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Abstract5

Single cell RNA sequencing (scRNA-seq) technologies provide researchers with an unprece-6

dented opportunity to exploit cell heterogeneity. For example, the sequenced cells belong to7

various cell lineages, which may have different cell fates in stem and progenitor cells. Those8

cells may differentiate into various mature cell types in a cell differentiation process. To trace9

the behavior of cell differentiation, researchers reconstruct cell lineages and predict cell fates10

by ordering cells chronologically into a trajectory with a pseudo-time. However, in scRNA-seq11

experiments, there are no cell-to-cell correspondences along with the time to reconstruct the cell12

lineages, which creates a significant challenge for cell lineage tracing and cell fate prediction.13

Therefore, methods that can accurately reconstruct the dynamic cell lineages and predict cell14

fates are highly desirable.15

In this article, we develop an innovative machine-learning framework called Cell Smoothing16

Transformation (CellST) to elucidate the dynamic cell fate paths and construct gene networks17

in cell differentiation processes. Unlike the existing methods that construct one single bulk cell18

trajectory, CellST builds cell trajectories and tracks behaviors for each individual cell. Addi-19

tionally, CellST can predict cell fates even for less frequent cell types. Based on the individual20

cell fate trajectories, CellST can further construct dynamic gene networks to model gene-gene21

relationships along the cell differentiation process and discover critical genes that potentially22

regulate cells into various mature cell types.23

Keywords: scRNA-seq, Optimal Transport, Smoothing Spline, Dynamic Gene Networks.24
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1 Introduction1

A comprehensive understanding of complex biological processes such as tissue development and2

regeneration requires the investigation of cell differentiation across a wide range of samples and3

experimental time points (Spiller et al., 2010). The cell differentiation process includes the dif-4

ferentiation of stem cells into different mature cell types (Guo et al., 2017; Burrows et al., 2020).5

Such a process is dynamic and continuous, including rapid changes in gene expressions and cell6

types over time. To profile such cell differentiation behaviors, single cell RNA-seq sequencing7

(scRNA-seq) technology has been developed rapidly (Nawy, 2013; Shapiro et al., 2013; Grün and8

Oudenaarden, 2015; Tanay and Regev, 2017). In particular, scRNA-seq enables researchers to9

observe the gene expressions of all cells simultaneously (Figure 1a) in both static or time-course10

experiments (Figure 1b). The static scRNA-seq experiment takes a snapshot of all cells and their11

gene expressions at one time (Lawson et al., 2015; Hrvatin et al., 2018), whereas the time-course12

scRNA-seq experiments take snapshots at multiple time points. Using scRNA-seq, researchers can13

observe the behavior of individual cells in cell differentiation processes over time. Cell lineage14

tracing has been widely used to predict dynamic cell fates by indicating the ancestor and posterity15

cells in cell differentiation processes. For example, during a stem cell differentiation process, the16

multipotent stem cells can develop into multiple cell lineage endpoints (Figure 1c). Despite the17

effectiveness, quantifying the dynamic cellular changes of cell development is still challenging due18

to the following technical limitations(Stegle et al., 2015). In time-course scRNA-seq experiments,19

cells are sacrificed and sequenced at each time point. Thus there is no cell-to-cell correspondence20

information for cells between two time points, which creates a significant challenge in constructing21

cell lineages and elucidating the dynamic cell behaviors in the differentiation process. Moreover, it22

is very challenging to align different cells sequenced in two adjacent time points since expressions23

of cells are high-dimensional and noisy, and the number of cells in each time point is large. Such24

a large sample and high-dimensional and noisy data problem render many classical methods, such25

as Euclidean distance or Pearson correlation, invalid (Alonge et al., 2020; Ren et al., 2017).26

One natural approach to surmount the challenges is to order cells into a continuous cell trajec-27

tory. Many methods have been proposed to achieve this goal in static scRNA-seq experiments. In28

these methods, researchers construct a pseudotime to order cells chronologically (Qiu et al., 2017;29
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Figure 1: Single cell analysis and cell smoothing transformation (CellST) overview: a: The advan-
tage of scRNA-seq analysis over bulk RNA-seq analysis. b: Data structures for static scRNA-seq
experiments and time-course scRNA-seq experiments. Cells in time-course experiments have been
marked with experimental time points. c: The multipotent stem cells can develop into multiple
cell lineage endpoints. d: Cell lineages are constructed by connecting individual cells over time.
Cell fate trajectories are constructed by smoothing the connected cell lineages. e: Dynamic gene
networks are constructed based on the calculated dynamic relationship between genes.

