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More Arithmetic Fundamental Lemma conjectures:

the case of Bessel subgroups

WEI ZHANG*

Abstract: We define some formal moduli spaces of quasi-isogenies
of isoclinic p-divisible groups with a non-reductive group as the
“structure group”. We then formulate new Arithmetic Fundamen-
tal Lemma conjectures for Bessel subgroups in the context of the
arithmetic Gan—Gross—Prasad conjectures. Some (very limited) ev-
idence is presented.
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For a (smooth projective) algebraic variety over a number field, the vanishing
of its Hasse-Weil L-function at the central point is conjectured to be ac-
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counted for by the non-triviality of its Chow group of (homologically trivial)
algebraic cycles. A notable example is the conjecture of Birch and Swinnerton-
Dyer for elliptic curves. There is now more evidence in higher dimensional
cases provided by special cycles on Shimura varieties. In this context, the
first example is provided by the Gross—Zagier formula [7, 27], which relates
the Néron—Tate heights of Heegner divisors on modular curves to the first cen-
tral derivative of the relevant L-functions. The arithmetic Gan—Gross—Prasad
(GGP) conjecture [4, 18, 29, 30] is one of the generalizations of the Gross—
Zagier formula to higher-dimensional Shimura varieties. The relevant Shimura
variety is associated to the product unitary group G = U(1,n—2)xU(1,n—1)
or orthogonal group G' = SO(2,n — 2) x SO(2,n — 1), on which there is the
so-called arithmetic diagonal cycle associated to the diagonally embedded
H =U(l,n—2) or H=S0(2,n —2). Then the case n = 2 (for both uni-
tary and orthogonal groups) essentially recovers Heegner divisors on modular
curves.

The arithmetic Gan—Gross—Prasad conjecture is inspired by the (usual)
Gan—Gross—Prasad conjecture, which relates automorphic period integrals on
classical groups to the special values of Rankin—Selberg tensor product L-
functions (cf. [2, 3] for recent advances in this direction). The latter conjecture
makes sense for more general groups, such as the product group G = U(m) x
U(n) and G = SO(m) x SO(n) when m — n is odd, while the arithmetic
conjecture only exists for the case |n —m| = 1. A natural question is how
to formulate the arithmetic conjecture for the general product groups. This
paper aims to give a partial answer to this question. In short, there is no
global cycle to formulate a global conjecture but there is a local cycle and
one can formulate a local conjecture. In other words, there is no Shimura
variety with the desired special algebraic cycle when [n—m| > 1, but there is
a local Shimura variety (]20, 21], a formal scheme in this paper) over a p-adic
integer ring with the desired cycle (a closed formal subscheme) to formulate
an Arithmetic Fundamental Lemma (AFL) conjecture.

To be more precise let us recall that Jacquet and Rallis formulated a rela-
tive trace formula (RTF) approach to the (usual) Gan-Gross-Prasad conjec-
ture for U(n—1) x U(n) [9]. Inspired by their approach, in [30] the author pro-
posed a relative trace formula approach to the arithmetic Gan—Gross—Prasad
conjecture. A key local statement of this approach is the Arithmetic Fun-
damental Lemma (AFL) conjecture, which relates the central derivatives of

Yifeng Liu [14] discovered how to formulate the arithmetic conjecture in the
equal rank unitary case U(n) x U(n); however we will not discuss the even n —m
case in this paper.
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certain orbital integrals to the arithmetic intersection numbers of “local arith-
metic diagonal cycles” on a Rapoport—Zink (RZ) space for unitary groups,

(1.1) 90rb(v, 15, (0r,)) = —Int(g) - logg,

where Fy is a p-adic local field with odd residue cardinality ¢, and .S, =~
GL,, r/GLy, R, is the symmetric space with respect to an unramified quadratic
extension F' of Fy. See §7.2 for the precise formulation. This conjecture is
largely proved by the author [31] when Fy = @Q,, and by Mihatsch and the
author in [17] for general p-adic fields Fy, provided ¢ > n of Fy in both cases.
(Very recently Zhiyu Zhang has removed the restriction ¢ > n in [32].)

In [13], Liu generalized the RTF construction of Jacquet and Rallis to all
unitary groups U(m) x U(n) (the Bessel case when n—m is odd, and Fourier—
Jacobi case when n —m is even). In particular, he has essentially generalized
the left hand side of the AFL conjecture (1.1) above to the general case of
unitary groups; we will recall the Bessel case of his orbital integrals in §6.
We will also give a lattice counting interpretation of the orbital integral in
§6.6 and prove the conjecture for some special elements (by reduction to
Jacquet—Rallis FL). Then we will generalize the local arithmetic diagonal
cycle to the general Bessel case, see §7. The key new input is a class of
RZ spaces with non-reductive groups as the “structure groups”, which may
be of independent interest. The RZ spaces for reductive groups (in the EL
or PEL cases) parameterize p-divisible groups with additional structures, cf.
§2.1. Here we add a filtration by p-divisible groups (respecting the additional
structure) to define the RZ spaces for certain non-reductive groups, see §3.

There are vast generalizations of the GGP conjecture in terms of period
integrals on (homogeneous) spherical varieties G/H for a pair of algebraic
groups (G, H), H C G, over number fields; see the series of work by Sakellar-
idis (e.g. [22]) and a version of the general conjecture of Ichino-Tkeda type,
formulated by Sakellaridis and Venkatesh [23]. The idea in this paper seems
applicable to more spherical pairs (G, H) where G/H is non-affine (equiv-
alently, by a theorem of Matsushima, H is non-reductive; here G is always
assumed to be reductive). In fact, there are many more non-affine (homo-
geneous) spherical varieties than affine ones, and it would be interesting to
classify all such spherical varieties which behaves like the cases in this pa-
per. For all of the non-affine ones, it is currently hopeless to construct the
global cycles but we expect to find the desired local cycles over p-adic fields,
at least assuming the existence of a “good” theory of (integral models of) lo-
cal Shimura varieties (i.e., one needs a suitable intersection theory on them).
Along this direction, we hope to investigate the arithmetic GGP conjecture
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for G = SO(m) x SO(n) when m — n is odd, which involves local Shimura va-
rieties of Hodge type (GSpin RZ spaces). In the non-affine case, the arguably
“simplest” example is the Ginzburg—Rallis subgroup, which only involves RZ
spaces of EL type and is a natural generalization of the Lubin—Tate deforma-
tion space; we will discuss this briefly in §4. There are also non-affine spherical
varieties for exceptional groups (e.g., certain cases in the work of Wan—Zhang
[26]), which are more challenging at this moment, due to the lack of a “good”
theory of integral model of local Shimura varieties.

2. RZ spaces: the reductive case

Rapoport and Zink have constructed formal moduli spaces of p-divisible
groups with EL or PEL structures (see [21, §3]). These moduli spaces ad-
mit actions by (the Q,-points of) certain reductive groups over Q,. We recall
their construction in this section.

2.1. The RZ datum: the EL and PEL case

The formal moduli spaces of Rapoport and Zink, abbreviated as RZ spaces
in this paper, depend on some linear algebraic data, called “RZ data”. In this
paper, we will only consider simple RZ data, cf. [20, §4.1]. A simple rational
RZ datum in the EL case is a tuple

D = (F, B,V {u}, b)),

where

e F'is a finite field extension of Q,,

e B is a central division F-algebra,

e V is a finite dimensional left B-module,

e {u} is a conjugacy class of minuscule cocharacters p : G, — G@ where
P
we define G = Resg/q, GLp(V) (an algebraic group over Q,),

e [0] € B(G), where B(G) is the set of o-conjugacy classes of G(Q,) (cf. [20,
§2.1]).
Here, we denote the completion of a maximal unramified extension of a p-adic

field F by F. Moreover, o € Aut((@p/(@p) denotes the Frobenius automor-
phism.
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A simple rational RZ datum in the PEL case is a tuple
D= (Fa B,V, ('a ')7 *, {M}a [b])
where F, B, V,{u}, [b] are as in the EL case (but for the structure group G
defined below) and
e (-,-): V xV — Q) is a non-degenerate alternating Q,-bilinear form,

e % : B — B is an involution such that (az,y) = (z,a*y) holds for a € B and
r,y €V,

e G is the subgroup of Resp g, GLp(V) such that, for any Q,-algebra R, its

R-points are

G(R) = {g € GLp(V ®q, R) | (g2, 9y) = c(g9)(x,y),c(g) € R*}.

In both cases, we imposes the following condition on {u}. Any cocharacter
p induces a weight decomposition on V ®q, Q,. We require that for any
€ {u}, only weights 0 and 1 occur in the decomposition, i.e.

(2.1) Ve, Q=NeW

In the PEL case, we further assume that the prime p is odd throughout the
paper, and require that for any p € {u}, the composition with the similitude
character ¢

G —— Gy —=GC,g,
is the identity.

Now we turn to the integral datum. A simple integral RZ datum Dz, in
the EL case consists, in addition to the rational data D, of a maximal order
Op in B and an Op-stable lattice A in V. A simple integral RZ datum Dz, in
the PEL case consists, in addition to the rational data D, of a maximal order
Op in B which is stable under the involution * and an Og-stable lattice A in
V such that A C AV C w™'A. Here w denotes a uniformizer of Opg, and

N ={zeV|(z,N)CZ,}

denotes the “dual lattice” of AZ2.

2We may call a lattice A a vertez lattice if it satisfies A C AY C w™A.
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Remark 2.1. More general RZ data (still in the EL and PEL case) can be
found in [21, §3], where B could be a semisimple Q,-algebra and A is replaced
by a “periodic lattice chain”.

For simplicity we will assume that [b] is basic for the rest of this paper, cf.
[20, §2.1]. Notice that there is a unique basic element in the subset B(G, i)
of p-neutral acceptable elements in B(G) (see [20, Def. 2.3]). In the EL and
PEL case, the basic element can be characterized by the associated isocrystal
(given by b(ly ® o)) on V ®q, Q, being isoclinic (i.e., only a single slope
appears).

We let & = Ey,y denote the reflex field (i.e., the field of definition of {s}).
To each b € G(@p) one may associate an algebraic group over QQ,,, denoted
by Jp, such that for any Q,-algebra R,

(2.2) Jy(R) = {g € G(R&q, Q) | g(bo) = (bo)g}.

Up to isomorphism the group .J, depends only on the class [b] € B(G). For
[b] basic, the group J, is an inner form of G.

We also single out the (simple) unramified case [21, §3.82], which is of
particular interest in this paper. We recall that this means that B = F' is
an unramified field extension of Q,, and in the PEL case, A = AV (ie., a
self-dual lattice with respect to the given alternating form on V).

We will mostly concentrate on two (families of) examples.

Example 2.2 (EL case). All of the simple unramified integral RZ data Dz,
in the EL case arise as follows. Let B = F' is an unramified field extension
of Qp, V.= F" is the standard n-dimensional F-vector space, A C V an
Op-lattice. Then G' = Resp/q, GLn,r. A cocharacter

WiGn— Gy~ []  GLg
p€Homg, (F,Q,)

consists of a tuple (u,) o (FT,) of cocharacters i, : G, = GL, 5 . We

€Homg, p

consider (the conjugacy class of)

pol2) = [1“” . ] ,

where (7, s,) (FG,) 18 @ tuple of non-negative integers such that r,, +
»=p

p€Homg, -
s, = n. The reflex field £ is then the subfield of Q, corresponding to the
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open subgroup of Gal(Q,/Q,) fixing the tuple (ry,s,) (under

p€Homg, (F,@p)
the obvious action). Let [b] be the unique basic element in B(G, p).

Example 2.3 (unitary PEL case). We consider the following simple inte-
gral RZ data Dz, in the PEL case, related to unitary groups. Let F/Fy be
an unramified quadratic extension of p-adic fields with the non-trivial Galois
involution denoted by a — @. Let B = F, and V' a non-degenerate F'/Fj-
Hermitian space of F-dimension n. Upon choosing a unit in the “imaginary”
Fy-line F~ :={a € F | @ = —a}, the Hermitian form induces an alternat-
ing @Q,-bilinear form on V. Then G = GU(V, (-,-)) is the unitary similitude
group. Let A C V be an Op-lattice such that A € AY € @ 'A. We con-
sider the conjugacy class of u : G,, — G@p corresponding to the “signature”
(705 5¢)¢€Home(F’@p) such that r, + s, = n and r, = sz, where r, denotes
the dimension of V; .. Let [b] be the unique basic element in B(G, p).

