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5 Abstract

6 Single cell RNA sequencing (scRNA-seq) technologies providsszeséarchers with an unprece-
7 dented opportunity to exploit cell heterogeneity. For exammnle;ithe sequenced cells belong to
8 various cell lineages, which may have different cell fateg i\ ste n and progenitor cells. Those
9 cells may differentiate into various mature cell typeg“iina zll differentiation process. To trace
10 the behavior of cell differentiation, researchers reconteuct cell lineages and predict cell fates
1 by ordering cells chronologically into a traje/toryswith a pseudo-time. However, in scRNA-seq
12 experiments, there are no cell-to-cell stures hondences along with the time to reconstruct the cell
13 lineages, which creates a significanvyc’iallenge for cell lineage tracing and cell fate prediction.
14 Therefore, methods that can adgurately reconstruct the dynamic cell lineages and predict cell
15 fates are highly desirable.

16 In this article, we develcp an innovative machine-learning framework called Cell Smoothing
17 Transformation (Celi!T) vb elucidate the dynamic cell fate paths and construct gene networks
18 in cell differentiction srocesses. Unlike the existing methods that construct one single bulk cell
19 trajectary, (CellSTT builds cell trajectories and tracks behaviors for each individual cell. Addi-
20 tionally, CellS'T' can predict cell fates even for less frequent cell types. Based on the individual
21 cell fate trajectories, CellST can further construct dynamic gene networks to model gene-gene
2 relationships along the cell differentiation process and discover critical genes that potentially
23 regulate cells into various mature cell types.

24 Keywords: scRNA-seq, Optimal Transport, Smoothing Spline, Dynamic Gene Networks.
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. 1 Introduction

> A comprehensive understanding of complex biological processes such as tissue development and
3 regeneration requires the investigation of cell differentiation across a wide range of samples and
+ experimental time points (Spiller et al., 2010). The cell differentiation process includes the dif-
s ferentiation of stem cells into different mature cell types (Guo et al., 2017; Burrows et al., 2020).
6 Such a process is dynamic and continuous, including rapid changes in gene expressions and cell
7 types over time. To profile such cell differentiation behaviors, single cell RNA-seq sequencing
s (scRNA-seq) technology has been developed rapidly (Nawy, 2013; Shapiro et al., 2013; Griin and
o Oudenaarden, 2015; Tanay and Regev, 2017). In particular, sck.JA-seq enables researchers to
10 observe the gene expressions of all cells simultaneously (Figure 1a) in both static or time-course
1 experiments (Figure 1b). The static scRNA-seq experiment takis a snapshot of all cells and their
12 gene expressions at one time (Lawson et al., 2015; Hivatitnet al., 2018), whereas the time-course
13 scRNA-seq experiments take snapshots at multiple tim&boints. Using scRNA-seq, researchers can
12 observe the behavior of individual cells in ge Ldifferentiation processes over time. Cell lineage
15 tracing has been widely used to prediet dyhainic cell fates by indicating the ancestor and posterity
16 cells in cell differentiation processes. Foyexample, during a stem cell differentiation process, the
17 multipotent stem cells can develen 1ato multiple cell lineage endpoints (Figure 1c). Despite the
18 effectiveness, quantifying th@™¢viiasiic cellular changes of cell development is still challenging due
19 to the following technica liniitations(Stegle et al., 2015). In time-course scRNA-seq experiments,
20 cells are sacrificed aid se yuenced at each time point. Thus there is no cell-to-cell correspondence
21 information {yr ¢:lls | etween two time points, which creates a significant challenge in constructing
2 cell lineages and | lucidating the dynamic cell behaviors in the differentiation process. Moreover, it
23 is very challenging to align different cells sequenced in two adjacent time points since expressions
2 of cells are high-dimensional and noisy, and the number of cells in each time point is large. Such
» a large sample and high-dimensional and noisy data problem render many classical methods, such
2 as BEuclidean distance or Pearson correlation, invalid (Alonge et al., 2020; Ren et al., 2017).

27 One natural approach to surmount the challenges is to order cells into a continuous cell trajec-
28 tory. Many methods have been proposed to achieve this goal in static scRNA-seq experiments. In

2 these methods, researchers construct a pseudotime to order cells chronologically (Qiu et al., 2017;
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Figure 1: Single cell analysis and cdll smoothing transformation (CellST) overview: a: The advan-
tage of scRNA-seq analysis over” uiilk 'RNA-seq analysis. b: Data structures for static scRNA-seq
experiments and time-course.scRN/i-seq experiments. Cells in time-course experiments have been

marked with experimentald:imeypoints. c¢: The multipotent stem cells can develop into multiple

cell lineage endpoints. & C¢ll lineages are constructed by connecting individual cells over time.

Cell fate trajectories arg,constructed by smoothing the connected cell lineages. e: Dynamic gene
networks are constructed pased on the calculated dynamic relationship between genes.

