
1.  Introduction
Streamflow and water quality monitoring data are needed to characterize stream physical and ecological regimes, 
responses to climate and land use change, impairments, and pollutant loads for regulatory oversight and manage-
ment (Bremer et al., 2020; Burns et al., 2019; Crawford et al., 2015; Pellerin et al., 2014; Pluth et al., 2021; 
Reynolds et al., 2016; Skeffington et al., 2015; Smith et al., 1997). Many studies agree that high-frequency or 
even near-continuous sampling is necessary to capture the dynamics of flow and concentration and to effec-
tively estimate pollutant loads (Cassidy & Jordan, 2011; Gao et al., 2020; Jones et al., 2012; Kerr et al., 2018; 
Minaudo  et al., 2017; Pellerin et al., 2014; Reynolds et al., 2016; Skeffington et al., 2015; Thompson et al., 2021). 
However, despite recent advances in sensor technology (Rode et al., 2016), high-frequency sampling remains 
prohibitive and stream assessment still relies heavily on infrequent grab sampling, especially for emerging 
contaminants.

Many environmental signals or time-series (e.g., soil moisture and temperature) are “sparse,” meaning that these 
signals can be characterized in an appropriate transform domain with a number of coefficients less than the number 
of sampled times (Katul et al., 2007; Kirchner & Neal, 2013; Parolari et al., 2021; Vasseur & Yodzis, 2004). 
Compressed Sensing (CS), a signal processing technique also known as compressive sensing (or sampling), 
leverages the inherent sparsity of a signal or process to reconstruct high resolution data from a relatively small 
number of samples (Donoho, 2006). For example, Figure 1a illustrates a synthetic signal with two frequencies. 
When transformed to a Fourier frequency space, the signal can be represented by only two active coefficients at 
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these two frequencies (Figure 1b). With very few samples taken (Figure 1a), the signal can be well reconstructed 
(Figure 1d).

CS has the potential to substantially reduce the number of samples required to estimate high-frequency stream 
water quality data and corresponding loads. CS has been demonstrated to be effective in signal compression and 
recovery in various contexts including photographs, MRI images (Lustig & Donoho, 2008), radar data (Zhang 
et al., 2010), and land cover data (Wei et al., 2017). Based on the known sparsity of water quality parameter 
time-series, we hypothesized that high-frequency water quality data can be obtained from a low-frequency moni-
toring strategy using CS.

To test whether CS can be used to reduce water quality sampling requirements, stream flow and concentration 
time-series were collected at 45 stream gauges in the Midwest United States. Using this data, we first demon-
strate the sparsity of daily and 15-min stream flow and concentration time-series, which included discharge, 
tempera ture, specific conductance (SC), turbidity, dissolved oxygen (DO), nitrate plus nitrite as nitrogen concen-
tration, and total phosphorus (TP) concentration. Then, CS was applied to reconstruct these time-series and 
estimate the annual loads for nitrate plus nitrite and TP based on different numbers of samples, corresponding to 
different “effective” sampling intervals.

2.  Data and Model
2.1.  Signal Sparsity and Compressed Sensing

Flow or concentration signals are collected as discrete time-series 𝐴𝐴 𝒙𝒙 of length 𝐴𝐴 𝐴𝐴  , which can be represented by a 
linear combination of vectors 𝐴𝐴 𝒔𝒔 ∈ 𝑅𝑅

𝑛𝑛  in a specific basis 𝐴𝐴 𝚿𝚿 ∈ 𝑅𝑅
𝑛𝑛×𝑛𝑛  ,

𝒙𝒙 = 𝚿𝚿𝒔𝒔� (1)

Similar to many other natural signals, flow and concentration signals are normally sparse in a certain basis, 
meaning that the time-series can be represented only by a few active modes with large mode amplitudes when the 
discrete time-series 𝐴𝐴 𝒙𝒙 is represented in an appropriate coordinate system or basis (Figures 1a and 1b).

“Lorenz” (after the economist Max Lorenz) curves (LCs) are potential tools that can represent the “sparsity” of 
signals. The LC plots the cumulative variance of a signal as a function of the number of coefficients included in 
the sum, sorted from smallest to largest (Katul et al., 2007) (Figure 1c). In the time domain, the coefficients that 
contribute to the variance are the squared deviations from the average, that is, 𝐴𝐴

