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Abstract The long standing Lech’s conjecture in commutative algebra states
that for a flat local extension (R,m) → (S, n) of Noetherian local rings, we
have an inequality on the Hilbert–Samuel multiplicities: e(R) ≤ e(S). In gen-
eral the conjecture is wide open when dim R > 3, even in equal characteristic.
In this paper, we prove Lech’s conjecture in all dimensions, provided (R,m)

is a standard graded ring over a perfect field localized at the homogeneous
maximal ideal. We introduce the notions of lim Ulrich and weakly lim Ulrich
sequences. Roughly speaking these are sequences of finitely generated mod-
ules that are not necessarily Cohen–Macaulay, but asymptotically behave like
Ulrich modules. We prove that the existence of these sequences imply Lech’s
conjecture. Though the existence of Ulrich modules is known in very lim-
ited cases, we construct weakly lim Ulrich sequences for all standard graded
domains over perfect fields of positive characteristic.

1 Introduction

Around 1960, Lech made the following remarkable conjecture on the Hilbert–
Samuel multiplicities of Noetherian local rings [20]:
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Conjecture (Lech’s conjecture) Let (R,m) → (S, n) be a flat local extension
of Noetherian local rings. Then e(R) ≤ e(S).

This conjecture was proved by Lech [20,21] when dim R ≤ 2, and also
when the ring S/mS is a complete intersection. In [23], the author proved
the conjecture whenever dim R ≤ 3 and R contains a field. Besides for these
families, the conjecture has remained essentially open; see [9–12,22,23,25].

The main result of this paper settles Lech’s conjecture for a large class of
rings of arbitrary dimension.

Theorem A (=Theorem 3.8) Let (R,m) → (S, n) be a flat local extension
of Noetherian local rings. Suppose (R,m) is a standard graded ring over a
perfect field localized at the homogeneous maximal ideal. Then e(R) ≤ e(S).

We recall that anN-graded ring over a field k is standard graded if it is gen-
erated over k by degree one forms. It is worth pointing out that in Theorem A,
the ring S need not be a localization of a graded ring.

Our main ingredient in the proof of Theorem A is a notion called a (weakly)
limUlrich sequence, which is a special type of a (weakly) limCohen–Macaulay
sequence developed by Bhatt, Hochster and the author in [1], see also [15].

Roughly speaking, a sequence {Mn}n≥0 of finitely generated R-modules
is lim Cohen–Macaulay (resp., weakly lim Cohen–Macaulay) if dim Mn =
dim R and the lengths of the higherKoszul homologymodules ofMn (resp., the
first higher Euler characteristics of Mn) with respect to a system of parameters
of R grow relatively slowly compared to the minimal number of generators
of Mn . A (weakly) lim Cohen–Macaulay sequence {Mn}n≥0 is (weakly) lim
Ulrich if theminimal number of generators ofMn is asymptotically, asn → ∞,
equal to the Hilbert–Samuel multiplicitiy of Mn .

In what follows, by a small Cohen–Macaulay R-module we mean a finitely
generated maximal Cohen–Macaulay R-module. An Ulrich module is a small
Cohen–Macaulay module whose minimal number of generators is equal to
its Hilbert–Samuel multiplicity. When M is a small Cohen–Macaulay module
(resp., an Ulrich module), the constant sequence {Mn = M} is lim Cohen–
Macaulay (resp., lim Ulrich).

One of the main results in [1] is that the existence of lim Cohen–Macaulay
sequences implies Serre’s conjecture on positivity of intersectionmultiplicities
[28], which greatly extends the earlier observation that the existence of small
Cohen–Macaulay modules implies Serre’s conjecture [14]. Similarly, it was
an earlier observation of Hochster–Huneke and Hanes that the existence of
Ulrich modules implies Lech’s conjecture, see [9]. We generalize this idea and
prove the following

Theorem B (=Theorem 2.11) Let (R,m) → (S, n) be a flat local extension
of Noetherian local rings such that R is a domain. If R admits a weakly lim
Ulrich sequence, then e(R) ≤ e(S).
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Ulrich modules were introduced in [29], under the name maximally gen-
erated maximal Cohen–Macaulay modules. However the existence of such
modules is known only in a few special cases; for example, strict complete
intersections [13], and rings with strong combinatorial properties such as
generic determinantal rings [4] and Veronese subrings of polynomial rings
[7,27]. One of the difficulties is that we do not know the existence of small
Cohen–Macaulay modules. But even over Cohen–Macaulay rings, the exis-
tence of Ulrich modules is only known when the dimension of the ring is at
most one (or at most two in the standard graded case, see [2,7]).

The main contribution of this paper is to prove that, in contrast with Ulrich
modules, weakly lim Ulrich sequences exist over any standard graded ring
over a perfect field of characteristic p > 0. This leads to the aforementioned
result on Lech’s conjecture in positive characteristic. The characteristic 0 case
of Theorem A then follows from reduction to characteristic p > 0.

Theorem C (=Theorem 3.4) Let (R,m) be a Noetherian standard graded
domain over an infinite F-finite field of characteristic p > 0 localized at the
homogeneous maximal ideal. Then R admits a weakly lim Ulrich sequence.

It should be pointed out that even when (R,m) is Cohen–Macaulay, the
modules constructed in the weakly limUlrich sequence in TheoremC need not
be small Cohen–Macaulay. Thus it is very important that we allow the weakly
lim Cohen–Macaulay property, that is, to control the asymptotic behavior of
the higher Koszul homology modules (rather than requiring them to be zero).

Further developments on (weakly) lim Ulrich sequences

Since the preliminary version of this paper was released on the arXiv, there
has been some further progress on (and applications of) lim Ulrich sequences.
We summarize some major results:

• In [18], we introduced and studied a version of lim Ulrich sequences of
coherent sheaves. We generalized Theorem 3.4 using sheaf cohomology
and computed the class in the Grothendieck group of certain lim Ulrich
sequences, see Remark 3.7. We used these results to obtain various bounds
on Betti numbers and Dutta multiplicities.

