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Abstract

Nature’s vital, but notoriously inefficient, CO,-fixing enzyme Rubisco often limits the growth of photosynthetic organ-
isms including crop species. Form | Rubiscos comprise eight catalytic large subunits and eight auxiliary small sub-
units and can be classified into two distinct lineages—‘red’ and ‘green’. While red-type Rubiscos (Form IC and ID)
are found in rhodophytes, their secondary symbionts, and certain proteobacteria, green-type Rubiscos (Form IA and
IB) exist in terrestrial plants, chlorophytes, cyanobacteria, and other proteobacteria. Eukaryotic red-type Rubiscos
exhibit desirable kinetic properties, namely high specificity and high catalytic efficiency, with certain isoforms out-
performing green-type Rubiscos. However, it is not yet possible to functionally express a high-performing red-type
Rubisco in chloroplasts to boost photosynthetic carbon assimilation in green plants. Understanding the molecular
and evolutionary basis for divergence between red- and green-type Rubiscos could help us to harness the superior
CO.,-fixing power of red-type Rubiscos. Here we review our current understanding about red-type Rubisco distribu-
tion, biogenesis, and sequence-structure, and present opportunities and challenges for utilizing red-type Rubisco
kinetics towards crop improvements.
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Introduction

Rubisco represents the major point of carbon entry into the
biosphere, catalysing the addition of a CO, molecule to the
five-carbon sugar, ribulose-1,5-bisphosphate (RuBP) (Knight
et al., 1990; Cleland et al., 1998). For productive substrate
binding, Rubisco must be first activated by priming a strictly
conserved catalytic lysine with a non-substrate CO, molecule,
which is subsequently stabilized by a magnesium ion (Lorimer
and Miziorko, 1980). A series of complex partial reactions ulti-
mately yields two molecules of 3-phosphoglycerate that are fed
into the Calvin—Benson—Bassham (CBB) cycle for carbohy-
drate production (Calvin and Benson, 1948). Rubisco catalysis
is notoriously inefficient, exhibiting both a slow catalytic turn-

over rate (k.. ¢) and a limited ability to discriminate between
CO,; and Oy, as quantified by its specificity factor (S¢,0). Recy-
cling the byproduct of RuBP oxygenation via photorespiration
comes at the cost of energy and release of a previously fixed
CO, (Bauwe et al., 2010). Such slow and promiscuous catal-
ysis means that Rubisco limits the efficiency of light-saturated
photosynthesis in the leaves of plants (Long ef al., 2006). Many
species compensate for poor kinetic performance by produc-
ing large quantities of Rubisco, representing a large nitrogen
investment (Ellis, 1979). However, some organisms have inde-
pendently evolved CO,-concentrating mechanisms (CCMs)
that limit oxygenation by elevating CO, concentrations

Abbreviations. LSu, large subunit; PCA, photosynthetic carbon assimilation; RuBP, ribulose-1,5-bisphosphate; SSu, small subunit.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

€20z 1dy 60 Uo Jasn sejolqigsieysioaun elesddn Aq £8//899/02/2/L/81014e/qx]/W00 dno e pese)/:SA)Y WOol) PAPEOjUMO(


https://creativecommons.org/licenses/by/4.0/
mailto:lhg42@cornell.edu?subject=

Red Rubiscos and opportunities for engineering green plants | 521

at Rubisco active sites. These include biochemical CCMs such
as C, and crassulacean acid metabolism (CAM) photosynthesis,
and biophysical CCMs such as carboxysomes and pyrenoids
(for a review, see Meyer and Griffiths, 2013).

Rubiscos can be classified into three carboxylation-compe-
tent forms, Forms I-III (Tabita et al., 2008b), which exhibit
divergent sequence and structure. All Rubisco forms probably
derive from a common Form III ancestor, which was trans-
ferred via lateral gene transfer to a common ancestor of pro-
teobacteria and cyanobacteria (Tabita et al., 2008a). The Form
III Rubiscos distributed in archaea scavenge toxic byproducts
of metabolism (Sato et al., 2007), while Form II Rubiscos in
proteobacteria and dinoflagellates (Rowan et al., 1996; Badger
and Bek, 2008) operate in the CBB cycle. Form I Rubiscos
are the most abundant Rubisco form and comprise eight
~50-52 kDa large subunits (LSus; rbcL or cbbL gene) and eight
~15 kDa small subunits (SSus; RbcS or cbbS gene). Two active
sites are formed at the interface of two LSus within an L, Ru-
bisco dimer. Four L, dimers form an octameric Lg core, which
is then capped at each end by two SSu tetrads forming the
~550 kDa LgSq holoenzyme (Knight et al., 1990).

Significant variation in Form I Rubisco catalysis exists in
nature, with Rubisco variants from non-green algae possessing
superior kinetic properties that could boost carbon assimila-
tion in chloroplasts (Whitney et al.,2001; Zhu et al.,2004). This
sequence-distinguishable lineage of Rubiscos are often called
‘red-type’ Rubiscos and are found in rhodophytes (Form ID),
their symbionts: cryptophytes, haptophytes, and heterokonts
(Form ID), and certain proteobacteria (Form IC), whereas
‘green-type’ Rubiscos are distributed in terrestrial plants, chlo-
rophytes (Form IB), cyanobacteria (Form IA/IB), and some
proteobacteria (Form IA) (Delwiche and Palmer, 1996). Red-
type, especially Form ID, Rubiscos break the canonical cata-
lytic trade-off between k., ¢ and S¢,o observed for green-type
Rubiscos (Young et al., 2016)—a trend previously used to jus-
tify claims that Rubisco catalysis has reached an evolutionary
maximum and thus its kinetics cannot be further improved
(Tcherkez et al., 2006). The extent of, and driving force be-
hind, these trade-offs have recently been investigated (Flam-
holz et al., 2019; Bouvier et al., 2021; Tcherkez and Farquhar,
2021),and red-type Rubiscos show that any catalytic trade-offs
are not universal, providing optimism that it may be possible to
engineer catalytically enhanced crop Rubiscos.

Prior reviews and commentaries have provided detailed
descriptions of specific aspects of red-type Rubisco functional
divergence (Hanson, 2016; Raven and Giordano, 2017). Ifi-
guez et al. (2020) and Rickaby and Hubbard (2019) provide
insightful interpretations of red-type Rubisco kinetic varia-
tion, especially in the context of environmental constraints.
Discussions about SSu-mediated Form IC Rubisco biogenesis
(Hauser et al.,2015) and the functional divergence of the acces-
sory proteins that maintain activated red- and green-type Ru-
bisco pools (Bhat et al.,2017) are especially useful to appreciate
the requirements for optimal red-type Rubisco function in

heterologous systems. Phylogenetic relationships between the
red- and green-type Rubisco lineages have also been reviewed
extensively (Tabita et al., 2007, 2008a, b; Liu et al., 2017). This
review 1s aimed towards a holistic understanding as to how dif-
ferences in evolutionary history, sequence—structure—function,
biogenesis and modulation between the red- and green-type
Rubisco lineages present opportunities and/or challenges to
confer red-like kinetics to green plants for increased crop pro-
duction.

The distribution of red-type Rubiscos and
red plastids

The first plastid arose ~1.5 billion years ago via a primary endo-
symbiotic event where a eukaryotic cell engulfed a free-living
cyanobacterium (for a review, see McFadden, 2001), before di-
vergence into Glaucocystophyta (microalgae), Chlorophyta (green
algae), and Rhodophyta (red algae) plastid lineages (Fig. 1B).
Subsequent endosymbiosis of chlorophytes and rhodophytes
gave rise to the plethora of plastid lineages presently observed
in photosynthetic eukaryotes. This monophyletic origin of
plastids (Delwiche and Palmer, 1996; Delwiche, 1999) is sup-
ported by the organismal relationships observed in phyloge-
netic trees constructed using non-Rubisco-encoding genes,
where thodophytes and chlorophytes cluster distinctively from
cyanobacteria and proteobacteria. However, LSu-based phy-
logenies demonstrate a clear distinction between red- (Form
IC and ID) and green- (Form IA and IB) lineage Rubiscos
(Delwiche and Palmer, 1996) (Fig. 1A). This is observed as
chlorophyte Rubiscos were acquired during endosymbiosis,
while Rubisco-encoding genes in eukaryotic red-type organ-
isms were acquired from a proteobacterium through horizontal
gene transfer before the secondary endosymbiotic events (Ifi-
guez ef al., 2020). Nonetheless, Rubisco LSus are highly con-
served, exhibiting ~80% amino acid identity within red and
green lineages, and ~60% across lineages (Parry et al., 2003).
Divergence in SSu sequences is more apparent, with ~50-60%
sequence identity within each of the red and green lineages,
but only ~30% identity observed across groups.