2.2. The formal moduli spaces in the reductive case

Let Op and Oj denote the ring of integers in £ and E respectively. Let F
be the residue field of Op. Let Nilp = Nilpo, denote the category of Op-
schemes S on which p is locally nilpotent. For S € Nilp, we denote by S
the closed subscheme of S defined by pOg, i.e., S := S Xspec 0, Spec Opr/(p)-
Note that Spec Ox/(p) is naturally a scheme over Spec W (F)/(p) ~ SpecF
and hence we can view S as a scheme over SpecF.

Fix a simple integral RZ data Dz, . We will consider pairs (X,¢) in the
EL case, and triples (X, ¢, \) in the PEL case, where

e X is a p-divisible group over S € Nilp,
e . :Op — End(X) is an action of Op on X,
e In the PEL case, a polarization A : X — XV.

We impose the Kottwitz condition, i.e., the equality of characteristic polyno-
mials for all a € Op

char(:(a); Lie(X)) = char(a; ),

where Vj is the weight zero subspace of V', cf. (2.1). In the PEL case, we further
impose the condition that ker(\) C X[w] has order equal to #(AY/A), and
that the Rosati involution on Op coincides with .

To define the moduli space, besides an integral RZ datum Dz, we also
need to fix a framing object, i.e., a pair (X, ix) over SpecF in the EL case
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(resp. a triple (X, tx,Ax) in the PEL case) as above. We assume that the
induced isocrystal with the Opg-action (and the alternating form induced by
the polarization in the PEL case) is isomorphic to (V ®q, Qp, bo) (in the PEL

case, (V ®q, @p, (+,+),bo), the alternating form preserved up to a Q; -factor).
Then the group of self quasi-isogenies of X respecting the additional structure
is isomorphic to the group J,(Q)).

We are ready to state the definition of the moduli functor of Rapoport—
Zink in the EL case:

M : Nilp —— Sets .
It associates to S € Nilp the set of isomorphism classes (X, ¢, p) where (X, ¢)
is as above and
p: X x5S —X Xgpecr S

is an Op-linear quasi-isogeny [21, §2]. In the PEL case, M(S) is the set of
isomorphism classes (X, ¢, A, p), where (X, ¢, A) is as above and

p:X ><5§HX Xspech

is an Op-linear quasi-isogeny that preserves the polarizations up to a factor
in Q;, locally on S.

Here the datum p is called a framing of (X,¢) or (X, ¢, A). The group
Jp(Qp) acts on M by changing the framing p.

Theorem 2.4 (Rapoport—Zink). The functor M is (pro-)representable by a
formal scheme, formally locally of finite type over Spf O.

See [21, Thm. 3.25] for a more general statement (cf. [21, Def. 3.21] and
the remarks in §3.23 of loc. cit. for the equivalence of the definitions).

2.3. Local models

The local structure of M is governed by the so-called local model [21, §3.26—
3.35]. For brevity we recall the definition in the unramified Dy, case.

We consider the following functor from the category Schp, of schemes
over Og

M!'°¢ : Schp, — Sets

which associates to S € Schp,, the set of isomorphism classes of the following
data:

e A locally free Op ®z, Os-module F on S:
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e A homomorphism of Op ®z, Os-modules
t: A Rz, Og — F.

We require the following conditions to hold:

e the action of Op satisfies the analog of Kottwitz condition
char(:(a); F) = char(a; Vp), Va € Op.

e The homomorphisms ¢ is surjective.

e In the PEL case, the isomorphism A* ~ A induces the following commuta-
tive diagram

A ®z, Os — (A ®z, Og)*

o
F——" s (ker(t))*.

(Note that the polarization is assumed to be principal.) Here * denotes the
Og-linear dual.

It is easy to see that the functor M'°¢ is represented by a projective scheme
over Spec O, being a closed subscheme of a product of Grassmannians. In
our unramified case, it is smooth.

Let M'¢ denote the p-adic completion of the base change M!°¢ X Spec O
Spec Op; it is a formal scheme over Spf O . Then Grothendieck—Messing the-
ory implies that any point of M has an étale neighborhood which is formally
étale over M (see [21, §3.32]). Therefore, the smoothness of the local model
M'"°¢ — Spec O implies that M is formally smooth over Spf O - In the two
examples 2.2 and 2.3, if the RZ data are unramified, then relative dimension
of M over Spf O, is given by

(2.3) Z TSy

p€Homg, (F’@p)
in the EL case, and
1
(2.4) 3 Z TpSp = Z TpSe
p€Homg, (F,@p) po€Homg, (Fo »@p)

in the unitary PEL case, where ¢ € Homg, (F, @p) is any extension of @y €
Homg, (Fo,Q,).
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Example 2.5 (The “totally definite” or “banal” case). In Example 2.2
and 2.3, we call an unramified Dz, totally definite if

To5, =0, Vp€ Home(F, @p).

Then the relative dimension of M over Spf O, is zero and .J, ~ G. There is
an isomorphism of formal schemes

M ~ |_| Spf O
G(Qp)/K

where K is the stabilizer of A.
3. RZ spaces: the non-reductive case

In this section, we construct some generalized RZ spaces in the basic case,
which may be viewed as RZ spaces with the structure group being non-
reductive. The new piece of datum defining the moduli problem is a filtra-
tion by p-divisible (sub)groups. These formal moduli spaces seem new and
they appear to have interesting structure (e.g., even the connected compo-
nents seem not understood to the author). The moduli spaces of “filtered
p-divisible groups” (with EL or PEL structures) in the non-basic case have
appeared in Mantovan’s work [15]. Just as in loc. cit., here we can establish
preliminary properties (representability, local model) of our moduli spaces
using the strategy very similar to [21, §3].

3.1. The filtered RZ datum: the EL and PEL case

A simple rational filtered RZ datum in the EL case is a tuple
D = (F7 B7 V7 Fil.? {M}? [b])7

where F, B,V are as in the simple rational RZ datum §2.1 and
e Fil® is a filtration of finite length

0=Fil’VcFil'Vc. .. -cFil'v=V

by B-stable submodules Fil'V,

e {u} is a conjugacy class of minuscule cocharacters p : G, — Hg where

H := GLp(V,Fil*) is the stabilizer of the filtration Fil®, hence a pa:rabolic
subgroup of G = GLg(V).
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e [b] is a o-conjugacy class of H(Q,).
The filtered RZ datum D induces (unfiltered) RZ data
Fil'D = (F, B, Fil'V, {Fil'p}, [Fil'b]), i=1,--- 4,
where Fil'G := GLp(Fil'V), Fil'yy : G, — Fil'Gy , and [Fil'd] € B(Fil'G)
are induced by {u} and [b]. Similarly, we have induced RZ data
griD = (Fa B7 grivv {grzlu’}v [grlb])> L= 17 T 767

where gr'V := Fil'V/Fil'’ 'V is the i-th graded piece, gr'G := GLp(gr'V),
griu : G,, — gr'Gs , and [gr'b] € B(gr'G) are induced by {u} and [b].
P
A simple filtered rational RZ datum in the PEL case is a tuple

D= (F7 B, V7 Fﬂ.7 ('7 ')7 *, {/‘L}v [b])7

where F, B, V. Fil®* {u},[b] are as in the filtered EL case (but for H defined
below), (-,-),* are as in the (unfiltered) PEL case, such that

e Fil® is self~dual, in the sense that, for every i = 0,--- , ¢, the space Fil'V is
the exact annihilator of Fil*"V under the alternating form (-,-) on V,

o H :=GLp(V,Fil*, (-,-)), a parabolic subgroup of G = GLg(V, (-, -)).
We have induced RZ data of PEL type
Fililiz‘p = (Fa B7 Fﬂi’[ii‘/a ('7 ’)7 *, {Fﬂi’giiuh [Flll’ﬁilb]% L= 17 T [g/z]a

with the induced alternating pairing (-,-) on Fil**~*V := Fil*“'V/Fil'V. We
also have RZ data of EL type

griD = (F7 B7gri‘/7 {grilu}7 [grzb])7 1= 17 T [6/2]7
and, if £ is odd, an RZ datum of PEL type
grlD/2Ap — (F, B, grl+D/ 2y, (,-), %, {ng“)/Q]u}, [gr[(””/mb]).

Now we turn to the integral datum. A simple integral filtered RZ datum
Dz, in the EL case consists, in addition to the rational data D, of a maximal
order Op in B and an Opg-stable lattice A in V. A simple integral filtered
RZ datum Dz, in the PEL case consists, in addition to the rational data
D, of a maximal order Op in B which is stable under the involution % and
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an Op-stable lattice A in V such that A ¢ AY C w 'A. In the EL case,
the Op-stable A induces Op-stable lattice Fil'A := A N Fil'V ¢ Fil'V and
gr'A := Fil'A/ Fil'"'A C gr'V. Therefore, we obtain induced simple integral
RZ data FiliDZp and griDZp of EL type. Similarly, in the PEL case, we define
Fil**~'A = Fil*7'A/Fil'A C Fil*~V. Then, by the following lemma, we
obtain simple integral RZ data Fili’g_iDZp and griDZp. Moreover, if Dz, is
unramified, so are all of the induced data.

Lemma 3.1. In the PEL case, let A C'V be an Op-stable lattice such that
A C A C y—f}A. Then, for all i = 1,--- ,[£/2], Fil**"°A is an Og-stable
lattice in FI1**~'V such that

Fil"*~'A C (Fil*A)Y € @ IFil» A,
Moreover, if A = AV, then Fil** A = (Fil*‘~¢A)V.

Proof. For a Zy-lattice L we will denote L* = Homg, (L,Z,) the Z,-linear
dual. If L is an Op-lattice, we endow L* the twist of the Op-action by the
involution *. Then the alternating form (-,-) induces an Op-linear map « :
A — A* and an Op-linear isomorphism A* ~ AV. Since Fil'V is totally
isotropic, a induces an Op-linear map 3 : Fil'A — (A/Fil’A)*, which then
induces an Op-linear map 8* : (A/Fil'A)* — ((Fil'A)*)* ~ Fil’A. We obtain

a commutative diagram:

0 ——— Fil'A A A/Fil'’A ——0

S
0 —— (A/Fil'A)* —— A* —— (Fil'A)* —— 0.
Now note that ker(8*) = Fil* A /Fil'A = Fil**~*A and hence coker(f) ~
(Fil**~'A)* ~ (Fil**~*A)Y. By the snake lemma, we obtain a long exact se-
quence of Og-modules
0 —— Fil"* A —— (Fil**""A)Y —— AY/A —— coker(§*) —— 0,

or equivalently,

0 —— (Fil* 7 A)Y /Fil A AV/A coker(3*) —— 0.

If AV/A is annihilated by @ € Op, so is (FIT-TA)Y /R4 IA. TE AY /A van-
ishes, so does (FilZ’Z_ZA)V/Fﬂ”K_lA, 0
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In both cases, we will again assume that the induced o-conjugacy class of
G (@p) is basic. Since this means (in our EL and PEL case) that the associated
isocrystal is isoclinic, the induced isocrystals on Fil**~*V ®q, (@p and griV®Qp
Qp are automatically isoclinic and hence the induced o-conjugacy classes
Fil**~%b and gr'b are all basic.

Similar to (2.2) we can define a functor J,. Though we have not checked
the detail, it is reasonable to expect that J, is represented by a smooth affine
group scheme over Q, and it is a parabolic subgroup of Jg;0.¢,. Nevertheless,
one can verify this assertion in all the examples below 3.2 and 3.3.

Example 3.2 (EL case). Let B = F,V,G, A be as in Example 2.2. Let Fil*V
be any filtration of V' and let H = GLpg(V,Fil®). Then we may arrange a
cocharacter of G to factor through y : G,, — H. Let (rl, sfo)%Home(F’@p) be

the invariants associated to the induced data on gr'V. In particular, we have
re = erp, Sp = Z‘Sfp? V¢ € Homg, (F, @p).
i i

Example 3.3 (unitary PEL case). Let B = F,V,(-,-),G,A be as in
Example 2.3. Let Fil*V be a self-dual filtration of V and let H =
GLg(V,(-,-),Fil*) ¢ G = GL(V,(-,-)). Let u : G,, — Hg be a cochar-

acter. Let (r;,sfp) ) be the invariants associated to the induced

‘ p€Homg, (F,@p -
data on gr'V. Then for all ¢ € Homg,(F,Q,)

— i _ i
T¢—ZT¢, SSD_ZSW
i i

and

i A1—i
Ty =53 .