• In [19], we use limUlrich sequences to prove that over any standard graded
Cohen–Macaulay ring, the cone of Betti tables of graded modules of finite
length and finite projective dimension is the same as the corresponding
cone in the case of polynomial rings. This was proved in [5] when the
ring has an Ulrich module. We then obtain a version of the “multiplicity
conjecture” (see [6, Corollary 0.3]) for arbitrary standard graded rings.

• In [30], Yhee construted a two-dimensional complete local domain that
does not admit anUlrichmodule or even aweakly limUlrich sequence. The
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example is neither normal nor Cohen–Macaulay (in fact, the S2-ification of
the ring in the example is regular). Thuswe still hope for the existence of lim
Ulrich sequences for normal or Cohen–Macaulay rings, see Question 3.10.

Notations and conventions

Throughout the rest of this paper, all rings are commutative, Noetherian, with
multiplicative identity. We use νR(M) to denote the minimal number of gen-
erators of an R-module M and �R(M) to denote the length of M .

2 Weakly lim Cohen–Macaulay and weakly lim Ulrich sequences

In this section we introduce lim Ulrich and weakly lim Ulrich sequences. We
begin by collecting some basic facts about Hilbert–Samuel multiplicities and
connections with Euler characteristics of Koszul complexes, see [28, Page
99–101], [17, Chapter 11], and [3, Chapter I 4.6 and 4.7] for more details.

Let (R,m) be a local ring of dimension d and I ⊆ R be anm-primary ideal.
Let M be a finitely generated R-module. The Hilbert-Samuel multiplicity of
M with respect to I can be defined as

e(I, M) = lim
t→∞ d! · �R(M/I t M)

td
.

In the case M = R and I = m, we will write e(R) for e(m, R). In general,
e(I, M) is always an integer and is positive if and only if dim M = d. The
multiplicity e(I, −) is additive on short exact sequences. It follows that if M
has a prime filtration with factors {R/Pi }, then e(I, M) = ∑

i e(I, R/Pi ). In
particular, if R is a domain then e(I, M) = rankR(M) · e(R).

If two m-primary ideals I and J in R have the same integral closure, then
e(I, M) = e(J, M). This often reduces the computation of multiplicities to
the case where I is a parameter ideal: when R/m is an infinite field, every
m-primary ideal I is integral over an ideal generated by a system of parame-
ters x = x1, . . . , xd , which is called a minimal reduction of I . It follows that
e(I, M) = e(x, M), and the latter can be computed using the Euler character-
istic of the Koszul complex on x :

e(x, M) = χ(x, M) := χ(K•(x, M)) =
d∑

i=0

(−1)i�R(Hi (x, M)).
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Wewill use this formula repeatedly throughout this article. Let us alsomention
that one defines the higher Euler characteristic by

χ j (x, M) =
d∑

i= j

(−1) j−i�R(Hi (x, M)).

Wenote that, to define the (higher) Euler characteristicχ(y, M) orχ j (y, M)

for a sequence of elements y in R, we only need that �R(M/(y)M) < ∞ (but
y need not be a system of parameters of R). The following lemma on Euler
characteristic will be used.

Lemma 2.1 Let (R,m) be a local ring and y, z ∈ m. Let N be a finitely
generated R-module such that �R(N/(yz)N ) < ∞. Thenwe haveχ(yz, N ) =
χ(y, N ) + χ(z, N ).

Proof We can replace R and N by their completions, since this will not change
χ . Let V be a coefficient ring of R and we can view N as a module over the
regular ring A = V [[y, z]] with �A(N/(yz)N ) = �R(N/(yz)N ) < ∞. Since
A and R have the same residue field, the Euler characteristic computed over
A and R are the same, and the desired formula follows from the additivity of
χ A(−, N ) applied to the short exact sequence 0 → A/y → A/yz → A/z →
0 (see [28, Page 107]). �	

Our definitions of (weakly) lim Ulrich sequences depend on the notion of
(weakly) lim Cohen–Macaulay sequences introduced and developed in [1,15].

For two functions f (n), g(n): N → R≥0, we write f (n) = o(g(n)) if
lim

nå→∞
f (n)
g(n)

= 0.

Definition 2.2 Let (R,m) be a local ring of dimension d. A sequence of
finitely generated R-modules {Mn} is called weakly lim Cohen–Macaulay, if
dim Mn = d for all n and there exists a system of parameters x = x1, . . . , xd
of R such that

χ1(x, Mn) = o(νR(Mn)).

The sequence {Mn} is called lim Cohen–Macaulay, if dim Mn = d for all n
and for all i ≥ 1,

�R(Hi (x, Mn)) = o(νR(Mn)).

Remark 2.3 There exist weakly lim Cohen–Macaulay sequences that are not
lim Cohen–Macaulay, see [15, paragraph before Conjecture 10.1].

We prove some basic facts about weakly lim Cohen–Macaulay sequences.
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Lemma 2.4 Let (R,m) be a local ring of dimension d. Then a sequence of
finitely generated modules {Mn} is weakly lim Cohen–Macaulay if and only if
there exists a system of parameters x of R such that

lim
n→∞

e(x, Mn)

�R(Mn/(x)Mn)
= 1.

Proof First of all we have

νR(Mn) ≤ �R(Mn/(x)Mn) ≤ νR(Mn) · �R(R/(x)).

Thus it doesn’t matter whether we use �R(Mn/(x)Mn) or νR(Mn) in the def-
inition of weakly lim Cohen–Macaulay sequence, i.e., {Mn} is weakly lim
Cohen–Macaulay if and only if χ1(x, Mn) = o(�R(Mn/(x)Mn)). The lemma
follows by noting that

e(x, Mn) = χ(x, Mn) = �R(Mn/(x)Mn) − χ1(x, Mn).

�	
Lemma 2.5 Let (R,m) be a local domain of dimension d. If {Mn} is weakly
lim Cohen–Macaulay, then there exists a constant C such that for all n,

rankR(Mn) ≤ νR(Mn) ≤ C · rankR(Mn). (2.5.1)

In particular, we can use rankR(Mn) in place of νR(Mn) in the definition of
lim Cohen–Macaulay and weakly lim Cohen–Macaulay sequences.

Proof Since R is a domain, we have that

rankR(Mn) · e(x, R) = e(x, Mn) = �R(Mn/(x)Mn) − χ1(x, Mn)

≥ νR(Mn) − χ1(x, Mn).