Red and green plastid environments
provide opportunities for divergent
evolution

Perhaps the most characteristic difference in plastid environ-
ments is that while rhodophytes have Chl a and phycobili-
proteins, chlorophytes contain Chl a and Chl b (Delwiche,
1999; Cavalier-Smith, 2000). Secondary symbionts of red
algae have Chl g, Chl ¢, and either phycobiliproteins or fuco-
xanthin (Falkowski ef al., 2004). These pigment differences
are the reason for use of the terms ‘red’ and ‘green’ when
describing different plastid lineages and, by extension, the
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(A) Rubisco Phylogenetic Distribution

(B) Plastid acquisition

(C) Gene location
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Fig. 1. Red- and green-type Rubisco distribution, plastid lineage, and gene locations. (A) LSu phylogenetic tree showing a clear distinction between
the red- and green-type Rubisco lineages. Notably, Rubisco distribution is inconsistent with organismal relationships, with prokaryotic and eukaryotic
autotrophs clustering together within each of the red and green lineages. This is consistent with horizontal gene transfer of Rubisco-encoding genes from
the proteobacteria to the ancestor of red plastids. Phylogenetic analyses were performed in MEGA11 (Stecher et al., 2020; Tamura et al., 2021), using
the Maximum Likelihood method and JTT matrix-based model (Jones et al., 1992), with elimination of all positions containing gaps. The percentages
of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein,
1985). Phylogenetic clusters of proteobacterial Form IC, eukaryotic Form ID, eukaryotic Form IB, and proteobacterial and cyanobacterial Form 1A and
Form IB Rubiscos are indicated by brown, red, green, and turquoise bars, respectively. (B) Plastid acquisition events that lead to the red and green
plastid lineages. Primary endosymbiosis, where a cyanobacterium was engulfed by a eukaryotic host cell, led to the formation of three major extant
clades, namely glaucophytes, chlorophytes (green algae), and rhodophytes (red algae). Green algae eventually give rise to land plants, while secondary
red lineage symbionts such as cryptophytes, coccolithophores, and diatoms arose from endosymbiosis of a red alga. Red algal Rubisco-encoding
genes were acquired by a horizontal gene transfer (HGT) event from a proteobacterium. Branch lengths are not to scale. (C) Generalized genome
locations of Rubisco-related genes for bacterial, red lineage, green lineage, and 3-cyanobacterial genomes. CbbLSXYZ, GroEL/ES, RbcLS/CbbX, and
RbcLXS (RbcL-RbcX-RbcS) operons are found in bacterial, 3-cyanobacterial, and red-plastid genomes. However, CbbX in red plastids is not always
found downstream of the RbcLS operon. CbbR, RbcR, and ycf30 are generally located upstream of Rubisco-encoding genes. Only the Rubisco LSu-

encoding gene remains in the green plastid genome, while all other known Rubisco-related genes are located in the nucleus, including genes involved in
Rubisco biogenesis (Cpn60a, CpnB0B, Cpn20, Raft, Raf2, RbcX, and BSD2) and reactivation of inhibited Rubisco (RCA). These green nuclear genomes
also encode multiple copies of RbcS. Note that Raf1, RbcX, and RCA are not always found in B-cyanobacterial genomes and glaucophyte gene
arrangement(s) are excluded from this figure. Accession codes used for construction of the phylogenetic tree: Griffithsia monilis (ABU53651.1), Chondrus
crispus (M5DDJB), Galdieria partita (IBWV_A), Galdieria sulphuraria (AIG92599.1), Porphyridium purpureum (BAO23622.1), Thalassiosira antarctica
(6MZ2_A), Ectocarpus siliculosus (P24313), Phaeodactylum tricornutum (ABK20641.1), Laminaria digitata (AGM75436.1), Emiliana huxieyi (Q4G3F4),
Rhodobacter sphaeroides (5NV3_A), Xanthobacter flavus (P23011.1), Nitrosomonas marina (AOA1I0FH32), Cupriavidus necator (CAJ96184.1),
Bradyrhizobium japonicum (GEC50337.1), Arabidopsis thaliana (5IU0_A), tobacco (NP_054507.1), Triticum aestivum (QBK83209.1), Sorghum bicolor
(ABK79504.1), Zea mays (NP_0430833.1), Chlamydomonas reinhardtii (1GK8_A), Chlorella vulgaris (NP_045897.1), Euglena gracilis (NP_041936.1),
Dunaliella salina (ACS95083.1), Pyramimonas parkeae (ACJ71114.1), Synechococcus elongatus PCC 6301 (1RSC_A), Cyanobium gracile (K9P2B9),
Halothiobacillus neapolitanus (1SVD_A), Rhodobacter capsulatus (AAC37141.1), and Allochromatium vinosum, (AAA23328.1).

stacked in some of their secondary symbionts (Bisalputra
and Bailey, 1973; Ford, 1984; Flori et al., 2017; Arshad ef al.,
2021).

Rubisco they express. Plastid architecture distinctions are
also present, with green lineage plastids containing stacked
thylakoids. Red algal thylakoids are unstacked, but may be
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(A) LSu sequence-structure alignment
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(B) SSu sequence-structure alignment
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Fig. 2. Sequence-structure alignment of red- and green-type Rubiscos. Structure-based sequence alignments are shown for (A) LSus and (B) SSus
from eight Form ID (red algae, diatoms, cryptophytes, haptophytes, and pelagophytes), four Form IC proteobacteria, three Form IB (vascular plant, green
alga, and B-cyanobacteria), and two Form IA (proteobacteria and a-cyanobacterial) Rubiscos. Secondary structural features of Rubisco SSus are labelled
according to convention (Knight et al., 1990). Residue numbering for sequences and structural annotations (a, a-helix; 1, 310-helix; B, B-strand; TT, tight
B-turns) are relative to Thalassiosira antarctica Rubisco (5MZ2). Symbols at the bottom of sequences indicate residues contributing to the active site
(blue triangles), the catalytic lysine residue (black star), and the red-type Rubisco latch residue (brown square). Post-translational modifications found in
green-type (green circles), red-type (red circles), or both (yellow circle) are also indicated. Conserved N-terminal residues in Form IB eukaryotic Rubiscos
and C-terminal residues in Form ID and IC Rubiscos that are threaded by Rubisco activase RCA and CbbX are marked with a green and orange dotted
box, respectively. The alignment was created using the Rubisco accession numbers (LSu, SSu): T. antarctica, (6MZ2_A, 5MZ2_)), E. siliculosus (P24313,
P24395), C. crispus (M5DDJ6, M5DD36), G. partita (1BWV_A, 1BWV_B), G. theta (P14957, P14957), N. gaditana (K9ZV74, AOAO23PJKO), E. huxleyi
(Q4G3F4, Q4G3F3), A. anophagefferens (CEKIP8, CEKIP9), R. sphaeroides (5NV3_A, 5NV3_B), C. necator (1BXN_A, 1BXN_B), M. alhagi (HOHRDO,
HOHRD1), N. marina (AOA1I0FH32, AOA1I0FH45), A. thaliana (5IU0_A, 5IU0_C), C. reinhardtii (1GK8_A, 1GK8_E), S. elongatus PCC 6301 (1RSC_A,
1RSC_B), H. neapolitanus (1SVD_A, 1SVD_B), and C. gracile (K9P2B9, K9P3U4). Alignments were performed using T-coffee (Expresso mode)

(Di Tommaso et al., 2011), followed by manual curation of output files. Graphics were generated with ESPript (Robert and Gouet, 2014).

After the divergence of the red and green lineage plas-
tids, organisms underwent massive (30- to 40-fold) plastome
reduction events, where protein-encoding genes in the
plastome were lost because of functional redundancy or
were transferred to the nuclear genome (Delwiche, 1999;
Archibald and Keeling, 2002; Stegemann et al., 2003; Tim-
mis et al., 2004). Rhodophytes underwent substantially less
plastome reduction and their plastomes presently contain
roughly twice as many protein-coding genes as chlorophytes
(Ohyama et al., 1986; Shinozaki ef al., 1986; Reith and Mun-
holland, 1995). Thus, there is a difference in the genes that
could potentially co-evolve in the red and green plastomes.
A key example is that in rhodophytes, Rubisco- and putative
chaperone-encoding genes were retained in the plastome
and are co-transcribed as part of an operon, whereas in chlo-
rophytes, the genes encoding the Rubisco SSu and many
chaperones were transferred to the nucleus (Zauner et al.,
2006) (Fig. 1C).

Gene duplication events in chlorophytes led to a nuclear-
encoded SSu multigene family, where distinct SSu isoforms
are differentially expressed. As SSu content indirectly con-
trols LSu synthesis and total LgSg pools (see Wietrzynski
et al., 2021), differential SSu expression allows total Ru-

bisco pools in chlorophytes to vary in response to environ-
mental cues (Yoon et al., 2001; Khumsupan et al., 2020),
and may also confer kinetic variability to the holoenzyme
(Lin et al., 2020). Coding of green-type Rubisco genes in
distinct subcellular locations necessitates an N-terminal
transit peptide on SSu-encoding genes to target them to
the chloroplast (Razzak et al., 2017), and bi-directional
crosstalk between the plastid and nucleus to coordinate
LSu and SSu expression (Nott et al., 2006; Koussevitzky
et al., 2007; Zhang, 2007). In contrast, rhodophyte Ru-
bisco LSu and SSu stoichiometry is maintained by the cou-
pled transcription inherent to their operon arrangement,
which may have allowed rhodophytes to avoid potential
sequence—space limitations associated with coordinating
LSu and SSu expression. Despite the possible constraints
on green-type Rubisco evolution, the chlorophyte system
may provide opportunities for more dynamic control of
total Rubisco content and activity in chloroplasts. In ad-
dition to the plastome operon, the absence of introns and
sequence repeats in red lineage plastomes (Oudet-Le-Secq
et al.,2007) are consistent with eukaryotic red-type Rubis-
cos being acquired from a proteobacterium (Delwiche and
Palmer, 1996).
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Red-type Rubisco structural divergence
Red and green LSus: the same, but different