Cannoodt et al., 2016; Trapnell, 2015; Ji and Ji, 2016; Chen et al., 2019; Trapnell et al., 2014;1

Liu et al., 2017). Despite their effectiveness, such methods may fail in the following circumstances2

(Tritschler et al., 2019). First of all, most existing trajectory inference methods construct a bulk3

cell trajectory, i.e., the mean trajectory of the population cells across time rather than that of4

individual cells.5

However, some individual cells’ behaviors may oscillate up and down around their mean ex-6

pressions or severely deviate from them. Cell differentiation behaviors are dominated by cells with7

major cell types, and patterns with less frequent might be hidden in the dataset. Second, individual8
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cell developing trajectories may follow different complex topologies, including loops or alternative1

paths during the development. For example, analysis approaches in Moon et al. (2018), and Dai2

et al. (2020) used dimension reduction methods to identify a low-dimensional space of the gene3

expression space before constructing cell trajectories (Saelens et al., 2019; Wagner et al., 2018).4

Those methods may introduce a significant bias and are hard to validate, as cells are ordered based5

only on the selected reduced dimensions. Finally, the cells may not be synchronized at the same6

developing time points. Cells within the same time point can be expressed at different developing7

stages. In this situation, the bulk cell trajectory that takes the average pattern of cells at different8

stages might result in unreliable scientific discovery.9

In this article, we propose a novel analysis framework named Cell Smoothing Transformation10

(CellST) to overcome the aforementioned limitations. The CellST framework elucidates dynamic11

cell fates and constructs gene networks in the cell differentiation process. In the CellST framework,12

we propose a cell lineage tracing method, which aligns two individual cells between any adjacent13

two time points via the optimal transport technique (Villani, 2003; Meng et al., 2019), which is a14

powerful tool that can be used to model cell dynamics (Schiebinger et al., 2019; Tong et al., 2020;15

Zhang et al., 2020). Those aligned cells can potentially represent individual cell lineages, tracing16

cell differentiation behaviors by constructing cell-to-cell trajectories (Figure 1d). We then use a17

smoothing spline model to predict cell fate trajectories and reduce both cell-cell variations. The18

smoothing spline method models the gene expression patterns in the aligned cell lineages from the19

previous step and builds the estimated individual cell fate trajectories. Lastly, we narrow down our20

focus to utilize the gene expression patterns from those cell fate trajectories to construct dynamic1

gene networks (Figure 1e). The dynamic gene networks are constructed by estimating the dynamic2

relationship of pairwise gene expression patterns using the functional concurrent models (Wang3

et al., 2016) and smoothing spline models (Gu and Ma, 2005). The dynamic gene networks can be4

used to find critical genes by profiling genes with significantly different patterns from other genes.5

Our major contribution is developing the first analysis framework (CellST) to construct cell6

lineages and predict dynamic cell fates at the individual cell level, which can help researchers better7

observe cell behaviors in the differentiation process. In contrast, the existing methods only estimate8

the bulk trajectory in scRNA-seq experiments. Those analysis methods may overlook the hidden9

patterns in the cell differentiation process to create a spurious cell differentiation trajectory. We10
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Figure 2: Example of cell-to-cell linking: a: Cell differentiation over time (x-axis) reflects an
increasing trend in average cell expressions (y-axis). b: The individual cell correspondences at
different time points reflect a decreasing trend in average cell expression (y-axis).

illustrate this problem by using a simulated time-course cell dataset indicating the disadvantage of11

bulk cell trajectories (Figure 2). The cell-to-cell trajectories are able to overcome the disadvantage12

and identify the real gene expression patterns in cell development. Under some cell development13

and differentiation circumstances, cells’ average expressions show an increasing pattern if we only14

construct one average cell trajectory to order cells (Figure 2a). However, when individual cells15

are aligned at different time points, the individual cell lineages’ average expressions reflect unique16

decreasing patterns, which are in contrast to the bulk trajectory (Figure 2b). This means some17

cells start at a lower expression level, and the expression keeps going down over time. Those cell18

development patterns can be easily misled by the average cell trajectory and thus reflect spurious19

cell differentiation behaviors. Furthermore, we propose the dynamic gene networks based on the20

individual cell fate trajectories to estimate the dynamic gene-gene relationship and critical genes21

in the differentiation process. The empirical performance of the proposed framework is evaluated22

by several simulated and real experiment studies.23

2 Method24

In this section, we introduce the Cell Smooth Transformation (CellST) method, which constructs25

the cell fate trajectories and dynamic gene networks for time-course scRNA-seq data.1
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2.1 Cell lineage & Individual cell fate trajectories2