(
𝒙𝒙𝒕𝒕 − 𝒙𝒙

)2  , for all time instances. 
In the frequency domain, the coefficients are the power spectral density estimated from the Fourier transform, 
that is, 𝐴𝐴 𝐴𝐴𝑓𝑓  . A time-series is considered sparse in the corresponding domain if a small percentage of coefficients 
explains the majority of variance (i.e., LC far from the 1:1 line as shown in Figure 1c). In contrast, a time-series 
is not sparse if most of the coefficients contribute equally to the variance (Katul et al., 2007). Here, sparsity was 
quantified as the proportion of coefficients associated with a unit loss in energy (or a slope of 1 in LC), 𝐴𝐴 𝐴𝐴us  . The 
value of 𝐴𝐴 𝐴𝐴us  ranges between 0 and 1 where a value close to 0 indicates the LC is nearly perfectly balanced in 
terms of energy among the coefficients and a value close to 1 implies the LC is energetically imbalanced as the 
variability is contained in only a few coefficients. In other words, a higher value of 𝐴𝐴 𝐴𝐴us  indicates a sparser signal.

With a subset of measurements 𝐴𝐴 𝒚𝒚  in the flow or concentration time-series 𝐴𝐴 𝒙𝒙 determined by the measurement 
matrix 𝐴𝐴 𝑪𝑪  (Equation 2; Figure 1a), if the sparsest 𝐴𝐴 𝒔𝒔 , denoted as 𝐴𝐴 𝒔̂𝒔 that has the largest number of zero coefficients, 
can be found, the original time-series 𝐴𝐴 𝒙𝒙 can be reconstructed through inversion of Equation 1 (Figure 1d).

𝒚𝒚 = 𝑪𝑪𝑪𝑪 = 𝑪𝑪𝚿𝚿𝒔𝒔� (2)

Equation 2 is an underdetermined system of equations for 𝐴𝐴 𝒔𝒔 , meaning that there are infinite number of solutions 
for 𝐴𝐴 𝒔𝒔 since the number of equations is much smaller than the number of entries of 𝐴𝐴 𝒔𝒔 . The solution for 𝐴𝐴 𝒔̂𝒔 corre-
sponds to pursuing the smallest 𝐴𝐴 𝓁𝓁0  -norm. However, solving the 𝐴𝐴 𝓁𝓁0  -norm problem directly is intractable, and, 
thus, a convex 𝐴𝐴 𝓁𝓁1 -minimization problem was solved to reduce the complexity (Equation 3) (Candès et al., 2006; 
Donoho, 2006),

𝒔̂𝒔 = argmin

𝑠𝑠′

‖𝒔𝒔′‖1, such that 𝒚𝒚 = 𝑪𝑪𝚿𝚿𝒔𝒔
′

� (3)

To ensure that the sparsest 𝐴𝐴 𝒔𝒔 with respect to 𝐴𝐴 𝚿𝚿  can be found, the samples taken should represent a wide range of 
the temporal basis functions in 𝐴𝐴 𝚿𝚿  . In other words, the sampling matrix 𝐴𝐴 𝑪𝑪  , which determines when the samples 
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are taken, should be “incoherent” to the representation basis 𝐴𝐴 𝚿𝚿  (Candes & Wakin,  2008). Uniform random 
sampling in time is normally the best way to ensure maximum incoherence.

2.2.  Stream Monitoring Data and Analysis

Stream flow and concentration time-series were retrieved from the United States Geologic Survey (USGS) 
National Water Information System (https://waterdata.usgs.gov/nwis). Forty-five stream gauges were identified 
for testing based on the high-frequency availability of TP and nitrate plus nitrite as nitrogen (NOx-N) concentra-
tions. Daily-scale stream flow and concentration data from 2015 to 2021 was retrieved for these 45 gauges. The 
data set included discharge (Q; n = 44), temperature (Temp; n = 25), specific conductance (SC; n = 8), turbidity 
(Turb; n = 18), dissolved oxygen (DO; n = 8), nitrate plus nitrite as nitrogen concentration (NOx-N; n = 20), 
and TP concentration (TP; n = 27) with the record length and completeness varying among gauges. All gauges 
were located in the Midwest region of the United States (Figure S1 in Supporting Information S1). In addition to 
daily-scale data at all 45 gauges, one 15-min time-series during the period (2015–2021) with the most complete 
data set was retrieved for each variable. The gauge IDs, variables, and record lengths for the daily-scale and 
15-min data sets can be found in Tables S1 and S2 in Supporting Information S1, respectively.