The Rubisco LSu N-terminal domain comprises a four-
stranded P-sheet and two a-helices, and the C-terminal do-
main forms a barrel containing eight 3 units. The active site
is formed by four residues from the N-terminal domain and
six residues within the C-terminal domain of the adjacent LSu
(Andersson and Backlund, 2008; Kannappan and Gready, 2008)
(Fig. 2A). During catalysis, loop 6 closes over the active site, and
is stabilized by interactions with LSu C-tail residues. Red-type
Rubisco LSus exhibit structural divergence from other Ru-
bisco lineages. When loop 6 in red-type Rubisco is closed (i.e.
Rubisco is in the closed state), a latch structure is formed by a
H-bond between a highly conserved valine residue at the start
of loop 6 and a glutamine residue in helix a7 (Okano ef al.,
2002) (Fig. 2A). Modifying the highly conserved histidine in
green-type Rubiscos at this position to glutamine enhances
Sc/0 (Ninomiya et al., 2008). Further sequence—structural vari-
ation is found in certain Form IC Rubiscos, where a six amino
acid insertion is found in the solvent-exposed PB—3C loop in
the LSu N-terminal domain (Utdker et al., 2002; Umezawa
et al., 2016) (Fig. 3A, B, and see Fig. 2A). The potential func-
tional influence of these loops is not known. This could be
investigated by modifying these BB—3C loops via site-directed
mutagenesis, and comparing characteristics such as kinetic per-
formance, folding capacity, and thermostability between het-
erogolously produced wild-type and modified Rubiscos.

The red-type Rubisco SSu exhibits distinctive
structure—function divergence

The canonical Rubisco SSu core structure consists of four-
stranded antiparallel B-sheets and two a-helices. Despite not
contributing residues to, and being spatially separated from, the
active site, the SSu exerts a catalytic influence on the Rubisco
holoenzyme presumably via some long-range communication
(van Lun et al., 2011). Alternatively, molecular dynamics simu-
lations suggest that the SSu could be important for channelling
CO, to the active site (van Lun et al., 2014). This SSu cata-
lytic influence has been demonstrated by a large number of
studies using chimeric (Spreitzer et al., 2001, 2005; Spreitzer,
2003; Karkehabadi et al., 2005; Genkov ef al., 2010) or hybrid
(Read and Tabita, 1992; Wang et al., 2001; Genkov and Spre-
itzer, 2009; Ishikawa et al., 2011; Zhang et al., 2011; Morita
et al., 2014) Rubiscos. Red-type Rubisco SSus have a slightly
shorter BA—PBB loop, longer BC—PD loop, and shorter N-ter-
minus compared with green-type Rubiscos (Fig. 2B). How-
ever, green- and red-type SSus are readily distinguishable by
one major structural feature present in only red-type Rubisco
SSus—two extra B-sheets at the C-terminus known as the
PE—RF hairpins (Figs 2B, 3A, D). Despite being formed from
different structural regions within the SSu, the BE—3F hairpins
are considered to be equivalent to the green-type SSu PA—3B

loops in terms of their relative position within the holoenzyme
quaternary structure, lining the central solvent channel (Fig.
3A, B). The red-type PE—F hairpins form more extensive
contacts with LSu residues in the central pore than their green
counterparts (Hansen ef al., 1999; Sugawara et al., 1999). More
extensive H-bonding at Rubisco interfaces correlates with
enhanced CO, specificity (van Lun ef al.,2011). In addition to
a pervasive influence on S¢,o (Spreitzer, 2003; Spreitzer ef al.,
2005; van Lun et al., 2011; Joshi et al., 2015), the BE—BF hair-
pins also play a role in Rubisco biogenesis. Transplanting the
Rhodobacter sphaeroides (red-type) BE—BF hairpin sequence into
Synechococcus PCC 6301 (green-type) Rubisco circumvents the
assembly requirement for RbcX (Joshi et al.,2015),a molecular
chaperone absent from species with red-type Rubiscos.

Past and future insights from structural data

Structural models of Rubisco from eight red-type and 10
green-type species are available in the Protein Data Bank
(PDB). Apart from the previously discussed structural varia-
tion, these Rubiscos exhibit strikingly similar structure. Minor
structural alterations and small sample size cloud our under-
standing of additional catalysis-influencing structural variance
between the red and green lineages, and especially between
higher and lower performing red-type variants (i.e. those that
exhibit higher/lower carboxylation efficiencies). Few structures
have been published of Rubisco in the open conformation
(PDB: 1AUS, 3AXK, and 7JN4), as a ligand is often bound to
Rubisco to stabilize flexible loops, allowing for tighter crystal
packing or to reduce structural heterogeneity for cryoEM. Re-
cent advances in the ability to resolve distinct structural states
in silico using cryoEM (Punjani and Fleet, 2021) may lead to
an increase in the number of Rubisco structures in the open
conformation and provide insight into dynamic differences be-
tween red- and green-type Rubiscos.

CryoEM structures of Rubisco LSus in complex with CCM
components (PDB: 7JFO and 6HBC), molecular chaperones
(PDB: 7VWX, 3ZQ1, 3ZPZ, 6LRR, 6SMH, 2WVW, 6Z1F, and
6Z1G), and an LgS, assembly intermediate (PDB: 6LRS) have
recently become available. The single-particle nature of cryoEM,
and increasing capabilities to resolve structural heterogeneity
within datasets, provides a distinct advantage to capture more tran-
sient and low occupancy interactions than X-ray crystallography.
Similar attention to red-type Rubisco subunits and their interac-
tion with known or putative interacting proteins during Rubisco
biogenesis could provide insights into potential mechanistic and
biogenesis differences between the red- and green-type Rubiscos.

Red-type Rubiscos break the functional
mould

Eukaryotic red-type Rubiscos tend to have high S, with less
of a trade-off for k. (Young ef al.,2016; Flamholz et al.,2019).
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(A) Red-type Rubisco

(B) Green-type Rubisco
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Fig. 3. Key structural differences between red- and green-type Rubiscos. Top view of the (A) red-type Rubisco from Thalassiosira antarctica, and (B)
green-type Rubisco from Arabidopsis thaliana, showing differences in SSu (green/red) loops packing against LSu cores (in greys). Inset views show

the respective hairpin structures at the interface of two LSu dimers. Location of sequence insertions in the BB-BC loops of certain proteobacterial

red Rubiscos are indicated. Superpositions of Rubisco (C) LSus and (D) SSus, with subunits from a diatom (7. antarctica), red alga (Galdieria partita),
proteobacterial red-type (Rhodobacter sphaeroides), and green-type (A. thaliana) Rubisco shown in red, pink, yellow, and green, respectively. In (C), the
inset highlights ligand bound at the active site (spheres), the catalytic loop 6 (ribbon), and the red latch residue (stick). Images were created in the PyMOL
Molecular Graphics System (v.1.7.4, Schrodinger), using the PDB coordinates 51U0, 5MZ2, 1BWV, and 5NV3 for Rubisco from A. thaliana, T. antarctica,

G. partita, and R. sphaeroides, respectively.

This is the most encouraging feature of red-type Rubisco ki-
netics—they break the canonical catalytic trade-offs reported for
green-type Rubiscos, where an inverse relationship is observed
between Sc,o and k. ¢ (Jordan and Ogren, 1983; Tcherkez
et al., 2006; Tcherkez, 2013), suggesting that red-type Rubisco
kinetics may be unconstrained (or perhaps less constrained) than
those of green-type Rubiscos. However, it is worth noting that
recent studies probe more deeply into the correlations observed
between Rubisco’s kinetic parameters. The high degree of se-
quence—structure relatedness between Rubiscos within the
green lineage (Figs 1A, 2) means that kinetic measurements
might not be considered to be independent, and thus any ki-
netic trade-offs observed for green-type Rubiscos may, at least in
part, be a phylogenetic artefact (Bouvier et al., 2021). However,
analyses from Tcherkez and Farquhar (2021) could indicate that
Rubisco kinetics are primarily driven by photosynthetic condi-
tions. An additional study suggests that whilst the canonical k.
/Sc/o trade-off may be less strong than previously reported,
both oxygenation and carboxylation K,/ Ky, trade-offs remain,
kinetic variability is highly limited, and Rubisco evolution re-
mains mechanistically constrained (Flamholz et al.,2019). We are
excited for further study and discourse on this topic and, re-
gardless, red-type Rubiscos remain kinetic outliers with impres-
sively high specificity factors and decent catalytic turnover rates
(Young et al., 2016; Flamholz et al., 2019).

