
 / is well defined,
and we have already verified in Lemma 2.6 that it is an integer. So we only need to
verify the two properties stated in the theorem.

The first property (the computation for a product S1 � .Y;K/ with Y a homology
sphere) is a consequence of an interpretation of the standard Levine–Tristram invariant
of .Y;K/ as a � invariant. This seems to be standard for knots in the 3–sphere —
for ˛ of finite order this is [5, Lemma 3.1], while, for arbitrary ˛, see for instance
[14; 31; 35; 45]. The idea is that one can use the complement of a Seifert surface for K,
pushed into B4, to compute the � invariant of Y0.X /. The key computation relates
the twisted signatures of this complement to the Seifert form of K. For an arbitrary
homology sphere Y , much the same proof works, with B4 replaced by an arbitrary
compact 4–manifold with boundary Y . We record the result here.

Proposition 3.3 For any ˛ 2 S1, we have �˛.Y;K/D �˛.Y0.K//.
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Now consider a knot K in a homology sphere Y , so that the product .S1 �Y;S1 �K/

is an embedded essential torus. The cohomology class 
 pulled back from the standard
generator of H 1.S1/ provides a homology orientation. Then we need to show that

�˛.S
1
�Y;S1

�K/D �˛.Y;K/:

Referring back to notation from Section 3.1, the curve l � T is just a copy of K, and
its framing (restricted to T \Y ) is exactly the usual 0–framing of K in Y . Hence the
manifold M in that section is just Y0.K/, and the desired equation is just the definition
of �˛.S

1 �Y;S1 �K/ coupled with Proposition 3.3.

The second property is straightforward from the definitions. Changing either orientation
will reverse the orientation of the manifold M , and this will change the sign of �˛.M /

for all prime-power ˛. It follows that the averaged invariants N�˛.M / all change signs
as well, which implies that �˛.X;T / changes sign.

The fact that for M given by 0–surgery on a knot, the � invariant used in our definition
of �˛.X;T / can be computed via the Seifert form of the knot has a generalization due
to Neumann [40]. The key observation is that, for any M and ˛, the representation '˛

factors through a homomorphism H1.M /! Z. Equivalently, '˛ comes from a coho-
mology class � 2 H 1.M IZ/. The main result of [40] then interprets �'˛

.M / in terms
of an isometric structure (an algebraic construction using the cohomology of a surface
dual to �). In the case of 0–surgery, such an isometric structure is equivalent [26; 29]
(up to a cobordism relation, respecting signatures) to the Seifert matrix that defines the
Levine–Tristram invariant.

4 Examples and comparison with �FO.X; T; ˛/

We compute the Levine–Tristram invariant for three constructions of embedded tori.
The first two come from the mapping torus of the n–fold branched cover of a knot.
In this mapping torus, we can consider the torus swept out by the fixed-point set of
the covering transformation, or alternatively the torus swept out by an invariant knot
disjoint from the fixed-point set. The third comes from taking a nontrivial circle bundle
over a 3–manifold. Along with the product case, the first and last of these constructions
were treated by Echeverria [11]. As verified more generally in [36], the answers we
get agree with those in [11].
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4.1 Branched covers: the branch set

The product case discussed in the proof of Theorem A has a nice generalization.
Consider a knot K in a homology sphere Y . Then the n–twist spin [56] of K is a
fibered knot in a homology 4–sphere. (The description of twist-spinning in Section 2
of [33] applies to a knot in an arbitrary homology sphere.) Surgery along this knot
produces a homology S1 � S3, which we will call X . It is fibered with fiber †,
the n–fold branched cover of .Y;K/, and the monodromy is a generator � of the
covering transformations. Let J be the preimage of K in †. It is the fixed-point set
of � and hence sweeps out a torus T in X . The twist-spinning construction is not
strictly necessary here; one could instead pass directly to the definition of .X;T / as
the (pairwise) mapping torus of � on .†;J /. In [11] this construction was denoted by
.X� ;T� /.

It seems natural to expect that �˛.X;T / should be expressible in terms of the Levine–
Tristram invariants of .Y;K/, and we show that this is indeed the case by establishing
a relation between the � invariants of surgery on Y along K and those of surgery
on † along J . The ideas here are well known; compare [2; 5]. Let Y0 be the result of
0–framed surgery along K, and let †0 be its n–fold cyclic cover. It is standard that
H1.†0/ splits as Z˚H1.†/, where the first summand is generated by the meridian
of J . Writing d D pr and ˛ D e2� i=d , we then want to compute �˛k .X;T /. By
definition, this is a � invariant associated to a U.1/ representation of H1.†0/ that
vanishes on the second summand and takes the meridian of J to ˛k .