We remark that there are some restrictions to the existence of above Fil and p
due to the restriction to the weights and the compatibility with the similitude
character. For example, when Fy = Q, and dimp V' = 2 there does not exist
any nontrivial filtered data (besides the “unfiltered” one) satisfying all of the
conditions.

3.2. The formal moduli spaces in the non-reductive case
We fix a simple integral filtered RZ data Dz, for the rest of this section.

In view of the possible complexity of the induced data, as illustrated by
Lemma 3.1, we assume that Dz, is unramified. In particular, B = F' is an
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unramified field extension of Q,, the reflex field £ is unramified over Q,
and hence E = (@p. We consider tuples (X, Fil*X,¢) in the EL case, and
(X,Fil*X, ¢, \) in the PEL case, where the unfiltered data are the same as
before, and

e Fil*X is a filtration of X by Op-stable p-divisible subgroups
0=Fil’X Cc Fil'X C --- C Fil'X = X.

e In the PEL case, a principal polarization A : X — XV such that the Rosati
involution on Op coincides with *. (The requirement of the polarization be-
ing principal is due to our assumption on the unramifiedness of the integral
datum.)

We impose the Kottwitz condition for every ¢ = 0,--- £,
char((a); Lie(Fil’X)) = char(a; (Fil'V)y), Va € Og,

where (Fil'V)g is the weight zero subspace of Fil'V. In the PEL case, we
require that the filtration Fil® is self-dual, in the sense that, for every i =
0,---,¢, we have an exact sequence (of fppf abelian sheaves) induced by the
polarization A:

0——Fil“' X — X ~ XV —— (Fil'X)¥ —— 0.

Next we fix a framing object (X, Fil*X|x) over SpecF in the EL case
(resp. a triple (X, Fil*X, x, Ax) in the PEL case). We assume that the in-
duced isocrystal with the filtration, with the Op-action (and the alternating
form induced by the polarization in the PEL case) is isomorphic to (V ®q,
Q,, Fil'V ®g, @, bo) (in the PEL case, (V ®g, Qp, Fil*V &g, Qp, (-,-), bo)
with the alternating form preserved up to a @;—factor).

We now state the definition of the moduli functor analogous to that of
Rapoport—Zink, in the EL case:

M :Nilp —— Sets

which associates to S € Nilp the set of isomorphism classes (X, Fil* X, ¢, p)
where (X, Fil*X, ) is as above and

p:X X5§HX Xspech
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is an Op-linear quasi-isogeny that preserves the filtration Fil*X and Fil*X.
In the PEL case, M(S) is the set of isomorphism classes (X, Fil*X, ¢, A, p),
where (X, Fil*X, ¢, \) is as above and

p:XXS§*>X Xspec]p'g

is an Opg-linear quasi-isogeny that preserves the filtration Fil*X and Fil*X
and preserves the polarizations up to a factor in Q;, locally on S.

The following result follows essentially from the representability theorems
in [21, §2, §3]. Note that we have assumed that Dz, is unramified.

Theorem 3.4. The functor M is (pro-)representable by a formal scheme,
formally locally of finite type, and formally smooth over Spf O.

Proof. We will defer the proof of the formal smoothness after we introduce
the local model.

We consider the EL case and the same argument applies to the PEL case.
We consider the RZ moduli functors M; for the framing objects (Fil’X, tpyix),
i=1,--- 0. In view of the representability theorem 2.4 of Rapoport—Zink, it
suffices to consider the relatively representability of the natural map

(3.1) jM——=TI M,

The map j factorizes through M® which parameterize similar data as M ex-
cept that Fil'’X — Fil*"'X is not required to be injective (as a morphism of
fppf abelian sheaves). Then M?* is the locus where the quasi-homomorphisms
Fil'X — Fil"™'X pull back to homomorphisms Fil'’X — Fil“"'X. By [21,
Prop. 2.9]3, M* is a closed formal subscheme of Hle M,;. Finally, the injec-
tivity imposes an open condition and hence M is an open formal subscheme
of M*®. The desired result follow. O

Remark 3.5. Unlike the reductive case of RZ spaces, the irreducible com-
ponents of the reduced scheme of M are not necessarily proper. The moduli
functor M*® may be viewed as a partial “compactification” of M.

Remark 3.6. Closely related to the above constructions, one may also con-
sider moduli functors in the degenerate PEL case, i.e., the alternative form
on V is degenerate. In fact, from the filtered rational RZ datum D of PEL
type, one has an induced datum from Fil“'V, which carries a degenerate
alternating form.

3Note that [21, Prop. 2.9] is stated only for quasi-isogenies; but the proof applies
verbatim to quasi-homomorphisms.
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3.3. Connected components

As a natural question, what is the set of connected components of M defined
in the last subsection? Similar questions for RZ spaces (and generalizations
to local Shimua varieties in [20] with parahoric level structure) have received
considerable attention in recent years. For the moduli space defined here,
it seems unclear what the answer should be. Nevertheless, we can partly
answer the question in some special examples related to the unitary RZ spaces,
where we have a very explicit description of the reduced scheme (via the BT-
stratification); see Example 5.10 in §5.6.

3.4. Local models

Analogous to §2.3, the local model construction in [21, §3.26] can be carried
over to the fixed unramified integral filtered RZ data Dz,. We denote A =
Fil’A := Fil'V N A, an Op-stable lattice. In the PEL case, the unramified
hypothesis implies that there is a short exact sequence of Op-modules

(3.2) 0—— A — 5 A~ A (A% 0.

We consider the following functor from the category Schp, of schemes
over Og

M¢ : Schp, — Sets ,

which associates to S € Schp,, the set of isomorphism classes of the following
data:

e A flag of locally free Op ®z, Os-modules F* on S:
0=F'cF'c---cF'=F
e Homomorphisms of Op ®z, Os-modules
tiiN'®z, O — F', i=1,-- L

We require the following conditions to hold:

e all 7' are subbundles of F (i.e., F/F* are locally free), and the action of
Op satisfies the analog of Kottwitz condition

char(a; F;) = char(a; (Fil'V)o), Va € Op,
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e The homomorphisms ¢; are all surjective and the following diagram com-
mutes
Al ®z, Os— -+ -—— A ®z, Os— -+ - A¢ ®z, Os
: : !

Flc .o.C Fic . Ft = F.

In particular, when i < j, F' the image of A’ ®z, Og under t;, and hence
(t;, F') is determined by (¢, F7).

e In the PEL case, the isomorphism A* ~ A induces the following commuta-
tive diagram
A ®z, O —= (A ®z, Og)*

| |

F ——— (ker(t))*.
(Note that our polarization is assumed to be principal.) Here % denotes the
Og-linear dual. Together with (3.2) we have a commutative diagram for all
i=1,--- ¢
(3.3)

0 —— A" ®z, Os — A®z, Os ~ (A ®z, Os)* — (A" ®z, Os)* —— 0

| | |

0 Fe-i F = (ker(te))” —— (ker(t:))" ——0

where the bottom row is required to be exact.

The functor M'°¢ is represented by a quasi-projective scheme over Spec Op.
Unlike the reductive case in [21] (cf. §2.3), it is not necessarily projective, as
we will see from the proof of Lemma 3.7 below.

We consider the (unfiltered) RZ data griDZp associated to gr'V,1 <i </
in the EL case and 1 < i < [55}] in the PEL case (cf. §3.1). Let MYC be
the corresponding local models as defined in §2.3. Then we have a natural

morphism
Mloc H Mloc
2 (A
Note that each factor in the right hand side is the usual local model in [21]

and is smooth over Spec Or under our assumption of unramifiedness of the
datum Dz,
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Lemma 3.7. The morphism M'¢ — [, M°¢ is smooth and quasi-projective.
In particular, the scheme M¢ is smooth over Spec Op.

Proof. Similar to M'°¢ we define a functor M”!°¢ only recording the first £—1
steps in F* in the EL case, and the quotients F'/F i =1,2,--- ./ — 1 in
the PEL case. Then we have a natural morphism

(3.4) 7t MIO¢ —— MPIoc x M
where 7 = £ in the EL case, and 7 = 1 in the PEL case.

In the EL case, by induction on ¢, it suffices to show that 7 is repre-
sentable, quasi-projective and smooth. Consider the commutative diagram

(3.5) 0—— A1 ®Zp Og —— A ®Zp Og —— (A/Ae_l) ®Zp Og——0

S

0 F F FIF 0

By the snake lemma we obtain a short exact sequence of locally free Op ®z,
Og-modules:

0 —— ker(ty—1) — ker(t;) —— ker(t) —— 0.
Moreover, we have an induced diagram of locally free Op ®z, Os-modules

A1®y, 05

(3.6) 0 e (7Y j ke]\r[t) — 0
AZ71®7APO A@ZPO —
0 ker(tg,l)s ker(tg,ls) (A/AZ 1) ®Zp OS 0

where the top row is the pull-back of the bottom one via the right vertical
map. Now, for any given t,_1 and ¢, the datum of ¢, is equivalent to the
datum of an Op ®z, Og-subbundle ker(t,)/ ker(t,—1) of £, required to have

-1
%. Note that the quotient bundle of £ by

ker(t¢)/ ker(t,_1) is isomorphic to F¢~, hence the characteristic polynomial
for the action of a € Op is given by char(a; (Fil*"*V)o).
Locally (on M”°¢ x M}ZOC, considering the universal bundles) we may

£—1
trivialize both £ and its subbundle &, := %. Then the fiber of w

trivial intersection with
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is isomorphic to (an open subscheme of) the Hilbert/Quot scheme, denoted
by Hilbye, 4 (rir-11), (to indicate the action of Op on the kernel and the
cokernel of the map A below), parameterizing surjective homomorphisms of
Op ®z, Os-modules

(3.7) A& — L,

such that char(a;£) = char(a; (Fil“"'V)o),Va € Op, with the additional
condition that

(V) Mg, is an isomorphism.

Without the condition (©), the Hilbert scheme is a product of Grassmannians,
hence projective and smooth over Spec Og. The condition (©) is an open
condition. Therefore, the map 7 is smooth and quasi-projective. Moreover, 7
is projective precisely when rank F*~! = 0 or rank ker(t) = 0 (e.g., the two
factors in the target of 7 are in the definite case, see Example 2.5).

We now turn to the PEL case. Note that M”!°° is the local model for the
filtered RZ datum induced by Filefl/FﬂlV7 hence also in the PEL case. By
induction it suffices to show that the map (3.4) m : M — M>lo¢ x Ml°° ig
representable, quasi-projective and smooth. Consider the analogous functor
N¢ recording the first ¢ — 1 steps in F*. Then 7 factors as

(38) Mloc ™ Nloc 2 Mb,locXMlloc

and it suffices to show that both m; and 75 are representable, quasi-projective
and smooth. The case for 7y is similar to the EL case and its fiber is locally a
Hilbert scheme Hilb gye-1 /py1y), (pirtyy,, Where (Fil"!/Fil'V); stipulates the
action of Op on ker(t) for ¢ in the diagram:

0—— A @z, Og —— A7t @z, Og —— (AT1/AY) @z, Og —— 0

)

0 b il FUUF 0

For the morphism 7, we denote by (ker(¢;))* the kernel of the composite
map

(39) A ®z, Og — (A ®z, Os)* — ker(ti)*.
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Note that (ker(t;))* = ker(t;) by the condition in the definition of local
model. By (3.5), ker(t,_1) is contained in ker(¢y) and hence we have

ker(to_1) C ker(t;) = (ker(ty))* C (ker(te_1))*.

Consider the quotient & := (ker(t,_;))*/ker(t,_;) with the induced perfect
alternating form. Then the datum of ¢, is equivalent to a subbundle £ C
&, which is a Lagrangian (i.e., the composite map £ — & — &% — [*
is zero), such that Op acts on the quotient £/L according to the action
of Op on ker(t;)/ker(ty—1) ~ F; and such that £ intersects trivially with
(A1 @z, Og)/ ker(t,_1). Now it is easy to see that 7y is representable, quasi-
projective and smooth. This completes the proof. O

Let M'¢ denote the p-adic completion of the base change M!°¢ X Spec O
Spec Op. The Grothendieck-Messing deformation theory implies that any
point of M has an étale neighborhood which is formally étale over Mloe (the
argument of [21, §3.32] applies verbatim). Hence the smoothness claimed in
Theorem 3.4 follows from Lemma 3.7.