Red-type Rubiscos also break the carbon isotope trends
observed for green-type Rubiscos. Carbon fixation favours
consuming '*C over the stable isotope “C (von Caemmerer
et al., 2014), and is utilized as an indicator to identify auto-
trophic organisms and predict biochemical carbon fixation
pathways employed by different organisms (Hanson et al.,
2014; Thomas et al.,2019). Carbon isotope discrimination dif-
ferences in vivo between organisms with red- and green-type
Rubiscos reflect differences in their respective cellular environ-
ments, which may be CCM related (Wilkes and Pearson, 2019)
or artefacts of culturing conditions (Brandenburg et al., 2022).
Carbon isotope discrimination in purified Rubisco is postu-
lated to be a measure of the carboxylation transition state (car-
boxyketone) structure formed upon addition of CO, to RuBP,
with more and less product-like transition states forming in
high Sc, and high k. ¢ enzymes, respectively (Tcherkez et al.,
2006; Tommasi, 2021). Accordingly, Rubiscos with higher S¢,o
display larger "?C/"C isotope effects, exhibiting a linear pos-
itive relationship (Tcherkez et al., 2006). However, red-type
Rubiscos break this green-type trend, with lower '*C/"C frac-
tionation relative to the Form IA and IB green-type Rubiscos
(Boller et al., 2015; Thomas et al., 2019). This suggests that the
red-type and green-type Rubiscos may differentially stabilize

Rubisco reaction intermediates (for a review, see Ihiguez et al.,
2020). However, these trends could reflect the phylogenetic
constraints postulated by Bouvier et al. (2021). Further, carbon
isotope discrimination values have only been reported for four
red-type Rubiscos, and differences from study to study in the
methodologies used for Rubisco kinetic measurements can
weaken confidence in such trade-offs (Ihiguez et al., 2021).
Thus, these trends should be interpreted cautiously.

Red-type Rubisco kinetics are desirable

The kinetic properties of red-type Form ID Rubiscos could
provide opportunities to enhance photosynthetic carbon as-
similation (PCA) in crop plants. With few exceptions, red-
type Rubiscos exhibit much higher specificities than their
green-type counterparts. Red algal Rubiscos exhibit speci-
ficity factors of 129-238, compared with 26—-101 measured
for all green lineage Rubiscos (Flamholz et al., 2019;Table 1).
Notably, CCM-less Form ID Rubiscos exhibit much higher
specificity factors (excluding Nannochloropsis sp. Rubisco:
166.0—238.1), than eukaryotic Form IB green-type Rubiscos,
regardless of presence (54.0-88.0) or absence (81.0-101.0)
of a CCM (Table 1). A kg ¢ of 1.2-2.6 s~ observed for red
algal Rubisco falls within the 0.9-14.4 s™' range observed
for green lineage Rubiscos (0.9-6.7 s~ for those not housed
within a CCM). While there are limited kinetic data for Ru-
bisco from brown algae, their k. ¢ and K¢ values are com-
parable with those of red algae (Table 1; see Supplementary
Table S1): Rubiscos from both red and brown algae have K¢
values (3.3-23.6 pM) comparable with those exhibited by
terrestrial plants (7.0-22.9 uM). Similarly, coccolithophorid
Rubisco kinetics resemble those from diatoms. Wildly dif-
ferent kinetic properties were reported for the two micro-
algal ochrophytes Nannochloropsis sp. and Olisthodiscus luteus,
which could represent the extensive diversity within this
large phylum whose phylogeny is still under construction
(see, for example, Barcyté et al., 2021). Despite the high spec-
ificity values for certain red-type Rubiscos, it is carboxyla-
tion efficiency (k.. ¢/ K™ improvements that are required
to boost PCA in the context of the relatively low CO, par-
tial pressures in C; chloroplasts (Whitney and Andrews, 2001;
Andrews and Whitney, 2003). Excitingly, one red algal iso-
form, from Griffithsia monilis, has a superior carboxylation ef-
ficiency (206 s' mM™") compared with Rubisco from Cs
plants (122-138 s™' mM™"). Modelling (Farquhar et al., 1980)
indicates that G. monilis Rubisco has the potential to boost
PCA if transplanted into Cj; chloroplasts by as much as 30%
(Whitney et al., 2001; Zhu et al., 2004) (Table 1).
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Table 1. Comparison of Rubisco kinetics from red- and green-type Rubisco lineages

Clade/ Common Form Organism Keat, ¢ Kc Scio Keat, o/Ko Keat, /K™ Reference
phylum names
s uM - s s
mM-! mM-!
Rhodophyta Redmac- D Griffithsia monilis 2.6 9.3 167.0 1.7 206 Whitney et
roalgae al. (2001)
ID Phycodrys rubens 1.8 18.9 Ihiguez et al.
(2019)
D Ptilota gunneri 1.6 14.4 IRiguez et al.
(2019)
D Devaleraea ramen- 2.6 17.5 IRiguez et al.
tacea (2019)
D Palmaria palmata 2.1 15.9 IRiguez et al.
(2019)
D Palmaria decipiens 2.4 17.4 IRiguez et al.
(2019)
Red micro- D Galdieria sulphuraria 1.2 3.3 166.0 2.2 218 Whitney et
algae al. (2001)
D Galdieria partitia 1.6 6.6 238.1 1.0 Uemura et
al. (1997)
D Cyanidium caldarium 1.3 6.7 224.6 0.9 Uemura et
al. (1997)
ID Porphyridium pur- 1.4 22.0 143.5 0.5 Uemura et
pureum al. (1997)
D Porphyridium 1.6 22.0 128.8 0.6 Read and
cruentum Tabita (1994)
Ochrophyta Brown- ID Alaria esculenta 2.1 23.6 IRiguez et al.
macroal- (2019)
gae
D Desmarestia acu- 1.4 13.3 IRiguez et al.
leata (2019)
D Laminaria solidun- 1.6 18.5 Iniguez et al.
gqula (2019)
D Laminaria digitata 1.4 17.0 IRiguez et al.
(2019)
D Saccharina latissima 1.8 19.4 Iniguez et al.
(2019)
ID Himantothallus 2.1 18.1 IRiguez et al.
grandifolius (2019)
- ID Nannochloropsis sp. 1.0* 7.0 27.0 4.6 Tchernov et
al. (2008)
- D Olisthodiscus luteus 0.8 59.0 100.5 0.2 Read and
Tabita (1994)
Diatom D Cylindrotheca N1 0.8 31.0 105.6 0.3 Read and
Tabita (1994)
D Cylindrotheca 2.0 36.0 110.8 0.4 Read and
fusiformis Tabita (1994)
D Phaeodactylum 3.4 27.9 113.0 1.1 Whitney et
tricornutum al. (2001)
D Thalassiosira weiss- 3.2 65.0 79.0 0.6 44 Young et al.
flogii CCMP 1336 (2016)
D Thalassiosira oce- 2.4 65.0 80.0 04 29 Young et al.
ania CS-427 (2016)
D Skeletonema marinoi 3.2 68.0 36 Young et al.
CCMP 1332 (2016)
D Chaetoceros calci- 2.6 25.0 57.0 1.9 63 Young et al.
trans CCMP 1315 (2016)
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Table 1. Continued

Clade/ Common Form CCM Organism Keat, c Kc Scio Keat, o/Ko Keat, o/Kc™  Reference
phylum names
s uM - s s
mM-! mM-!
ID + Chaetoceros muelleri 2.4 23.0 96.0 1.2 65 Young et al.
CCMP 1316 (2016)
D + Chaetoceros calci- 3.4 31.0 75.0 1.4 72 Young et al.
trans CS-178 (2016)
ID + Bellerochea cf. horo- 2.1 50.0 31 Young et al.
logicalis CS-874/01 (2016)
D + Phaeodactylum 3.2 36.0 108.0 0.8 62 Young et al.
tricornutum UTEX (2016)
642
D + Phaeodactylum 3.3 41.0 116.0 0.8 58 Young et al.
tricornutum CS-29 (2016)
ID + Fragilariopsis cylin- 3.5 64.0 77.0 0.7 40 Young et al.
drus CCMP 1102 (2016)
D + Cylindrotheca fusi- 3.7 79.0 Young et al.
formis CS-13 (2016)
D + Thalassiosira hyalina 4.1% 50.0 99.0 0.9 Valegérd et
al. (2018)
D + Bacterosira 4.6% 81.0 87.0 0.7 Valegérd et
bathyomphala al. (2018)
ID + Skeletonema marinoi 4.6% 48.0 96.0 1.0 Valegéard et
al. (2018)
D + Thalassiosira nor- 4.7* 122.0 820 0.5 Valegérd et
denskioeldii al. (2018)
D + Thalassiosira ant- 3.7% 93.0 90.0 0.5 Valegérd et
arctica al. (2018)
D + Fragilariopsis cyl- 0.39 (3 °C) 50.0 Young et al.
indrus (2015)
Haptista/Hap- Coccolith- ID + Pleurochrysis 3.3 17.7 102.0 1.9 108 Heureux et
tophyta ophorid carterae al. (2017)
- D + Tisochrysis lutea 2.2 241 89.0 1.0 68 Heureux et
al. (2017)
- ID ? Paviova lutheri 2.5 14.5 125.0 1.4 140 Heureux et
al. (2017)
Proteobacteria  Alpha-pro- IC - Rhodobacter 3.7 59.7 584 08 54 Gunn et al.
teobacteria sphaeroides (2020)
Beta-pro- IC - Cupriavidus necator 2.1 50.2 740 06 Lee et al.
teobacteria (1991)
Nitrogen IC - Bradyrhizobium 2.2 50.2 748 06 Horken
fixing Jjaponicum and Tabita
(1999a)
IC - Xanthobacter flavus 1.4 76.1 44.4 0.4 Horken
and Tabita
(1999a)
Cyanobacteria Cyanobac- B + Synechococcus 9.8 152.0 50.3 1.3 53 Shih et al.
teria elongatus PCC 6301 (2016)
B + Synechococcus sp. 8.6% 119.0 43.3 1.7 Ninomiya et
PCC 7002 al. (2008)
B + Synechocystis PCC 14.3 53 Marcus et al.
6803 (2011)
IA + Prochlorococcus 6.6 309.0 59.9 0.6 18 Shih et al.
marinus MIT 9313 (2016)
Proteobacteria - IA ? Allochromatium 6.7 37.0 41.0 4.4 Jordan
vinosum and Chollet