To construct the cell fate trajectories, we first align the cells at different time points to construct3

the cells’ lineages information between time points. We then smooth the gene expression pattern4

for each gene over time and extract the ”mean curve” of all individual gene expression patterns in5

single cell fate trajectories to obtain the general gene expression pattern.6

2.1.1 Cell-to-cell lineages by optimal transport7

Regarding cells at different time points as cells with genes of different domain spaces, we transform8

the problem of aligning cells at different time points into a problem of domain adaptation. Specif-9

ically, we denote the normalized gene expression for cell i at time t by a d-dimensional vector xti;10

each dimension of xti represents a gene expression 1. We write Xt =
{
xti
}nt

i=1
, where nt indicates11

the number of cells at time t in single cell RNA-seq dataset. Our goal is to learn the transformation12

between the domain spaces by aligning the distribution of Xt to Xt+1.13

As a powerful tool to learn the transformation from one probability measure to another, optimal14

transport has been applied to solve the domain adaptation problem (Courty et al., 2014). We thus15

apply optimal transport to obtain the domain adaptive coupling between Xt and Xt+1. In other16

words, we transform the cell alignment problem into an optimal transport problem. In particular,17

we formulate the problem as a Monge optimal transport by minimizing the cost for transporting a18

gene expression distribution µt and µt+1 using a map Tt:19

min
Tt

∫

t
c(x,Tt(x))dµt(x), (1)

where Tt#µt = µt+1, # represents the push-forward operator, such that for any measurable x,20

Tt#µt(x) = µt(T
−1
t (x)), µt and µt+1 are probability distribution of Xt and Xt+1 in Rd, where d is21

the dimension. We define the optimal transport map Tt : Rd → Rd, where Rd can be interpreted22

as the domain space for xti or xt+1
i . In this optimal transport problem, one constraint for the trans-1

portation map Tt from a measure µt to a measure µt+1 is the so-called measurement-preserving,2

i.e., Tt#µt = µt+1. Among all the measurement-preserving maps, the optimal Tt is the one that3

1For xt
i, we (1) use all available genes, (2) select highly expressed genes, or (3) apply dimension reduction methods

such as the principal component analysis (PCA). In the first two cases, each gene expression represents an individual
gene; while in the last case, each gene feature represents a combination of all genes.
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minimizes the transportation cost.4

Since we can only observe gene expressions for sample cells at each time point, we focus on5

the case where the probability distributions are discrete. The distributions µt and µt+1 for gene6

features at time points t and t+ 1 are defined as:7

µt =
1

nt

nt∑

i=1

δti and µt+1 =
1

nt+1

nt+1∑

j=1

δt+1j , (2)

where δti and δt+1j are the Dirac measures at location xti and xt+1j respectively. Denote the8

positions of the supporting points Xt = (xt1 ,xt2 , . . . ,xtnt
)T . In discrete cases, the transport Tt9

from µt to µt+1 can be denoted as Tt(Xt) = ΣXt, where Σ is an nt+1 × nt matrix. For simplicity,10

we first consider the equal-size mapping, i.e., nt = nt+1 = n. Notice that in this case, the transport11

between Xt and Xt+1 is a one-to-one assignment with permutation, Σ then can be regarded as a12

permutation matrix with the (i, j)th element:13

Σi,j =





1 if Tt(xtj ) = xt+1i ,

0 otherwise,

(3)

Furthermore, the transportation cost C(Tt) defined in (1) can be calculated as:14