The proof of Lemma 3.7 also tells us how to compute the relative dimen-
sion of M!'*¢ and hence M. In Example 3.2 (the EL case), the relative dimen-
?i(;n((;f :;c)h)e map (3.4) is given by that of the Hilbert scheme Hilbye, ), (rine-1v),

cf. (2.3)):

¢ )
(3.10) Z (Sw Z rw) :
<p€H0me(F,@p) i<l—1
It follows that the relative dimension of M over Spf O, is
Z . .
(3.11) Z Z sy, Z o | -
p€Homg, (F,Q,) /=1 1<i<y

In Example 3.3 (the unitary PEL case), similarly we get the relative dimension
of the map (3.4) as the sum of that of the map m; and 73 in (3.8). The relative
dimension of the map my is

1 i
2. (m 2 %)~
peHomg, (F,Q,) 2<i<e—-1

By the total definiteness of gr’,i < [(¢ —1)/2], the relative dimension of 7 is
7ero.
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Example 3.8. We specialize to the unitary PEL case: Fy = Q, and dim V' =
n. Let Homg, (F, @p) = {p,P}. Suppose

o (r4,5,) = (r,n—r). Then (rg, sz) = (n—r,r).
o (=2j+1isodd, dimpgr'V =1 for all i < j. Then dimp gt/ ™'V =n —2j

e (ri,sl) =(0,1) forallé < j. Then (ri", sH) = (r,n—r—2j). (Implicitly
n>r+2j.)

Note that 7’% = sfp. By the formula above we find the relative dimension of 7
is equal to 7 and hence the relative dimension of M!°¢ over Spec O is

(3.12) ri+r(n—r—25)=r(n—r)—rj.

As we will see in §5, this is the same as the expected dimension of KR cycle
attached to a totally isotropic rank-j sublattice. In fact, the filtered RZ space
in this case is the “smooth locus” of the corresponding KR cycle, at least
when r = 1, cf. Prop. 5.3.

4. Ginzburg—Rallis cycle

A particularly interesting example in the EL case arises from the Ginzburg—
Rallis period [5], which is (conjecturally) related to the exterior cube L-
function on GLg.

Consider the integral RZ datum Dgz, where F' = Q,,V = F D6 with
a standard basis {e1,--- ,eg}, © = (0,0,0,1,1,1) (i.e., the cocharacter z —
diag(1,1,1,z2,2,2)), b basic, A = (e, - ,es). Henceforth, we denote by
(e1,--- ,e;) (resp. {e1, -+ ,e;)p) the lattice (resp. the vector space) spanned
by the specified vectors. To formulate the moduli space, we fix the framing
object

X=EXEXxE,

where E is the (unique up-to-isomorphism) supersingular p-divisible group
over F of dimension one and height 2. In terms of the notation in Example 2.2,
we have r = s = 3. Then the RZ space Mg is formally smooth over Spf O@p
of relative dimension 3 x 3 = 9 by the formula (2.3).

Consider the filtration

0 C <€1762>F - <€1>€27€3ae4>F - V
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Its stabilizer is the parabolic subgroup P with Levi subgroup isomorphic to
GL3. Denote the filtered RZ datum by Dpgz, and the RZ space by Mp. In
terms of Example 3.2, we have ¢ = 3 and

ri=st=1 1<i<3.

Then the RZ space M p is formally smooth over Spf O@p of relative dimension,
by the formula (3.11),

I1x1+1x2+1x3=6.

Note that Mp comes with two natural morphisms

MP MG

|

LT x Spf Of@p LT x Spf O@,, LT

where LT is the RZ space for GLg, it = (0, 1) and b basis (i.e., each connected
component is isomorphic to the Lubin—Tate deformation space in the height

two case).
The Ginzburg—Rallis subgroup of G = GLg is defined by

where A : GLy — GL3 is the diagonal embedding. Then H ~ U x GLy where
U denotes the unipotent radical. We define the (local) Ginzburg—Rallis cycle
My as the fiber product

MH MP

| |

LT # LT X Spf OQp LT X Spf O©p LT.

By the proof of Lemma 3.7 (cf. (3.10)), the vertical map is smooth of relative
dimension 3. In particular, we have the total dimension dim My = 5, exactly
half of the total dimension dim Mg = 10:

iH,G . MH HMG.
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Remark 4.1. The drawback is that the morphism i ¢ is not proper. One
could consider a Laumon style compactification, but it is rather complicated
and we hope to investigate its structure in the future. In fact, even the reduced
scheme of M seems not understood.

Remark 4.2. There is a relative trace formula approach to the Ginzburg—
Rallis period. We hope to formulate the Arithmetic Fundamental Lemma
conjecture in that context in the future.

5. Connection to KR cycles

In this section, we fix a p-adic field Fy and an unramified quadratic extension
F. Let w be a uniformizer of Fj and ¢ the residue cardinality of Fj.

5.1. The unitary RZ space

Fix an integer n > 1. We explicate (a slight variant of) the RZ formal moduli
scheme NV, = N, F/F, associated to (a special case of) the unramified integral
RZ datum in the unitary PEL case, cf. Example 2.3. For a greater generality,
we will consider the relative unitary RZ space defined as follows, cf. [16] for
more details.

For S € Nilp, we consider triples (X, ¢, A), where

e X is a p-divisible group of absolute height 2nd and dimension n over S,
where d := [Fy : Q,],

e . is an action of Op such that the induced action of Op, on Lie X is via
the structure morphism Op, — Og, and

e )\ is a principal polarization.

Hence (X, t|oy,) is a formal (strict) Op-module of relative height 2n and
dimension n. We require that the Rosati involution Rosy on Op is the non-
trivial Galois automorphism in Gal(F/Fp), and that the Kottwitz condition
of signature (n — 1, 1) is satisfied:

(5.1) char(a; Lie X) = (T — a)" (T —a) € Og[T] forall a€ Op.

An isomorphism (X,¢,\) = (X’,//, \') between two such triples is an Op-
linear isomorphism ¢: X = X’ such that ¢*(\) = \.

Over the residue field F of Op, we fix a framing object, i.e., a triple
(X, tx, Ax) such that X is supersingular, unique up to Op-linear quasi-isogeny
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compatible with the polarization. Then the formal scheme A, (pro-)represents
the functor

N, :Nilp —— Sets ,

which associates to each .S € Nilp the set of isomorphism classes of quadruples

(X, ¢, A, p) over S, where the final entry is an Op-linear quasi-isogeny of height
4

zero

p: X XSg — X Xspec]pg,
such that p*((Ax)g) = g

Remark 5.1. When Fj is unramified over Q,, Mihatsch showed that in [16]
the above NV, is isomorphic to a certain RZ space in Example 2.3. For example,
when Fy = Q, in Example 2.3, we are in the case B = F,dimp V = n and

(1, 85) = (n—1,1), (5 5%) = (1,n—1),
where p, 0 : F' — @p are the two distinct embeddings.

The formal scheme N, is connected, formally smooth over Spf O of rel-
ative dimension n — 1. When n = 1, the framing object is the supersingular
formal Op,-module (E, iz, \g) of (relative) height two and dimension one with
signature (0, 1), and N; ~ Spf O with the universal object being the canon-
ical lifting (&, Lz, Az pg) Here the bar in the notation indicates the action
of O is through the Galois conjugate of the usual one. We also consider the
signature (1,0) case with the framing object denoted by (E, (g, Ag) and the
universal object (&, tg, \g, pe).

We make an explicit choice of the framing object X,, = E"~! x E with the
obvious choice of tx,, Ax,. Let

(5.2) V, := Homg, (E, X,,)

be the F/Fy-Hermitian space of special quasi-homomorphisms, where the
Hermitian form is induced by the principal polarizations on X, and E: for
T,y € V,

(z,y) = Az oy oAxoxz € Endp (E) ~ F.

Note that V is a non-split Hermitian space, i.e., it does not contain a self-dual
lattice.

4In §2.2 on RZ space of PEL type, there was no restriction on the height of p.
Hence here the space N,, is a connected component of what’s defined earlier.
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Let Aut®(X,,, tx,, Ax, ) be the group of self-quasi-isogenies of the framing
object (here we require self-quasi-isogenies to respect the auxiliary structure
tx, and Ax, ). It acts naturally on V,, and induces an isomorphism

(53) AutO(Xn, LX, s /\Xn) — U(Vn) (F()) s

Then the group U(V,,)(Fpy) acts via the inverse of (5.3) on A, by changing
the framing;:

g'(X,L,)\,p) = (X,L,)\,gop).

Remark 5.2. We may also consider the totally definite case (cf. Exam-
ple 2.5), i.e., the signature (n,0) case. We may fix the framing object as
X! = E" with the obvious choice of tx:, Ax, . Then the resulting moduli
space, denoted by N, is formally smooth of relative dimension zero. Simi-
larly, define V], = Homy,  (E, X)), a split Hermitian space (hence isomorphic
to V in the RZ datum). Let G = U(V!) and let K the stabilizer of the lat-
tice Homop,. (E, X)), which is a hyperspecial subgroup of G. Then there is a
G(Qp)-equivariant isomorphism

Ny —— Ue(g,)/x Spf O -
Here G(Q,)/K is naturally bijective to the set of self-dual lattices in V7,.
5.2. KR cycles

In the sections below, when n is fixed, we will simplify write V (resp. X) for V,,
(resp. X,,). For any subset L C V, we recall from [10, Def. 3.2] that the Kudla—
Rapoport cycle (or special cycle) Z(L) is the closed formal subscheme of N,
which represents the functor sending each S € Nilp to the set of isomorphism
classes of tuples (X, ¢, A\, p) € N, (S) such that any (quasi-homomorphism)
r : E — X in L lifts to a homomorphism & — X, in the sense that the
quasi-homomorphism

— — — ,1 —
p_loxopg:gg XSS%EXSPQCFS£>XXSPECFSL—>XXss

extends to a homomorphism &s — X. Note that Z(L) only depends on the
Op-linear span of L in V.

Let Z(L)" be the “(formally) smooth locus” of the morphism Z(L) —
Spf O, i.e., the maximal open formal subscheme of Z(L) which is flat over
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Spf O and whose relative tangent spaces over Spf O have a constant di-
mension.

Note that when L = {z} consists of a single non-zero element z, we also
denote the special cycle by Z(x). By [10], Z(z) is a Cartier divisor on N,
flat over Spf Op.

5.3. Filtered RZ space

Let m,r € Z>o and n = m + 1 + 2r. We consider the filtered RZ datum in
Example 3.3, with the self-dual filtration

0=Fil'VCcFil'Vc- cFl'V=V
of length ¢ = 2r + 1. We further assume that
e The graded quotients have dimensions:

, 1 ) 1
dimgr'V =1{" Z,#T+ ’
n—2r i=r+1.

e The signature (r},, s,) = (1,0) for all i <r. (Then the signature of gr"*'V/

is(n—1-2r1).)

We denote by P = Pir 41,1 the parabolic subgroup of G stabilizing the
filtration.

