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Abstract. A Noetherian local ring (R,m) is called Buchsbaum if the difference `(R/ q)−
e(q, R), where q is an ideal generated by a system of parameters, is a constant independent
of q. In this article, we study the tight closure analog of this condition. We prove that in
an unmixed excellent local ring (R,m) of prime characteristic p > 0 and dimension at least
one, the difference e(q, R) − `(R/ q∗) is independent of q if and only if the parameter test
ideal τpar(R) contains m. We also provide a characterization of this condition via derived
category which is analogous to Schenzel’s criterion for Buchsbaum rings.

1. Introduction

Recall that in a Noetherian local ring (R,m), if q ⊆ R is an ideal generated by a system
of parameters, then the length `(R/ q) is always greater than or equal to the Hilbert-Samuel
multiplicity e(q, R). Moreover, R is Cohen-Macaulay if and only if `(R/ q) = e(q, R) for one
(or equivalently, all) such q. In general, the difference `(R/ q) − e(q, R) encodes interesting
homological properties of the ring R. For instance, it is known that under mild assumptions,
`(R/ q)−e(q, R) is uniformly bounded above for all parameter ideals q ⊆ R if and only if R is
Cohen-Macaulay on the punctured spectrum. A more interesting and subtle condition is that
the difference `(R/ q)−e(q, R) does not depend on q. Rings that satisfy this latter condition
are called Buchsbaum, and they have been studied extensively, see [38, 39, 40, 31, 9, 13],
among many others. We briefly summarize the classical theory into the following theorem
(see Section 2 and 3 for unexplained terminology):

Theorem 1.1. Let (R,m, k) be a Noetherian local ring of dimension d. Let q denote an
ideal generated by a system of parameters. Then the following conditions are equivalent:

(1) The difference `(R/ q)− e(q, R) is independent of q (i.e., R is Buchsbaum).
(2) `(qlim / q) is independent of q.1
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(3) For every system of parameters x1, . . . , xd, we have m · ((x1, . . . , xi) : xi+1) ⊆ (x1, . . . , xi)
for every i.

(4) The truncation τ<dRΓmR is quasi-isomorphic to a complex of k-vector spaces.

Now we suppose (R,m) is a Noetherian local ring of prime characteristic p > 0. A classical
result of Kunz [22] shows that R is regular if and only if the Frobenius endomorphism F : R→
R, x 7→ xp, is flat. Kunz’s theorem is the starting point in the study of singularities via the
Frobenius map. With the development of tight closure theory in Hochster–Huneke’s seminal
works [14, 16, 17], there is an explosion in the understanding of these “F-singularities”.
Among them, we recall that a Noetherian local ring (R,m) is F-rational if q∗ = q for all
ideals q ⊆ R that is generated by a system of parameters, where q∗ denotes the tight closure
of q (see Section 2 for detailed definitions). Excellent F-rational rings are Cohen-Macaulay:
this is basically due to the fact that tight closure captures certain colon ideals of parameter
ideals. In connection with Hilbert-Samuel multiplicity, Goto–Nakamura [11, 12] have shown
that, under mild assumptions, R is F-rational if and only if e(q, R) = `(R/ q∗) for one (or
equivalently, all) q, and R is F-rational on the punctured spectrum if and only if the difference
e(q, R)− `(R/ q∗) is uniformly bounded above for all parameter ideals q.

Roughly speaking, we can think of F-rationality as a tight closure analog and strengthening
of the Cohen-Macaulay property. From this perspective, the aforementioned results of Goto–
Nakamura strongly suggest that there should be a tight closure analog of Buchsbaum theory.
More precisely, it seems very natural to ask what rings satisfy the property that the difference
e(q, R)− `(R/ q∗), or `(q∗ / q), does not depend on the parameter ideal q. This question has
been studied by the second author in [30] and partial results are obtained. In this paper, we
develop such a Buchsbaum theory for tight closure and completely answer some questions
raised in [30]. We prove the following result which is in parallel with Theorem 1.1 (again,
we refer to Section 2 for unexplained terms below):

Main Theorem (=Theorem 5.1). Let (R,m, k) be an unmixed excellent local ring of prime
characteristic p > 0 and dimension d ≥ 1. Let q denote an ideal generated by a system of
parameters. Then the following conditions are equivalent:

(1) The difference e(q, R)− `(R/ q∗) is independent of q.
(2) `(q∗ / q) is independent of q.
(3) mq∗ ⊆ q for every q, that is, τpar(R) contains m.
(4) The ∗-truncation τ<d,∗RΓmR is quasi-isomorphic to a complex of k-vector spaces.

This paper is organized as follows. In Section 2 we collect preliminary results on tight
closure, local cohomology, Buchsbaum and generalized Cohen-Macaulay modules, and basic
knowledge of derived category that will be used throughout. In Section 3 we introduce limit
closure and prove (1) ⇔ (2) of the Main Theorem. Section 4 is devoted to an affirmative
answer to a question proposed by the second author in [30] about system of parameters that
are contained in the parameter test ideal, which will imply (3)⇒ (2) of the Main Theorem.
Finally, in Section 5 we conclude by proving the remaining parts of the Main Theorem.

Notations and Conventions. All rings appear in this paper are commutative with mul-
tiplicative identity 1. We will often use (R,m, k) to denote a Noetherian local ring with
unique maximal ideal m and residue field k = R/m. We refer the reader to [3, Chapter 1-4]
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for some basic notions such as Cohen-Macaulay rings, regular sequence, Koszul complex,
and the Hilbert-Samuel multiplicity. We refer the reader to [27, Chapter 13] for definition
and basic properties of excellent rings.

2. Preliminaries

Tight closure, test element, and test exponent. Let R be a Noetherian ring of prime
characteristic p > 0 and let I ⊆ R be an ideal of R. Set R◦ := R \

⋃
p∈MinR p. We recall that

the tight closure of I is the ideal

I∗ := {x | cxpe ∈ I [pe] for some c ∈ R◦ and for all e� 0},
where I [pe] := {xpe | x ∈ I} denotes the e-th Frobenius power of I.

An element c ∈ R◦ is called a test element if, for all ideals I ⊆ R, x ∈ I∗ if and only if
cxp

e ∈ I [pe] for all e ≥ 0. Test elements are known to exist when R is a reduced excellent local
ring [16, Theorem 6.1]. Fix a test element c. We say that pe is a test exponent of the pair

(c, I), if whenever cxp
e′ ∈ I [pe

′
] for some e′ ≥ e, then x ∈ I∗. The existence of test exponent

is closely related to the localization problem of tight closure, see [18]. In this article, we need
the following result of Sharp on the existence of test exponent that works simultaneously for
all ideals generated by a system of parameters.

Theorem 2.1 ([34, Corollary 2.4]). Let (R,m) be a reduced and equidimensional excellent
local ring of prime characteristic p > 0 and let c ∈ R◦ be a test element. Then there exists
e > 0 such that pe is a test exponent of (c, q) for every ideal q ⊆ R that is generated by a
system of parameters.