Dividing by νR(Mn) we obtain that

rankR(Mn) · e(x, R)

νR(Mn)
≥ 1 − χ1(x, Mn)

νR(Mn)
.

Since {Mn} is weakly lim Cohen–Macaulay, the right hand side tends to 1
when n → ∞. Thus there exists ε > 0 such that for all n sufficiently large,

νR(Mn) ≤ (1 + ε)e(x, R)rankR(Mn).

We now simply pick C 
 (1 + ε)e(x, R) that also works for all small values
of n.
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To see the last statement, note that if we know �R(Hi (x, Mn)) =
o(rankR(Mn)) for all i ≥ 1 (resp., χ1(x, Mn) = o(rankR(Mn))), then clearly
{Mn} is lim Cohen–Macaulay (resp., weakly lim Cohen–Macaulay) since
rankR(Mn) ≤ νR(Mn). Conversely, if {Mn} is (weakly) lim Cohen–Macauly,
then by (2.5.1) we know that o(rankR(Mn)) and o(νR(Mn)) are equivalent.
This completes the proof. �	

In [1], it is proved that the definition of lim Cohen–Macaulay sequence is
independent of the choice of the system of parameters (see also [18, Lemma
5.7]). Herewe prove the analogous statement for weakly limCohen–Macaulay
sequence.

Proposition 2.6 Let (R,m) be a local ring of dimension d. If {Mn} is a weakly
lim Cohen-Macaulay sequence, then

χ1(x, Mn) = o(νR(Mn)) (†)

for every system of parameters x of R.

Proof We first note that if (†) holds for x = x1, . . . , xd , then it holds
for xt = xt11 , . . . , xtdd . Since for every finitely generated R-module M , we
have e(xt , M) = (t1 · · · td) · e(x, M) while �R(M/(xt )M) ≤ (t1 · · · td) ·
�R(M/(x)M), therefore

χ1(x
t , Mn) = �R(Mn/(x

t )Mn) − e(xt , Mn) ≤ (t1 · · · td)χ1(x, Mn)

= o(νR(Mn)).

We next note that given two system of parameters x = x1, . . . , xd and y =
y1, . . . , yd of R, we can always connect x, y by a chain of systemof parameters
such that each two consecutive only differ by one element. Thus it suffices to
show that if (†) holds for x, x2, . . . , xd , then it holds for y, x2, . . . , xd . By the
discussion in the first paragraphwe can replace x by xt for t 
 0 to assume that
(x, x2, . . . , xd) ⊆ (y, x2, . . . , xd), and thus by a change of variables we may
assume x = yz. Thus it is enough to prove that if (†) holds for yz, x2, . . . , xd ,
then it holds for y, x2, . . . , xd .

From now on, we use x− to denote x2, . . . , xd . For every finitely generated
R-module M , we have

�R(M/(yz, x−)M) − χ1((yz, x
−), M) = e((yz, x−), M)

≤ e(yz, M/(x−)M)

= �R(M/(yz, x−)M)

− �R(AnnM/x−M yz),
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where the inequality above follows from [17, Lemma 11.1.7] (here e(yz,
M/(x−)M) denotes the multiplicity computed over the one-dimensional ring
R/(x−)). It follows that

�R(AnnM/x−M yz) ≤ χ1((yz, x
−), M). (2.6.1)

In particular, since we assume (†) holds for (yz, x−), we have
�R(AnnMn/x−Mn yz) = o(νR(Mn)). Since AnnMn/x−Mn y and AnnMn/x−Mn z
are submodules of AnnMn/x−Mn yz, we have

�R(AnnMn/x−Mn y) = o(νR(Mn)) and �R(AnnMn/x−Mn z) = o(νR(Mn)).

(2.6.2)
At this point, we look at the long exact sequence of the Koszul homology:

0 → Hd((yz, x
−), M) → Hd−1(x

−, M)
yz−→ Hd−1(x

−, M)

→ Hd−1((yz, x
−), M) →

→ Hd−2(x
−, M)

yz−→ Hd−2(x
−, M)

→ Hd−2((yz, x
−), M) →

→ · · · · · ·
→ H1(x

−, M)
yz−→ H1(x

−, M)

→ H1((yz, x
−), M) → AnnM/x−M yz → 0.

Recall that if N is any finitely generated R-module and w ∈ R is such that
�R(N/wN ) < ∞, then χ(w, N ) = �R(N/wN ) − �R(AnnNw). Thus taking
the alternating sum of lengths in the long exact sequence, we get:

d−1∑

j=1

(−1) j−1χ(yz, Hj (x
−, M)) = χ1((yz, x

−), M) − �R(AnnM/x−M yz) ≥ 0,

(2.6.3)

where the last inequality follows from (2.6.1). The same argument shows that

d−1∑

j=1

(−1) j−1χ(y, Hj (x
−, M)) = χ1((y, x

−), M) − �R(AnnM/x−M y) ≥ 0, and (2.6.4)

d−1∑

j=1

(−1) j−1χ(z, Hj (x
−, M)) = χ1((z, x

−), M) − �R(AnnM/x−Mz) ≥ 0. (2.6.5)
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Since we assume (†) holds for (yz, x−), applying (2.6.3) and (2.6.1) for each
M ∈ {Mn} shows that

d−1∑

j=1

(−1) j−1χ(yz, Hj (x
−, Mn)) = o(νR(Mn)). (2.6.6)

Applying Lemma 2.1 to (2.6.6), we obtain that

d−1∑

j=1

(−1) j−1χ(y, Hj (x
−, M)) +

d−1∑

j=1

(−1) j−1χ(z, Hj (x
−, M)) = o(νR(Mn)). (2.6.7)

Now by (2.6.4), (2.6.5) and (2.6.7), we know that

d−1∑

j=1

(−1) j−1χ(y, Hj (x
−, M)) = o(νR(Mn)) and

d−1∑

j=1

(−1) j−1χ(z, Hj (x
−, M)) = o(νR(Mn)). (2.6.8)

Finally, plugging in (2.6.8) and (2.6.2) into (2.6.4) and (2.6.5), we find that

χ1((y, x
−), M) = o(νR(Mn)) and χ1((y, x

−), M) = o(νR(Mn))

which is what we wanted. �	
Lemma 2.7 Let (R,m) → (S, n) be a flat local extension of local rings
such that S/mS has finite length. If {Mn} is a (weakly) lim Cohen–Macaulay
sequence for R, then {Mn ⊗R S} is a (weakly) lim Cohen–Macaulay sequence
for S.