(1985)
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Table 1. Continued

Clade/ Common Form CCM Organism Keat, c K¢ Scio keat, o/ Ko Kcat, /K" Reference
phylum names
s uM - s s
mM-! mM-!
- IA + Hydrogenovibrio 2.0 38.4 Hayashi et
marinus al. (1998)
(carboxysome op-
eron CbbL2S2)
- IA - Hydrogenovibrio 0.9 30.9 Hayashi et
marinus al. (1998)
(operon CbbL1S7)
- IA - Rhodobacter cap- 2.5 22.1 25.9 4.5 Horken
sulatus and Tabita
(1999b)
- IA - Thiobacillus denitri- 1.4 105.0 53.4 0.2 Hernandez
ficans et al. (1996)
Streptophyta Tobacco B - Nicotiana tabacum 3.1 9.7 82.0 3.9 138 Whitney et
Cs plants al. (2015)
Arabidop- B - Arabidopsis thaliana 3.0 9.8 80.0 3.8 125 Whitney et
sis al. (2015)
- B - Flaveria pringlei 3.5 13.7 81.0 2.7 Whitney et
al. (2011)
Wheat 1B - Triticum aestivum 3.0 10.9 100.0 2.6 Carmo-Silva
et al. (2010)
Rice B - Oryza sativa ssp. 2.2 7.0 101.0 2.6 122 Orr et al.
Indlica (2016)
Streptophyta - B + Flaveria bidentis 4.8 20.4 81.0 2.9 Whitney et
C, plants al. (2011)
Sorghum B + Sorghum bicolor 5.8 22.9 175 Sharwood et
al. (2016a)
Maize B + Zea mays 5.5 18.9 88.0 2.0 177 Sharwood et
al. (2016a)
Lawngrass B + Zoysla japonica 4.4 18.5 84.1 2.8 Carmo-Silva
et al. (2010)
Grass 1B + Setaria viridis 5.9 18.1 72.7 4.4 231 Sharwood et
al. (2016b)
Chlorophyta Green B + Chlamydomonas 1.8* 30.0 64.0 1.0 Zhu and
algae reinhardtii Spreitzer
(1994)
B + Chlamydomonas 2.3* 35.0 63.0 1.0 Spreitzer et
reinhardtii al. (2005)
B + Scenedesmus 38.0 63.0 Savir et al.
obliquus (2010)
B - Coccomyxasp. 1.9 82.9 Palmaqvist et
al. (1995)
Discoba B + Euglena gracilis 25.0 54.0 Savir et al.
(2010)

Measurements of catalytic constants for substrate-saturated rates of carboxylation (k.. ¢), specificity for CO, over O, (Sg/o) [i.e. (Keat, cXKol (Keat, 0XKo)],
carboxylation efficiency (k.. o/Kc®"), and oxygenation efficiency k... o/Ko Were collected or calculated from published data. Values of k. ¢ calculated
using the molecular weight of the specific Rubisco, estimated from LSu and SSu UniProt sequences, are denoted by an asterisk. All available kinetic
values are included from red-type Rubiscos. Selected representatives from green-type Rubisco lineages are included for comparison. See Supplementary
Table S1 for references and the full table including available kinetic measurements for k.., /K¢, Michaelis-Menten constants for CO, (Kg) and O, (Ky), and
CO, under atmospheric oxygen (K:®"), and substrate-saturated rates of oxygenation (Kea, o).

Do red-type Rubiscos exhibit reduced oxygen red-type Rubiscos (Form ID) exhibit higher K, values (360—
sensitivity? 2000 uM), and thus tend to have lower affinity for oxygen than
eukaryotic green-type Rubiscos (170-660 pM; Table 1). No

Red-type Rubiscos might exhibit somewhat reduced O, clear trend exists for k., o between the red- and green-type

sensitivity compared with green-type Rubiscos. Eukaryotic
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Rubiscos. In general, this parameter is under-reported and
often calculated from other kinetic parameters rather than
being directly measured. However, red-type Rubiscos tend
to exhibit lower oxygenation efliciencies (k. o/Ko) (Table
1; see Supplementary Table S1). Excluding the suspiciously
high value reported for Nannochloropsis sp. Rubisco, all plas-
tid-evolved red-type Rubiscos have oxygenation efficien-
cies of 0.2-2.2 s7' mM™', while Rubiscos from C; and C,
plants exhibit k., o/Ko values between 2.0 s' mM™! and
3.9 s' mM™". This lower red-type Rubisco oxygen sensi-
tivity extends to Form IC Rubiscos with oxygenation effi-
ciencies in the range of 0.4-0.8 s™' mM™'. At the whole-cell
level, non-green algae have lower rates of light-dependent
O, consumption than green algae and C; plants under both
CO,-limiting and saturating conditions (Badger ef al., 1998).
‘While Rubisco is not the only factor contributing to light-
dependent O, evolution (e.g. photoreduction), these obser-
vations are consistent with the lower oxygen sensitivity
measured for red-type Rubiscos (Table 1). It is proposed that
the BE—BF SSu hairpins could reduce oxygenation transi-
tion state stability or increase the activation energy for the
Rubisco oxygenation reaction (Shibata et al., 1996; Uemura
et al., 1997). Form IC Rubiscos exhibit higher Si,o values
than Form IA and IB cyanobacterial Rubiscos (Iniguez et al.,
2020), and higher specificity than and comparable catalytic
turnover rates with Form IA proteobacterial Rubisco (Table
1). All Form IC kinetics fall within the range of measured
values for diatoms. These trends could support the idea that
the ancestral red-type Rubisco exhibited high specificity for
CO,, compared with the green-type Rubisco progenitor.
However, prokaryotic green-type Rubiscos tend to exhibit
higher values for K and lower oxygenation efficiencies than
eukaryotic green-type Rubiscos, and thus it could be that
these oxygenation kinetic differences reflect CCM efficiency.

Red-type Rubisco adaption or maladaption to
environmental conditions

It has been proposed that all Rubiscos have optimized their
kinetic properties to adapt to their gaseous environment
(Tcherkez et al., 2006). For example, Rubiscos in environments
enriched in CO, tend to have higher k., ¢ offset by lower
Sc/o and CO, affinity (i.e. a higher K¢), which is especially
apparent when comparing C; and C, species (Christin et al.,
2008) (Table 1). These offsets are possible, without detriment
to organism PCA and growth, because of relaxed evolutionary
constraints on S¢,o and K¢ as a consequence of the CCM
strategies employed by these organisms (Price et al., 2008).
Non-green algae from hot environments (i.e. thermal springs)
have higher S¢,o values than red algae from more temperate
environments, which is advantageous for carbon fixation as the
relative solubility of CO, decreases compared with O, with
increasing temperatures (Smith, 1928) (Table 1). Diatom Rubis-
cos have also clearly adapted to their pyrenoid environment,

with a reduction in S¢/o and increase in k., - compared with
eukaryotic red-type Rubiscos that lack any form of CCM.
However, their Rubiscos do not show a positive relationship
between k., ¢ and K¢, which again highlights that red-type
Rubiscos do not conform to the kinetic rules written by green-
type Rubiscos. Overall, the vast majority of assayed diatom
Rubiscos exhibit S¢,o values higher than cyanobacteria and C,
species. Most diatom Rubiscos also retain higher CO, speci-
ficity than Rubiscos found in the CCM-lacking C; chloroplast.
A striking adaptation outlier is the anoxygenic phototroph
Rhodobacter sphaeroides (Imhoft et al., 2018) that expresses vir-
tually no Rubisco under aerobic conditions (Zhu and Kaplan,
1985; Jouanneau and Tabita, 1986). Despite operating under
anaerobic conditions, R. sphaeroides Rubisco exhibits low ox-
ygenation efficiency (Table 1). However, interpretation of the
evolutionary implications of R. sphaeroides Rubisco’s low sen-
sitivity to oxygen is limited by data availability, which could be
resolved by a more extensive catalytic survey of proteobacte-
rial red-type Rubiscos. Complete and wide kinetic analyses are
important to observe and interpret key kinetic trends across
and within lineages, and how these functional trends might re-
late to Rubisco sequence—structure. Differences in assay condi-
tions between different studies also pose a significant challenge
to the ability to draw meaningful conclusions about Rubisco
structure—function trends (see Iniguez et al., 2021).