Let (R,m) be a Noetherian local ring of prime characteristic p > 0. The parameter test
ideal of R can be defined by

τpar(R) :=
⋂
q

(q : q∗),

where q runs over all ideals q generated by a system of parameters. Clearly, any test element
is contained in τpar(R). We say R is F-rational if τpar(R) = R, that is, q∗ = q for every
ideal q generated by a system of parameters. If R is F-rational then R is normal, and if
additionally R is excellent, then R is Cohen-Macaulay, see [19, Theorem 8.2]. In particular,
F-rational rings of dimension at most one are regular.

Frobenius action on local cohomology. Let R be a Noetherian ring of prime charac-
teristic p > 0. For any ideal I that is generated up to radical by x := x1, . . . , xt, the local
cohomology module H i

I(R) can be defined as the cohomology of the Čech complex

C•(x;R) := 0→ R→
t⊕
i=1

Rxi → · · · → Rx1···xt → 0.

The Frobenius endomorphism F : R→ R and its localizations thus induce a natural Frobe-
nius action F on H i

I(R) for each i. Of particular interest is the top local cohomology module,
which can be described as

H t
I(R) ∼= lim−→

n

R/(xn1 , . . . , x
n
t ),
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where the map in the system ϕn,m : R/(xn1 , . . . , x
n
t ) → R/(xm1 , . . . , x

m
t ) is the multiplication

by (x1 · · · xt)m−n for all m ≥ n. Then for each a ∈ H t
I(R), which is the canonical image of

some a + (xn1 , . . . , x
n
t ), we find that F (a) is the canonical image of ap + (xpn1 , . . . , x

pn
t ). We

define the tight closure of the zero submodule of H t
I(R) as follows

0∗Ht
I(R) = {η | cF e(η) = 0 for some c ∈ R◦ and for all e� 0}.

Suppose (R,m) is an equidimensional excellent local ring of dimension d, and x1, . . . , xd is a
system of parameters. It follows from the same argument as in [35, Proposition 3.3] that

(2.1) 0∗Hd
m(R)
∼= lim−→

n

(xn1 , . . . , x
n
d)∗

(xn1 , . . . , x
n
d)
.

We see that τpar(R) annihilates 0∗
Hd

m(R)
. We also note that, when R is Cohen-Macaulay, all

the transition maps in the above direct limit are injective. It follows that an excellent local
ring (R,m) is F-rational if and only if R is Cohen-Macaulay and 0∗

Hd
m(R)

= 0. We refer the

reader to [35, 36] for more details.
For a Noetherian domain R, the absolute integral closure of R, denoted by R+, is the

integral closure of R in an algebraic closure of the fraction field of R. If R is Noetherian and
reduced, then we define R+ :=

∏
p∈MinR(R/ p)+. We caution the reader that R+ is rarely

Noetherian as a ring. The plus closure of an ideal I ⊆ R is defined to be I+ := IR+ ∩ R.
The following important results are proved by Hochster–Huneke and Smith respectively, for
excellent local domains. But the statements can be immediately extended to the reduced
and equidimensional setting under our definition of R+.

Theorem 2.2 ([15, Theorem 1.1]). Let (R,m) be a reduced and equidimensional excellent
local ring of prime characteristic p > 0. Then R+ is a big Cohen-Macaulay R-algebra, i.e.,
every system of parameters of R is a regular sequence in R+.

Theorem 2.3 ([35, Theorem 5.1]). Let (R,m) be a reduced and equidimensional excellent
local ring of prime characteristic p > 0 and dimension d. Then for every ideal q generated
by a system of parameters, we have q∗ = q+ and that 0∗

Hd
m(R)

= ker(Hd
m(R)→ Hd

m(R+)).

A Noetherian local ring (R,m) is called F-injective if the natural Frobenius action on
H i

m(R) is injective for every i. F-rational rings are always F-injective, and F-injective rings
are reduced, see [7] or [25, Chapter 4].

Buchsbaum and generalized Cohen-Macaulay modules. In this subsection we recall
the basic definitions of Buchsbaum and generalized Cohen-Macaulay modules. We refer the
reader to [40] and [41] for more details.

Let (R,m) be a Noetherian local ring and let M be a finitely generated R-module of
dimension d. Then M is called generalized Cohen-Macaulay if H i

m(M) has finite length for
all i < d. A system of parameters x1, . . . , xd of M is called standard if

`(M/ qM)− e(q,M) =
d−1∑
i=0

(
d− 1

i

)
`(H i

m(M))
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where q := (x1, . . . , xd). We say M is a Buchsbaum R-module if every system of parameters
of M is standard. We say R is a generalized Cohen-Macaulay ring (resp. Buchsbaum ring)
if R is a generalized Cohen-Macaulay module (resp. Buchsbaum module) over itself.

Remark 2.4. With notation as above, we have

(1) Let (R,m) be homomorphic image of a Cohen-Macaulay ring (e.g., R is excellent, see
[21, Corollary 1.2]) and let M be a finitely generated R-module of dimension d. Then
M is generalized Cohen-Macaulay if and only if Mp is Cohen-Macaulay of dimension
d− dim(R/ p) for all p ∈ Spec(R)\{m}. In particular, R is generalized Cohen-Macaulay
if and only if R is equidimensional and Rp is Cohen-Macaulay for all p ∈ Spec(R)\{m},
see [32, Satz 2.5 and Satz 3.8] or [41, Lemma 1.2 and Lemma 1.4].

(2) We have thatM is a generalized Cohen-Macaulay R-module if and only if sup{`(M/ qM)−
e(q,M)} < ∞, where q runs over all ideals generated by a system of parameters of M ,
see [32, Satz 3.3] or [41, Lemma 1.1].

(3) Suppose M is a generalized Cohen-Macaulay R-module of dimension d. Then for every
ideal q generated by a system of parameters of M , we have

`(M/ qM)− e(q,M) ≤
d−1∑
i=0

(
d− 1

i

)
`(H i

m(M))

and equality holds when q is contained in a sufficiently large power of m (so such q is
standard), see [32, Satz 3.7] or [41, Lemma 1.5].

We will need the following two criterions of Buchsbaum modules.

Theorem 2.5 ([41, Proposition 3.2]). Let (R,m) be a Noetherian local ring and let M be a
finitely generated R-module of dimension d. Let {y1, . . . , yn} be a fixed generating set of m.
Then M is Buchsbaum if for any d element subset {x1, . . . , xd} of {y1, . . . , yn}, x1, . . . , xd is
a standard system of parameters of M .

Theorem 2.6 ([37] or [41, Theorem 3.4]). Let (R,m) be a Noetherian local ring and let M
be a finitely generated R-module of dimension d. Then M is Buchsbaum if and only if the
natural homomorphism H i(m,M) → H i

m(M) is surjective for all i < d, where H i(m,M)
denotes the i-th Koszul cohomology on any set of generators of m.