C(Tt) =
n∑

i=1

n∑

j=1

c
(
xtj ,xt+1i

)
Σi,j , (4)

where c(xtj ,xt+1j ) can be interpreted as the energy required to transform an individual cell from15

the stage as xtj to the stage as xt+1
i . The optimal transport map Tt then can be calculated through:16

min
Σ

n∑

i=1

n∑

j=1

c(xtj ,xt+1i)Σi,j . (5)

where c(xtj ,xt+1i) =
∥∥xtj − xt+1i

∥∥α and ‖ · ‖ is the Euclidean norm in Rd. We set α = 2 in this17

paper. The minimum of the optimization problem (5) is called the Lα-Wasserstein distance (to the18

power α ) and is denoted by Wα (µt, µt+1)α. The Wα defines a distance on the set of distributions1

(cells) that have moments of order α. In general, the cell lineage construction by optimal transport2

can be summarized as three steps: Estimating empirical gene feature distributions µt and µt+1 as3
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in (2). Finding an optimal transport map Tt from µt to µt+1 through (5). Applying Tt to obtain4

the cell-to-cell coupling from Xt to Xt+1.5

It’s important to note that the optimal transport map discussed above could be unsuitable6

in some cases when the one-to-one cell differentiation assumption does not hold. However, our7

optimal transport framework can be modified to account for more general cell-to-cell relationships.8

Specifically, we consider the following two general scenarios. First, the number of cells may vary at9

different time points, and as a result, some cells may need to be reused when constructing cell-to-10

cell lineages. This can lead to multiple lineages passing through a single cell at specific time points.11

Second, cells may exhibit different proliferation rates at the same time points, i.e., the numbers of12

new cells produced by two cells at the same time point could be significantly different. This could13

result in the varying proportions of cell groups across time. To address these general assumptions,14

we present a comprehensive discussion of our generalized methods and experimental results in the15

supplementary materials.16

2.1.2 Individual cell fate trajectories by smoothing spline model17

After we align the cells from different time points, we can obtain the individual cell lineages at time18

points t and t+1. We then align cells for all time points based on the cell couplings to construct each19

cell’s coarse cell fate trajectories across the timeline. Those cell fate trajectories are smoothed to20

reduce the estimation variance in CellST by utilizing the smoothing spline models. The smoothing21

spline model is a versatile family of smoothing methods that are suitable for both univariate and22

multivariate problems (Gu, 2013). To construct the proposed smoothed cell trajectories, we use23

equation 6 to model the behavior patterns of the gene expression along the cell fate trajectories.24

Let t represent the time points in the time-course dataset, and gi represent the gene expression25

for each gene within an aligned cell fate trajectory. For co-expressed genes, we model the gene26

expression patterns using a smoothing spline mix-effect model with {gi, ti}ni=1 as the observations1

(Gu and Ma, 2005):2

gi = η (ti) + zTi b + εi (6)

i = 1, . . . , n, where the regression function η (ti) is assumed to be a smooth function on the genes3

domain space in a cell. η (ti) are the fixed effects and zTi b are the random effects with b ∼ N(0, B)4

8

                  



and εi ∼ N
(
0, σ2

)
. The random effects are used to account for the co-expressed genes in one5

individual cell trajectory. The model terms η(t) or η(t)+zTb will be estimated using the penalized6

(unweighted) least squares method through the minimization of7

1

n

n∑

i=1

(
gi − η (ti)− zTi b

)2
+

1

n
bTΣb + λJ(η), (7)

where the first term measures the goodness-of-fit, J(η) =
∫

(η′′(t))2dt quantifies the smoothness8

of η, and λ is the smoothing parameter controlling the trade-off between the goodness-of-fit and9

the smoothness of η (Wahba, 1990; Gu, 2013). Consider the minimization of the least squares10

estimation (equation 7) in a space with basis {ξ1, . . . , ξq}, function η can be expressed as11

η(t) =

d∑

j=1

cjξj(t) = ξT (t)c. (8)

Plugging equation 8 into equation 7, thus η can be estimated by minimizing:12

(g −Rc− Zb)T (g −Rc− Zb) + bTΣb + nλcTQc. (9)

With the standard formulation of penalized least squares regression, the minimization of equa-13

tion 7 is performed in a so-called reproducing kernel Hilbert space H ⊆ {η : J(η) < ∞} in which14