Cannoodt et al.;»2016; Trapnell, 2015; Ji and Ji, 2016; Chen et al., 2019; Trapnell et al., 2014;
Liu et al., 2017). Despite their effectiveness, such methods may fail in the following circumstances
(Tritschler et al., 2019). First of all, most existing trajectory inference methods construct a bulk
cell trajectory, i.e., the mean trajectory of the population cells across time rather than that of
individual cells.

However, some individual cells’ behaviors may oscillate up and down around their mean ex-
pressions or severely deviate from them. Cell differentiation behaviors are dominated by cells with

major cell types, and patterns with less frequent might be hidden in the dataset. Second, individual
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1 cell developing trajectories may follow different complex topologies, including loops or alternative
> paths during the development. For example, analysis approaches in Moon et al. (2018), and Dai
3 et al. (2020) used dimension reduction methods to identify a low-dimensional space of the gene
s+ expression space before constructing cell trajectories (Saelens et al., 2019; Wagner et al., 2018).
5 Those methods may introduce a significant bias and are hard to validate, as cells are ordered based
6 only on the selected reduced dimensions. Finally, the cells may not be synchronized at the same
7 developing time points. Cells within the same time point can be expressed at different developing
s stages. In this situation, the bulk cell trajectory that takes the average pattern of cells at different
o stages might result in unreliable scientific discovery.

10 In this article, we propose a novel analysis framework named™¢ei,Smoothing Transformation
11 (CellST) to overcome the aforementioned limitations. The £&!STramework elucidates dynamic
12 cell fates and constructs gene networks in the cell differeri‘iaticii process. In the CellST framework,
13 we propose a cell lineage tracing method, which aligas tvo individual cells between any adjacent
1 two time points via the optimal transport techstigne (Viliani, 2003; Meng et al., 2019), which is a
15 powerful tool that can be used to model cel' dyiwinics (Schiebinger et al., 2019; Tong et al., 2020;
16 Zhang et al., 2020). Those aligned cel's«Lan potentially represent individual cell lineages, tracing
17 cell differentiation behaviors by coustructing cell-to-cell trajectories (Figure 1d). We then use a
18 smoothing spline model to predisec 21l fate trajectories and reduce both cell-cell variations. The
19 smoothing spline method,iiiodel»the gene expression patterns in the aligned cell lineages from the
20 previous step and builantiiy estimated individual cell fate trajectories. Lastly, we narrow down our
1 focus to utilize th€ pererexpression patterns from those cell fate trajectories to construct dynamic
> gene networks (Figwie le). The dynamic gene networks are constructed by estimating the dynamic
s relationship of pairwise gene expression patterns using the functional concurrent models (Wang
4+ et al., 2016) and smoothing spline models (Gu and Ma, 2005). The dynamic gene networks can be
5 used to find critical genes by profiling genes with significantly different patterns from other genes.
6 Our major contribution is developing the first analysis framework (CellST) to construct cell
7 lineages and predict dynamic cell fates at the individual cell level, which can help researchers better
s observe cell behaviors in the differentiation process. In contrast, the existing methods only estimate
o the bulk trajectory in scRNA-seq experiments. Those analysis methods may overlook the hidden

10 patterns in the cell differentiation process to create a spurious cell differentiation trajectory. We
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Figure 2: Example of cell-to-cell linking: a: Cell differentiation over time (x-axis) reflects an
increasing trend in average cell expressions (y-axis). b: The individual cell correspondences at
different time points reflect a decreasing trend in average cell expiession (y-axis).

1 illustrate this problem by using a simulated time-course cell datiset/ ndicating the disadvantage of
12 bulk cell trajectories (Figure 2). The cell-to-cell trajectoritsiare ible to overcome the disadvantage
13 and identify the real gene expression patterns in cellldevelopment. Under some cell development
12 and differentiation circumstances, cells’ average expless.ans show an increasing pattern if we only
15 construct one average cell trajectory to orderiells (Figure 2a). However, when individual cells
16 are aligned at different time points, t/ie ip lividual cell lineages’ average expressions reflect unique
17 decreasing patterns, which are imcontrads to the bulk trajectory (Figure 2b). This means some
18 cells start at a lower expression’le wel,"and the expression keeps going down over time. Those cell
19 development patterns can be eysiiy misled by the average cell trajectory and thus reflect spurious
20 cell differentiation behav.ars. "Furthermore, we propose the dynamic gene networks based on the
2z individual cell fate tinjectories to estimate the dynamic gene-gene relationship and critical genes
2 in the differersiasion/process. The empirical performance of the proposed framework is evaluated

23 by several simulaed and real experiment studies.