Derived torsion functors and truncation. Let R be a Noetherian ring and let I ⊆ R
be an ideal. For an R-module M , we use RΓIM to denote the derived I-power torsion of
M , often viewed as an object in D(R), the derived category of R-modules. To obtain an
explicit representative of RΓIM , one can either apply the usual I-power torsion functor to
an injective resolution of M , or use the Čech complex C•(x,R) ⊗M , where x = x1, . . . , xn
is any generating set of I up to radical. Note that the i-th cohomology of RΓIM is the i-th
local cohomology module of M supported at I.

We assign to D(R) the standard t-structure (D(R)≤0, D(R)≥0). We have the usual trun-
cation functors τ≤n and τ≥n so that for any object K ∈ D(R), there is a canonical triangle

τ<nK → K → τ≥nK
+1−→ .

With these notations, Schenzel proved the following criterion for Buchsbaum rings.



6 LINQUAN MA AND PHAM HUNG QUY

Theorem 2.7 ([31, Theorem 2.3]). Let (R,m, k) be a Noetherian local ring of dimension d.
Then R is Buchsbaum if and only if τ<dRΓmR is quasi-isomorphic to a complex of k-vector
spaces (i.e., it comes from an object of D(k)).

In particular, Theorem 2.7 implies immediately that if (R,m, k) is a Buchsbaum ring of
dimension d, then H i

m(R) is a k-vector space (i.e., annihilated by m) for every i < d. We
caution the reader that the converse is not true in general: there are many examples of
Noetherian local rings (R,m, k) of dimension d such that H i

m(R) is a k-vector space for each
i < d but R is not Buchsbaum, see [10]. Thus it is essential to work with a complex (or, in
the derived category) in Schenzel’s characterization of Buchsbaum rings.

Theorem 2.7 has many applications. For example, using Theorem 2.7, it is proved in [2]
that F-injective generalized Cohen-Macualay rings are Buchsbaum (this was conjectured by
Takagi and was first proved in [24] using other methods). The full results in [2] are stronger,
and it yields a tight closure analog of the corresponding statement. To explain this, we recall
that in [2], the ∗-truncation (or tight closure truncation) of RΓmR is defined as the object in
D(R) such that we have an exact triangle:

τ<d,∗RΓmR→ RΓmR→ Hd
m(R)/0∗Hd

m(R)[−d]
+1−→ .

In particular, hi(τ<d,∗RΓmR) = H i
m(R) for i < d and hd(τ<d,∗RΓmR) = 0∗

Hd
m(R)

.

Theorem 2.8 ([2, Theorem 3.6]). Let (R,m, k) be an equidimensional excellent local ring of
prime characteristic p > 0 and dimension d. Suppose R is F-injective and Rp is F-rational
for all p ∈ Spec(R)\{m}. Then τ<d,∗RΓmR is quasi-isomorphic to a complex of k-vector
spaces (i.e., it comes from an object of D(k)).

We shall see in Remark 5.4 that the equivalence (3)⇔ (4) in our Main Theorem should be
viewed as a generalization of Theorem 2.8. For now, we record the following simple lemma
which gives an alternative description of τ<d,∗RΓmR.

Lemma 2.9. Let (R,m) be a reduced and equidmensional excellent local ring of prime char-
acteristic p > 0 and dimension d. Then we have τ<d,∗RΓmR ∼= τ≤d(RΓm(R+/R)[−1]) in
D(R).

Proof. The short exact sequence 0→ R→ R+ → R+/R→ 0 induces

RΓm(R+/R)[−1]→ RΓmR→ RΓmR
+ +1−→ .

Taking cohomology and noting that Hj
m(R+) = 0 for all j < d by Theorem 2.2, we have

hj(RΓm(R+/R)[−1]) = Hj
m(R) for all j < d, and

hd(RΓm(R+/R)[−1]) ∼= ker(Hd
m(R)→ Hd

m(R+)) ∼= 0∗Hd
m(R).

where the last isomorphism follows from Theorem 2.3. In particular, the induced map

τ≤d(RΓm(R+/R)[−1])→ τ≤dRΓmR ∼= RΓmR→ Hd
m(R)/0∗Hd

m(R)[−d]



A BUCHSBAUM THEORY FOR TIGHT CLOSURE 7

vanishes after taking the d-th cohomology, and hence is the zero map in D(R) because
τ≤d(RΓm(R+/R)[−1]) lives in cohomology degree ≤ d and Hd

m(R)/0∗
Hd

m(R)
[−d] lives in coho-

mology degree d. Thus we have an induced map

τ≤d(RΓm(R+/R)[−1])→ τ<d,∗RΓmR,

which is readily seen to be a quasi-isomorphism. �

F-finite rings and the Γ-construction. Let R be a Noetherian ring of prime characteristic
p > 0 and let F e: R→ R, x 7→ xp

e
denote the e-th iterated Frobenius endomorphism on R.

To distinguish the source and target of the Frobenius, we adopt the commonly used notation
F e
∗R for the target of the Frobenius as a module over the source, that is, F e: R → F e

∗R.
Under this notation, elements in F e

∗R are denoted by F e
∗ r where r ∈ R, and the R-module

structure on F e
∗R is defined via r1 ·F e

∗ r2 = F e
∗ (r

pe

1 r2). R is called F-finite if F e
∗R is a finitely

generated R-module for some (or equivalently, all) e > 0. It is well-known that a Noetherian
F-finite ring is excellent and is a homomorphic image of an F-finite regular ring, see [23,
Theorem 2.5], [8, Remark 13.6], and [25, Chapter 10].

We will need Hochster–Huneke’s Γ-construction [16, Section 6] to pass from a complete
Noetherian local ring to an F-finite local ring. We briefly recall the construction here. Let
(R,m, k) be a complete Noetherian local ring with coefficient field k of characteristic p > 0.
We fix a p-base Λ of k and let Γ ⊆ Λ be a cofinite subset. We denote by kΓ,e the purely
inseparable extension of k by adjoining all pe-th roots of elements in Γ. Set

RΓ,e := R⊗̂kkΓ,e, and RΓ :=
⋃
e

RΓ,e.

It is readily seen that R → RΓ is faithfully flat, purely inseparable, and that mRΓ is the
unique maximal ideal of RΓ. We will use the following results.

Lemma 2.10 ([16, Lemma 6.6 and Lemma 6.13]). Let (R,m) be a complete Noetherian local
ring of prime characteristic p > 0. Then RΓ is F-finite for all cofinite Γ ⊆ Λ. If, in addition,
R is reduced, then for all sufficiently small choices of Γ cofinal in Λ, RΓ is reduced.

Lemma 2.11 ([30, Lemma 4.3 and Lemma 4.4]). Let (R,m) be an equidimensional complete
Noetherian local ring of prime characteristic p > 0 and dimension d such that Rp is F-
rational for all p ∈ Spec(R)\{m}. Then for all sufficiently small choices of Γ cofinal in
Λ, (qRΓ)∗ = q∗RΓ for all ideals q that are generated by a system of parameters, and that
0∗
Hd

m(RΓ)
= 0∗

Hd
m(R)
⊗R RΓ.

3. Tight closure and limit closure

The goal of this section is to explain (1)⇔ (2) in the Main Theorem. We deduce it using
a series of results on limit closure and the following result of Goto–Nakamura [12], which
can be viewed as a tight closure analog of the generalized Cohen-Macaulay property (this
theorem also partially motivates our work in this article, as mentioned earlier).