LCs in both the time and Fourier frequency domains were  generated to determine and compare the level of 
sparsity of stream flow and concentration signals. They were generated from daily stream flow and concentra-
tion monitoring data in all available gauges. In addition, CS was utilized to reconstruct daily and 15-min stream 
flow and concentration time-series. Only one gauge for each variable was selected for reconstruction. The gauge 
information can be found in Table S2 in Supporting Information S1. To increase the reliability of the results and 
reduce the potential impact of the randomly determined sampling times on the results, the CS reconstruction 
was repeated 10 times for each gauge and each variable. CS was tested with different number of samples taken, 
ranging from 0.5% to 50% of total length of time-series. The samples were taken at random, uniformly distributed 
times to ensure that the sparsest 𝐴𝐴 𝒔𝒔 with respect to 𝐴𝐴 𝚿𝚿  can be found and the time-series can be reconstructed using 
less samples and with high probability (Candes & Wakin, 2008). The compressive sampling matching pursuit 
(CoSaMP) algorithm (Needell & Tropp, 2009) was utilized to solve the sparsest solution of Equation 3. Nash 
Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), which determines the relative magnitude of the residual 
variance, 𝐴𝐴

(
𝒙𝒙
𝒕𝒕

𝒐𝒐
− 𝒙𝒙

𝒕𝒕

𝒎𝒎

)2  , compared to the measured data variance, 𝐴𝐴
(
𝒙𝒙
𝒕𝒕

𝒐𝒐
− 𝒙𝒙𝒐𝒐

)2  , was used to quantify the goodness of 
fit between the measured and reconstructed series (Equation 4).

Figure 1.  Representation of a sparse signal by Lorenz curve and its reconstruction using compressed sensing (CS). (a) Full time-series with two active frequencies. (b) 
Power spectral density of the signal in Fourier basis. (c) Lorenz curve of the signal. (d) Reconstructed signal using CS. Modified from Brunton and Kutz (2022).
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𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −

∑𝑁𝑁

𝑡𝑡=1

(
𝒙𝒙
𝒕𝒕

𝒐𝒐
− 𝒙𝒙

𝒕𝒕

𝒎𝒎

)2

∑𝑁𝑁

𝑡𝑡=1

(
𝒙𝒙
𝒕𝒕

𝒐𝒐
− 𝒙𝒙𝒐𝒐

)2� (4)

3.  Results
3.1.  Sparsity of Stream Flow and Concentration Time-Series

Stream flow and concentration signals are sparse in the Fourier domain. Based on the daily-scale time-series 
data, temperature (Temp), SC, DO, and nitrate plus nitrite as nitrogen concentration (NOx-N) were substantially 
sparser than discharge (Q), turbidity (Turb), and total phosphorus concentration (TP) (Figure 2). The 𝐴𝐴 𝐴𝐴us  values 
obtained imply that the variances of Q, Turb, and TP can be represented by anywhere from 2% to 36% of the most 
energetic coefficients in the Fourier frequency domain. On the other hand, the variances of Temp, SC, DO, and 
NOx-N can be well represented with only 0.3%–5.3% most energetic coefficients (Figure 2h).

The true signal sparsity can be better characterized with time-series at finer temporal resolution. Using 15-min 
data, the variances of all seven time-series can be represented by only 0.1%–2.1% of the most energetic coef-
ficients in the Fourier frequency domain (Figure 2). We presume that the 15-min data provides a more faithful 
representation of the “true” process dynamics than the daily data. Therefore, it is reasonable to expect that all 
variables analyzed here are truly sparse, although the daily time-series are less able to reveal this underlying 
sparsity.

3.2.  Stream Data Reconstructions With Compressed Sensing

The stream flow and concentration time-series were effectively reconstructed using compressed sensing. The 
goodness of fit for the reconstruction is illustrated in Figure 3 using 15-min data with 10% of measurements as an 
example (NSE = 0.895–0.997 for all different variables). The peak values of Turb and TP during extreme storm 
events were underestimated (Figures 3b-1, 3b-2, 3c-1, and 3c-2), resulting in a relatively smaller goodness of fit.

Comparatively, sparser time-series were more effectively reconstructed based on fewer measurements than less 
sparse time-series. At the 15-min resolution, all the time-series were reconstructed nearly perfectly (NSE ≈ 1) 