J(η) is a square seminorm, and the solution resides in the space NJ ⊕ span {RJ (ti, ·) , i = 1, . . . , n},15

where NJ = {η : J(η) = 0} is the null space of J(η) and RJ(·, ·) is the so-called reproducing kernel16

in H	NJ . The solution has an expression:17

η(t) =
m∑

i=1

dνφν(t) +
n∑

i=1

c̃iRJ (ti, t) (10)

where {φν}mν=1 is a basis of NJ . It follows that R = (S, Q̃), where S is n× m with the (i, ν)th18

entry φν (ti) and Q̃ is n × n with the (i, j) th entry RJ (ti, tj) . In the smoothing spline model,1

the estimation of η is highly related to the choosing of the smoothing parameter λ. We choose2

the smoothing parameter λ and estimate random effect b by Generalized Cross-Validation (GCV)3

(Wahba, 1990; Gu and Ma, 2005). Since there are d gene expression patterns over t time points for4

the cell fate trajectories, the smoothing spline model estimates one expression pattern for individual5
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cells and smooths the expression patterns.6

2.1.3 Dynamic gene networks7

We consider the connection of two genes to be dynamic and the relationship may smoothly change.8

Suppose we want to study the dynamic relationship of the lth gene and sth gene, where 1 ≤ l, s ≤9

p, l 6= s. Denote X〈l〉
i (t) and X〈s〉

i (t) as the lth gene and sth gene’s expression values of cell fate10

trajectories i, and i = 1, · · · , n. By taking lth gene as the response and sth gene as the covariate,11

we consider the functional concurrent linear model,12

X〈l〉
i (t) = β〈l,s〉(t)X〈s〉

i (t) + ε〈l,s〉i,t , (11)

where β〈l,s〉(t) models the dynamic linear relationship between two genes, ε〈l,s〉i,t s are i.i.d. random13

errors with mean zero and constant variance. We estimate β〈l,s〉(t) by minimizing the following14

penalized least squares function,15

1

nK

n∑

i=1

K∑

k=1

(
X
〈l〉
i (tik)− β〈l,s〉 (tik)X

〈s〉
i (tik)

)2
+ λJ(β〈l,s〉). (12)

With the representer theorem (Wahba, 1990), the optimizer of 12 can be written as16

β̂〈l,s〉
λ (t) =

m∑

v=1

dvψv(t) +
n∑

i=1

K∑

k=1

cikR1 (tik, t) (13)

where {ψv}mv=1 is the basis function of the m-dimensional null space H0, and RJ(·, ·) is the re-17

producing kernel of H1. Moreover, dv and cik are the coefficients to be estimated. By Plugging18

equation 13 to equation 12, we can yield the estimations of c = (c1, · · · , c1K , · · · , cn1, · · · , cnK)T1

and d = (d1, · · · , d1K , · · · , dn1, · · · , dnk)T , which follow2

c =
(
M−1 −M−1S

(
STM−1S

)−1
STM−1

)
X〈s〉X〈l〉

d =
(
STM−1S

)−1
STM−1X〈l〉

(14)

where X〈s〉 = diag((X〈s〉T
1 , · · · ,X〈s〉T

n )) with the vector X〈s〉T
i = (X〈s〉

i (ti1), · · · , X〈s〉
i (tiK))T , X〈l〉 =3

(X〈l〉T
1 , · · · ,X〈l〉T

n ))T with the vector X〈l〉
i = (X〈l〉

i (ti1), · · · , X〈l〉
i (tiK))T , S = (ST1 , · · · ,STn )T with4
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the (k, v)th entry of the K ×m matrix Si equals to ψv(tik)X
〈s〉
i (tik), M = X〈s〉QX〈s〉 + nλI and Q5

is the nK × nK block matrix with the (i, j)th block is the K ×K matrix with the (k, u)th entry6

equals to R1(tik, tju). Thus, the estimation of β〈l,s〉(t) can be written as7

β̂〈l,s〉(t) = ψTd+ ξTc (15)

where ψ = (ψ1(t), · · · , ψm(t))T and ξ = (R1(t11, t), · · · , R1(t1K , t), · · · , R1(tn1, t), · · · , R1(tnK , t))
T .8

Note that β〈l,s〉(t) models the dynamic linear relationship between lth gene and sth gene, and9