Theorem 3.1 ([12, Theorem 1.1]). Let (R,m) be an equidimensional excellent local ring of
prime characteristic p > 0 and dimension d. Then the following conditions are equivalent.

(1) sup{`(q∗ / q)} <∞, where q runs over all ideals generated by a system of parameters.
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(2) Rp is F-rational for every p ∈ Spec(R)\{m}.
(3) R is generalized Cohen-Macaulay and 0∗

Hd
m(R)

has finite length.

Moreover, when this is the case, we have that sup{e(q, R) − `(R/ q∗)} < ∞,2 where q runs
over all ideals generated by a system of parameters.

Limit closure. Let (R,m) be a Noetherian local ring of dimension d and let x1, . . . , xd be
a system of parameters. The limit closure of q := (x1, . . . , xd) in R is defined as

qlim :=
⋃
n≥0

(
(xn+1

1 , . . . , xn+1
d ) :R (x1 · · · xd)n

)
.

We note that qlim / q is the kernel of the natural map R/ q → Hd
m(R). In particular, qlim

is well-defined: it does not depend on the choice of its generators x1, . . . , xd. Moreover, by
(2.1), we know that

(3.1) 0∗Hd
m(R)
∼= lim−→

n

(xn1 , . . . , x
n
d)∗

(xn1 , . . . , x
n
d)lim

∼= lim−→
e

(q[pe])∗

(q[pe])lim
.

where the transition maps in each direct limit system are all injective.

Remark 3.2. Let (R,m) be an equidimensional excellent local ring of prime characteristic
p > 0 and let q ⊆ R be an ideal that is generated by a system of parameters. Then we have
qlim ⊆ q∗, see [19, Theorem 2.3]. It follows that we have inequalities:

`(R/ q) ≥ e(q, R) ≥ `(R/ qlim) ≥ `(R/ q∗),

where the second inequality follows from [4, Lemma 2.3], see also [26, Theorem 9] (note that
the first two inequalities above hold for any Noetherian local ring). Moreover, under mild
assumptions on R, certain equalities in the above chain of inequalities characterize R being
Cohen-Macaulay or F-rational. We refer the reader to [26] (and the reference therein) for
details towards this direction.

The following lemma is well-known to experts (it is implicit in [9] and [4]). Since we could
not find a good reference, we include a short argument.

Lemma 3.3. Let (R,m) be a generalized Cohen-Macaulay ring of dimension d. Then for
every ideal q generated by a system of parameters, we have

(3.2) `(qlim / q) ≤
d−1∑
i=0

(
d

i

)
`(H i

m(R)),

with equality if and only if q is standard.

Proof. We have `(qlim / q) = `(R/ q)− e(q, R) + e(q, R)− `(R/ qlim). By Remark 2.4 (3),

(3.3) `(R/ q)− e(q, R) ≤
d−1∑
i=0

(
d− 1

i

)
`(H i

m(R)).

2In fact, when R is unmixed, this is equivalent to (1) − (3) of the theorem, see Remark 3.5 (3).
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By [4, Corollary 4.3] and [33, Theorem 3.7], we have

(3.4) e(q, R)− `(R/ qlim) ≤
d−1∑
i=0

(
d− 1

i− 1

)
`(H i

m(R))

and equality holds when q is standard by [4, Theorem 5.1]. Putting (3.3) and (3.4) together
we obtain (3.2). If equality occurs in (3.2), then equality also occurs in (3.3) and thus q is
standard by definition. Finally, if q is standard then we have equality in both (3.3) and (3.4)
and thus we have equality in (3.2) as well. �

Remark 3.4. Let (R,m) be a Noetherian local ring and let q denote an ideal generated by
a system of parameters. If `(qlim / q) is independent of q, then as

`(qlim / q) = (`(R/ q)− e(q, R)) + (e(q, R)− `(R/ qlim)) ≥ `(R/ q)− e(q, R),

we know that {`(R/ q) − e(q, R)} is bounded (where q runs over all ideals generated by a
system of parameters). Thus R is generalized Cohen-Macaulay by Remark 2.4 (2). It follows
that every q that is contained in a sufficiently large power of m is standard (see Remark 2.4
(3)), and thus we have equality in Lemma 3.3 for all such q, but then we have equality in
Lemma 3.3 for all q since `(qlim / q) is independent of q. It follows that every q generated by
a system of parameters is standard by Lemma 3.3 again, and thus R is Buchsbaum.

Remark 3.5. The difference e(q, R)− `(R/ qlim) has been studied extensively in [4, 6, 5].

(1) A Noetherian local ring (R,m) such that sup{e(q, R) − `(R/ qlim)} < ∞ (where q runs
over all ideals generated by a system of parameters) is called pseudo generalized Cohen-
Macaulay in [6]. It follows from [6, Corollary 3.3] that if (R,m) is pseudo generalized

Cohen-Macaulay and R̂ is unmixed, then R is generalized Cohen-Macaulay.
(2) Similarly, a Noetherian local ring (R,m) such that e(q, R) − `(R/ qlim) is a constant

independent of q is called pseudo Buchsbaum in [5]. It is proved in [5, Theorem 1.1] that

if (R,m) is pseudo Buchsbaum and R̂ is unmixed, then R is Buchsbaum.
(3) Now suppose (R,m) an unmixed excellent local ring of prime characteristic p > 0 (thus

R̂ is also unmixed). If sup{e(q, R) − `(R/ q∗)} < ∞, then as qlim ⊆ q∗ by Remark 3.2,
we have sup{e(q, R)− `(R/ qlim)} <∞ and thus R is generalized Cohen-Macaulay. But
then Rp is F-rational for all p ∈ Spec(R)\{m} by [12, Theorem 1.2].

Now we prove the main result of this section.

Proposition 3.6. Let (R,m) be an equidimensional excellent local ring of prime character-
istic p > 0 and dimension d. Let q denote an ideal generated by a system of parameters.
Consider the following conditions

(1) The difference e(q, R)− `(R/ q∗) is independent of q.
(2) `(q∗ / q) is independent of q.

Then we have (2)⇒ (1), if additionally R is unmixed, then we also have (1)⇒ (2).