Since �3.Z/D 0, there is a 4–manifold W with @W D Y0 and such that the inclusion
map H1.Y0/! H1.W / is an isomorphism. We will use W and its covering spaces to
relate the various � invariants. Consider the tower of covering spaces

Wdn

Zd –cover
//

Zdn–cover

&&
Wn

Zn–cover
// W

and let t denote the generator of the covering transformations of Wdn ! W . Then
tn generates the covering transformations of Wdn ! Wn. Write ! D e2� i=dn, so that
˛ D !n. Denote by E.t; !j / the !j –eigenspace of t acting on H2.WdnIC/; it is the
same as the twisted cohomology H2.W IC'/ where ' sends the generator of H1.W /

to !�j . Using the symmetries of the Levine–Tristram signature [8, Proposition 2.3],

�!j .Y;K/D �!�j .Y;K/D sign.W /� sign.E.t; !j //;
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where the last term means the signature of the Hermitian intersection form on E.t; !j /.
There is a similar decomposition of H2.WdnIC/ into eigenspaces E.tn; !nk/ for the
action of tn.

Theorem 4.1 For any k, the invariant �˛k .X;T / is a sum of Levine–Tristram invari-
ants of K,

(12) �˛k .X;T /D �˛k .†;J /D�

n�1X
jD1

�!dj .Y;K/C

n�1X
jD0

�!djCk .Y;K/:

Proof The main point is the decomposition

(13) E.tn; !nk/D

n�1M
jD0

E.t; !djCk/

of E.tn; !nk/ into eigenspaces of t . Since the different eigenspaces are orthogonal
with respect to the intersection form, this translates into an identity on signatures. By
definition of the Levine–Tristram signature,

sign.E.t; !djCk//D sign.W /� �!djCk .Y;K/;

so the decomposition (13) thus gives

�˛k .†;J /D sign.Wn/� sign.E.tn; !nk//

D sign.Wn/� n sign.W /C

n�1X
jD0

�!djCk .Y;K/:

Similarly, the decomposition of H2.WnIC/ into eigenspaces gives that

sign.Wn/D sign.W /C

n�1X
jD1

j th eigenspace signature for Wn

D n sign.W /�

n�1X
jD1

�!dj .Y;K/:

Putting these together (note that the signature of W cancels, as expected) gives the
statement of the theorem.

Comparing this calculation with [11, Theorem 44], and accounting for the somewhat
different notation, we see that the expected relation (3) holds.
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4.2 Branched covers: periodic knots

To carry out the mapping torus construction above, all we needed was a knot in †
that was invariant under a suitable transformation � . Here is a more general version.
Suppose that L D .K;J / is an oriented link, and let � W†! S3 be the n–fold cover
of S3 branched along K, with � the generator of group of covering transformations.
Assuming that n is relatively prime to the linking number of J and K, the preimage
QJ D ��1.J / is a knot in † that is invariant under � .

Definition 4.2 The torus TL;n is given by the mapping torus

S1
��

QJ � S1
�� †D X:

By construction, TL;n is essential, and we calculate its Levine–Tristram invariant. To
compute �˛.X;TL;n/ for arbitrary ˛ 2 S1, it suffices to compute it for all ˛ of finite
(indeed prime-power) order. The answer is similar to the formula in Theorem 4.1 and
is expressed in terms of an extension to links of the Levine–Tristram invariant due to
Cooper [9; 10]. This invariant associates to a 2–component oriented link and a pair of
unit complex numbers .!1; !2/ 2 .S

1�f1g/� .S1�f1g/ a signature �L.!1; !2/. The
scope of �L was extended by Cimasoni and Florens [7] to include invariants of “colored
links,” with one ! for each color. Let us adopt the convention that �L.!1; 1/ is the
usual Levine–Tristram signature of the first component, and similarly for �L.1; !2/.

Theorem 4.3 If ˛ 2S1 has prime-power order , then the invariant �˛k .X;T / is a sum
of Levine–Tristram invariants of L,

(14) �˛.X;TL;n/D

n�1X
jD0

�L.e
2� ij=n; ˛/�

n�1X
jD1

�L.e
2�ij=n; 1/:

Combined with Ma’s theorem [36], we get a calculation of Echeverria’s invariant
�FO.X;T; ˛/ in this case. Again the answer is in terms of Levine–Tristram invariants
of the link.

Corollary 4.4 For ˛ 2 S1 of prime-power order d ,

�FO.X;TL;n; ˛/D

n�1X
jD0

�L.e
2� ij=n; ˛2/:
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To prove the corollary, recall that Ma showed that �FO.X;T; ˛/D8�FO.X /C�˛2.X;T /.
On the other hand, the author and Saveliev [48] computed

�FO.X /D
1

8

n�1X
jD1

�L.e
2� ij=n; 1/;

which cancels the second term in (14).

Proof of Theorem 4.3 The proof is similar in spirit to that of Theorem 4.1, with some
additional signature calculations. The details are basically an adaptation of well-known
arguments, notably the “4–dimensional interpretation” of �L.1; !2/ as discussed in [7,
Section 6], and so we will be a bit sketchy in our treatment. To simplify notation a
little, write T for the torus TL;n.