Proof First of all we have νS(Mn⊗R S) = νR(Mn). Secondly, since (R,m) →
(S, n) is flat local with S/mS of finite length, we have

�S(Hi (x, Mn ⊗R S)) = �R(Hi (x, Mn)) · �S(S/mS).

Hence the result follows. �	
We need the following important consequence of Proposition 2.6 and

Lemma 2.7.
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Corollary 2.8 Let (R,m) be a local ring of dimension d and let {Mn} be a
weakly lim Cohen–Macaulay sequence. Then

e(R) ≥ lim sup
n→∞

e(m, Mn)

νR(Mn)
≥ lim inf

n→∞
e(m, Mn)

νR(Mn)
≥ 1.

Proof The first inequality follows since we can map R⊕νR(Mn) onto Mn and
thus e(m, Mn) ≤ e(R) · νR(Mn) for each n. The second inequality is obvious.

Nowwe prove the third inequality. Set R′ = R[t]mR[t] andM ′
n = Mn⊗R R′.

Since R → R′ is a faithfully flat extensionwith R′/mR′ a field, by Lemma 2.7,
{M ′

n} is a weakly lim Cohen–Macaulay sequence over R′. It is clear that
e(m, M) = e(mR′, M ⊗R R′) and νR(M) = νR′(M ⊗R R′) for every finitely
generated R-moduleM . Therefore by replacing R by R′ and {Mn} by {M ′

n}, we
may assume that R has an infinite residue field. Thus there exists a system of
parameters z = z1, . . . , zd of R that is aminimal reduction ofm (see [3, Corol-
lary 4.6.10]). Since {Mn} is weakly lim Cohen–Macaulay, by Proposition 2.6
we know that χ1(z, Mn) = o(νR(Mn)). Therefore

lim inf
n→∞

e(m, Mn)

νR(Mn)
= lim inf

n→∞
e(z, Mn)

νR(Mn)
= lim inf

n→∞
�R(Mn/(z)Mn)

νR(Mn)
≥ 1.

�	
Finally, we introduce lim Ulrich and weakly lim Ulrich sequences.

Definition 2.9 Let (R,m)be a local ringof dimensiond.A sequenceoffinitely
generated R-modules {Un} is called lim Ulrich (resp., weakly lim Ulrich) if it
is lim Cohen–Macaulay (resp., weakly lim Cohen–Macaulay) and

lim
n→∞

e(m,Un)

νR(Un)
= 1.

Remark 2.10 (a) We caution the readers that, unlike the limCohen–Macaulay
property, we cannot replace νR(Un) by rankR(Un) in Definition 2.9 when
R is a domain.

(b) By Corollary 2.8, to check {Un} is (weakly) lim Ulrich, it is enough to
show {Un} is (weakly) lim Cohen–Macaulay and that lim sup

n→∞
e(m,Un)
νR(Un)

≤ 1.

The following is the main result of this section.

Theorem 2.11 Let (R,m) → (S, n) be a flat local extension of local rings
such that R is a domain. Suppose R admits a weakly limUlrich sequence {Un}.
Then e(R) ≤ e(S).
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Proof We first reduce to the case that S/mS has finite length following [23,
Lemma 2.2]. We replace S by Ŝ to assume S is complete, and then we choose
a minimal prime Q of mS such that dim S/Q = dim S/mS. Now R → SQ is
a flat local extension such that SQ/mSQ has finite length over SQ . We have

dim S ≥ dim S/Q + dim SQ = dim S/mS + dim R = dim S,

where the equalities follow fromour choice of Q and the dimension formula for
flat local extensions [24, Theorem 15.1]. It follows that dim S/Q + dim SQ =
dim S, and as S is complete (in particular excellent) we can invoke the localiza-
tion formula for multiplicities (see [23, Theorem 2.1], which originates from
[26]) to see that e(SQ) ≤ e(S). Therefore we can replace S by SQ to assume
that S/mS has finite length.

Since R is a domain and {Un} is a weakly lim Ulrich sequence, we have:

e(R) = lim
n→∞

e(m,Un)

rankRUn
= lim

n→∞
νR(Un)

rankRUn

= lim
n→∞

νS(Un ⊗R S)

rankRUn
≤ lim

n→∞
e(n,Un ⊗R S)

rankRUn
= e(S).

Here the inequality above follows fromCorollary 2.8, as {Un⊗R S} is a weakly
lim Cohen–Macaulay sequence over S by Lemma 2.7. To see the last equality,
note that we have a map R⊕rankRUn → Un whose kernel and cokernel have
dimensions strictly less than dim R, so after tensoring with S, we obtain a
map S⊕rankRUn → Un ⊗R S whose kernel and cokernel have dimensions
strictly less than dim S. Hence we have e(n,Un ⊗R S) = e(n, S⊕rankRUn ) =
e(S) · rankRUn. �	

We end this section with a proposition which follows from more general
results in [1]. As this work is still in the stage of preparation, we give the
proof of the proposition for the sake of completeness. This proposition also
appeared as [18, Lemma 5.20] where it was pointed out that the hypothesis
R is a domain is not necessary if we use νR(Mn) instead of rankR(Mn) (the
proof is essentially the same).

Proposition 2.12 Let (R,m) be a local domain of dimension d and let {Mn}
be a sequence of finitely generated modules of dimension d. Suppose H j

m(Mn)

has finite length for all n and all j < d. Then {Mn} is a lim Cohen–Macaulay
sequence if

�R(H j
m(Mn)) = o(rankRMn)

for all j < d.
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Proof Let x = x1, . . . , xd be a system of parameters of R. We have

Hi (x, Mn) = H−i (K•(x, R) ⊗R Mn) = H−i (K•(x, R) ⊗R R�m(Mn)),

where H−i (−) denotes (−i)-th cohomology of the complex. It follows that
we have a spectral sequence:

Hj+i (x, H
j
m(Mn)) ⇒ Hi (x, Mn).