Red-type Rubisco biogenesis
Transcription

Transcription of the cbb operon in proteobacteria (Form IA
and Form IC) is primarily controlled by the LysR-type tran-
scriptional regulator (for a review, see Maddocks and Oyston,
2008), CbbR. In cyanobacteria, the Rubisco operon and car-
boxysomal genes (Price ef al., 2008) are regulated by RbcR.
The eukaryotic RbcR homologue, called Ycf30, is encoded
in the plastome of organisms with Form ID Rubisco (Minoda
et al., 2010). CbbR, RbcR, and Y¢f30 are generally located up-
stream of the rbcLS operon (Fig. 1C). Notably, Y¢f30 is of cya-
nobacterial origin and not a remnant of primary or secondary
endosymbiotic events (Maier et al., 2000). While there is var-
iability in the specific metabolite effectors for CbbR, RbcR,
and Y30 from different organisms, they are very generally
controlled by light and CO, concentration (van Keulen et al.,
1998; Grzeszik et al., 2000; Dubbs et al., 2004; Nishimura et al.,
2008; Minoda et al., 2010). Cognate transcriptional regulators
do not limit eukaryotic (Whitney et al., 2001; Lin and Hanson,
2018) or proteobacterial (Joshi et al., 2015; Gunn et al., 2020)
red-type Rubisco in heterologous systems.

However, a deeper appreciation of the green transcriptional
regulatory system (Atkinson et al., 2017; Khumsupan et al.,
2020) might be more appropriate for engineering approaches,
allowing us to hack the existing regulatory systems relevant to
the CO,-fixing needs of the host system.
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Table 2. Rubisco post-translational modifications

Lineage

Rubisco
form

Species

PDB code(s)

Resolution(s) (i\)

LSu PTMs—residue
number

Red-type Redalgae ID

D

Diatom ID

Proteobac- IC
teria IC

Green-type Vascular B
plant

Green algae 1B

Cyanobac- 1B
teria
B

Galdiera partitia
Galdieria sulphuraria

Chaetoceros socialis

Skeletonema marinoi

Thalassiosira antarctica var.
borealis

Thalassiosira hyalina

Cupriavidus necator
Rhodobacter sphaeroides

Arabidopsis thaliana
Nicotiana tabacum

Oryza sativa
Pisum sativum
Spinacia oleracea

Triticum aestivum
Chlamydomonas reinhardtii

Synechococcus elongatus
PCC 6301
Thermosynechococcus elon-
gatus BP-1

1BWYV, 1IWA
4FOH, 4FOM, 4FOK

50YA

6FTL

5MZ2

5N9Z

1BXN
5NV3

51U0

1EJ7, 3RUB, 1RLD, 1RLC,

4RUB

3AXM, 6KYI, 1TWDD, 3AXK
4HHH, 4MKV

8RUC, 1IR1, 1UPP, 1UPM,

1AA1, 1RXO, 1RCX, 1RCO,
1RBO, 1AUS

5WSK

1GK8, 7JN4, 1IR2

1RSC, 1RBL

2YBY, 3ZXW

2.40, 2.60
1.96, 2.25, 2.05

1.80

2.60

1.90

1.90

2.70
3.39

1.50

2.45,2.00, 2.50, 2.70,

2.70

1.65, 1.75, 1.35, 1.90
2.20,2.15

1.60, 1.80, 2.30, 2.30,

2.20, 2.20, 2.40, 2.30,
2.30, 2.20

1.78

1.40,2.68, 1.84

2.30, 2.20

2.30, 2.10

nd.
CYS to SNC—181 (176)

CYS to SNC—460 (457)
PRO to HYP—48 (48)

CYS to CSO—109 (109)
LYS to LOH—150 (150)
PRO to HYP—155 (155)
LEU to HL2— 174 (174)
LYS to M3L—346 (346)

CYS to SNC—457 (457)
Not modelled— 109 (109)

LYS to LOH—150 (150)
PRO to HYP—155 (155)
LEU to HLU—174 (174)
LYS to LYO—198 (198)
LYS to M3L—346 (346)

Not modelled—457 (457)
PRO to HYP—48 (48)

CYS to CSO—109 (109)
LYS to LYO—150 (150)
PRO to HYP—155 (155)
LEU to HLU—174 (174)
LYS to LYO—198 (198)
LYS to M3L— 346 (346)

Not modelled—457 (457)
PRO to HYP—48 (48)

CYS to CSO—109 (109)
LYS to 8RE—150 (150)
PRO to HYP—155 (155)
LEU to HLU—174 (174)
LYS to LYO—198 (198)
LYS to M3L—346 (346)

Not modelled—457 (457)
nd
nd

nd
nd

nd
nd
nd

nd
PRO to HYP—104 (108)
PRO to HYP—151 (155)
CYS to SMC—256 (260)
CYS to SMC—2369 (372)
nd

(
(

nd

Post-translational modifications (PTMs) of large subunit residues identified in Form | red and green lineage Rubiscos from X-ray crystallographic and
CryoEM data deposited in the Protein Data Bank (PDB). The nature and position of PTMs are indicated, with residue numbering in parentheses indicating
the equivalent residue numbering in Thalassiosira antarctica Rubisco (PDB: 5MZ2, also see Fig. 2A). PTM abbreviations: SNC, S-nitroso-cysteine; HYP,
4-hydroxyproline; CSO, S-hydroxycysteine; LOH, 3,4-dihydroxylysine; HL2, (2S,3R)-2-amino-3-hydroxy-4-methylpentanoic acid; M3L, N-trimethyllysine;
HLU, beta-hydroxyleucine; LYO, 4-hydroxylysine; 8RE, 3,4-hydroxylysine; SMC, S-methylcysteine; nd, not detected. The carbamylated catalytic lysine
present in activated Rubisco across all lineages (lysine carboxylic acid; KCX) is intentionally excluded
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Unique post-translational modifications

Post-translational modifications (PTMs) can influence Rubisco
stability, structure, and activity (Apel et al., 2010), a number
of which have been identified from interpretation of electron
density in crystallographic data (Table 2; Fig. 2A). Valegard
et al. (2018) published the first four diatom Rubisco struc-
tures revealing extensive LSu PTMs compared with green-
type Rubiscos. Hydroxylation of buried residues (48, 155,
174, and 198, numbered relative to the Thalassiosira antarctica
sequence, Fig. 2A), including N-terminal domain residues at
the dimer—dimer interface (109 and 150) probably contribute
to holoenzyme stability. Residue 155 is also hydroxylated in
Chlamydomonas reinhardtii, but no hydroxylation modifica-
tions are observed in any other green-type Rubisco structure.
Solvent-exposed PTMs in diatom structures include a tri-
methylated Lys346 close to loop 6 and a nitrosylated Cys457.
Nitrosylated cysteines are also observed in Galdieria sulphuraria
Rubisco at residues 176 and 457. Cysteine is highly conserved
in red-type Rubiscos at residue 457, and in all green lineage
Rubiscos at position 176. Nitrosylation can attenuate Ru-
bisco activity in red algae and higher plants (Abat and Deswal,
2009; Stec, 2012) (Fig. 2A), and hints at the involvement of
nitric oxide signalling in redox regulation of red-type Rubisco.
‘While these cysteine PTMs are not observed in the green lin-
eage, disulfide bonds between highly conserved cysteine resi-
dues, including residue 176, protect Rubisco from oxidative
and/or salt stress in land plants and green algae (Mehta et al.,
1992; Marcus et al., 2003; Li et al., 2004; Moreno et al., 2008).
Disulfide bonds in the green lineage and nitrosylation in the
red lineage at equivalent LSu cysteine positions suggest that
the red lineage may similarly use these cysteines (albeit through
a different mechanism) to protect against stress and/or regu-
late Rubisco activity. Differences in the occupancy (or indeed
absence) of PTMs at equivalent amino acid residues between
the diatom and non-green algal Rubisco structures could per-
haps be explained by cautious interpretation of lower resolu-
tion structural data, represent divergence between species, or
reflect variation in differences in the environmental conditions
in which the diatoms were harvested. In a similar vein, all avail-
able diatom Rubisco structures are derived from Arctic species,
and thus analyses of diatoms from more diverse environments
are required to determine if these PTMs are broadly observed
across all diatom species.

PTMs located on N-terminal LSu residues are usually not
observed by structural methods, because the first residues are
often missing from Rubisco LSu density, and these have thus
far been identified using analytical approaches. N-terminal
PTMs are highly conserved in chloroplast Rubiscos where
they are, more specifically, co-translational modifications (for
a review, see Houtz et al., 2008). These PTMs include defor-
mylation of Metl, peptidase removal of Metl and Ser2, acet-
ylation of Pro3, and often trimethylation of Lys14 (tobacco
Rubisco numbering), and may protect Rubisco from proteol-
ysis (Apel et al.,2010). Additional N-terminal PTMs might be

present in red-type Rubiscos that have not yet been detected.
Indeed N-terminal blocking of Edman sequencing of P, tricor-
nutum and G. sulphuraria Rubisco LSus (Whitney et al., 2001)
suggests that this might be the case.

Folding and assembly

The LSu interacts with a series of chaperones, both during
and after translation, within the plastid stroma. These include
homologues of Hsp70, DnaJ, and GrpE (Goloubinoft et al.,
1989; Liu et al., 2010; Hartl ef al., 2011), which notably do
not limit the assembly of green-type Rubisco in Escherichia
coli (Aigner et al., 2017; Lin et al., 2020). LSus subsequently
associate with chaperonin folding cages: the GroEL/GroES
chaperonin complex in prokaryotes, and the Cpn60/Cpnl10
or Cpn60/Cpn20 complex in eukaryotes (Hartl er al., 2011).
Eukaryotic green-type Rubiscos additionally require a suite
of assembly factors—Rafl1, Raf2, RbcX, and BDS2 that sta-
bilize LSu intermediates before SSu binding to the Lg core
(Liu et al., 2010; Feiz et al., 2012; Aigner et al., 2017). Homo-
logues of these chaperones are not found in organisms express-
ing red-type Rubiscos. The ability of red-type Rubisco BE—BF
hairpins to supplant the function of RbcX has been estab-
lished using hairpin sequences from R. sphaeroides Rubisco
(Form IC), which can assemble in E. coli and tobacco without
the need for additional chaperones (Joshi et al., 2015; Gunn
et al., 2020). However, attempts at heterologous expression of
Form ID Rubiscos have thus far failed, indicating that addi-
tional chaperones are required for assembly, and are a major
factor limiting the functional expression of eukaryotic red-
type Rubiscos in chloroplasts (Whitney et al., 2001; Lin and
Hanson, 2018).