Proof. Suppose (2) holds. By Theorem 3.1, we know that R is generalized Cohen-Macaulay
and 0∗

Hd
m(R)

has finite length. By Remark 3.2, we have qlim ⊆ q∗. It follows that

`(q∗ / q) = `(qlim / q) + `(q∗ / qlim).
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Since R is generalized Cohen-Macaulay, by Lemma 3.3, for all e� 0 we have

(3.5) `(qlim / q) ≤
d−1∑
i=0

(
d

i

)
`(H i

m(R)) = `((q[pe])lim/ q[pe])

where the equality follows from the fact that q[pe] is standard, see Remark 2.4 (3) and Lemma
3.3. Moreover, we have q∗ / qlim ↪→ 0∗

Hd
m(R)

, and since 0∗
Hd

m(R)
has finite length, it follows from

(3.1) that (q[pe])∗/(q[pe])lim ∼= 0∗
Hd

m(R)
for all e� 0. In particular, for all e� 0 we have

(3.6) `(q∗ / qlim) ≤ `(0∗Hd
m(R)) = `((q[pe])∗/(q[pe])lim)

Now we note that for all e� 0, we have

`(qlim / q) + `(q∗ / qlim) = `(q∗ / q) = `((q[pe])∗/ q[pe]) = `((q[pe])lim/ q[pe]) + `((q[pe])∗/(q[pe])lim)

where the equality in the middle follows from our assumption that `(q∗ / q) is independent
of q. This combined with (3.5) and (3.6) shows that both `(qlim / q) and `(q∗ / qlim) are
independent of q. In particular, R is Buchsbaum by Remark 3.4 and thus every q is standard.
But then we have

e(q, R)− `(R/ q∗) = (e(q, R)− `(R/ q)) + `(q∗ / q)

is independent of q, so (1) holds.

Next we suppose (1) holds and R is unmixed (note that this implies R̂ is unmixed since
R is excellent). By Remark 3.2, we have qlim ⊆ q∗. Thus we have

e(q, R)− `(R/ q∗) = (e(q, R)− `(R/ qlim)) + `(q∗ / qlim).

Since e(q, R) − `(R/ q∗) is independent of q, we know that sup{e(q, R) − `(R/ qlim)} < ∞
and sup{`(q∗ / qlim)} <∞. Thus by Remark 3.5 (1), R is generalized Cohen-Macaulay. Now
by [4, Corollary 4.3] and [33, Theorem 3.7], we have

e(q, R)− `(R/ qlim) ≤
d−1∑
i=0

(
d− 1

i− 1

)
`(H i

m(R))

with equality holds when q is standard by [4, Theorem 5.1] (in particular, when q is contained
in a sufficiently high power of m by Remark 2.4 (3)). Moreover, as sup{`(q∗ / qlim)} < ∞,
by examining (3.1), we know that (q[pe])∗/(q[pe])lim ∼= 0∗

Hd
m(R)

for all e� 0.

Therefore, if e(q, R) − `(R/ q∗) is independent of q, then both e(q, R) − `(R/ qlim) and
`(q∗ / qlim) are independent of q. Now by Remark 3.5 (2), R is Buchsbaum. But then

`(q∗ / q) = (`(R/ q)− e(q, R)) + (e(q, R)− `(R/ q∗))

is independent of q, so (2) holds. �

Remark 3.7. It is evident from the proof of Proposition 3.6 that, if (R,m) is an unmixed
excellent local ring of prime characteristic p > 0 and if either (1) or (2) in Proposition 3.6
holds, then R is Buchsbaum and that q∗ / qlim ∼= 0∗

Hd
m(R)

for every ideal q that is generated

by a system of parameters.
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4. Relative Frobenius action on local cohomology

In this section, we study `(q∗ / q) when q is a parameter ideal contained in τpar(R). Our
full result, Theorem 4.3, answers positively a question of the second author [30, Question
1] and it immediately implies one implication ((3) ⇒ (2)) in the Main Theorem. Our main
technique is the relative Frobenius action on local cohomology introduced in [28], which turns
out to be very useful in the study of tight closure of parameter ideals.

Let R be a Noetherian ring of prime characteristic p > 0 and let J ⊆ I be ideals of R. The
Frobenius endomorphism F : R/J → R/J can be factored as a composition of two natural
maps:

R/J → R/J [p] � R/J,

where the second map is the natural projection and we denote the first map by FR, which
sends r+ J to rp + J [p] for all r ∈ R. The homomorphism FR induces the relative Frobenius
actions on local cohomology modules FR : H i

I(R/J) → H i
I(R/J

[p]). We define the relative
tight closure of the zero submodule of H i

I(R/J) as

0∗R
Hi

I(R/J)
:= {η | cF e

R(η) = 0 ∈ H i
I(R/J

[pe]) for some c ∈ R◦ and for all e� 0}.

It is easy to verify that, if J is an m-primary ideal, then 0∗R
H0

m(R/J)
= J∗/J , while if J = 0

then 0∗R
Hd

m(R/J)
= 0∗

Hd
m(R)

. Roughly speaking, we will use relative tight closure as a bridge to

connect tight closure of parameter ideals and tight closure of the zero submodule in the top
local cohomology module.

Remark 4.1. If (R,m) is an equidimensional excellent local ring and J = (y1, . . . , ys) such
that y1, . . . , ys, x1, . . . , xt is part of a system of parameters, then with I = (y1, . . . , ys, x1, . . . , xt),
we have by [28, Lemma 5.7] that

0∗R
Ht

I(R/J)
∼= lim−→

n

(J, xn1 , . . . , x
n
t )∗

(J, xn1 , . . . , x
n
t )

where the transition maps are multiplication by x1 · · · xt.

The following is our key technical lemma.

Lemma 4.2. Let (R,m) be an equidimensional excellent local ring of dimension d, and
x1, . . . , xd a system of parameters. Set qi = (x1, . . . , xi) for i ≤ d. Then for each i < d the
short exact sequence

0→ R/(qi : xi+1)
·xi+1−→ R/ qi −→ R/ qi+1 → 0

induces an exact sequence

(4.1) · · · → Hd−i−1
m (R/ qi)→ 0∗R

Hd−i−1
m (R/ qi+1)

→ 0∗R
Hd−i

m (R/ qi)
→ xi+10∗R

Hd−i
m (R/ qi)

→ 0,

and an injective map

Hd−i−1
m (R/ qi+1)

0∗R
Hd−i−1

m (R/ qi+1)

↪→ Hd−i
m (R/ qi)

0∗R
Hd−i

m (R/ qi)

.
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Proof. We first note that since dim(R/ qi) = d − i and qi+1 ⊆ Ann((qi : xi+1)/ qi), we have
that dim((qi : xi+1)/ qi) ≤ d− i− 1 and thus Hd−i

m (R/(qi : xi+1)) ∼= Hd−i
m (R/ qi). The short

exact sequence

0→ R/(qi : xi+1)
·xi+1−→ R/ qi −→ R/ qi+1 → 0

induces an exact sequence of local cohomology

· · · → Hd−i−1
m (R/ qi)

α−→ Hd−i−1
m (R/ qi+1)

β−→ Hd−i
m (R/ qi)

·xi+1−→ Hd−i
m (R/ qi)→ 0.

For each e ≥ 1 we have the following commutative diagram

Hd−i−1
m (R/ qi)

α−−−→ Hd−i−1
m (R/ qi+1)

β−−−→ Hd−i
m (R/ qi)

·xi+1−−−→ Hd−i
m (R/ qi)yF e

R

yF e
R

yF e
R

yF e
R

Hd−i−1
m (R/ q

[pe]
i )

αe−−−→ Hd−i−1
m (R/ q

[pe]
i+1)

βe−−−→ Hd−i
m (R/ q

[pe]
i )

·xp
e

i+1−−−→ Hd−i
m (R/ q

[pe]
i ).