If j = d, then j + i > d when i ≥ 1. So for all i ≥ 1 we have

�R(Hi (x, Mn)) ≤
d−1∑

j=0

�R

(
Hj+i (x, H

j
m(Mn))

)

≤
d−1∑

j=0

2d · �R(H j
m(Mn)) = o(rankRMn),

where the second inequality holds because the (i + j)-th term of the Koszul
complex has rank

( d
i+ j

) ≤ 2d . This completes the proof that {Mn} is lim
Cohen–Macaulay by Lemma 2.5. �	

3 Main result for graded rings

In this section we prove our main results. We first recall that if R1, . . . , Rc are
N-graded rings over a field k and Mi is a Z-graded module over Ri for each
1 ≤ i ≤ c, then the Segre product of M1, M2, . . . , Mc is defined as

M1#M2# · · · #Mc := ⊕ j∈Z[M1] j ⊗ [M2] j ⊗ · · · ⊗ [Mc] j .
Setting 3.1 We fix an infinite field k of characteristic p > 0 and let q = pe

(eventually we will let e → ∞ so one should think of q as being very large).
We consider

Wc
q := k[x1, y1]#k[x2, y2](q)# · · · #k[xc, yc]((c − 1)q),

which is a rank one module over the ring

Tc = k[x1, y1]#k[x2, y2]# · · · #k[xc, yc].
We note that Tc is a standard graded ring of dimension c + 1: the degree j
part is spanned by monomials whose total degree in xi and yi is j for each
1 ≤ i ≤ c. Hence Tc is module-finite over Ac = k[z1, z2, . . . , zc+1] where
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z1, . . . , zc+1 are degree one elements in Tc that form a homogeneous system
of parameters of Tc. We will viewWc

q as a graded module over Ac that lives in
non-negative degrees (because k[x1, y1] only lives in non-negative degrees).
We abuse notations and let m denote the homogeneous maximal ideal of Ac.
Since Wc

q is torsion-free and reflexive, we have H0
m(Wc

q ) = H1
m(Wc

q ) = 0.

The next lemma on the degrees and dimensions of local cohomology mod-
ules of Wc

q is elementary. In fact, since Wc
q is explicitly described, precise

dimensions of each degree of its local cohomology modules can be com-
puted. We are not interested in the precise formulas so we state and prove
what we need. Geometrically, this corresponds to the sheaf cohomology of
OP1(t) � OP1(t + q) � · · · � OP1(t + (c − 1)q) on a product of projective
lines when t, q vary. It is worth pointing out that our construction is closely
related to the notion of supernatural vector bundles, see [6, Section 6] for more
general constructions.

Lemma 3.2 With notation as in Setting 3.1, we have

(1) H j
m(Wc

q ) is nonzero only in degrees −( j − 2)q − 2, . . . , −( j − 2)q − q
for each 2 ≤ j ≤ c.

(2) Hc+1
m (Wc

q ) is nonzero only in degrees ≤ −(c − 1)q − 2.
(3) Fix an integer r ≥ 1. For each 2 ≤ j ≤ c + 1, as q → ∞ one has

dimk H
j
m(Wc

q )−( j−2)q−r = o(qc).

Moreover for each t ≥ 0 one has

dimk H
c+1
m (Wc

q )−(c+t)q−r = o(qc+1).

Proof We use induction on c, the case c = 1 is obvious. Now suppose the
lemma is proven for c− 1. Since Wc

q = Wc−1
q #k[xc, yc]((c− 1)q), it follows

from the Kunneth formula for local cohomology (see [8]) that

{
H j
m(Wc

q ) = H j
m(Wc−1

q )# (k[xc, yc]((c − 1)q)) for all j ≤ c

Hc+1
m (Wc

q ) = Hn
m(Wc−1

q )#H2
m(k[xc, yc]((c − 1)q)).

(3.2.1)

Note thatwe are ignoring terms that are 0 coming from the inductive hypothesis
when applying the Kunneth formula. From (3.2.1), parts (1) and (2) are clear
by the inductive hypothesis.

To establish part (3), we note that by (3.2.1) and the induction hypothesis,
for j ≤ c,
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dimk H
j
m(Wc

q )−( j−2)q−r = dimk H
j
m(Wc−1

q )−( j−2)q−r · dimk(k[xc, yc])(c+1− j)q−r

= o(qc−1) · ((c + 1 − j)q − r + 1) = o(qc).

For the top local cohomology, again by (3.2.1) and the induction hypothesis,

dimk H
c+1
m (Wc

q )−(c+t)q−r = dimk H
c
m(Wc−1

q )−(c+t)q−r

· dimk H
2
m(k[xc, yc])−(t+1)q−r

= o(qc) · ((t + 1)q + r − 1).

This gives o(qc) for t = −1 and o(qc+1) for t ≥ 0. �	
The following immediate consequence is what we will need in the sequel.

We adopt the following notation: ifM is aZ-gradedmodule, thenMa (mod q) :=
⊕i∈ZMa+iq

Corollary 3.3 With notation as in Setting 3.1, for any fixed positive integer r
and any 0 ≤ j ≤ c, we have

dimk H
j
m(Wc

q )−r (mod q) = o(qc) as q → ∞.

Proof This follows directly from parts (1) and (3) of Lemma 3.2. �	
Now we state and prove our main result on weakly lim Ulrich sequences.

Recall that a field k of positive characteristic p > 0 is called F-finite if
[k1/p : k] < ∞.

Theorem 3.4 Let (R,m) be a standard graded domain over an infinite F-
finite field k of characteristic p > 0 localized at the homogeneous maximal
ideal. Then R admits a weakly lim Ulrich sequence.

Proof Let d = dim R. If d = 0 then R is a field, so R is an Ulrich module.
When d = 1 it is easy to see that mN is an Ulrich module for N 
 0. In the
rest of the proof we will assume d ≥ 2.