» 2 Method

25 In this section, we introduce the Cell Smooth Transformation (CellST) method, which constructs

1 the cell fate trajectories and dynamic gene networks for time-course scRNA-seq data.
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> 2.1 Cell lineage & Individual cell fate trajectories

3 To construct the cell fate trajectories, we first align the cells at different time points to construct
4 the cells’ lineages information between time points. We then smooth the gene expression pattern
s for each gene over time and extract the "mean curve” of all individual gene expression patterns in

6 single cell fate trajectories to obtain the general gene expression pattern.

7 2.1.1 Cell-to-cell lineages by optimal transport

s Regarding cells at different time points as cells with genes of different domain spaces, we transform
9 the problem of aligning cells at different time points into a problenfof domain adaptation. Specif-
1 ically, we denote the normalized gene expression for cell i at tifne ¢'by a d-dimensional vector xt;
u  each dimension of x! represents a gene expression . We vrite X; = {xﬁ}zl, where n,; indicates
12 the number of cells at time ¢ in single cell RNA-seq datasets,Our goal is to learn the transformation
13 between the domain spaces by aligning the distribution.ol X; to Xyy1.

14 As a powerful tool to learn the transformatibnirem one probability measure to another, optimal
15 transport has been applied to solve the®ucmaln adaptation problem (Courty et al., 2014). We thus
16 apply optimal transport to obtain the ¢amain adaptive coupling between X; and X;1;. In other
17 words, we transform the cell alignmeat problem into an optimal transport problem. In particular,
18 we formulate the problem ass Monze optimal transport by minimizing the cost for transporting a

19 gene expression distribution . and pgy; using a map Ty:

min/c(m,Tt(x))d,ut(x), (1)

T: J

20 where Ty#u = uyt1, # represents the push-forward operator, such that for any measurable x,
o Tyt (x) = pe(T, l(a:)), ¢ and p41 are probability distribution of X; and X;,; in R¢, where d is
» the dimension. We define the optimal transport map T; : R — R? where R? can be interpreted
1 as the domain space for x! or xﬁfH. In this optimal transport problem, one constraint for the trans-
> portation map Ty from a measure u; to a measure p;q1 is the so-called measurement-preserving,

s i.e., Ty#FHu = per1. Among all the measurement-preserving maps, the optimal Ty is the one that

'For x!, we (1) use all available genes, (2) select highly expressed genes, or (3) apply dimension reduction methods
such as the principal component analysis (PCA). In the first two cases, each gene expression represents an individual
gene; while in the last case, each gene feature represents a combination of all genes.
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4 minimizes the transportation cost.
5 Since we can only observe gene expressions for sample cells at each time point, we focus on
6 the case where the probability distributions are discrete. The distributions u; and p:y1 for gene

7 features at time points ¢ and t + 1 are defined as:

1 ne 1 Nt41
pe=—> 0y and g1 =—— ) Op1y, (2)
ny ; Nyl ; J

s where d;, and 5t+1j are the Dirac measures at location x;, and Xt+1; respectively. Denote the
o positions of the supporting points X; = (X4, Xty - - - ,tht)T- In discrete cases, the transport T,
1 from py to pyy1 can be denoted as Ty (X;) = £Xy, where ¥ is an n, % X n; matrix. For simplicity,
1 we first consider the equal-size mapping, i.e., ny = ny41 = n. Nouvice 1nat in this case, the transport
12 between X; and Xy;; is a one-to-one assignment with pdrnmtation, ¥ then can be regarded as a

13 permutation matrix with the (i, j)th element:

Jl % '1‘1‘. ‘th) = Xt+1;5
Yij =

J  Ctherwise,
14 Furthermore, the transportation cos&,C(T;) defined in (1) can be calculated as:

C(Ty) =)

i=1j

¢ (x¢;,%e11,) Big (4)
1

n n

15 where c(x¢;,X;41() OanDe interpreted as the energy required to transform an individual cell from

16 the stage as x§- vl tie stage as xf“. The optimal transport map T then can be calculated through:

min DO el xi11,) T (5)

i=1 j=1

“and || - || is the Euclidean norm in R?. We set a = 2 in this

1 where c(x¢,, X¢e41,) = ||x¢, — Xeq1,
18 paper. The minimum of the optimization problem (5) is called the L*-Wasserstein distance (to the
1 power « ) and is denoted by W, (put, pte+1)". The W, defines a distance on the set of distributions
> (cells) that have moments of order . In general, the cell lineage construction by optimal transport

3 can be summarized as three steps: Estimating empirical gene feature distributions p; and ps41 as
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4+ in (2). Finding an optimal transport map Ty from p; to pu4+1 through (5). Applying T to obtain
5 the cell-to-cell coupling from X; to Xy41.