We explicate the formal moduli functor. For S € Nilp, we consider tuples
(X, Xe,t,A), where (X, ¢, \) is as in §5.1, and
0=XoCX;C---CXoppp1 =X

is a self-dual filtration (cf. §3.2) such that the following Kottwitz condition
holds: Va € Op,

(T —a)’, 1<,

char(a; Lie(X;)) = , ‘ .
(T —a)" 19T —a), i=2r+1—j>r

Fix a framing object (X, X,, tx, Ax) over SpecF. Then we define a functor

Np :Nilp —— Sets ,
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which associates to S € Nilp the set of isomorphism classes (X, X, ¢, A, p)
where (X, Fil*X, ¢, \) is as above and

p:X ng%X XSpec]F§

is an Op-linear quasi-isogeny of height zero that preserves the filtration X,
and X,, and such that p*((Ax)g) = A5

Let N1+ denote the functor recording only the first r-steps (X,.,0 = Xy C
X1 C -+ C Xpytlx,, plx,) (without any polarization). It is associated to a
filtered RZ datum of EL type, cf. §3.1 and §3.2. To avoid confusion with the
unitary RZ space N; (the special case n =1 of NV,, in §5.1), we will denote

(5.4) M; =N, whenr=1.
Then we have a natural morphism
(5.5) Np ——= Nir x Ny_ap

where the second factor sends (X, X,, ¢, A, p) to the p-divisible group X, 11/X,
with the induced additional structure. Note that A+ is an example of totally
definite RZ space of EL type (cf. Example 2.5), and hence has relative di-
mension zero over Spf Oz. A more explicit description of Ni- is as follows.
Let £; = Homy, (E,X;) C V and £ = E,. (A notational remark: henceforth
the letter E will no longer denote the reflex field of a local Shimura datum.)
Then there is a natural bijection

(5.6) N1r —— H]—'LE Spf OF s

where FLg the set of complete flags &, of lattices in £ = F,
0cé&cé&e---Ccé =€

such that & = ENE; is of rank i. Upon choosing a basis of E°, the index set is

then isomorphic to B,(F)/B,(Or) where B, C GL, r is the Borel subgroup

of upper triangular matrices. Note that the set FLp is also isomorphic to

GL,(F)/GL.(Op) via the map sending the chain & to the largest lattice
& C V,. We denote by Npg, the fiber of the map over the copy of Spf O3

®We need less than the basis; it suffices to fix a base point in the set {,}.
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indexed by & € FLE:

(5.7) Npg, — Spf O

|

Np —— Nir

Similar to (5.5) we may further define a natural morphism, recording the
graded quotients X;/X; 1 fori=1,--- r+1

(5.8) NP HNM — Ml XSpfOp B XSpfOF ./\/l1 XSpfOF Nm-i—l

where M stands for the Levi of P, which is isomorphic to Resg,p(GL1)" x
U(E+/E). Here the induced Hermitian form on E+/E ~ V,,.; is non-
degenerate (also cf. (6.1) below). Then the case r = 1 of (5.6) asserts (with
the chosen basis)

(5.9) M1 —— HFX/O;QZ Spf OF .
5.4. Connection to KR cycles

For the rest of this section, we fix a flag of lattices & € FLE as above, and let
& be the largest one in the flag, which is of rank r. Recall from §5.2 that we
have Z(&)T, the “(formally) smooth locus” of the morphism Z(€) — Spf O .
From the definition of Npg,, it is clear that there is a natural morphism of
formal schemes Npg, — Z(E).

Proposition 5.3. There is a natural isomorphism:
./\/-pvg. é Z(S)T

Proof. Let (X, Xe,1,\) € Npg,(S). Since € is an Op-lattice of rank r, the
formal scheme Z(&) is an intersection of r Cartier divisors on N,,. Therefore,
Z (&)1 is the open formal subscheme of Z(€) with underlying reduced scheme
consisting of points on the reduced scheme Z (&)™ where the relative tangent
spaces over Spf O have a constant dimension n —r — 1 (once we show the
non-emptiness of such points, which is clear from the argument below). Hence
it suffices to show that the condition on the tangent space is equivalent to the
condition that the homomorphism &s ®o, &€ — X is a monomorphism, where
&s ®o, € is Serre’s tensor construction. This equivalence can be checked on
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geometric points of S and it suffices to consider the case where S = Speck
is a geometric point z on N4, Below our argument works for an arbitrary
algebraically closed field k£ in characteristic p; but for notational simplicity
we will restrict ourselves to the case k =TF.

We recall some preliminary constructions (see [25], [10, §2], [19, §3], [12,
§2] for more details). Let D(X) be the (covariant) Dieudonné module of X
with the induced action by

Of ®OF0 OF“ ~ H OF'
HOI‘HOF0 (OF,OF)

Let A = D(X); be the eigenspace corresponding to the Galois conjugate of
the tautological embedding Or C Op. Via the framing p we may identify
the F-vector space Ap = A®o, F with Vi =Ver F', respecting the o-
sesquilinear pairing on Ay induced by the polarization and the extension of
the Hermitian paring on V to V. Then the lattice A is a special lattice in
V., in the sense that AY c' A C w 'AY, where A is the dual lattice. Then
a point z € N lies on Z(€) if and only if the £ C AY.

The map &5 ®0, € — X is a monomorphism if and only if the induced
Op-linear map € ®o, Op — D(X) is saturated (i.e., the cokernel is torsion
free). By the action on Lie algebra we may replace D(X) by A = D(X);.
Furthermore, the saturation is equivalent to the condition that the F-linear
map

(5.10) E®op F——A®o, F

is injective.
By Grothendieck—Messing theory, the tangent space of Z(€) xspr 0, SpecF
at « is isomorphic to the cokernel of the F-linear map (cf. [12])

(5.11) £ @0, F—— A JwA

where the target AY/wA is an F-subspace in A/wA = A ®o, F of codi-
mension one. Note that the KR cycle Z(€) is the intersection of r = rank £
Cartier divisors. The smoothness at x is then equivalent to the above F-linear
map (5.11) is injective, which is equivalent to the injectivity of the map (5.10).
This completes the proof. O

We now determine the reduced scheme Z(&)Tred of Z(E)T, for £ arising
from a flag of lattices & € FLE.
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Proposition 5.4. Let € be a totally isotropic lattice of rank r (every such €
arises from a flag E¢ € FLE). Then we have

Z(g)T,red _ Z(g)red \ UggglcEZ((‘:/)red,
where the union runs over all Op-lattices £ of rank r in E = & ®p, F, and
Z(E)" = 2(6) \ UecercrZ(€),

where the right hand side denotes the open formal subscheme of Z(E) whose
topological space is the open subscheme Z(£)*N\UgcercpZ(E') of Z(E)Tred.

Proof. 1t suffices to prove the first assertion on the reduced schemes. We
use the criterion of smoothness via the injectivity of (5.10). It is clear that
Z(&)tred C Z(E)d\ Ugcer Z(E")™). Now let € Z(E)(F) and A C V the
corresponding special lattice. Then £ C AY.

It remains to show that, if the map (5.10) is not injective, then x lies on
Z(&Nred for some £ C &' C E. Let & = AN E. The non-injectivity of (5.10)
implies that £ # £’. Since F is totally isotropic, all vectors in £ have integral
Hermitian norms. By the claim below, we have £ C AY and hence the point
re Z().

Claim: Let u be a vector in V such that (u,u) € Op. If u € A, then
ue AY.

To show the claim, we denote by {, -} the o-sesquilinear pairing on V z and
denote by ® the automorphism idy®c. The dual lattice AV is characterized by
{AY, A} = Op and we have (AY)Y = ®(A). It follows that u = ®(u) € P(A)
and hence we have {u, AV} C Op.

Now suppose that u € A\ AY. Since dimp A/AY = 1, we must have

A= <U>OF + AY.
It follows from (u,u) = {u,u} € Op that
{u, A} C 015

and hence u € AY. Contradiction! O

Remark 5.5. The assertion fails without the totally isotropic condition on
E. For example, consider a rank one £ = (u) with a generator u such that its
Hermitian norm (u,u) = w. The special divisor Z(€) = Z(u) is not formally
smooth over Spf O while Z(&’) is empty for any lattice £’ C E such that
EDE.
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Example 5.6 (The case rank& = 1). Let £ = (u) be a rank one lattice
generated by a non-zero u € V with Hermitian norm (u,u) = 0. Then by
Prop. 5.4,

(5.12) Z(E)Pred = Z(u)!\ Z(@w )™,
and
(5.13) ZE)=Zw)\ Z(w tu),

the restriction of Z(u) to the open subscheme Z(u)*\ Z(ww~tu)*d of Z(u)ed.
Note that Z(w~lu) is a Cartier divisor and is a closed formal subscheme of
Z(u) (though abstractly they are isomorphic!). The difference divisor D(u) is
defined as the difference of Cartier divisors

(5.14) D(u) = Z(u) — Z(w '),

i.e., D(u) is locally defined by f,/feo-1, = 0, where f, and fg-1, are re-
spectively the local equations defining Z(u) and Z(cw'u). Then Z(€)' is an
open formal subscheme of D(u) and hence we may view D(u) as a compact-
ification of Z(&£)'. It is analogous to the Laumon style compactification of
Bunp — Bungy,, for a parabolic P of GL,,.

5.5. The Bruhat—Tits stratification of Z(&)Tred

We first recall the Bruhat-Tits stratification of the reduced scheme N4 of
N, following the theorem of Vollaard—Wedhorn [25]°, see also [11, §2.7].

Let Vert(V) denote the set of all vertex lattices A C V| i.e., lattices (of
full rank) such that A € AY C @ 'A. The reduced subscheme of N, is a
union of closed subschemes V(A)

Net= | v

AeVert(V)

Here V(A) is the generalized Deligne-Lusztig variety [11, §2.5], a smooth

projective variety over F of dimension t(Ag)fl. Here

t(A) :=dim AY/A

50ur convention on vertex lattices slightly differ: the Hermtian form have integral
values on our lattices A, which correspond to the dual lattices of those while in loc.
cit..
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is called the type of A, which is an odd integer. For two vertex lattices A, A/,
we have V(A) C V(A') if and only if A D A’; and V(A)NV(A) is nonempty if
and only if A+ A’ is also a vertex lattice, in which case it is equal to V(A+A’).
We therefore have a Bruhat—Tits stratification by locally closed subvarieties,

Ned= ] vye, vy =y | v,

A€eVert(V) ACA

The irreducible components of AV’**d are exactly the projective varieties V(A),
where A runs over all vertex lattices of maximal type. The “dual graph” of
the stratification is the Bruhat—Tits building of the unitary group SU(V).

For an Op-lattice &€ C V of rank » > 1, we denote I = € ®¢, F and
define a subset of Vert(V):

Vertg := {A € Vert(V) | £ C A}

By [10, Prop. 4.1], the reduced subscheme Z(€)4 of the KR cycle Z(€) is a
union of Bruhat—Tits strata,

(5.15) zErd= | viny= || vy

A€Vertg A€eVertg

In fact, by [19, Thm. 10.1], we have for any A € Vert(V)

(5.16) Z(A) ~V(A)

as closed formal subschemes of A,,, which provides a moduli theoretical in-
terpretation of V(A).

Remark 5.7. In [24] (in the case Fy = @Q,) Vandenbergen proved that
Z(&)d is connected when E = & ®o, F is a non-degenerate Hermitian
subspace of V. It is likely the method also proves the connectedness for any
&, particularly totally isotropic £ for our interest in this paper.

Now we consider those A € Vertg such that £ is saturated in A:
Vert}: := {A € Vertg | £ = ENA}.
For A € Vertg, we define

vOE=v)N U vy,

AN, A'¢Vert
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It is easy to see that

VML = V(M)
ACA’EVert]

Then by Prop. 5.4 and (5.15), we have a Bruhat—Tits stratification of Z(&)red.

(5.17) eted= ) vior= || v

AEVert1L AEVertJr
In fact, combining with (5.16) we have
(5.18) VML =2\ N Z(E).

5.6. The morphism Njig ~ Z(£)tred — Ared

n—2r

Recall by (5.7), (5.8) and Prop. 5.3 that we have a morphism
NP,E. = Z(S)T HNn—Q’r .

This morphism appears in the formulation of the Arithmetic Fundamental
Lemma conjecture in §7. Therefore, it is desirable to understand as much
about it as possible. In this subsection, we make a first attempt to describe
the induced morphism on their reduced schemes N ffg. ~ Z(&)tred 5 Nred,
The resulting morphism seems rather complicated and we can not prove any
general result. Instead, we give some examples and raise some questions on
the refined structure of the reduced scheme N, };‘fg. ~ Z(€)Pred; see Remark 5.8
and 5.11 below. We point out that this subsection is not used in §7 and the
reader who is only interested in the formulation of the Arithmetic Fundamen-
tal Lemma conjecture can safely skip it.

Denote by V* = E+/E with the induced Hermitian form. There is a map
(5.19) Vert}: —— Vert(V?)

sending A to A> = (EXNA)/ENA = (E+tNA)/E. By Lemma 3.1, A’ is a
vertex lattice and the type does not increase:

t(A”) < t(A).
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Fixa A € Vertg and its image A" € Vert(V®). Then, by (5.18), we obtain
a morphism V(A)‘g = Z(A\) N Z(E)T = Ny,up1 and it is easy to see that the
image lies in Z(A”) = V(A”). The resulting morphism is denoted by

(5.20) Tan : VIAE —— V(7).