Choose a pair of transversally intersecting surfaces FK and FJ in B4 with boundary L.
The n–fold cyclic branched covering � W†! S3 over K extends to a branched cover
� WWn !B4 branched over FK . Let QJ (resp. zFJ ) denote the preimage of J (resp. FJ ).
Denote by †0. QJ / the 0–framed surgery along QJ in †, where the 0–framing is the one
that extends over zFJ . Note that †0. QJ / embeds in V , the result of 0–surgery on T , and
is Poincaré dual to 
 2 H 1.V /, so that, by definition,

�˛.X;T /D �'˛
.†0. QJ //:

In principle, to compute this one would need a 4–manifold over which the d–fold cyclic
covering of †0. QJ / corresponding to the character '˛ extends. But a now-standard
argument [5, Section 2] shows that it can be computed instead by extending to a
branched covering. In addition to the equivariant signatures of the branched cover,
there is a term proportional to the self-intersection of the branch set. Let W 0

n denote the
result of adding a 0–framed 2–handle to Wn along QJ . Then the covering corresponding
to '˛ extends to a branched covering W 0

nd
! W 0

n with branch set equal to the union
of zFJ with the core of the 2–handle.

By construction, the self-intersection of the branch set is 0. Hence �'˛
.†0. QJ // can be

computed as the difference between the signature of W 0
n and an appropriate equivariant

signature of W 0
nd

. It is straightforward to prove (from the choice of framing being 0)
that the signature of W 0

n is the same as the signature of Wn, and that the same is
true for the equivariant signatures of W 0

nd
and Wnd , the d–fold cover of W branched

along zFJ .
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Decomposing the homology of Wn into eigenspaces for the action of the covering
transformation from the branched covering Wn ! B4 gives that

sign.Wn/D

n�1X
jD1

�L.e
2� ij=n; 1/:

Similarly, Wnd is an nd–fold branched cover over B4 with branch set FK [FJ , so its
homology has an action of Zn �Zd . In particular, each eigenspace for the Zd action
is preserved by the Zn action, and therefore has a further eigenspace decomposition. It
follows that the equivariant signature of Wnd is given by

n�1X
jD0

�L.e
2� ij=n; ˛/;

and the theorem follows.

4.3 Circle bundles

Some time ago, Baldridge suggested to the author and Saveliev the following con-
struction of a homology S1 �S3, which was discussed in [49]. Let N be a homology
S1 �S2, with a generator 
N 2 H 1.N /. Let � W X ! N be the oriented circle bundle
whose Euler class evaluates to 1 on the Poincaré dual of 
Y . Then X is a homology
S1 �S3, and 
 D ��
N is a homology orientation. In order for �FO.X / to be defined,
N must have the ZŒZ� homology of S1�S2, and that restriction implies [49, Section 8]
that in fact �FO.X /D 0.

In this same situation, Echeverria constructs a torus embedded in X and conjectures
(see [11, Conjecture 51]) that, for ˛ for which it is defined, his invariant is 0. Here is a
description that is equivalent to his, but easier for our purposes. Consider an oriented
knot J in N such that h
N ;J i D 1. Then let T D ��1.J /. This of course depends on
the precise choice of J , but the calculation does not.

Proposition 4.5 For any ˛ 2 S1, the invariant �˛.X;T / vanishes.

Proof To compute �˛.X;T /, we need a submanifold M dual to 
 . Choose an oriented
surface F � N that is Poincaré dual to 
N , and let M D ��1.N /. It is readily verified
that M is then Poincaré dual to 
 .

By construction, M is the circle bundle over F with Euler class 1, and the Gysin
sequence shows that its fibers are null-homologous in N (and of course in X as well).
In particular, the fiber of � W T ! J is the curve l appearing in the definition of
�˛.X;T /. When we do a 0–surgery on T , the resulting surgery on M is therefore
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1
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0 0
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g
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Figure 1: Fiber l in the Euler class 1 circle bundle over Fg.

the 0–framed surgery along J . The result of this surgery is just S1 �F . This may be
verified by carefully thinking about the clutching function for the bundle � W M ! F ,
but some readers may prefer the handle picture presented in Figure 1. In either event,
the � invariants for S1 �F all vanish, because any representation '˛ will extend over
S1 �H , where H is a handlebody.

To verify that surgery on M is a product, consider the standard picture [18] of the
Euler class 1 circle bundle over F . If F has genus g, then the pattern is repeated g

times; the red curve at the right of the picture is the fiber. The 0–framed pushoff of l is
the one that has blackboard framing 1 in the picture, so we are doing surgery on l with
coefficient 1. Blow down the red curve, changing the framing of the curve so that it
links to 0, and the figure becomes the standard picture of S1 �F .
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