Figure 2.  Sparsity of daily and 15-min stream flow and concentration time-series in the time and Fourier frequency domains: 
(a) Q, (b) Turb, (c) total phosphorus (TP), (d) Temp, (e) specific conductance (SC), (f) dissolved oxygen (DO), and (g) 
NOx-N respectively refer to discharge, turbidity, TP concentration, SC, DO, and nitrate plus nitrite as nitrogen concentration. 
The shaded regions refer to the 25th, 50th, 75th, and 90th percentiles across gauges. (h) The proportion of coefficients that 
correspond to the point at which a unit loss in a coefficient results in a unit loss in energy in the Fourier frequency domain 
(𝐴𝐴 𝐴𝐴us  ). In panel (h), Q1 and Q3 refer to the 25th and 75th percentiles of the data. IQR refers to interquartile range (Q3-Q1). 
The outliers are values that are located outside 1.5 times IQR above Q3 or below Q1.
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with 5%–10% of measurements. Only 10% of measurements were needed for the less sparse Q, Turb, and TP, 
while only 5% of measurements were needed for the sparser Temp, SC, DO, and NOx-N (Figure 4). At the daily 
resolution, less sparse variables (Q, Turb, and TP) were not well-reconstructed even with half of the measure-
ments. On the other hand, for sparser variables (Temp, SC, and DO), the full time-series was reconstructed nearly 
perfectly (NSE ≈ 1) with ∼10% of daily measurements, equivalent to ∼0.1% of 15-min measurements. Compar-
atively, the reconstruction effectiveness for NOx-N at the daily scale was slightly lower than Temp, SC, and DO, 
despite its high sparsity level (Figure 4).

The samples taken for reconstruction were randomly and uniformly distributed throughout the period as shown 
in Figures S2–S3 in Supporting Information S1. Although this random, irregular sampling scheme can be diffi-
cult to implement in practice when grab sampling is used, it can potentially support field sampling campaigns 
with sampling constrained to weekdays or during daylight times. Results demonstrated that taking samples only 
on weekdays or during daylight times does not significantly affect the reconstruction efficiency (Figure S5 in 
Supporting Information  S1). However, when samples are restricted to only daylight hours on weekdays, the 
performance of CS for some variables was diminished (i.e., turbidity, temperature, specific conductance, and 
DO), but was not affected for others (i.e., discharge, TP, and NOx-N). It should be noted that the reconstruc-
tion effectiveness using CS varied when performed on time-series of different lengths (Figure S4 in Supporting 

Figure 3.  Comparison of 15-min resolution measured and reconstructed time-series (left) with corresponding goodness of fit 
(right): (a-1 and a-2) discharge (Q), (b-1 and b-2) turbidity (Turb), (c-1 and c-2) total phosphorus concentration, (d-1 and d-2) 
temperature (Temp), (e-1 and e-2) specific conductance, (f-1 and f-2) dissolved oxygen, and (g-1 and g-2) nitrate plus nitrite 
as nitrogen concentration (NOx-N) with measurement percentage of 10%.
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Information S1). Longer or higher-resolution time-series are more representative of the true signal and, therefore, 
the samples collected incorporate a wider range of hydro-environmental conditions.

3.3.  Stream Nutrient Load Estimation With Compressed Sensing

The annual nutrient load can be more accurately estimated when sampling at a higher frequency and when 
using CS to reconstruct at a higher frequency. Testing different effective sampling frequencies and reconstruction 
frequencies provided insight into application of CS to reduce the sample requirements for annual load estimation 
(Figure 5). Using the 15-min data as the true signal, the true annual NOx-N load was estimated with an error of 
−6.6% ± 3.8% using CS with an effective sampling frequency of ∼10 days projected to a daily time-series. The 
true annual TP load was estimated with an error of −9.0% ± 2.9% using CS with an effective sampling frequency 
of ∼0.4 days projected to a 1-hr time-series. Note that if the benchmark load is defined as that obtained with daily 
samples (as is common in practice), the effective sampling frequencies with CS can be even lower. The daily TP 
load can be well estimated with samples every 1.7 days. However, these estimates are still biased relative to the 
“true” load, estimated here from the 15-min data. In all cases, the optimal sampling frequency for NOx-N was 
lower than that for TP because the NOx-N signal is sparser in the frequency domain (as observed in this study).

4.  Discussion and Conclusions
The sparsity of different stream flow and concentration signals in the frequency domain varied between one 
another because of their unique time-frequency characteristics which could be related to their connectivity to 
climatic cycles and watershed geophysical conditions. In general, more process-driven signals are likely to have 
fewer active modes in the frequency domain, or sparser, and therefore more easily reconstructed. This can include 
signals dominated by diel and seasonal energy cycles, such as temperature, SC, DO, and NOx-N (Gammons 
et al., 2011), or signals dominated by storage, such as snowmelt- or groundwater-dominated discharge. On the 
other hand, more noise-driven signals possess more randomness and are “flashier.” Thus, these signals are likely 
to have more active modes in the frequency domain, and, thus, are less sparse and require more samples to be 
reconstructed. This can include signals dominated by precipitation variability, such as the discharge, turbidity, 
and TP concentration signals evaluated in this study (Banner et al., 2009; Zabaleta et al., 2007). Due to different 
levels of dependence on hydrologic and geophysical processes, the sparsity of hydro-environmental signals can 
bear regional signatures and show spatial patterns.