One can describe 7, »» in terms of the special lattice A € V. (cf. the proof
of Prop. 5.3), but it is not clear to the author what propertles can be said
about the morphism. The map 7, ,» behaves well with the change of vertex
lattices A C A’ in Vertg: there is a natural commutative diagram

V(N —— V(A?)

L

VA —— V()

where the two vertical maps are closed immersions.

Remark 5.8. The reduced scheme N4 is a certain affine Deligne Lusztig
variety (in mixed characteristic). It is not clear (to the author) whether the
reduced scheme Z(€)"*d admits a similar description, and whether one can
use such description to study the map (5.20).

Example 5.9 (The case r = 1). To illustrate the map (5.20), we consider
the rank one case & = (u) for an isotropic vector u. Given A € Vertg, there
are two cases

o ucwhY,
o u¢ whY.
In the former case, (u, A) = wOp, we have t(A?) = t(A) — 2. Then

V(M) = VA \ V(A + (u/m)).

The fiber of the map (5.20) seems rather complicated (for a general t(A)).

In the latter case, (u, A) = Op, we have t(A") = t(A). The map (5.20) is
an isomorphism. (Note that, if A has maximal type n or n—1, then the latter
case cannot happen.)

Example 5.10 (Disconnectedness of Z(u)" C Aj3). Consider n = 3 and a
rank one lattice £ = (u) spanned by a norm zero vector u. Then

Vertzrw ={A e Vert(V) |u e A\ wA}.
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Let Vel"t]g;f;?) ={A e Vertzrz’ffg | t(A) = 3}. Fixing a base point Ay in this set,

there is a natural bijection
Vert}"=* —=— N(Fy)/N(O,)

where N is the unipotent radical of the parabolic subgroup of U(V) cor-
responding to the flag 0 C (u)r C (u)F C V, and N(Og,) = N(Fp) N
GLog, (Ao) is defined with respect to Ao.

Claim: Z(u)"red s disconnected of pure dimension one.

It follows that

(5.21) Zwit = I v,
A€Vert =

To show the claim, first we note that there can not be zero dimensional
connected components. In fact, for any type 1 lattice A € Vertzrw, one can
find a type 3 lattice A’ such that uw € A’ C A: if u ¢ wA", then we can take
N = (u) + wAV; if u € @AY then we can take any one of the ¢ + 1 lattices
A" C A of type 3.

It remains to show that the (punctured) DL curves V(A)T for A € Vertz;;: s

do not intersect. Suppose that Aj, Ay € Vertz;ffg' are adjacent, ie., A =

Ay + Ay is a vertex of type 1. We need to show that %u € /N\, which implies
that the intersection point V(A1) N V(Ay) = V(A) is “removed” in Z(u)Fred.

By A} = @ 'A; we have Lu € A} and its image is nonzero in the quotient
AY /A = LA;/A;. By

A AL S AVE LAY = oA,

and AY NAY = AV, we see that Lu € AY. However, (u,u) = 0 hence Lu
mod A; is isotropic in the 2-dimensional k-spase AY/A; inside AY/A;. Note
that the 1-dimensional line A /A; inside AV /A, is characterized by (z,z) = 0.
Hence %u € A as desired.

Remark 5.11. Similar to (5.21) there is a description of the set of connected
components Z(u)" when n = 4. Is there a natural parameterization of the set
of connected components of Z(u) for an isotropic vector u (more generally,
Z(&) for a totally isotropic £) when n > 57
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6. The FL conjecture of Liu

In this section, we recall the fundamental lemma (FL) conjecture of Liu in
the Bessel case [13]. This also sets up the analytic side that will be used to
formulate our AFL conjecture.

6.1. The Bessel subgroup

We recall [4, §12] for the Bessel subgroups (in the unitary case). Let F'/Fy be
a separable quadratic extension of fields. Let V' be an F'/Fy-Hermitian space
of dimension n > 2, with the sesquilinear pairing denoted by (-,-). Following
loc. cit. we will denote by G(V') the unitary group U(V). Let E be a totally
isotropic subspace of dimension r so that we have a flag 0 C E C E+ C V.
(Here E*+ denotes the orthogonal complement of F in V.) Let W* = E+/E
be the quotient with the induced Hermitian structure:

(6.1) 0 E E+ Wt 0.

Fix a non-isotropic line L ¢ W*. Pulling-back the extension (6.1) along L
W we get an extension, denoted by Ef,

(6.2) 0 E E? L 0.

Let W C W* be the orthogonal complement of L in W#. Then we have
W =W e L.
Now fix a complete flag of (necessarily isotropic) subspaces in E:
0=EyCE, C---CE,=E.
It induces a (partial) flag of V/
0=VhcWiC---CVoyp =V.

by setting

E; 1<i<r,
(6.3) V=< .
FEypy gy 7+1<i<2r+1.
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Then we define a subgroup H of G(V') consisting of g € G(V') such that

gEiCEiagEi/Ei,lz]-, Zzla T
gE* C E* glpp = 1.

We call H a Bessel subgroup of G(V') (note that we are abusing the terminol-
ogy here as the name is more commonly used for H inside a product group,
see the paragraph after (6.9)). Note that ¢ € H also stabilizes Ei-. By the
isomorphism E+/E* ~ W, we have a quotient map

(6.4) q: H—=G(W)

defined by g — g|g1/p:. (Note that all g € H automatically stabilizes Et)
The unipotent radical of H, denoted by N, is then the kernel of the quotient
map H — G(W).

Remark 6.1. Let P = Pjr 41,1~ be the parabolic subgroup of G(V') which
stabilizes a complete flag of (necessarily isotropic) subspaces in E. The Levi
subgroup Mp of P is naturally isomorphic to Resp, g, (GL1)" x G(W*). Then
the group H fits into a Cartesian diagram

(6.5) H P

| |

G(W) E— ResF/FO(GLl)’" X G(Wﬁ)

This provides a quick definition of H. However, it is then less obvious how to
define the homomorphism (6.6) below.

Remark 6.2. In [4] the authors start with an embedding W C V and an
orthogonal decomposition V =W @ W+ and Wt = (E + EY) ® L. Then we
have an isomorphism

H~NxGW),

where N is the unipotent radical of P in (6.5), and G(W) (now as a subgroup
of G(V)) acts on N by conjugation. It seems more natural to treat W as a
subquotient rather than a subspace of V', as we will see in the moduli space
of p-divisible group.
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Let Ngi denote the unipotent radical of the Borel subgroup Bg: of the
Weil restriction Resg)p, GL(E*) stabilizing the complete flag 0 = Ey C E; C
.- C E,=F C E,,1 = E*. Then we have a quotient map

(6.6) w: H——% Ny

sending g € H to g|g:. Finally, we fix a generic homomorphism (of algebraic
groups)

(6.7) A: Npz —— F.

Here by a “generic” homomorphism we mean that the stabilizer of the ho-
momorphism under the natural action of the Levi torus Resp, g, (GL1)™ ™ of
Bp: is as small as possible (in this case, the stabilizer is exactly the center of
Resp/r, GL(E?)).

We now define an explicit homomorphism A by choosing a basis {e1,--- , €.}
of E such that

Ei:<617"‘,ei>F7 ]-SZST',

and a basis {e} of L. We let e,11 € E*+ be a lifting of e. For u € Ng¢, we
write

u(€ir1) = €ip1 + aip1i€e; mod Eiq, a1, € Fo, 1 <i <.

Then we define A by

(6.8) AMu) = Z:a,uru.

For later use we also fix a “dual basis” {ey,--- e/} (i.e. {e;,ef) = d;;) such

»Er

that e, 41 L e for alli =1,--- ,r. Denote EY = (ef,--- ,¢/)r. We then lift

W# to the unique subspace (E + EV)L of V and write V = W* @ (E + EV).
In terms of the “dual basis” we have

T

(6.9) Mu) = (uleir),ef).
i=1
We view H as a subgroup of G = G(W) x G(V) where the first factor is
the natural projection (6.4). The subgroup H is called a Bessel subgroup of
G (cf. [4, §12]). To rigidify the set up, in this paper let us simply assume that
the discriminant of L is trivial. Then the pair (H, A o u), up to G-conjugacy,
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depends only on the isomorphism class of V' (or equivalently, only on the
isomorphism class of W), which we assume to contain a totally isotropic
subspace of dimension 7.

We will be interested in the action of H x H on G = G(W) x G(V') by

(h1,h2) - (b, g) := (hihhy', highy™).
To simplify the action, we introduce the group
(6.10) H:= H xgw) H = {(h1,h2) € H x H | q(h1) = q(h2)}.
Then (6.4) induces a surjective homomorphism denoted by the same symbol
(6.11) qg:H— G(W)
whose kernel is N x N. It acts on G(V') by

(h1,h2) - g == hagh3".

See [13, §4.2]. Then it is easy to see that the set of (H x H)(Fp)-orbits in G(Fyp)

is naturally bijective to the set of H(Fp)-orbits in G(V')(Fp). Henceforth, we
will freely switch between the two orbit spaces.

6.2. Symmetric space

Consider the symmetric space
(6.12) Sn = {7 € Resp/r, GL,, | 77 = 1, }.

The group Resp/p, GL,, acts on S, by

g-v=g7q "

As before we assume n = m + 2r + 1. Similar to the Bessel subgroup of
the unitary group, we recall from [13, §2.1] the Bessel subgroup H' of GL,, p.
Let

fer, - en}

be the standard basis of the n-dimensional vector space V = F". Let F; =
{e1,--,ei)p and W = (epqa, - ,enp)r C W8 = {e,1, -+ ,nr)p. We
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view GL(W) as a subgroup GL(W*) in the obvious way. Then the Bessel
subgroup H' of GL,, r consists of g € GL,, r such that

(6.13) {gEi CEyglg /g, =1 1€ {1,---,r,m—r+1,--- ,n},
' 9|Birer/B € GL(W),

where we view g|g, ., ,,/5, as an element in GL(W?#) by the natural isomor-
phism E,,14,/E, ~ W% The kernel of the projection H' — GL(W) =~
GL;,, 7 (the isomorphism defined by the above basis) is the unipotent radical
denoted by Uir yn41,17. Then

H' = Urr 1,10 ¥ GLp, p.
We introduce the subgroup of Resp/p, H'
H = ReSF/Fo U1r7m+17y X GLTTL,F() C ReSF/Fo H'.

with the induced action on S,. In other words, H' is defined by (6.13) and
further requiring that g|g, ..., /5, € GLu k. Denote the natural quotient
map by

(6.14) q:H —» GLyp, -

Let E = (€1, serq1,€n_rs1," - ,€n)p, naturally identified with V/W.
Let Ujzr+1 denote the unipotent radical of the Borel subgroup of GL(E) ~
GLg;41 with respect to the complete flag

0cC <61>F c---C <617 R C7 AT [ C7P A D 7en>F'
We have a surjective homomorphism
(615) u:H — U127‘+1 s

sending g € H’ to the composition

E vV—_2sv V/IW~E.

(It is easy to verify that the composition indeed lies in the subgroup Us2r+1
of GL(F).) Similar to (6.8), we define a generic homomorphism,

(6.16) )\/: U12r+1 — F

using the above basis {e1, -+ ,€r41,€nrt1, " ,€n}.
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6.3. Regular orbit matching
We now consider the space of (regular) orbits for the two group actions in-
troduced above:
(i) The action of H on G(V).
(ii) The action of H on S,,.

Recall from [13, Def. 4.5] that an element v € S,,(Fp) (resp. g € G(V)(Fp)) is
called pre-regular if its stabilizer under the action of Resp; g, Urr m+1,1 (resp.
N x N) is trivial. By [13, Lem. 4.6}, a Resp/g, Uir m1,1-0rbit of a pre-regular
element contains a unique element of the form

(6.17)
t

v = ol , e FX AP € S (F).

See [13, Rem. 4.8] for a more “intrinsic” definition of the invariants ¢;. Such
a form is called the normal form (of any element in the orbit).

For the unitary groups, we take the fixed basis of £ and EY. By [13,
Lem. 4.7], a N x N-orbit of a pre-regular element contains a unique element
of the form

1

A _
which is called the normal form (of any element in the orbit).