Red-type Rubisco activation
CbbX keeps Red-type Rubisco active

Rubisco activity is regulated by nuclear-encoded metabolic re-
pair proteins, called Rubisco activase (RCA) in higher plants
and (-cyanobacteria, that keep Rubisco in its active state by
removing inhibitory sugar phosphates that can bind the Ru-
bisco active site (for a review, see Bhat ef al., 2017). Organisms
with a red-type Rubisco have a similar, but distinct, Rubisco
activase protein called CbbX. RCA and CbbX are both mem-
bers of the AAA+ protein family and thus require ATP for
activity (for a review, see Houtz and Portis, 2003). A number of
protein structures of RCA, CbbX, and Rubisco-RCA com-
plexes have contributed to our understanding of activase func-
tion (Henderson et al., 2011; Mueller-Cajar et al., 2011; Stotz
et al., 2011; Hasse et al., 2015; Flecken et al., 2020; Tsai et al.,
2020). Functional RCA and CbbX both adopt a hexameric
ring structure (Blayney ef al., 2011; Mueller-Cajar ef al., 2011;
Stotz et al., 2011). However, RCA and CbbX often adopt an
oligomeric helical conformation in crystal structures, and in
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solution, which may represent a storage form (Mueller-Cajar
et al., 2011; Serban et al., 2018). Unlike RCA, prokaryotic
CbbX function is under allosteric control by RuBP (Stotz
et al., 2011). In eukaryotic CbbX, RuBP enhances ATP hy-
drolysis, rather than providing allosteric control (Loganathan
et al.,2016). In the presence of ATP, RCA exists as a hexamer
(Keown and Pearce, 2014), whereas prokaryotic CbbX requires
both ATP and RuBP to adopt this functional conformation
(Mueller-Cajar et al., 2011).

Rubisco activases interact with the Rubisco LSu by threading
terminal LSu residues through the pore of hexameric RCA or
CbbX. By tugging on the LSu, these activases interfere with
the conformation of the inhibited Rubisco complex, allowing
the release of inhibitors from the active site (for a review, see
Bhat et al., 2017). While both RCA and CbbX perform the
same function, the mechanism and interactions with their re-
spective Rubiscos are distinct. CbbX interacts with a conserved
flexible C-tail extension in red-type Rubisco LSus to invoke
inhibitor release (Mueller-Cajar ef al., 2011; Loganathan et al.,
2016) (Fig. 2A). In contrast RCA interacts with the conserved
green-type Rubisco N-terminal LSu residues, resulting in a
cascade effect that disrupts loop 6 closed over the inhibitory
sugar in the active site (Flecken et al.,2020; Ng et al., 2020).

While CbbXs in prokaryotic and eukaryotic red-type
Rubisco-containing species are related, CbbX is also widely
distributed across 0-cyanobacterial species and found in tandem
with RCA in certain f-cyanobacteria (Zarzycki et al., 2013)
(Fig. 1C). It is likely that eukaryotic CbbX is of proteobacterial
origin and was transferred to red lineage plastids concomi-
tantly with the horizontal gene transfer of chbLS (Maier et al.,
2000). In red algae and cryptophytes, CbbX is located down-
stream of Rubisco-encoding genes, in the rbcLS operon (Reith
and Munholland, 1995; Ohta et al., 1997; Douglas and Penny,
1999), while in heterokonts and diatoms, CbbX is located dis-
tantly from the Rubisco-encoding genes in the plastid (Kow-
allik er al., 2007). Higher plants code for two RCA isoforms,
which exhibit distinct ATP and temperature responses, and
can form heterooligomers (for a review, see Carmo-Silva et al.,
2015). Red lineage eukaryotes have similarly undergone a
gene duplication event, resulting in both a nuclear and a plastid
copy, both of which may be necessary for maximal activation
(Maier et al., 2000). Overexpressing nuclear-encoded CbbX
boosts photosynthesis in the non-green algal species Nanno-
chloropsis oceanica (Wei et al., 2017). In Cyanidioschyzon merolae
(a red alga), both plastid and nuclear CbbX copies are required
for functionality, forming a heterooligomeric complex in 1:1
stoichiometry (Loganathan ef al., 2016).

CbbX activity in chloroplasts

A larger percentage of the total R. sphaeroides Form IC Rubisco
pool is activated (i.e. has no inhibitory ligand bound at the ac-
tive site) under elevated CO, conditions in chloroplasts (Gunn
et al., 2020). This trend is observed regardless of the presence

or absence of its cognate CbbX, albeit with higher activation
in the presence of CbbX. This is in stark contrast to higher
plant Rubiscos whose activation status decreases with increas-
ing CO,, which may be a response to a reduction in electron
transport products and/or related changes in pH across the
thylakoid membrane (Whitney et al., 1999). These opposing
trends could represent differences in ATPase capacity between
R CA and CbbX. However, because this trend is observed in
both the presence and absence of CbbX, and because red-type
Rubisco exhibits different rates of inhibitor binding and re-
lease (Pearce, 2006), we speculate that this could represent a
difference in the capacity of the red-type Rubisco active site to
bind inhibitory sugars under different CO, pressures. What is
clear is that there is a requirement to provide red-type Rubisco
with a compatible CbbX for maximal activation of introduced
red-type Rubiscos in heterologous systems, and—for Form ID
Rubiscos specifically—both nuclear and plastid copies may be
necessary (Gunn et al., 2020).

Using red-type Rubiscos to enhance
crop yield: progress, opportunities, and
challenges

Utilizing certain red-type Rubisco structure—function has ex-
citing potential to boost PCA and thus crop yield in green
plants. We suggest three routes to conferring ‘redness’ to green
chloroplasts: (1) modify green-type Rubisco to exhibit kinetic
characteristics of red-type Rubiscos; (i) transplant a more
‘primitive’ red-type Rubisco isoform into chloroplasts and en-
gineer this isoform towards more eukaryotic red-type kinetic
properties; or (iii) transplant a functional high performing eu-
karyotic red-type Rubisco variant into chloroplasts. The prog-
ress and challenges for each of these strategies are discussed
below, and summarized in Fig. 4.

Engineer green-type Rubiscos to be more like red-type
Rubiscos

A greater number of red-type Rubisco sequences, structural
models, and kinetic data to pinpoint catalysis-enhancing se-
quence—structure could provide a route to rationally engi-
neer green-type Rubiscos to imitate red-type Rubisco kinetic
properties, while retaining their interactions with their cognate
chaperones and thus their chloroplast solubility. There has al-
ready been moderate success transplanting red algal sequence
into green algal Rubisco for enhanced catalytic performance
(Read and Tabita, 1994). Initial engineering approaches could
focus on sequence—structural variation in regions known to
influence catalysis, such as the LSu loop 6, C-terminal residues,
and/or the red latch residue. The kinetic impairment upon
transplanting the SSu BE—3F hairpin into other Rubiscos sug-
gests that complementary changes are required elsewhere in
the holoenzyme to functionally accommodate this structure
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Form IC Rubisco with
Form ID kinetics

Green-type Rubiscos
with red-type kinetics

Chloroplasts with
Form ID Rubisco

Identify eukaryotic Red-

Identify what confers Red Rubisco kinetics Rubisco chaperones

Candidate identification:
PMLs and comparative
genomics, transcriptomics
and proteomics

Structural characterization of high-performing
Red-type Rubiscos

in vivo localization of
candidate proteins
Detailed functional characterization of numerous
Red-type Rubiscos
Demonstrate interaction with
Rubisco subunit(s)

Preservation of subunit complementarity

Species-specific CbbX
dependence

Enhance R. sphaeroides
Rubisco expression and
activation status in
chloroplasts

Maintain chaperone
compatability

Functional importance of
PTMS

Rational design

Heterologous
expression of eukaryotic
Red Rubiscos in E. coli

Directed evolution

High-throughput screening of
Rubsico variants in E. coli

Utilize R. sphaeroides
solubility in E. coli

Introduce superior CO,-fixing solutions into chloroplasts

Fig. 4. Schematic of possible routes to engineer red-type Rubisco kinetics into green plants. Red-type Rubisco kinetics could be introduced into
green plants by introducing ‘red’-like sequence structure into (i) green-type Rubiscos or (i) the chloroplast-competent proteobacterial Rubisco from
R. sphaeroides, or by (jii) identifying the full complement of accessory proteins required to functionally express a high-performing eukaryotic red-
type Rubisco in chloroplasts. Experimental challenges and engineering approaches for each of these strategies are indicated. Abbreviations: PML,

photosynthetic mutant library.
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(Spreitzer et al., 2005; Joshi et al., 2015). Huge leaps have been
made in recent years in our understanding of green-type Ru-
bisco chaperone requirements (for a review, see Wilson and
Hayer-Hartl, 2018), and could be used to map the sequence
space in which modifications must be avoided to maintain their
chaperone interactions and provide some initial engineering
constraints. Making green-type Rubisco kinetics mirror those
of red-type Rubiscos is made more feasible with the advent of
the two synthetic biology expression systems for higher plant
Rubisco in E. coli (Aigner et al., 2017; Lin et al., 2020), which
greatly increase the throughput of Rubisco manipulation.