Set a(R) =
∏d−1

i=0 Ann(H i
m(R)). We have dim(R/a(R)) < d and by [29, Corollary 4.4],

there exists N such that

a(R)NHd−i−1
m (R/ q

[pe]
i ) = 0

for all e ≥ 0. Thus, as R is equidimensional, we can choose c ∈ a(R)N ∩ R◦ and we have
cF e

R ◦ α = αe(cF
e
R) = 0 for all e ≥ 0. It follows that Im(α) ⊆ 0∗R

Hd−i−1
m (R/ qi+1)

. Furthermore,

we have β(0∗R
Hd−i−1

m (R/ qi+1)
) ⊆ 0∗R

Hd−i
m (R/ qi)

which follows from the middle square of the above

commutative diagram. Therefore we have an exact sequence

Hd−i−1
m (R/ qi)→ 0∗R

Hd−i−1
m (R/ qi+1)

→ 0∗R
Hd−i

m (R/ qi)
.

To obtain the exact sequence (4.1) it suffices to show

β(0∗R
Hd−i−1

m (R/ qi+1)
) = 0 :0∗R

Hd−i
m (R/ qi)

xi+1 = (0 :Hd−i
m (R/ qi)

xi+1) ∩ 0∗R
Hd−i

m (R/ qi)
.

Hence it is enough to show

β(0∗R
Hd−i−1

m (R/ qi+1)
) = β(Hd−i−1

m (R/ qi+1)) ∩ 0∗R
Hd−i

m (R/ qi)
.

This will follow from the last assertion about the injectivity of the induced homomorphism

(4.2)
Hd−i−1

m (R/ qi+1)

0∗R
Hd−i−1

m (R/ qi+1)

β→ Hd−i
m (R/ qi)

0∗R
Hd−i

m (R/ qi)

.

Thus it remains to establish that (4.2) is an injection. By Remark 4.1 we have

Hd−i−1
m (R/ qi+1)

0∗R
Hd−i−1

m (R/ qi+1)

∼= lim−→
n

R

(qi+1, x
n
i+2, . . . , x

n
d)∗

,

and that
Hd−i

m (R/ qi)

0∗R
Hd−i

m (R/ qi)

∼= lim−→
n

R

(qi, x
n
i+1, . . . , x

n
d)∗

.
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Moreover, one checks that the map β is induced by multiplication by xn−1
i+1 map

R

(qi+1, x
n
i+2, . . . , x

n
d)∗

·xn−1
i+1−−−→ R

(qi, x
n
i+1, . . . , x

n
d)∗

and taking a direct limit for all n. But for each n we have

(qi, x
n
i+1, . . . , x

n
d)∗ : xn−1

i+1 = (qi+1, x
n
i+2, . . . , x

n
d)∗

by [1, Theorem 2.3]. Thus the above multiplication by xn−1
i+1 map is injective for each n.

Therefore the direct limit map (4.2) is also injective. This finishes the proof. �

Now we can prove the main result of this section.

Theorem 4.3. Let (R,m) be an equidimensional excellent local ring of dimension d such
that τpar(R) is m-primary. Let q be an ideal generated by a system of parameters that is
contained in τpar(R). Then we have

`(q∗ / q) =
d−1∑
i=0

(
d

i

)
`(H i

m(R)) + `(0∗Hd
m(R)).

Proof. First note that, since τpar(R) is m-primary, Rp is F-rational for every p ∈ Spec(R)\{m}
and thus R is generalized Cohen-Macaulay and `(0∗

Hd
m(R)

) <∞ by Theorem 3.1.

By Remark 3.2, we have qlim ⊆ q∗. It follows that

`(q∗ / q) = `(qlim / q) + `(q∗ / qlim).

Since q ∈ τpar(R), by [19, Remark 5.11] and [13, Corollary 6.18], we know that q is a standard
system of parameters. Thus by Lemma 3.3 we have

`(qlim / q) =
d−1∑
i=0

(
d

i

)
`(H i

m(R)).

Therefore it is enough to show that `(q∗ / qlim) = `(0∗
Hd

m(R)
). We have natural maps

q∗ / q � q∗ / qlim ↪→ 0∗Hd
m(R).

It suffices to show that q∗ / q → 0∗
Hd

m(R)
is surjective (for then it implies q∗ / qlim ∼= 0∗

Hd
m(R)

).

Let q = (x1, . . . , xd) and let qi = (x1, . . . , xi). By Remark 4.1, we know that

0∗R
Hd−i

m (R/ qi)
∼= lim−→

n

(qi, x
n
i+1, . . . , x

n
d)∗

(qi, x
n
i+1, . . . , x

n
d)
.

Since xi+1 ∈ q ⊆ τpar(R), we have xi+10∗R
Hd−i

m (R/ qi)
= 0 for each i. Now we apply Lemma 4.2

to obtain that
0∗R
Hd−i−1

m (R/ qi+1)
� 0∗R

Hd−i
m (R/ qi)

is surjective for each i. It follows that the following composition

q∗ / q ∼= 0∗R
H0

m(R/ qd)
� 0∗R

H1
m(R/ qd−1)

� · · ·� 0∗R
Hd−i

m (R/ qi)
� · · ·� 0∗R

Hd
m(R/ q0)

∼= 0∗Hd
m(R)

is surjective. This finishes the proof. �
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5. The main result

In this section, we prove our Main Theorem.

Theorem 5.1. Let (R,m, k) be an unmixed excellent local ring of prime characteristic p > 0
and dimension d ≥ 1. Let q denote an ideal generated by a system of parameters. Then the
following conditions are equivalent:

(1) The difference e(q, R)− `(R/ q∗) is independent of q.
(2) `(q∗ / q) is independent of q.
(3) mq∗ ⊆ q for every q, that is, τpar(R) contains m.
(4) The ∗-truncation τ<d,∗RΓmR is quasi-isomorphic to a complex of k-vector spaces.

Remark 5.2. If dim(R) = 0, then conditions (1) and (2) above are empty conditions while
conditions (3) and (4) are simply saying that the nilradical of R is annihilated by m.

Proof of Theorem 5.1. First of all, (1) ⇔ (2) follows from Proposition 3.6 and (3) ⇒ (2)
follows from Theorem 4.3. We will show that (2)⇒ (4)⇒ (3) below.

Proof of (2)⇒ (4). Suppose `(q∗ / q) is independent of q, by Theorem 3.1, we know that Rp

is F-rational for all primes p ∈ Spec(R)\{m}. In particular, Rp is regular for all minimal
primes p of R. Since R is unmixed, it follows that R is reduced and equidimensional.

Next we note that by Remark 3.7, we know that R is Buchsbaum. Since R is excellent,

we know that q∗ R̂ = (q R̂)∗ (see [19, Proposition 1.5]) and that R̂p is F-rational for all

p ∈ Spec(R̂)\{m} (see [42, Theorem 3.1] or [25, Theorem 7.8]). Now we let R̂→ R̂Γ be the
Γ-construction with respect to a sufficiently small Γ such that

(a) R̂Γ is reduced and equidimensional.