Next we recall that the notion of regular (called regular semisimple in [31])
elements in Sy, 1 and G(W*) (relative to the action of GL,, and G(W) respec-
tively). Using the basis of W and L we identify Endp(W & L) ~ Mat,, 41 p.
Then an element § € Mat,, 11, is regular if {e, e, --- ,{™e} is an F-basis of
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WL and {e¥,eE, -+ eV} is an F-basis of WY& LY, where eV is a basis of
LY = Hompg(L, F). Then we say that ¢* € G(W?)(Fp) (resp. v* € Spi1(Fp))
is regular if it is regular as an element of Mat,, 11 r. A regular g € G(W*)(Fp)
and v* € S,,11(Fp) are said to match if they are GL(W) ~ GL,,(F)-conjugate
when they are viewed as elements in GL,,41(F).

Finally, we say that an element v € S, (Fy) (resp. g € G(V)) is regular
if it is pre-regular and v* € S, 1(Fp) (resp. ¢* € G(W*)(Fp)) in its normal
form is regular. Denote by S, (Fp)ss (resp. G(V)(Fp)s) the subset of regular
elements. Then H'(Fy) (resp. H(Fp)) preserves Sy, (Fo)s (resp. G(V)(Fo)qs)-
We will denote by [S,,(Fo)] , (resp. [U(V)(Fp)],,) the set of regular orbits.

A regular g € G(V)(Fp) and v € S,,(Fp) are said to match if their normal
forms (6.17) and (6.18) satisfy

1. t;=t foralli=1,---,r, and
2. ¢* € G(WH)(Fy) and 4f € S, 1(Fp) match.
By [13, Prop. 4.12] the matching relation defines a natural bijection of

regular orbits,

(619) HV [U(V)(Fo)]m —/ [S”(FO)LS s
where the disjoint union runs over the set of isometry classes of n-dimensional
F/ Fy-Hermitian spaces V' containing a totally isotropic subspace of dimension
T.

6.4. Orbital integral: smooth transfer

From now on we further assume that m > 1. We recall orbital integrals
[13, §4]. Now let F'/F; be a quadratic extension of p-adic fields. Then there
are exactly two isometry classes of F'/Fy-Hermitian spaces of dimension n,
denoted by Vj and V4. When F'/Fj is unramified, we will assume that V{ has
a self-dual lattice. Then the orbit bijection (6.19) becomes

[(U(Vo)(Fo)]  TT[(U(VA) (Fo)],, — [Su(F0)],, -

Fix a non-trivial continuous character g : Fp — C* and set ¢p = yyotr :
F — C*. Abusing notation we also denote the character

(6.20) b1 Ngs(F) —— C*
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sending v € Npgi(F) to 1 o A(u),

(6.21) V: H(Fy) —— C*

sending h € H(Fp) to 1 o A o u(h), and

(6.22) ¢: H(F)) —— C*

sending (hy, ho) € H(Fy) to 1 (hy )¢ (hy). Similarly, we denote
(6.23) ¢: H (Fy) —— C*

sending € H'(Fp) — 1 o Ao u(h).
Let
n=nr/r,: Fy' — {£1}

be the quadratic character associated to F/Fy by local class field theory.
Abusing notation we also denote the character

(6.24) n: H'(Fy) —— {£1}
sending h € H'(Fp) to n o detog/(h). Similarly, we let
(6.25) || H(Fy) —— R*

denote the character h — | det oq’(h)|g,.
For V. =Vyor Vi, g € G(V)(Fy)s and f € CX(G(V)(Fp)), we define the

orbital integral
Orb(g. )= [ (- g)o(h) dh.
H(Fy)
For v € Sp(Fy)ws, f' € CX(Sn(Fy)), and s € C, we define the orbital

integral
(6.26) Orb(, f'5)i= [ (b 2)(hn() Bl dh,
H'(Fo)

where | | denotes the normalized absolute value on Fy. We define the special
values

Orb(v, f') == w(y )Orb(7 f,0) and

(6.27)
90rb(y, f') := ‘ Orb(v, [, 5),
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where w(y) is a transfer factor (defined in [13, §4.4, (4.17)] at least when
F/Fy is unramified and  is a normal form).

Definition 6.3. A function f € C2°(S,,(Fp)) and a pair of functions (fo, f1) €
C2(U(V)(Fo)) x C2(U(Vh)(Fyp)) are (smooth) transfers of each other if for
each i € {0,1} and each g € U(V;)(Fp)ys,

Orb(g, fi) = Orb(y, ')

where v € S(Fp),s matches g.

It is expected that for any given (fo,f1) € C2(U(Vy)(Fp)) X
C2(U(V1)(Fp)) or f' € C°(Sn(Fp)), a smooth transfer always exists, though
this remains an open problem as of today.

Remark 6.4. We have assumed m > 1. The case m = 0 (so that n = 2r +1)
requires little modification: in (6.19) there is only one Hermitian space V, i.e.,
the split one.

6.5. Liu’s FL conjecture

We review the FL conjecture, cf. [13, §4.4]. From now on we assume that
F/F, is an unramified quadratic extension of p-adic field for an odd prime p.
We assume that the character 1 : Fo — C* is of level zero (i.e., ¥|o, =1
but 1/)|w—1OFO # 1). Fix a self-dual Op-lattice Ag C Vj such that the intersec-
tion of the lattice (AN E+)/(ANE) in W# with W remains a self-dual lattice
in W. We denote its stabilizer by Ko C G(Vy)(Fp), a hyperspecial maximal
compact open subgroup. Let H(Op,) = Ko N H(Fy) (note that H is a sub-
group of G(Vp)) and H(Op,) = (H(Op,) x H(Og,)) N H(Fy) (note that, by
definition (6.10), H is a subgroup H x H). Let H'(Op,) = GL,(Or) NH'(Fp)
(note that H' is a subgroup of Resp/g, GL;,). We normalize the Haar measure
on H(Fp) (resp. H'(Fp)) such that vol(H(Op,)) = 1 (resp. vol(H'(Og,)) = 1).
We have [13, §4.4]:

Conjecture 6.5 (Liu’s Fundamental Lemma conjecture). The characteristic
Sfunction

15,(0r,) € C(Sn(F0))

transfers to the pair of functions

(1xo,0) € CZ(G (Vo) (Fo)) x CZ(G(V1)(Fo))-



AFL for Bessel subgroups 2323

When r = 0 this is the Jacquet—Rallis Fundamental Lemma conjecture.
When r > 0, the conjecture remains an open problem as of today.

Remark 6.6. Liu also allows the case m = 0 in [13, §4.4], which was already
formulated by Jacquet and proved in some low dimensional cases in [8]. For
the formulation of the AFL conjecture, we will always assume m > 1.

The easy part of the conjecture is known by [13, Prop. 4.16], i.e., when =
matches an element g € G(V1)(Fp):

Orb(v, f) = 0.

In the next section, we will formulate a conjecture relating the first derivative
00rb(v, ') to certain arithmetic intersection numbers.

6.6. FL: an interpretation as lattices counting

We continue with the set up from §6.5. Suppose now that V is the split
Hermitian space and that the special vector e € W* has norm (e,e) = 1 (or a
unit). In this subsection, we let A7, denote the set Vert®(V) of self-dual lattices
A C V. As the notation suggests, N is the set of connected components of
the RZ space in the totally definite case, cf. Remark 5.2.

Recall we have fixed a basis {e1,---,e,} of E, a basis {e} of L, and
ery1 € Ef a lifting e € L. We consider the Op-lattices
5Q:<€1,"',€i>CEi, 1< <r+1.

1

Denote
(6.28) E¥=€cE, &°=&,, cE".

Let N} be the set of 0 = Ag C Ay C -+ C Agpqq such that Agq € N
and A; = V;NAgqq foralli =1,--- 2r+1. (Here recall V; from (6.3).) Then
the map Ao — Agq11 defines a bijection:

N~ A

Therefore, we will freely switch between the two sets. Let N}, denotes the
set of tuples (L1, Ly, -+, Lm, A¥) where £; are rank one lattices in V;/V;_; =
E;i/E;_1fori=1,---,rand Af is a self-dual lattice in W*¥. There is a natural
map

Np —— N,
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sending A, to £; = Aj/Aj_1 for i = 1,---,7 and A* = A,,/A, (this is
self-dual by Lemma 3.1).

Let N7, = Vert?(W) (resp. N7, ; = Vert’(W#)) denote the set of self-dual
lattices in W (resp. in W*). We have an embedding

(629) L '/\/Zn HN’IQH—l

with the image consisting of lattices A* € Vert®(WW#) such that e € A%, There
is an embedding

(6.30) Heryer} - N1 — Ny

with the image consisting of (Ly,---, L., A¥) such that £; = (e;). For the
Bessel subgroup H, we define

(6.31) Ny —— Np

L]

N —— Ny,

where the bottom map is the composition of the two embeddings (6.29)
and (6.30).

Unfolding the definition we see that Nj; is the set of lattices A € N, =
Vert?(V) such that, for 1 < i < r + 1, setting & := E; N A, then we have
Ei/€i—1 = (e;) (aslattices in F;/E;_1). (Here we warn the reader that, in (6.3),
V; = E; fori < rbut V,41 # E,.1 = E*. This is the reason that here we write
&; rather than A;.) We choose the first definition, which is more laborious, in
order to be consistent with the arithmetic analog in the next section.

Let N},,, = Nj, x N, with the natural action by the product group
(GIW) x G(V))(Fp). We then have a map

Ny — N
sending A € N ~ (A”, A). (Here via the embedding N} < N we write an
element in Nj; as A € N).)

Let ]:E%j denote the set of (framed) complete flags &, of lattices in E*:

OC(€1C(€2C"'C(€T+1:(€
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such that & = ENE; is of rank i and &; /&1 = (e;),1 < i <r+1. (The word
“framed” refers to &;/& -1 = (e;) for the fixed e;.) Then there is a natural
bijection

(6.32) FLE: ~ Nz (F) /N (Op),

where the neutral point in the right hand side corresponds to the (framed) flag
&Y that we have fixed via (6.28). (Here Ngz is defined in §6.1.) The character
of Ng:(F') defined by (6.20) induces a character

Y FLY, —— C*.
There is a natural map
Ny —— FLB,
sending A to & = AN E;,1 <i<rand &= AN E* We also denote by
v Ny — C*

the pullback of the character of ]'Zgn-
Then we may interpret the orbital integral in §6.4 as a weighted lattice
counting: for a regular g € G(V),

(6.33) Orb(g, laon)) = D, $A)PA).
(A,A’)EN;JXN}I

A=gA, Ab=nA"b

As an analog of the intersection problem to be introduced in the next
section, we show that the sum is finite.

Proposition 6.7. Suppose that g € G(V)(Fy) is reqular. Then the set
(634) NN (1,9)- Njp = {(AA) € Njp x Nig | A = gA, A = A"}

1s finite.
Proof. For A € Nj; we denote
E=ANE" &=ANE

and denote by £ and £’° the analogous lattices for A’ € N};. Note that, by
A € Ny, € (resp. £) induces a framed flag in E* (resp. in E).
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We may and do assume that g is a normal form (6.18). We may factor-
ize the embedding Nj; — Np into two steps by the two embeddings (6.29)
and (6.30). Thus we define the fiber product

(6.35) Ny —— Nb

L

! !
N1 —— Ny

We first consider the following set
(WE x Np)g = {(A,N') € N x N, | A" = gA}.
By definition we have £ C A and £’ ¢ A’. We thus obtain
"+ ¢& c N,

In particular the lattice £° + g€ is integral, or equivalently (£'°,¢&") C
Op. Using the normal form (6.18) of g, it is easy to see that the integrality
condition implies that both & and £° are contained in w NEY for some
large integer N (depending only on t1,- - - ,t, in (6.18)). Here £ is the fixed
lattice in (6.28). It follows that both £ and £° contain w™ &Y. Therefore,
there are only finitely many possibilities for the lattices £, £’”; moreover we
have

(6.36) N (EP + g€P) c N

Now we return to prove the finiteness of N7; N (1, ¢g) - Nj;. Now we have
e € A' = A%, With the above result on (N} x Nj),, a similar integrality
consideration shows that A contains a lifting of e that differs from e, (the
fixed lifting of e, which is orthogonal to E + EY) by an element in =%
for some large integer M (depending only on g). It follows that w™e, .1 € A
and the same holds for A’. Note that in the normal form, for any 7 > 1, the
element g'e, 1 is a lifting of (¢*)e, and it is orthogonal to E + EY. Repeating
the argument we may show by induction that

(6.37) oMgie. 1 €N, Vi> 1.
By (6.36) and (6.37) we conclude that A" contains the lattice

(638) A(g) - wM<eT+17 ger+1, - gmer+1> + wN(gOb + QSOb)'
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By the regularity of g, this last lattice A(g) has full rank in V. By the self-
duality of A’, we conclude the desired finiteness of N7, N (1, g) - N;. O

In fact, the proof also reduces the “trivial” case of Liu’s conjecture to the
Jacquet—Rallis FL conjecture.