Enhance kinetic properties of chloroplast-soluble R.
sphaeroides Rubisco

Unlike red algal and diatom Rubiscos which fail to assemble
in chloroplasts, the proteobacterial red-type Rubisco from R.
sphaeroides assembles readily in both E. coli and chloroplasts
(Gunn et al., 2020). While R. sphaeroides Rubisco kinetic prop-
erties are insufficient to enhance PCA in chloroplasts, it can
be utilized as a chloroplast-soluble red-type Rubisco scaffold
that can be engineered towards higher carboxylation efficiency
by augmenting its sequence—structure with that from Form
ID Rubiscos. There are already viable routes to improving R.
sphaeroides Rubisco kinetics. Hybrid Rubiscos containing R.
sphaeroides LSus and SSus from eukaryotic red-type Rubiscos
exhibit dramatically altered kinetics (Joshi ef al., 2015; Gunn
et al., 2020). This suggests that more targeted SSu changes (i.e.
rational design) could yield improved kinetics. The ability to
test the folding/assembly of R. sphaeroides Rubisco in E. coli
(Gunn et al., 2020) benefits directed evolution approaches,
which have had initial success producing R. sphaeroides Ru-
bisco with 11% and 27% increases in carboxylation efliciency
and carboxylation rate, respectively (Zhou and Whitney, 2019).
In addition to catalytic improvements, there is room to op-
timize expression and activity of R. sphaeroides Rubisco in
chloroplasts. Rhodobacter sphaeroides Rubisco expression levels
in chloroplasts are lower than that of tobacco Rubisco (Gunn
et al., 2020), and exploiting a stronger promoter or introduc-
ing additional gene copies could boost expression. Moreover,
the lower carbamylation status of R. sphaeroides compared with
tobacco Rubisco in chloroplasts could represent a limitation
to CbbX availability, which could be circumvented by overex-
pression (Wei ef al., 2017). A lower activation status could also
be indicative of suboptimal CbbX modulation in the chlo-
roplast because of differences in the availability of ATP and/
or RuBP compared with the R. sphaeroides cytosol, or reflect
some other fundamental distinction between the activation
mechanism of red and green lineage Rubiscos.

Transplant a high performing red algal Rubisco into a
green plant

Nature has already evolved at least one red-type Rubisco iso-
form that could enhance PCA in chloroplasts: Rubisco from

G. monilis. See Sharwood (2017) for an elegant illustration of
the photosynthetic carbon assimilation advantage expected
from expressing G. monilis Rubisco in either C; chloroplasts
or C, bundle sheath cells. However, two key studies indicate
that G. monilis, G. sulphuraria, and Phaeodactylum tricornutum
Rubisco do not assemble in tobacco chloroplasts (Whitney
et al., 2001; Lin and Hanson, 2018). These red-type Rubiscos
accumulate in high abundance (5-30% of leaf protein) in in-
soluble fractions, and within the chloroplast. It has been sug-
gested that assembly could have been impeded by Rubisco
subunit interactions with extant green-type chaperones or
other plastome-located proteins (Joshi ef al., 2015), or because
of a strict requirement for cognate (or suite of) red-type Ru-
bisco chaperone(s) (Whitney et al., 2001; Lin and Hanson,
2018). It is likely that the latter is true as neither study detected
higher molecular weight complexes indicative of incompatible
binding of (green-type) chaperonins and chaperones to red-
type Rubisco subunits.

In order to successtully transplant a functional eukaryotic
red-type Rubisco into chloroplasts, we first need to understand
the chaperone requirements for red-type Rubiscos. While red
plastid genomes encode a Cpn60 chaperonin isoform, and a
DnaK (Hsp70) chaperone (Reith and Munholland, 1995), it
is not known if these are sufficient to fold rhodophyte Ru-
bisco in heterologous systems. Further, given the divergence
in plastome environment, red-type Rubiscos already having
an in-built RbcX (BE—PBF hairpin), and the time frame in
which the organisms evolved since the divergence of the red
and green plastid lineages, it is perhaps reasonable to specu-
late that rhodophytes have evolved a set of chaperones that
have no homologues to those found in chlorophytes. The pos-
sibility also exists that there may be plastid lineage- and/or spe-
cies-specific chaperone requirements. For example, individual
Arabidopsis chaperonins/chaperones show variability in their
ability to substitute for those from tobacco (Lin et al., 2020).

Many of the green-type chaperones were identified via
maize photosynthetic mutant libraries (for a review, see Wilson
and Hayer-Hartl, 2018), and a large mutant library for green
algae has been used to identify previously uncharacterized
genes involved in photosynthesis (Li ef al., 2019). A similar ap-
proach could be fruitful if applied to red algae. In addition to
harnessing the power of comparative analysis of the growing
number of available rhodophyte genomes (Blaby-Haas and
Merchant, 2019), proteomic approaches could identity candi-
date chaperone proteins present in the rhodoplast stroma that
could thus interact with Rubisco during biogenesis. Transcrip-
tome data indicate that red algal Rubisco expression is light in-
duced (Minoda et al., 2010), and further analyses of algal tissue
harvested under different growth conditions and/or develop-
mental stages could be informative. Biochemical approaches
could be employed to capture intermediate Rubisco—chap-
erone complexes. Co-localization studies to verify overlapping
subcellular location with Rubisco would be a useful first-pass
functional evaluation for putative chaperones—appropriate
transformation systems are available for various red algae and
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diatoms (Lapidot et al., 2002; Mikami et al., 2011; Karas et al.,
2015; Zienkiewicz et al., 2019).

While it seems likely that certain PTMs found in eukar-
yotic red-type Rubiscos may enhance the stability of the
holoenzyme, it is not known if these PTMs are essential for
folding/assembly. Thus, red-type Rubisco PTM requirements
may potentially be a non-trivial hurdle towards transplant-
ing functional eukaryotic red-type Rubiscos. Consideration
of green PTMs could also be vital—appending N-terminal
sequence from green-type Rubisco onto introduced red-type
Rubiscos may be necessary to maintain chloroplast PTMs
and protect the introduced Rubisco from proteolysis, as con-
sidered in previous engineering studies (for a summary, see
Sharwood, 2017). Assembly incompatibilities between to-
bacco and red-type Rubisco subunits (Whitney et al., 2001;
Lin and Hanson, 2018; Gunn et al., 2020) could be advan-
tageous as this means that green-type SSus need not be
scrubbed from the nuclear genome to prevent the formation
of undesirable hybrid Rubiscos. However, significant progress
has been made with the capability to do so (Donovan et al.,
2020; Khumsupan et al.,2020).To enhance red-type Rubisco
activation status in chloroplasts, co-expression of a compat-
ible CbbX is essential (Gunn et al., 2020). Engineering strate-
gies would benefit from understanding any species specificity
of Rubisco—CbbX interactions, and maximal activation of
Form ID Rubiscos will probably require both the nuclear-
and plastid-encoded CbbX isoforms (Loganathan et al., 2016;
Lin and Hanson, 2018). While it is expected that the first red
algal Rubisco to be successfully assembled in chloroplasts will
be expressed as an operon in the chloroplast, later fine-tuning
of red-type Rubisco expression could be achieved by hijack-
ing the endogenous green SSu promoters to control total
red-type Rubisco pools (Khumsupan et al., 2020).

Additional considerations for rational design
approaches

Careful consideration of Rubisco evolution may aid direct
Rubisco engineering strategies in approaches (i) and (ii)
above. Prior success identifying catalytic switches between
C; and C, Rubisco (Whitney ef al.,2011), and reconstructing
ancestral Rubisco sequences with distinct catalytic signatures
(Lin et al., 2022) may be the tip of the iceberg in terms of
how probing Rubisco evolution using phylogenetic relation-
ships could benefit our understanding of, and ability to engi-
neer, Rubisco. While there is potential for taking advantage
of recent advances in structure prediction algorithms (Baek
et al., 2021; Jumper et al., 2021), to make in silico mutations
and predict their effect on structure, the relevant chemistry
conferred by side chains may be beyond the current reso-
lution limits of these approaches. This is affirmed by differ-
ences in kinetics despite relatively little structural variation
in Rubiscos (Table 1; Fig. 3) and thus kinetic differences are
presumably conferred by relatively subtle sequence—structural

differences. Molecular dynamics simulations have contributed
to our understanding of the Rubisco catalytic mechanism
(Mauser et al.,2001; Kannappan and Gready, 2008; Cummins
et al., 2019), subunit interactions (van Lun et al., 2011), and
the potential role of SSus as CO, reservoirs (van Lun et al.,
2014). Further improvements to computational capabilities
are exciting—especially with regards to how they could be
effectively applied to the carbon fixation problem in crop
species.

Supplementary data

The following supplementary data are available at JXB online.
Table S1. Extended comparison table of Rubisco kinetics
from red- and green-type Rubisco lineages.
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