(b) q∗ R̂Γ = (q R̂Γ)∗ for all q ⊆ R generated by a system of parameters.

(c) 0∗
Hd

m(R̂Γ)
∼= 0∗

Hd
m(R̂)
⊗R̂ R̂Γ = 0∗

Hd
m(R)
⊗R R̂Γ.

Note that such a choice of Γ exists by Lemma 2.10 and Lemma 2.11.

We set S := R̂Γ and n := mS. Then (R,m, k)→ (S, n, l) is a flat local extension such that
S/mS = l is a field. It follows that

τ<dRΓnS ∼= (τ<dRΓmR)⊗R S
is quasi-isomorphic to a complex of l-vector spaces as τ<dRΓmR is quasi-isomorphic to a
complex of k-vector spaces by Theorem 2.7. Thus we know that S is a Buchsbaum ring by
Theorem 2.7 again.

By construction, S is a reduced, equidimensional, F-finite Buchsbaum local ring such that
q∗ S = (qS)∗ for all q ⊆ R generated by a system of parameters. We fix a test element
c ∈ S◦ and fix e > 0 such that pe is a test exponent for all (c, qS), such a choice exists by
Theorem 2.1. It is easy to check that F e

∗S is a (finitely generated) Buchsbaum S-module.
Consider the following short exact sequence:

(5.1) 0→ S
·F e
∗ c−−→ F e

∗S → C → 0.

If we tensor the above short exact sequence with R/ q, then we obtain:

(5.2) 0→ (qS)∗/ qS → S/ qS
·F e
∗ c−−→ F e

∗S/ q ·F e
∗S → C/ qC → 0.
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Here we crucially used the fact that pe is a test exponent of (c, q) to identify the kernel of

S/ qS
·F e
∗ c−−→ F e

∗S/ q ·F e
∗S with (qS)∗/ qS. Our key observation is the following.

Claim 5.3. C is a Buchsbaum S-module.

Proof of Claim. For every q ⊆ R generated by a system of parameters, we have

e(qS,C) = e(qS, F e
∗S)− e(qS, S),

and by (5.2), we know that

`S(C/ qC) = `S(F e
∗S/ q ·F e

∗S)− `S(S/ qS) + `S((qS)∗/ qS).

Since S and F e
∗S are both Buchsbaum S-modules and

`S((qS)∗/ qS) = `S(q∗ S/ qS) = `R(q∗ / q)

is independent of the choice of q by assumption. It follows that

`S(C/ qC)−e(qS,C) = (`S(F e∗S/ q ·F e∗S)− e(qS, F e∗S))− (`S(S/ qS)− e(qS, S))+ `S((qS)∗/ qS)

is independent of q. This implies that every such q is standard on C (more precisely, every
system of parameters of R is a standard system of parameters of C). But since mS = n, we
can fix a generating set of n that are elements in m. By Theorem 2.5, C is a Buchsbaum
S-module. �

At this point, if we compare (5.2) with the long exact sequence of Koszul homology with
respect to q = (x1, . . . , xd) induced by (5.1), we obtain a surjection

H1(x1, . . . , xd;C) � (qS)∗/ qS ∼= q∗ S/ qS.

It is well-known that, as C is Buchsbaum, H1(x1, . . . , xd;C) is annihilated by n (for exam-
ple see [31, Theorem 2.3]). It follows that q∗ S/ qS is annihilated by n and thus q∗ / q is
annihilated by m. This establishes (2)⇒ (3). We will not use this in the sequel though.

Now we return to the proof of (2)⇒ (4). Consider the exact triangle:

RΓnC[−1]→ RΓnS
·F e
∗ c−−→ RΓnF

e
∗S

+1−→ .

Since F e
∗S is Buchsbaum, Hj

n(F e
∗S) is annihilated by F e

∗ n for all j < d (see Theorem 2.7),
thus the long exact sequence of cohomology induced by the above triangle splits as

(5.3) 0→ Hj−1
n (F e

∗S)→ hj(RΓnC[−1])→ Hj
n(S)→ 0

for all j < d, and

0→ Hd−1
n (F e

∗S)→ hd(RΓnC[−1])→ Hd
n (S)

·F e
∗ c−−→ Hd

n (F e
∗S).

Since (qS)∗/(qS) ∼= ker(S/ qS
·F e
∗ c−−→ F e

∗S/ q ·F e
∗S) all q as in (5.2), by taking a direct limit

for all q[pe] we know that (see (2.1)):

ker(Hd
n (S)

·F e
∗ c−−→ Hd

n (F e
∗S)) = 0∗Hd

n (S).

Thus we have

(5.4) 0→ Hd−1
n (F e

∗S)→ hd(RΓnC[−1])→ 0∗Hd
n (S) → 0.
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Now by the definition of ∗-truncation, we have the following diagram:

τ<d,∗RΓnS // RΓnS ∼= τ≤dRΓnS // Hd
n (S)/0∗

Hd
n (S)

[−d]
+1 //

τ≤d(RΓnC[−1])

OO
0

55

where the dotted arrow is the zero map in D(S): this is because the image of hd(RΓnC[−1]) is
zero inHd

n (S)/0∗
Hd

n (S)
, but τ≤d(RΓnC[−1]) lives in cohomology degree≤ d whileHd

n (S)/0∗
Hd

n (S)
[−d]

only lives in cohomology degree d. It follows that there is an induced map in D(S):

τ≤d(RΓnC[−1])→ τ<d,∗RΓnS.

Moreover, the induced maps on cohomology

hj(τ≤d(RΓnC[−1])) ∼= hj(RΓnC[−1]) � Hj
n(S), where j < d, and

hd(τ≤d(RΓnC[−1])) ∼= hd(RΓnC[−1]) � 0∗Hd
n (S)

are all surjective by (5.3) and (5.4).
We now invoke Theorem 2.6. Since C is a Buchsbaum S-module by Claim 5.3, Theorem

2.6 tells us that

Hj(n, C) � Hj
n(C)

is surjective for all j ≤ d− 1. That is, if we consider the natural map

K•(n, C)[−1]→ RΓnC[−1],

where K•(n, C) denote the cohomological Koszul complex on a generating set of n, then the
induced map on cohomology

hj(K•(n, C)[−1])→ hj(RΓnC[−1])

is surjective for all j ≤ d.
Putting all these together, if we consider the induced composition map

τ≤d(K•(n, C)[−1])→ τ≤d(RΓnC[−1])→ τ<d,∗RΓnS,

then the induced map on each cohomology is surjective. But K•(n, C) is quasi-isomorphic
to a complex of l-vector spaces: for example one can choose a regular local ring (A, n, l) that
surjects onto S and note that K•(n, C) ∼= R HomA(l, C), the latter is obviously a complex of
l-vector spaces. Now we have τ≤d(K•(n, C)[−1]) is quasi-isomorphic to a complex of l-vector
spaces, and it follows from [40, II, Proposition 4.3] (or use the dual statement of [2, Lemma
2.4]) that τ<d,∗RΓnS is quasi-isomorphic to a complex of l-vector spaces. In particular, it is
quasi-isomorphic to a complex of k-vector spaces.