6 It’s important to note that the optimal transport map discussed above could be unsuitable
7 in some cases when the one-to-one cell differentiation assumption does not hold. However, our
s optimal transport framework can be modified to account for more general cell-to-cell relationships.
o Specifically, we consider the following two general scenarios. First, the number of cells may vary at
10 different time points, and as a result, some cells may need to be reused when constructing cell-to-
1 cell lineages. This can lead to multiple lineages passing through a single cell at specific time points.
12 Second, cells may exhibit different proliferation rates at the same {ime points, i.e., the numbers of
13 new cells produced by two cells at the same time point could bessignifcantly different. This could
12 result in the varying proportions of cell groups across time. /itwaddiess these general assumptions,
15 we present a comprehensive discussion of our generalized metviidds and experimental results in the

16 supplementary materials.

17 2.1.2 Individual cell fate trajectories (by s oothing spline model

18 After we align the cells from different viie€ points, we can obtain the individual cell lineages at time
19 points ¢t and t+1. We then align cer for all time points based on the cell couplings to construct each
20 cell’s coarse cell fate trajectoricsiciwss the timeline. Those cell fate trajectories are smoothed to
21 reduce the estimation varia. ce 11> CellST by utilizing the smoothing spline models. The smoothing
2 spline model is a versadile family of smoothing methods that are suitable for both univariate and
23 multivariate probicins (Gu, 2013). To construct the proposed smoothed cell trajectories, we use
24 equation 6 to Loall the behavior patterns of the gene expression along the cell fate trajectories.
»s  Let t represent che time points in the time-course dataset, and g; represent the gene expression
26 for each gene within an aligned cell fate trajectory. For co-expressed genes, we model the gene
1 expression patterns using a smoothing spline mix-effect model with {g;,?;}!" ; as the observations
> (Gu and Ma, 2005):

gi=1nt:) +2zlb+e (6)

s ©=1,...,n, where the regression function 7 (¢;) is assumed to be a smooth function on the genes

+ domain space in a cell. 7 (¢;) are the fixed effects and z! b are the random effects with b ~ N (0, B)
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s and ¢, ~ N (0,02). The random effects are used to account for the co-expressed genes in one
6 individual cell trajectory. The model terms 7(t) or n(t) +2z” b will be estimated using the penalized

7 (unweighted) least squares method through the minimization of

~3" (g =0t )" + T BTEb - (), @

1n
=1

s where the first term measures the goodness-of-fit, J(n) = [(n"(t))%dt quantifies the smoothness

o of n, and A is the smoothing parameter controlling the trade-off between the goodness-of-fit and

10 the smoothness of n (Wahba, 1990; Gu, 2013). Consider the minimization of the least squares

1 estimation (equation 7) in a space with basis {£1,...,§,}, function 7can be expressed as
d
n(t) =Y ciéi(t) = €h e, (8)
j=1

12 Plugging equation 8 into equation 7, thus n can be gstihated by minimizing:
(g — Rc — Zb) (8- 2c — Zb) + bTEb + nic! Q. (9)

13 With the standard formulation ¢f penalized least squares regression, the minimization of equa-
1 tion 7 is performed in a so-called réproducing kernel Hilbert space H C {n : J(n) < oo} in which
15 J(n) is a square seminorn?®, wad tne solution resides in the space Ny @span{Ry (t;,-),i =1,...,n},
16 where N; = {n: J(n) =9} s the null space of J(n) and R;(-,-) is the so-called reproducing kernel

17 in H © N;. Thefsolusion has an expression:

n

m
n(t) =Y dvu(t) + Y &Ry (tit) (10)
i=1 i=1
15 where {¢,}7 | is a basis of Nj. Tt follows that R = (S,Q), where S is nx m with the (i,v)th
1 entry ¢, (t;) and Q is n x n with the (i,7) th entry Ry (t;,¢;). In the smoothing spline model,
> the estimation of 7 is highly related to the choosing of the smoothing parameter A\. We choose
3 the smoothing parameter \ and estimate random effect b by Generalized Cross-Validation (GCV)
4 (Wahba, 1990; Gu and Ma, 2005). Since there are d gene expression patterns over ¢ time points for

5 the cell fate trajectories, the smoothing spline model estimates one expression pattern for individual
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6 cells and smooths the expression patterns.

7 2.1.3 Dynamic gene networks

s We consider the connection of two genes to be dynamic and the relationship may smoothly change.
9 Suppose we want to study the dynamic relationship of the /th gene and sth gene, where 1 <[, s <
10 p,l # s. Denote X;l> (t) and X,*(t) as the Ith gene and sth gene’s expression values of cell fate
1 trajectories ¢, and i = 1,--- ,n. By taking [th gene as the response and sth gene as the covariate,

12 we consider the functional concurrent linear model,

X (t) = B0 X (1) + ey (11)

<’ ’s are i.i.d. random

13 where 84 (t) models the dynamic linear relationship befwien fwo genes, €
1. errors with mean zero and constant variance. We eftimate 3% (t) by minimizing the following