Figure 4.  (a–f) Variation of Nash Sutcliffe Efficiency (NSE) with data compression percentage using compressed sensing 
(CS). (a) Q, (b) Turb, (c) P, (d) Temp, (e) specific conductance (SC), (f) dissolved oxygen (DO), and (g) NOx-N respectively 
refer to flow discharge, turbidity, total phosphorus concentration, temperature, SC, DO, and nitrate plus nitrite as nitrogen 
concentration. The error bars represent the standard deviations of NSE values around the medians for 10 iterations of CS 
reconstruction.
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Several methods have been previously reported to increase sampling efficiency and reduce pollutant load estima-
tion errors. These approaches include high-frequency sampling, random subset generation, automated sampling 
based on flow, complementing low-frequency fixed-interval sampling with higher frequencies during storm 
events, and data-model integration (Cassidy & Jordan, 2011; Jones et al., 2012; Minaudo et al., 2017; Reynolds 
et al., 2016; Rozemeijer et al., 2010; Thompson et al., 2021). In these cases, estimated biases ranged from 1% to 
104%, with the best performance achieved by combining high-frequency storm sampling with models (Minaudo 
et al., 2017; Rozemeijer et al., 2010). Here, when using the 15-min data as the “true” benchmark, CS with an 
effective sampling frequency of ∼10 and ∼0.4 days achieved a good estimation of NOx-N and TP loads, respec-
tively. The estimation error comes from both the error in CS reconstruction (due to missing frequencies in the 
samples) and the bias embedded in the time-series (due to missing frequencies in the underlying data). Additional 
work is needed to quantify the trade-off between sampling costs and load estimation accuracy across all availa-
ble methods, and/or to correct the bias embedded in the samples taken and further improve the load estimation 
accuracy.

In addition to achieving small bias in annual load estimation, CS was able to reconstruct accurate high-frequency 
stream data from low-frequency samples without requiring any prior knowledge of the relevant processes. In this 
application, we were able to achieve a 90%–95% reduction in the number of samples needed to estimate 15-min 
stream flow and concentration time-series data. For the sparsest variables (temperature, conductance, and DO) 
which show strong diel and/or seasonal fluctuations, daily data was effectively reconstructed with 90% reduction 
in the number of samples needed. This corresponds to a 5–10-day effective sampling interval, representing a 
measurable reduction in sampling effort.

However, CS has some limitations and there are opportunities for improvement for practical applications. First, 
although reducing the number of measurements needed can save sensor and battery life and reduce data stor-
age and transmission for monitoring networks, it is difficult to replace regularly scheduled weekday/daylight 
grab sampling with varied-interval sampling as required here. Thus, in future work, CS could be performed on 
measurements retrieved from other sources such as remotely sensed data. Second, CS may not work well for 
signals not sufficiently sparse in the frequency domain. Thus, instead of projecting the measurements onto the 
frequency domain, dimensionality reduction techniques such as singular value decomposition can be utilized to 
identify an appropriate minimal space where the signals can be sparsely represented (Chatterjee, 2000). Third, 
the reconstruction effectiveness using CS depends on the amount of information contained in the samples taken. 
Random-interval sampling as required by CS is not optimal to maximize the information content. In future work, 

Figure 5.  Variation of annual load estimation errors for (a) nitrate plus nitrite as nitrogen (NOx-N) and (b) total phosphorus 
with effective sampling frequencies using Compressed sensing (CS). Effective sampling frequencies ranged between those 
corresponding to 0.5% and 50% of the data points for each time-series. The dashed lines represent the annual load estimated 
from uniformly subsampled 15-min data (red), as the “true” load, and daily samples (blue). The error bars represent the 
standard deviations of annual load estimation error around the medians for 10 iterations of CS reconstruction.
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CS can be integrated with techniques to optimize the sampling times to ensure best reconstruction with minimal 
samples needed (Manohar et al., 2018; Ohmer et al., 2022).

Data Availability Statement
All the Stream flow and concentration data, including stream flow discharge, temperature, specific conduct-
ance, turbidity, dissolved oxygen, nitrate concentration, and phosphorus concentration, is collected by the United 
States Geologic Survey (USGS). The gauge number and the corresponding watersheds for different variables 
can be found in the Supporting Information S1. The data can be accessed from CUAHSI HydroShare (http://doi.
org/10.4211/hs.a70e86faebe448128ecb0e208626ba4d). The codes used for compressed sensing can be found 
from the “Data Driven Science & Engineering—Machine Learning, Dynamical Systems, and Control” book by 
Brunton and Kutz (2022) (http://www.databookuw.com/).
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