Finally, since 0∗
Hd

n (S)
∼= 0∗

Hd
m(R)
⊗R S, it is easy to see that

τ<d,∗RΓnS ∼= (τ<d,∗RΓmR)⊗R S.
Since (R,m, k)→ (S, n, l) is faithfully flat, the natural map

τ<d,∗RΓmR→ (τ<d,∗RΓmR)⊗R S ∼= τ<d,∗RΓnS
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induces an injection on each cohomology. As τ<d,∗RΓnS is quasi-isomorphic to a complex
of k-vector spaces, it follows from [2, Lemma 2.4] that τ<d,∗RΓmR is quasi-isomorphic to a
complex of k-vector spaces. This completes the proof of (2)⇒ (4). �

Proof of (4)⇒ (3). First of all, since τ<d,∗RΓmR is quasi-isomorphic to a complex of k-vector
spaces, H i

m(R) and 0∗
Hd

m(R)
are k-vector spaces for all i < d (in particular, they have finite

length). Thus by Theorem 3.1, we know that Rp is F-rational (and hence regular) for all
minimal primes p of R. Since R is unmixed, it follows that R is reduced and equidimensional.

Now let R+ be the absolute integral closure of R and let x := x1, . . . , xd be any system of
parameters. The short exact sequence

0→ R→ R+ → R+/R→ 0

induces a diagram (where K•(x,R) denotes the usual homological Koszul complex):

K•(x,R)⊗RΓm(R+/R)[−1] //

∼=
��

K•(x,R)⊗RΓmR //

∼=
��

K•(x,R)⊗RΓmR
+

∼=
��

+1 //

K•(x,R
+/R)[−1] // K•(x,R) // K•(x,R

+)
+1 //+1 //

.

Taking the cohomology of the second line, we obtain (set q = (x1, . . . , xd)):

0 = h−1K•(x,R
+)→ h0(K•(x,R

+/R)[−1])→ R/ q→ R+/ qR+

where the leftmost 0 follows from the fact that x = x1, . . . , xd is a regular sequence on R+

by Theorem 2.2. It follows that

(5.5) h0(K•(x,R)⊗RΓm(R+/R)[−1]) ∼= h0(K•(x,R
+/R)[−1]) ∼= q+ / q ∼= q∗ / q

where the last isomorphism follows from Theorem 2.3.
Next, we note that the exact triangle

τ≤d(RΓm(R+/R)[−1])→ RΓm(R+/R)[−1]→ τ>d(RΓm(R+/R)[−1])
+1−→

induces an exact triangle

K•(x,R)⊗ τ≤d(RΓm(R+/R)[−1]) → K•(x,R)⊗RΓm(R+/R)[−1](5.6)

→ K•(x,R)⊗ τ>d(RΓm(R+/R)[−1])
+1−→ .

Since τ>d(RΓm(R+/R)[−1]) lives in cohomology degree > d and K•(x,R) is a complex of
finite free R-modules whose terms sit in cohomology degree [−d, 0], we have

h0
(
K•(x,R)⊗ τ>d(RΓm(R+/R)[−1])

)
= h−1

(
K•(x,R)⊗ τ>d(RΓm(R+/R)[−1])

)
= 0.

Thus taking the cohomology of (5.6), we obtain that

h0
(
K•(x,R)⊗ τ≤d(RΓm(R+/R)[−1])

) ∼= h0
(
K•(x,R)⊗RΓm(R+/R)[−1]

)
.

Combining this with (5.5) we have

q∗ / q ∼= h0
(
K•(x,R)⊗ τ≤d(RΓm(R+/R)[−1])

)
.



18 LINQUAN MA AND PHAM HUNG QUY

Finally, by Lemma 2.9, τ≤d(RΓm(R+/R)[−1]) ∼= τ<d,∗RΓmR is quasi-isomorphic to a com-
plex of k-vector spaces. It follows that

h0
(
K•(x,R)⊗ τ≤d(RΓm(R+/R)[−1])

)
is a k-vector space. Therefore q∗ / q is annihilated by m for every q generated by a system
of parameters, i.e., τpar(R) contains m. �

�

Remark 5.4. Suppose (R,m) is an equidimensional excellent local ring such that Rp is
F-rational for all p ∈ Spec(R)\{m}. It is well-known that under these assumptions, the pa-
rameter test ideal τpar(R) is m-primary (for example, see [20, Theorem 6.8]). If, additionally,
R is F-injective, then we claim that τpar(R) contains m. It is enough to show that τpar(R) is a
radical ideal, but if rp

e ∈ τpar(R) then for every ideal q generated by a system of parameters,
we have

(r q∗)[pe] = rp
e

(q∗)[pe] ⊆ rp
e

(q[pe])∗ ⊆ q[pe],

and it follows from [24, Theorem 1.1] that r q∗ ⊆ q and hence r ∈ τpar(R) as wanted. Thus,
Theorem 5.1 (3) ⇒ (4) should be viewed as a generalization of Theorem 2.8, and Theorem
5.1 (3)⇒ (2) should be viewed as a generalization of [30, Main Theorem].

Lastly, we point out that even in dimension one, the unmixed assumption is necessary in
Theorem 5.1 (at least for (2)⇒ (3)), as the following example shows.

Example 5.5. Let k be a field of characteristic p > 0 and let (R,m) = k[[x, y]]/(xy)∩(x, y)3.
Then R is a one-dimensional excellent local ring. Note that R is not unmixed: m = (x, y)
is an associated prime of R. We claim that `(q∗ / q) = 2 for every q = (z) * (x) ∪ (y) but
τpar(R) + m. To see this, first note that

H0
m(R) = k · 〈xy〉 = (xy) ⊆ R

and that
R := R/H0

m(R) = R/(xy) ∼= k[[x, y]]/(xy).

It follows that R is Buchsbaum (as H0
m(R) is annihilated by m), and since H1

m(R) ∼= H1
m(R),

we have

0∗H1
m(R)
∼= 0∗

H1
m(R)

= k · 〈 1

x+ y
〉.

Now for each q = (z) * (x) ∪ (y), since R is Buchsbaum, we know by Lemma 3.3 that

`(qlim / q) = `(H0
m(R)) = 1.

By Remark 3.2 we know that q∗ / qlim ↪→ 0∗
H1

m(R)
. But qlim R = qR since R is Cohen-Macaulay

while q∗R = (qR)∗ 6= qR as R is not F-rational (where the first equality follows from [14,
Proposition 4.1 (j)]). It follows that q∗ 6= qlim and thus q∗ / qlim ∼= 0∗

H1
m(R)

since `(0∗
H1

m(R)
) = 1.

Therefore we have
`(q∗ / q) = `(q∗ / qlim) + `(qlim / q) = 2.

Finally, note that x + y is a minimal reduction of m = (x, y), and since tight closure agrees

with integral closure for principal ideals (see [14, Corollary 5.8]), we have (x+y)∗ = (x+ y) =
m. Since m2 * (x+ y) by a simple computation, we have τpar(R) + m.
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