15 penalized least squares function,

n K
L Z Z ( - D () X (tik)>2 + AT (B (12)

i=1 k=1

nk

16 With the representer theorem (Wahia, 1990), the optimizer of 12 can be written as

n K
[;f?’s> (t Z dv¢v + Z Z Cszl (t2k7 (13)

i=1 k=1

17 where {1} | it thy basis function of the m-dimensional null space Hg, and R;(-,-) is the re-
18 producing kerneh ot Hi. Moreover, d, and c¢;; are the coefficients to be estimated. By Plugging
1 equation 13 to equation 12, we can yield the estimations of ¢ = (c1, -, 1K, ,Cn1,- - ,cnK)T
> and d = (dl, s ,dlK, s ,dnla s ,dnk)T, which follow

— (M -M's (STM!S) T STM) X x
(14)
d=(ST™M's)" s"T™M ' x

s where X = diag((X®7,--- | X;¥T)) with the vector X7 = (X (t;1), -, X¥ (tix))T, X =
o (XPT X PTYT with the vector X = (X (ta), -, X (tix))T, S = (ST, -+ ,ST)T with

10
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s the (k,v)th entry of the K x m matrix S; equals to ¥, (t) X, (tix), M = X¥ QX + nAI and Q
6 is the nK x nK block matrix with the (i, 7)th block is the K x K matrix with the (k,u)th entry

7 equals to Ry (tik,tju). Thus, the estimation of 3% (¢) can be written as
Bt = pTd+€"e (15)

s where ¢ = (Y1(t), -+, (t))" and € = (Ri(t11,t), -+ s Ri(tik, t), -+ s Ri(tn1st), -+, Ri(tnk, t))7.
o Note that 8%®(t) models the dynamic linear relationship between Ith gene and sth gene, and
0 B9 (t)) = 0 means the correlation between gene I and gene s to be 0 at the time point to. We
1 then derive the 100(1 — a)% confidence band of 5 (). We adopt vhe Bayes model in (Gu, 2013)

12 and get the posterior variance of 3%* (t) satisfies

o2

(l,s) O —
Var[ﬁ (t)|X,X} =

(Rt t) + wSMTS) g —29Tde —€Te)  (16)

13 where
ce = (M7! - Mt (SPa1s) T STV ) X e
(17)
de = (STM 8 STM X g
1. Using equation (16), we can estmate the posterior variance of 3% (t5) and write as 7% (to).
15 We then construct the 100(# %) Bayesian confidence interval (BCI) of 349 (¢): BCI 4 (t) ==
6 A () + Zas2 /70 () avheire 2,9 is the 1 — a/2 quantile for standard normal distribution.
17 We use Bayesianficoni dence intervals to construct the dynamic graph, where a node represents

18 a gene, and an el'ge L =tween two nodes exists if the two corresponding genes follow the model (11)

1o with non-zero codfficient 549 (t).

1 2.2 Test differentially expressed genes

> We integrate a functional ANOVA test method (Gérecki and Smaga, 2019) in our framework to
3 estimate deferentially expressed genes based on the constructed cell fate trajectories. For each gene
4+ in those cell fate trajectories, we consider independent vectors of the random function Xy, (t) =
s (Xgia(t),..., ind(t))T, where k indicates the number of trajectory groups, i indicates cells and d

6 indicates the number of genes in one individual cell trajectory, defined over the interval I. In the

11
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7 multivariate analysis of variance problem for functional data (FMANOVA), we test the following

s hypothesis

Ho:py(t) == p(t), t €1,
(18)
Haopy(t) # - # p(t), t € 1.
9 Wilk’s lambda test statistics for testing significantly different genes are approximated using the

10 fdANOVA method (Gérecki and Smaga, 2019). The null distributions of test statistics are approx-
u imated by F;_1), n—1)x-distribution, s are estimated by the naive and biased-reduced methods
12 (Zhang, 2014). The p-value is given by P (F(l—l)n,(n—l)n > Fn), where F,, denotes the test statis-
13 tic. P-values for all genes tested are corrected by Benjamini & Y kutieli method (Benjamini and

u Yekutieli, 2001).

s 3  Results

16 We evaluated the performance of the CellST framework an cell lineage tracing and cell fate predic-
17 tion in both simulated and real scRNA-seq (exerizaents. The simulation analysis was conducted
18 in two scenarios: Firstly, we simulat<l sc RNA*seq datasets with cells at two time points to only
10 investigate the accuracy of constiticted cell-to-cell correspondence between time points. Secondly,
20 we simulated a time-course scRIVA we¢’dataset with multiple time points to examine individual cell
xn differentiation patterns in tlie cyll tate trajectories. For real scRNA-seq experiments, we conducted
2 cell lineage tracing in a siagle-cell mouse hematopoietic system experiment (Weinreb et al., 2018).
23 Moreover, we evaluavnd fhe entire proposed framework on a scRNA-seq experiment for zebrafish

1 cell embryogenesiz (Macosko et al., 2015).