Since R is standard graded and k is infinite, there exists homogeneous degree
one elements z1, . . . , zd of R that form a minimal reduction ofm. We identify
the subring A := k[z1, . . . , zd ] with the ring Ad−1 as in Setting 3.1. Thus we
have a sequence of finitely generated modules {Wd−1

q } over A where q = pe.
We will show that the following sequence:

Ue := Fe∗
(
(R ⊗A Wd−1

q )−1 (mod q)

)

is a weakly lim Ulrich sequence over R.

123



Lim Ulrich sequences and Lech’s conjecture

Note that the R-module structure on Ue is well-defined: under the e-th
Frobenius pushforward Fe∗ (−), x ∈ R acts as xq so elements in R ⊗A Wd−1

q
of degree ≡ −1 (mod q) are preserved under the R-action. Also note that we
take the degree≡ −1 (mod q) in the definition ofUe just for simplicity: in fact
the proof will show that any fixed negative integer −r will work.

We briefly outline the proof strategy when R is Cohen–Macaulay, in which
case we will show that {Ue} is lim Ulrich (but see also Remark 3.7). In
this case, Ue is a direct sum of Frobenius pushforward of shifted copies of
(Wd−1

q )−1 (mod q) and so �R(H j
m(Ue)) < ∞ for all j < d. Thus we can apply

Proposition 2.12, which allows us to compute local cohomology over A and
invoke Corollary 3.3. By the choice of A, the multiplicity computed over A
and over R are the same, and it is easy to compare the rank over A and over
R. Putting these together will show {Ue} is lim Cohen–Macaulay. To show
{Ue} is lim Ulrich, we estimate νR(Ue) by computing the dimension of certain
graded piece of Wd−1

q that cannot be in mUe.

The case R is Cohen–Macaulay

Since R is Cohen–Macaulay and is a graded module-finite extension of the
polynomial ring A, we know R ∼= ⊕s

i=1A(−ai ) as a graded A-module where
s = rankAR and ai ≥ 0 for each i . Thus we have

Ue
∼= ⊕s

i=1F
e∗ (Wd−1

q (−ai )−1 (mod q)) ∼= ⊕s
i=1F

e∗ ((Wd−1
q )−1−ai (mod q))

as graded A-modules. Recall that Wd−1
q is a rank one module over Td−1, and

dimk(Td−1)t = (t + 1)d−1 = td−1 + o(td−1),

thus the multiplicity of Td−1 as an A-module is (d − 1)!. Therefore

e(z,Wd−1
q ) = e(mA,Wd−1

q ) = (d − 1)!.

It follows that rankAWd−1
q = (d − 1)!. We claim the following:

Claim 3.5 For every fixed negative integer −r , the rank of (Wd−1
q )−r (mod q)

as a module over A(q), the q-th Veronese subring of A, is equal to (d − 1)!.
Proof of Claim Since we have rankAWd−1

q = (d − 1)!, it is enough to show
that

(Wd−1
q )−r (mod q) ⊗A(q) Frac(A) = Wd−1

q ⊗A Frac(A). (3.5.1)
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To see this, first note that one containment ⊆ is obvious. Next, every homo-
geneous element of the right hand side of (3.5.1) can be written as w

x ,
where w ∈ Wd−1

q and x ∈ A are homogeneous elements. Since A is
generated over k by degree one forms, we can pick y ∈ A such that
degw + deg y ≡ −r (mod q). It follows that wy ∈ (Wd−1

q )−r (mod q), and
hence w

x = wy
xy ∈ (Wd−1

q )−r (mod q) ⊗A(q) Frac(A). This proves the other con-
tainment ⊇ of (3.5.1). �	

By Claim 3.5, we know the rank of Fe∗ ((Wd−1
q )−r (mod q)) over A(q) is equal

to (d − 1)!qd+α where α = logp[k : k p]. Therefore, since rankA(q) A = q, for
every fixed negative integer −r , we have

rankAF
e∗ ((Wd−1

q )−r (mod q)) = (d − 1)!qd+α−1. (3.5.2)

To show {Ue} is lim Cohen–Macaulay, by Proposition 2.12 it is enough to
prove that for every fixed negative integer −r and each j ≤ d − 1,

�A

(
H j
m(Fe∗ ((Wd−1

q )−r (mod q)))
)

= o
(
rankAF

e∗ ((Wd−1
q )−r (mod q))

)

= o(qd+α−1). (3.5.3)

But since H j
m(Fe∗ ((Wd−1

q )−r (mod q))) = Fe∗ (H j
m(Wd−1

q )−r (mod q)) and under
theFrobenius pushforward Fe∗ , the lengths getmultiplied by pα, (3.5.3) follows
from Corollary 3.3.

Finally, to show {Ue} is lim Ulrich, we note that

e(m,Ue) = e(z,Ue) =
s∑

i=1

e(mA, Fe∗ ((Wd−1
q )−1−ai (mod q)))

=
s∑

i=1

rankAF
e∗ ((Wd−1

q )−1−ai (mod q))

= (d − 1)!sqd+α−1

by (3.5.2). On the other hand, since R⊗A Wd−1
q lives in non-negative degrees,

m[q] · (R ⊗A Wd−1
q ) lives in degree ≥ q. Therefore by the definition of Ue,

we know that

νR(Ue) ≥ dimk F
e∗
(
(R ⊗A Wd−1

q )q−1

)
.
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However, by the definition of Wd−1
q as in Setting 3.1, for every fixed negative

integer −r , we know that

dimk(W
d−1
q )q−r = (q − r + 1)(2q − r + 1) · · · ((d − 1)q − r + 1)

= (d − 1)!qd−1 + o(qd−1). (3.5.4)

Therefore, since ai ≥ 0, we have

dimk F
e∗
(
(R ⊗A Wd−1

q )q−1

)
=

s∑

i=1

dimk F
e∗
(
(Wd−1

q )q−1−ai

)

= (d − 1)!sqd+α−1 + o(qd+α−1).

Putting the above together, we have

lim sup
e→∞

e(m,Ue)

νR(Ue)
≤ lim sup

e→∞
e(m,Ue)

dimk Fe∗
(
(R ⊗A Wd−1

q )q−1

) = 1.

Therefore by Remark 2.10(b), {Ue} is a lim Ulrich sequence.