Proposition 6.8. Let g € G(V),s be a normal form (6.18). Assume that
E® 1+ g% is a self-dual lattice in E + gE (equivalently, in terms of (6.18),
all t; are units). Then Conjecture 6.5 for such g in the (m,n)-case reduces to
Conjecture 6.5 for g* in the (m,m + 1)-case.

Proof. Tracking the proof of Prop. 6.7, the assumption on g implies that the
inclusion (6.36) becomes

(6.39) EY 4 g&¥ c N

(Following the suggestion of the referee, here is a direct argument to show
that, for A, A’ € N}, such that gA = A’, the assumption on g (i.e., g is normal
with all ¢; units) implies that ANE, 1 = A'NE, 11 = 59+1- Let 1 <i(A) <r+1
be the largest integer such that AN E; = &Y. Possibly after replacing g by its
inverse, we may assume that i(A) < i(A"). If i :=i(A) <r+1, then ANE;1;
contains an element of the form e;41 + a with a € E; \ &. It follows that
g(eit1 + a) cannot have integral pairing with £. However, by i(A) < i(A),
we have &Y C A’ and hence g(e;41+a) € gA = A’ cannot have integral pairing
with A’. This contradicts to the integrality of the Hermitian form on A’.)
It follows from (6.39) that

A = A/ﬁ ® (gOb +g<€0b), A= Ati ® (g—lgob Jrgob)’

where we have A* A’f € ((N,) (and ¢ is the embedding (6.29)). Hence the
orbital integral (6.33) becomes

Orb(gv 1G(OF0)) - Z L.

(A A By eu (W ) XL (N
A B=ghAl AP=ATD

Similar argument reduces the orbital integral on S, to that on S, 11; we omit
the details. O

Remark 6.9. The the Jacquet—Rallis FL conjecture (i.e., (m, m + 1)-case of
Conjecture 6.5) is proved by Yun—Gordan (for large p) [28, 6], and indepen-
dently by Beuzart-Plessis (for p > 2) [1].
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7. Intersection numbers of Bessel cycles

Let F'/Fy be an unramified quadratic extension of p-adic fields for an odd
prime p. Our formulation of the AFL conjecture in the Bessel case will be
modeled on the lattice counting interpretation of FL in §6.6.

7.1. The generalized diagonal cycle (or the Bessel cycle)

Let m € Z>1,r € Z>o and n = m + 1 + 2r. Recall from §5.1 the unitary
RZ space N, and from §5.3 the filtered RZ space Np, where P stands for
a parabolic subgroup Pir,41,1- of G(V). We have E; = Homgp (E,X;) C
V,i =1, ---,r, which are isotropic subspaces of V = V,,. We choose basis
{e1,--+,e,} of E = E, such that

Ei:<€17“'7ei>F7 i:17"‘,r.

Denote by W# = E+/E and fix an isomorphism of W* with V,,,; defined
by (5.2) with n replaced by m -+ 1. Fix a vector e € W* such that (e, e) is a
unit and let W = W @ (e)r be the orthogonal decomposition.

We recall the morphism (5.8)

(7.1) Np—— Nup = (M1)" Xspt 0, Niny1-

Here (M1)" = My Xspro,. -+ Xspro, M1 (with r copies of My). Let Z,,11(e)
be the KR divisor associated to e € W¥; then Z,,,1(e) ~ A, and hence we
have an induced embedding

t: Nop —— N1

Similar to the definition of the Bessel subgroup H by (6.5), we define the
Bessel formal scheme Ny as the fiber product:

(7.2) Nz Np

| |

Spf O Xspt o, Non —— (M1)" Xspro, Nt

where on the bottom row the first factor Spf Oy — (M;)" is the neutral
component (with the chosen basis), cf. (5.9), and the second factor is ¢ above.
Let

Nm,n = Nm XSpfOF Nn
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We have a morphism induced by (7.2) and Np — N,,,
NH HNm,n

whose image is called the Bessel cycle.

Remark 7.1. The Bessel cycle Ny may be viewed as a correspondence (in a
loose sense) over the product N, XSpf O, N,,. In view of the arithmetic diago-
nal cycle in the AGGP conjecture [18], we may call it the (local) “generalized
(arithmetic) diagonal cycle”.

We need to add a weight factor to the Bessel cycle Ny and therefore
we need to find a partition of Ny into a union of open-and-closed formal
subschemes, similar to (5.6). For this purpose we consider certain auxiliary
formal schemes. Let P’ = Pir 1,1+ denote the subgroup P X qys) G(W) of
P. (However, note that P’ is not a parabolic subgroup of G(V').) Then we
consider the fiber product, denoted by Np,

(7.3) Np— Np

|

Nm % Nm+1-
In terms of the moduli functor, for S € Nilp, Np/(S) is the set of (X, X, ¢, A, p)
such that X, 11/X, € Z,,41(e)(5), i.e., it is a direct product (compatible with
the additional structure)

(7.4) X1/ X, = Es x X,

We have a pull-back of the bottom row

0 X, X &s 0
0 XT XT+1 X,«+1/Xr —0.

It follows that there is a morphism
(75) Np/ *>_/\/17‘+1

sending a tuple above to (X7,1,0 = Xo C X3 C -+~ C X, C Xy, ¢xr,

T

p\X;H). Recall that NVjr+1 is defined in §5.3 (note that N+ is associated to
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a filtered RZ datum of EL type, and there is no polarization involved in its
definition). Let E* denote the preimage of the line (e)r under the quotient
map E+ — W and let e, € E* be a lifting of e. Similar to (5.6), there is
a natural bijection

(76) N17‘+1 >~ H SpfO}%,
FL gy

where FLz: denotes the set of complete flags &, of lattices in E*:
0Cc& CcéC---Cép=E€

such that & = £ N E; is of rank i. Let N denote the subfunctor of Njr1
by imposing the additional condition that, for every 1 < ¢ < r + 1, the
quasi-homomorphism e; : E — X;/X;_; lifts (in the sense of §5.2) to a ho-
momorphism &s — X;41/X; but w 'e; does not (the source being X/, /X,
when ¢ =7+ 1). Then (7.6) induces a parameterization

(7.7) Ngi ~ H Spf O,
FeY,
E
where .7-"[3%,1 is the subset of FLg4 consisting of flags &£, satisfying
Eif€i1=(ei), 1<i<r+1
There is a natural bijection
(7.8) fﬁ%u ~ Np:(F)/Ng:(Or),

where Ng: denotes the unipotent radical of the Borel subgroup (for the com-
plete flag E,) of GLg(E*) ~ GL,, r, with the basis {e1,--- ,e,41} of EF.
Then the Bessel formal scheme Ny fits into a Cartesian diagram

(79) NH *}Np/

|

NEﬁ *>N1r+1.

The morphism Ny — Ng: induces a partition as a disjoint union of open-
and-closed formal subschemes

No= ][] Nue.-

O
E'E}—Lm
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Proposition 7.2. There is a natural isomorphism:
Npe, —— Z(E)T.

Proof. The proof of Prop. 5.3 applies verbatim, noting that the norm of the
special vector u is a unit. (Note that this is not a special case of Prop. 5.3,
since E* = £ ®0, F is not totally isotropic.) O

Let N g,g. be the (formal) scheme theoretic closure of Ny g, in N, 0, i.e.,
the smallest closed formal subscheme of A, , which the morphism Ny ¢, —
N, factors through. We also denote by N, }? the disjoint union of N, g g, over

all & € FLY,. Then there is a natural morphism N — Ny,

Remark 7.3. The formal scheme N, }? ¢, seems rather intractable, i.e., (to our
knowledge) there is no moduli theoretical characterization.

Define a character
(I fﬁgu — C*

via the bijection (7.8) and the character of Ng:(F) defined by (6.20).
The group (G(W) x G(V))(Fp) acts on Ny, . We are ready to define the
intersection number, for a regular g € (G(W) x G(V))(Fp)

(7.10) Int(g) := Z Y(E)D(EL) (N}?,g.’g . NI?,S;)N

o 0 m,n
(o, E0)eFcl, x 7Ll

Here, for two closed formal subscheme Zi, Z5 of a regular formal scheme X
over Spf O}, we define their intersection number as

(Zl7 Z?)X = X(Ozl ®E(5X OZQ)
= Z<_1)Z+jlengthOFH](X7 TOI'ZQX (OZU OZZ))7
i,J

if the right hand side is finite (e.g., if Z1 N2, is a proper scheme over Spf O ).

Remark 7.4. By Prop. 7.2, we could have simply taken the KR cycle to
formulate the intersection problem, avoiding the filtered RZ spaces. However,
the filtered RZ spaces seem more natural and amenable for generalization, as
the example of Ginzburg—Rallis cycle in §4 shows.
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7.2. The AFL conjectures in the Bessel case

Conjecture 7.5 (Arithmetic Fundamental Lemma conjecture for Bessel cy-
cles). (a) For a regular g € (G(W) x G(V))(Fy), the disjoint union

H Nz?,s. Mg 'Nf?,a

O O
(o) FLl, x LB,

is a proper scheme over Spf Op.

(b) For a regular g € (G(W) x G(V))(Fy) matching v € S, (Fp)s where

both g and v are in normal forms, we have

OOrb(% ]‘Sn(OFO)) = _Int(g) IOg q.
We have some indirect evidence towards part (a).

Proposition 7.6. Let g € G(V)(Fy)ws. Then the intersection NpN (1, g)-Nu
is a noetherian scheme.

Proof. The proof of Prop. 6.7 applies to show that NyN(1, g)-Npg is contained
in Ny, x Z(A(g)) where A(g) is the lattice defined by (6.38). Note that Z(A(g))
is a noetherian proper scheme. Since Ny is a locally closed formal subscheme
of NV, (via the natural morphism Ny — AN,), the desired assertion follows.

O

In the formulation of the intersection problem in §7.1, we have fixed a
basis {e1,- -+ ,e.} of E. Let £ C E be the lattice (e, ,e,). Note that for
g € G(V)yg, the sum E + gFE C V is a non-degenerate Hermitian space with
dimension 2r.

Proposition 7.7. Let g € G(V)(Fy) be a normal form (6.18). Assume that
E® + g€ is a self-dual lattice in E + gE. Then there is an isomorphism of
formal schemes

NH X Nomn (Lg) NH éA(-N’m) X Non,m+1 (1vgﬁ) ' A(Nm)

Here the right hand side is the intersection in the AFL conjecture for U(m) x
Ulm+1), ie.

A Ny —— Nipma1 = N XSpf O Nt -

In particular, if we further assume that g is reqular, then Ng N0 (1, 9) - Ny is
a proper scheme.



AFL for Bessel subgroups 2333

Proof. The proof of Prop. 6.8 applies. O

Remark 7.8. One may expect that, if the intersection Ny N (1,¢9) - Ny in
Prop. 7.6 is already a proper scheme, then A/ ; XN (1,9)- N, 1? is isomorphic
to Ng N (1, g) - Ng. But we do not know how to prove this.

There is another special case where we can at least show that the fiber
product N'# XN (1,9) - N'® is a proper scheme. This means that the in-
tersection N, 35. N(l,9) N ;’5‘ is a proper scheme for every pair (&, EL) €
fﬁ%’u X fﬁgu, and is empty for all but finitely many pairs. In particular, the
intersection number in part (b) of the conjecture is well-defined.

Proposition 7.9. Suppose m =1 (so that Ny, ,, ~ N, ). For g € G(V)(Fp)ys,
the formal scheme NI? XN (1,9) N}? is a proper scheme.

Proof. By Prop. 7.2, the Zariski closure N, I? ¢, 1s a closed formal subscheme
of the KR cycle Z(&) where € = &,11. Therefore, it suffices to show that

(a) Z(&)NgZ(&') is empty except for finitely many pairs (&, E,) € fﬁgt X
FLY,, and

(b) Z(£)NgZ(&’) is a proper scheme.

The first assertion follows from the proof of Prop. 7.6 (hence Prop. 6.7).
For the second one, the proof of Prop. 6.7 shows that £ + ¢g&€’ is a lattice of
full rank in V. O
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