> 3.1 Simulation
3 3.1.1 Reconstruct cell-to-cell correspondence along time points

+ To investigate the accuracy of cell aligning, we simulated scRNA-seq experiments with only two
5 different time points. The simulated datasets, which contain the same number of cells and cell
6 types, were generated independently for each time point. These simulation datasets contain five
7 same cell types in both time points. In the simulation setting, the number of cells ranges from

s 200 to 600, and the number of genes in one cell ranges from 100 to 500. The cell alignment and

12
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Figure 3: A simulation example of cell aligning process at two time points. a: Cell-to-cell alignment
with five (right) cell types in both time points. b: Accuracy comparison of the cell aligning process
(red) with other gene similarity measurements (Pearson correlation (blue) and Euclidean distance

(green)).

o cell-to-cell correspondences were constructed using the CellST asyd enly on the gene expression
10 information of cells at each time point and no information &n the*venchmark labels of cell types.
1 Specifically, we estimated an empirical transportation cosv for tie individual cell alignment between
12 two time points using the gene expressions in cells.“We Jaligned cells by selecting pairs with the
13 smallest transportation cost. Since cell dynapficy 1s a continuous development process and cells
12 within the same cell type tend to have.simiar géile expression profiles, the cell aligning accuracy
15 can be validated by counting the numpyy'of aligned cell pairs with the same cell type (Figure 3b).

16 We noticed that the accuracy ¢fthe cell aligning method has an increasing trend as we added
17 more genes in cells for the simalated data. This observation is due to the fact that the CellST
18 gets more information togleyrn the patterns of genes when more genes are simulated in each cell.
10 Similarly, increasing ceiyntumbers will also increase the aligning accuracy since cells can be treated
1 as information rfprsards to enhance the accuracy. We also compared the accuracy of coupled
2 cells with the \“uciidean distance and Pearson’s correlation. Those two methods are the most
s commonly used distances or similarity measures for gene expression analysis. (Angermueller et al.,
4 2016; Klimovskaia et al., 2020; Skinnider et al., 2019). The accuracy comparison results (Figure
s 3b) show the CellST method achieves the best cell aligning accuracy in the simulation settings.
6 In summary, the cell aligning method achieves high accuracy and captures the significant gene
7 expressions when aligning cells and constructing individual cell correspondences at two different
s time points. Accurate cell alignment is crucial for the down-streaming individual cell fate prediction

o when aligned cells are transformed into a trajectory over time.
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10 3.1.2 CellST estimate cell fates in two simulated pathways

11 To investigate the effectiveness in predicting the individual cell fates, we simulated a time-course
12 scRNA-seq data with 13 experimental time stamps, and 160 cells were simulated at each time stamp.
13 This simulation dataset has two pathways with distinct development expression patterns, and each
12 pathway contains 100 genes. The first pathway was created using the contact inhibition genes that
15 keep cells growing into only a layer one cell thick (mono-layer) (Pavel et al., 2018; Mendonsa et al.,
16 2018). The growth of cells’ average expression in this simulated pathway diminishes and approaches
17 an equilibrium expression over time. We simulated the second pathway according to the cellular
1 division process, which is more active in cells under mitosis and i8s active in cells in interphase
> (Tomasetti et al., 2017). Eighty cells contain only the contac| iniibition pathway at each time

point, and eighty cells contain only the cellular division patawa,
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Figure 4: a: Cell ceupliiyss through all time points constructed by the CellST method. The cells
are classified by i pednway they contain. b: The cell fate trajectories (red curves) built by
CellST and Ewyncama k average expression cell trajectory(black curve). c: Development expression
patterns for a sijpulated gene (m_67). The red and black curves estimated by the CellST method
indicate the géad expression in two different pathways. The dotted two curves are constructed by
the tradeseq method.

4 To observe and predict the dynamic cell fates, we utilized cells’ experimental time information
5 and built individual cell fate trajectories using CellST. The cell lineages between adjacent time
6 points were constructed using cell lineage tracing in CellST (Figure 4a). Those connected cells were
7 then smoothed using the smoothing spline technique in CellST to estimate the cell fate trajectories.
s Figure 4b illustrates the estimated individual cell fate trajectories (red curves). Based on the two

o distinct pathways, the two types of cells are automatically well separated by CellST. The expressions

14
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10 of cell fate trajectories were compared with the benchmark pathway expression patterns (black
1 curves). The expression of cell fate trajectories illustrates consistent patterns with the benchmark
12 expression of the two simulated pathways over time. In addition to the consistency, we observed
13 that cells have unique behaviors over time from the cell fate trajectories. Some cells grow slower
14 and have lower expression values, while others grow faster and have higher expression values than
15 the simulated average development patterns. The cell fate trajectories predict the unique cell
16 development behaviors by smoothing the constructed cell lineages to reduce cell-cell variance.