The general case

To handle the general case we first observe that our argument in the
Cohen–Macaulay case proves that for every fixed negative integer −r ,
Fe∗ ((Wd−1

q )−r (mod q)) is a lim Cohen–Macaulay sequence over A (see (3.5.2),
(3.5.3), and Proposition 2.12). In particular, we have (dropping Fe∗ results in
dividing the vector space dimensions by qα)

dimk

(
(Wd−1

q )−r (mod q)

(zq)(Wd−1
q )−r (mod q)

)

= (d − 1)!qd−1 + o(qd−1). (3.5.5)

On the other hand, we know that dimk(Wd−1
q )q−r = (d − 1)!qd−1 + o(qd−1)

by (3.5.4) and that (Wd−1
q )q−r ∩ (zq)(Wd−1

q )−r (mod q) = 0 for degree reason
(recall thatWd−1

q only lives in non-negative degrees). This togetherwith (3.5.5)
imply that

dimk

((
Wd−1

q /(zq)Wd−1
q

)

−r (mod q),�=q−r

)

= o(qd−1). (3.5.6)

We now prove that {Ue} is a weakly lim Cohen–Macaulay sequence. Let
s = rankAR. We have a degree-preserving short exact sequence
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0 → ⊕s
i=1A(−bi ) → R → C → 0 (3.5.7)

where C has dimension less than d (note that bi ≥ 0 for all i). The rank ofUe
over A is the same as the rank of

Fe∗
(
((⊕s

i=1A(−bi )) ⊗A Wd−1
q )−1 (mod q)

) ∼= ⊕s
i=1F

e∗ ((Wd−1
q )−1−bi (mod q))

over A. Therefore by (3.5.2), we still have

rankAUe = e(z,Ue) = (d − 1)!sqd+α−1.

Thus to show {Ue} is weakly lim Cohen–Macaulay, it is enough to show
�R(Ue/(z)Ue) ≤ (d − 1)!sqd+α−1 + o(qd+α−1) by Lemma 2.4 (applied to
x = z). Dropping Fe∗ , this comes down to prove that

dimk

(
(R ⊗A Wd−1

q )−1 (mod q)

(zq)(R ⊗A Wd−1
q )−1 (mod q)

)

≤ (d − 1)!sqd−1 + o(qd−1). (3.5.8)

From (3.5.7), we obtain an exact sequence:

⊕s
i=1(W

d−1
q )−1−bi (mod q)

(zq)(⊕s
i=1(W

d−1
q )−1−bi (mod q))

→ (R ⊗A Wd−1
q )−1 (mod q)

(zq)(R ⊗A Wd−1
q )−1 (mod q)

→ (C ⊗A Wd−1
q )−1 (mod q)

(zq)(C ⊗A Wd−1
q )−1 (mod q)

→ 0.

By (3.5.5), in order to establish (3.5.8) it is enough to show that

dimk

(
(C ⊗A Wd−1

q )−1 (mod q)

(zq)(C ⊗A Wd−1
q )−1 (mod q)

)

= o(qd−1).

Since C is a finitely generated graded A-module of dimension less than d and
lives in non-negative degrees, it has a graded filtration by (A/Pi )(−ui ), where
Pi are nonzero homogeneous prime ideals of A and ui ≥ 0. So it is enough to
prove that for any fixed homogeneous prime ideal P ⊆ A and any u ≥ 0, we
have

dimk

(
(Wd−1

q )−1−u (mod q)

(PWd−1
q )−1−u (mod q) + (zq)(Wd−1

q )−1−u (mod q)

)

= o(qd−1).

At this point, we invoke (3.5.6). Thus in order to establish the above, it is
enough to show that
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dimk(W
d−1
q /PWd−1

q )q−1−u = o(qd−1).

Fix 0 �= z ∈ P of degree a > 0. Since Wd−1
q /zWd−1

q � Wd−1
q /PWd−1

q and
Wd−1

q is torsion-free, we know that

dimk(W
d−1
q /PWd−1

q )q−1−u ≤ dimk(W
d−1
q /zWd−1

q )q−1−u

= dimk(W
d−1
q )q−1−u − dimk(W

d−1
q )q−1−u−a

= o(qd−1)

where the last equality follows from (3.5.4). This completes the proof of (3.5.8)
and hence we have established that {Ue} is weakly lim Cohen–Macaulay.

Finally, we prove that {Ue} is weakly lim Ulrich. Again since R ⊗A Wd−1
q

only lives in non-negative degrees, m[q] · (R ⊗A Wd−1
q ) lives in degree ≥ q.

Thus by the definition of Ue, we know that

νR(Ue) ≥ dimk F
e∗
(
(R ⊗A Wd−1

q )q−1

)
.

Thus it remains to show that

dimk(R ⊗A Wd−1
q )q−1 ≥ (d − 1)!sqd−1 + o(qd−1), (3.5.9)

because this then implies that dimk Fe∗
(
(R ⊗A Wd−1

q )q−1

)
≥(d−1)!sqd+α−1

+ o(qd+α−1) while e(m,Ue) = e(z,Ue) = (d − 1)!sqd+α−1. To establish
(3.5.9), we need the following claim.

Claim 3.6 Let M be a finitely generated graded A-module which is nonzero
only in non-negative degrees. Then for any fixed negative integer −r and any
i ≥ 1, we have

dimk(Tor
A
i (M,Wd−1

q )−r (mod q)) = dimk(H
−i (M ⊗L

A Wd−1
q )−r (mod q)) = o(qd−1).

Proof of Claim Since all the lower local cohomology modules of Wd−1
q have

finite length,Wd−1
q is Cohen–Macaulay on the punctured spectrum of A. Since

A is regular, this means Wd−1
q is finite free on the punctured spectrum of A

and hence TorAi (M,Wd−1
q ) has finite length for all i ≥ 1. A simple spectral

sequence argument shows that

H−i (M ⊗L

A Wd−1
q ) = H−i (R�m(M ⊗L

A Wd−1
q ))

= H−i (M ⊗L

A R�m(Wd−1
q )) for alli ≥ 1.

123



L. Ma

As a consequence, we have a degree-preserving spectral sequence:

TorAj+i (M, H j
m(Wd−1

q )) ⇒ H−i (M ⊗L

A Wd−1
q ).

Next we consider a minimal graded finite free resolution of M over A:

0 → ⊕l A(−anl) → · · · → ⊕l A(−a1l) → ⊕l A(−a0l) → 0 (3.6.1)

where n = pdAM and all the ai j are non-negative integers (since M lives in
non-negative degrees). If j ≤ d − 1, then using the above free resolution to
compute TorAj+i (M, H j

m(Wd−1
q )), we see that

dimk(Tor
A
j+i (M, H j

m(Wd−1
q ))−r (mod q))

≤
∑

l

dimk H
j
m(Wd−1

q )−r−ai+ j,l (mod q) = o(qd−1)

byCorollary 3.3. But if j = d, then j+i ≥ d+1 soTorAj+i (M, H j
m(Wd−1

q )) =
0 since A is regular of dimension d. Therefore all the E2-contributions of
H−i (M ⊗L

A Wd−1
q )−r (mod q) have k-vector space dimensions o(qd−1). This

completes the proof of the claim. �	
Now we return to the proof of the theorem, the short exact sequence (3.5.7)

induces:

TorA1 (C,Wd−1
q )q−1 → ⊕s

i=1W
d−1
q (−bi )q−1 → (R ⊗A Wd−1

q )q−1

→ (C ⊗A Wd−1
q )q−1 → 0.

It follows that

dimk(R ⊗A Wd−1
q )q−1 ≥

s∑

i=1

dimk(W
d−1
q )q−1−bi

− dimk Tor
A
1 (C,Wd−1

q )q−1

= (d − 1)!sqd−1 + o(qd−1),

where the last equality follows from (3.5.4) and Claim 3.6. This completes the
proof of (3.5.9) and hence {Ue} is a weakly lim Ulrich sequence, as desired. �	
Remark 3.7 The sequence {Ue} constructed in Theorem 3.4 is in fact lim
Ulrich even if R is not Cohen–Macaulay. This was recently established in
our joint work with Iyengar and Walker [18], using sheaf cohomology com-
putations and then passing to the affine cones. Furthermore, we can prove the
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classes {[Ue]/rankR(Ue)} converge to the class [R]d in theGrothendieck group
G0(R), see [18, Theorem 7.1]. Although these stronger results are not needed
for our application to Lech’s conjecture, they are crucial in our study of Betti
numbers and Dutta multiplicities, see [18] for more details and explanations.

Theorem 3.8 Let (R,m) → (S, n) be a flat local extension of local rings.
Suppose (R,m) is a standard graded ring over a perfect field k localized at
the homogeneous maximal ideal. Then e(R) ≤ e(S).

Proof Since everyminimal prime of R is homogeneous, by the same argument
as in [23, Lemma 2.2], we may assume (R,m) is a standard graded domain
and dim R = dim S. We can further assume that k is infinite and F-finite by
replacing R and S by R[t]mR[t] and S[t]nS[t]. The conclusion in characteristic
p > 0 now follows from Theorems 2.11 and 3.4 (note that we only need to
assume k is F-finite).

Next we suppose k has characteristic 0 and R → S is a counter-example
to the theorem. Then R̂ → Ŝ is a flat local extension with e(R̂) > e(Ŝ).
Applying the argument in [23, Lemma 5.1], we may assume k ∼= R/m ∼= S/n
is algebraically closed and R̂ → Ŝ is module-finite (note that R is still standard
graded over k). Now applying the reduction procedure in [23, Subsection 5.1]1,
there exists a pointed étale extension R′ of Rm and a finite flat extension S′ of
R′ such that e(R) = e(R′) > e(S). But then by inverting elements if necessary,
we may assume that we have

R → R′′ =
(
R[x]
f

)

g
→ S′′

such that R′′ is standard étale over R near a maximal ideal m′′ lying over m,
R′′ → S′′ is finite flat with a maximal ideal n′′ ∈ S′′ lying over m′′, and that
e(m, R) = e(m′′, R′′) > e(n′′, S′′). We can reduce this set up to characteristic
p 
 0 as in [23, Subsection 5.2] to obtain

Rκ → R′′
κ → S′′

κ

with n′′
κ a maximal ideal of S′′

κ lying over the homogeneous maximal idealmκ

of Rκ , such that (Rκ)mκ → (S′′
κ )n′′

κ
is flat and e((Rκ)mκ ) > e((S′′

κ )n′′
κ
) (note

that Rκ → R′′
κ is always flat since f is a monic polynomial in x). Thus we

arrive at a counter-example (with (Rκ,mκ) standard graded over an F-finite
field κ) in characteristic p > 0, which is a contradiction. �	
1 In [23], we are not assuming R is the completion of a finite type algebra therefore we choose a
complete regular local ring A inside R and descend data to the Henselization of the localization
of a polynomial ring, while here R is finite type (in fact standard graded) over k so we can run
the same argument over R, the counter-example then descends to the Henselization of Rm and
thus to a pointed étale extension of Rm.
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Remark 3.9 Given Theorem 3.8, one might try to consider attacking Lech’s
conjecture by passing to the associated graded rings. However, for a flat local
extension (R,m) → (S, n), the induced map grm(R) → grn(S) of associated
graded rings need not be flat (e.g., when m ⊆ n2, then this map sends the
homogeneous maximal ideal of grm(R) to zero). Therefore our Theorem 3.8
does not imply Lech’s conjecture in general.

Finally, we mention that in [1], it is proven that every F-finite complete
local domain of characteristic p > 0 admits a lim Cohen–Macaulay sequence
{Fe∗ R}, which follows from standard methods in tight closure theory [16].

In an early version of this manuscript, we have asked whether every F-finite
complete local domain of positive characteristic admits a lim Ulrich sequence.
However, Yhee [30] subsequently found an example of a two-dimensional
complete local domain that does not admit even a weakly lim Ulrich sequence.
Nevertheless, to the best of our knowledge, the following question remains
open:

Question 3.10 Does every F-finite complete normal (or Cohen–Macaulay)
domain of characteristic p > 0 admit a lim Ulrich sequence, or at least a
weakly lim Ulrich sequence?
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