17 Next, we performed a comparative analysis of CellST with the existing trajectories analysis
18 method “tradeseq” (Van den Berge et al., 2020). The “tradeseq” (s a trajectory-based method to
19 estimate the dynamic expressions of differentially expressed genss™Byicomparing the gene expres-
20 sion patterns constructed by CellST and tradeseq (Figure 467 %wewOtice that the tradeseq method
21 constructed two similar expression patterns for a simulat d géue expression (dotted curves), while
22 the CellST method built two distinct expression patté ns (Hlack and red curves). Those constructed
23 dynamic gene expression curves by CellST aresdlso consistent with the simulated benchmark ex-
24 pressions by showing distinct expression, ptttetis. When constructing the cell fate trajectories,
2 the CellST method can automatically zlassify cells that contain different pathway expressions and

26 construct cell correspondences witiiin the same pathway.

7 3.2 Real scRNA-Seo/txperiments
s 3.2.1 CellST constizico,accurate cell lineages

1 We applied the 1 ropcsed method on a single cell mouse hematopoietic system experiment to evalu-
> ate the effectiven ss of constructing cell lineages (Weinreb et al., 2020). The dataset includes three
s experimental time points and the cells defined a continuous state map spanning from multipotent
s+ progenitors (MPPs) to nine mature cell types, including erythrocytes (Er), megakaryocytes (Mk),
s basophils (Ba), mast cells (Ma), eosinophils (Eos), neutrophils (Neu), monocytes (Mo), plasmacy-
¢ toid dendritic cells (pDCs), Cer7+ migratory DCs (migDCs), and lymphoid precursors (Ly) (Figure
7 ba). We constructed the cell developing lineages for neutrophils (Neu) cell type and compared the
s results with the benchmark cell pseudo-time from the original experiment (Figure 5a). CellST

o connected cells through the three experimental time points to represent the developing process’s

15
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1 penitential cell lineages. Specifically, we estimated an empirical transportation cost for the indi-
> vidual cell correspondence between two time points using the gene expressions in cells and then

3 aligned cells by selecting pairs with the smallest transportation cost.
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a

1000

Pseudotime

60000
40000
20000
0

Umap2

Umap2

-2000

b Pseudotime Changes for Connected Cells

Method

B3 cosT
B9 poorson

Figure 5: Constructin
dataset for hematopoi
of neutrophils (N
individual ¢
Correlation me
pseudo time

&V ual cell lineages with mouse hematopoietic system. a: scRNA-seq
stem cell differentiation. We specifically focus on the cell differentiation
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ence between CellST and Pearson correlation method.

4 Since cell development is a gradual process and cells within the adjacent time points tend to have
s similar gene expression profiles, we measured the differences from cell pseudo-time in all constructed
6 cell lineages. We compared the distribution of cell pseudo-time with Pearson’s correlation method,
7 which has been widely used to measure similarity between two cells (Angermueller et al., 2016;
s Klimovskaia et al., 2020; Skinnider et al., 2019). Comparing with Pearson’s correlation method,

o we observed that CellST constructs cell lineages with higher cell similarities, in which the changes

16
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10 in pseudo-time of connected cells are gathering near zero (Figure 5b and c¢). The results indicate
11 that CellST can observe the gradually step-wise developing behaviors of cells at each time point.
12 CellST constructed cell lineages based on the cell-cell correspondence connection to represent the

13 cell-developing behaviors throughout the time points.

1 3.3 Discover critical genes in zebrafish cell embryogenesis

15 To further investigate individual cell differentiation behaviors and gene-gene relationships, we per-
16 formed CellST on a zebrafish embryogenesis scRNA-seq dataset. This dataset contains 38,731 cells
17 and 11,588 genes of early zebrafish development using Drop-seq (Macosko et al., 2015). Samples
18 in the dataset are from the high blastula stage (3.3 hours postsicitilisation) when most cells are
19 pluripotent, to the six-somite stage (12 hours post-fertilizaCicn),when many cells have differen-
20 tiated into different cell types. We observed that cells “:ere Ciustered together at the beginning
2z high blastula stage and differentiated into different (=2l t/pes in later development stages. Since
» we are constructing cell trajectories for multipi€ell types simultaneously, the proliferation rates
23 potentially vary across cells. To address.this, we &tilize our generalized CellST method to construct
2 cell fate trajectories (Figure 6a), which Zapture the unique individual cell development behaviors
25 under more general scenarios. Thiy method also enables us to estimate the proliferation rate for
26 each individual cell. The histogrsim »of the normalized proliferation rates at different time points
27 are presented in Figure 65" Note that the mean of the normalized proliferation rates at each time
2 point equals 1, while thy vasiance indicates the heterogeneity level of the proliferation rates among
20 cells at the corregpondiig time point. We notice that this heterogeneity is significantly high in the
1 early stages of vhe Cell differentiation process and decreases gradually over time.

2 Unlike the bulk cell trajectory, the CellST cell fate trajectories achieved full cell development
3 coverage for all cells. The full coverage indicates that the cell fate trajectories can reveal less
4 frequent cell development patterns overlooked by the bulk cell trajectory. The CellST constructed
5 cell fate trajectories throughout the stages and illustrated the unique individual cell development
s behaviors. The cell fate trajectories return each cell’s potential cell fate paths into different cell
7 types throughout the 12 developmental stages.

8 Furthermore, as cells developed into multiple cell types at the 12.0-6-somite stage (last devel-

o opmental stage), we built trajectory groups to those cell fate paths by CellST according to the cell

17
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types in the last developmepinl siage. We constructed the dynamic gene networks (Figure 6¢) for
each group of cell fate tra'ectiries. In those dynamic networks, we observed some genes that behave
significantly differently f1wm other genes (Figure 6¢) as cells developed into different cell types. For
instance, MY¥5, MY DD1, and KRT18 genes appeared to behave differently in two of the trajectory
groups in later developmental stages. The MYF5 is a protein with a key role in regulating muscle
differentiation or myogenesis, specifically the development of skeletal muscle (Esteves de Lima and
Relaix, 2021; Agarwal et al., 2022), and MyoD1 is a key regulator that orchestrates skeletal muscle
differentiation through the regulation of gene expression (Blum et al., 2012; Agaram et al., 2019).
Moreover, KRT18 regulates the epithelial cell differentiation process (Jiang et al., 2020; Liu et al.,
2021).

We then visualized and validated the expressions of those critical genes (Figure 6d and Figure

6e). The expressions of MYF5 and MYOD1 genes are significantly higher in trajectory group 5
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10 versus in other trajectory groups, which is consistent with the discovery in the CellST dynamic
1 networks. KRT18 is highly expressed in trajectory group 15, which is also consistent with the
12 CellST dynamic network results. Additionally, we performed functional deferentially expressed
13 gene tests based on the CellST cell fate trajectories. We discovered a total of 268 differentially
14 expressed genes in this zebrafish cell development process dataset. We performed gene ontology
15 annotations to those genes (Table 1), and the function of those genes is highly related to regulating

the cell development /differentiation process.

Gene Ontology (GO) annotations Count P-value
Multicellular organism development 133 2.100393e-45
Cell Differentiation 86 4.8e-25

Differentiation 36 8.6e-10

Cell fate specification 13 1.3e-5

Cell fate commitment 17 6.1e-5

Table 1: Top five gene functional,artnotation groups.

16

17 Those results proved that the cell fate trajsetories aixd dynamic gene networks in the CellST
18 method can be used to discover critical genes in wadil differentiation process. We also demonstrated
10 the CellST cell fate trajectories hava,fill coverage on different cell lineages even in some rare
20 cell types since the trajectories track individual cell behaviors. Lastly, those individual cell fate
21 trajectories reflect unique gene eiprossion patterns when cells develop into different mature cell

2 types.

. 4 Discussion

> Understanding tl = dynamic of cell differentiation throughout a period is crucial for future research
3 in scRNA-Seq analysis. We developed a novel machine learning analysis framework, CellST, to
4 build cell fate trajectories and dynamic gene networks for time-course scRNA-seq datasets. The
s cell fate trajectories enabled researchers to observe the individual cell development behaviors and
6 better use the benefit of the single cell sequencing technology. Compared to the existing bulk single-
7 cell trajectory, we brought the cell development analysis into a more precise and unprecedented
s resolution. The dynamic gene networks estimated the dynamic relationship of genes and discovered

9 potential critical genes during cell differentiation processes.

19
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10 There are three major advantages of the CellST analysis framework. Firstly, the cell lineages
1 were constructed with high accuracy and provides unique individual cell differentiation behaviors
12 between time points. Secondly, since the trajectory tracks individual cells, the cell fate trajectories
13 will have full coverage on different cell lineages even in some rare cell types (Figure 6a). Thirdly,
12 the dynamic gene networks analysis in the CellST framework can accurately estimate gene-gene
15 relationships and discover critical genes in the cell differentiation process. Through the simulation
16 and real dataset analysis, We constructed cell fate trajectories in single cell RNA-seq experiment

17 and various dynamic cell differentiation behaviors were observed.

s 5 Data Availability

19 All data used in this paper are publicly available datagels. !"he mouse hematopoietic system
20 experiment dataset can be found on GitHub (https:/fgitheb.com/AllonKleinLab/paper-data).
a1 The zebrafish embryogenesis dataset from the original piper (Wagner et al., 2018) can be found in

1 the NCBI database with accession number S £20€587.

. 6 Code Availability

3 The CellST R package and exanipl:“for constructing the cell fate trajectories and dynamic gene
s+ mnetworks analysis can begoond on GitHub (https://github.com/zhanzmr/CellST).
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