β〈l,s〉(t0) = 0 means the correlation between gene l and gene s to be 0 at the time point t0. We10

then derive the 100(1− α)% confidence band of β〈l,s〉(t). We adopt the Bayes model in (Gu, 2013)11

and get the posterior variance of β〈l,s〉(t) satisfies12

Var
[
β〈l,s〉(t) | X,X〈l〉

]
=

σ2

nKλ

(
R1(t, t) +ψT

(
STM−1S

)−1
ψ − 2ψTdξ − ξTcξ

)
(16)

where13

cξ =
(
M−1 −M−1S

(
STM−1S

)−1
STM−1

)
X〈s〉ξ

dξ =
(
STM−1S

)−1
STM−1X〈s〉ξ

(17)

Using equation (16), we can estimate the posterior variance of β〈l,s〉(t0) and write as γ〈l,s〉(t0).14

We then construct the 100(1 − α%) Bayesian confidence interval (BCI) of β〈l,s〉(t): BCI〈l,s〉(t) :=15

β̂〈l,s〉(t)± zα/2
√
γ〈l,s〉(t), where zα/2 is the 1− α/2 quantile for standard normal distribution.16

We use Bayesian confidence intervals to construct the dynamic graph, where a node represents17

a gene, and an edge between two nodes exists if the two corresponding genes follow the model (11)18

with non-zero coefficient β〈l,s〉(t).19

2.2 Test differentially expressed genes1

We integrate a functional ANOVA test method (Górecki and Smaga, 2019) in our framework to2

estimate deferentially expressed genes based on the constructed cell fate trajectories. For each gene3

in those cell fate trajectories, we consider independent vectors of the random function Xki(t) =4

(Xki1(t), . . . , Xkid(t))
>, where k indicates the number of trajectory groups, i indicates cells and d5

indicates the number of genes in one individual cell trajectory, defined over the interval I. In the6

11

                  



multivariate analysis of variance problem for functional data (FMANOVA), we test the following7

hypothesis8

H0 : µ1(t) = · · · = µk(t), t ∈ I,

HA : µ1(t) 6= · · · 6= µk(t), t ∈ I.
(18)

Wilk’s lambda test statistics for testing significantly different genes are approximated using the9

fdANOVA method (Górecki and Smaga, 2019). The null distributions of test statistics are approx-10

imated by F(l−1)κ,(n−l)κ-distribution, κ are estimated by the naive and biased-reduced methods11

(Zhang, 2014). The p-value is given by P
(
F(l−1)κ,(n−l)κ > Fn

)
, where Fn denotes the test statis-12

tic. P-values for all genes tested are corrected by Benjamini & Yekutieli method (Benjamini and13

Yekutieli, 2001).14

3 Results15

We evaluated the performance of the CellST framework on cell lineage tracing and cell fate predic-16

tion in both simulated and real scRNA-seq experiments. The simulation analysis was conducted17

in two scenarios: Firstly, we simulated scRNA-seq datasets with cells at two time points to only18

investigate the accuracy of constructed cell-to-cell correspondence between time points. Secondly,19

we simulated a time-course scRNA-seq dataset with multiple time points to examine individual cell20

differentiation patterns in the cell fate trajectories. For real scRNA-seq experiments, we conducted21

cell lineage tracing in a single-cell mouse hematopoietic system experiment (Weinreb et al., 2018).22

Moreover, we evaluated the entire proposed framework on a scRNA-seq experiment for zebrafish23

cell embryogenesis (Macosko et al., 2015).1

3.1 Simulation2

3.1.1 Reconstruct cell-to-cell correspondence along time points3

To investigate the accuracy of cell aligning, we simulated scRNA-seq experiments with only two4

different time points. The simulated datasets, which contain the same number of cells and cell5

types, were generated independently for each time point. These simulation datasets contain five6

same cell types in both time points. In the simulation setting, the number of cells ranges from7

200 to 600, and the number of genes in one cell ranges from 100 to 500. The cell alignment and8

12

                  



Figure 3: A simulation example of cell aligning process at two time points. a: Cell-to-cell alignment
with five (right) cell types in both time points. b: Accuracy comparison of the cell aligning process
(red) with other gene similarity measurements (Pearson correlation (blue) and Euclidean distance
(green)).

cell-to-cell correspondences were constructed using the CellST based only on the gene expression9

information of cells at each time point and no information on the benchmark labels of cell types.10

Specifically, we estimated an empirical transportation cost for the individual cell alignment between11

two time points using the gene expressions in cells. We aligned cells by selecting pairs with the12

smallest transportation cost. Since cell dynamics is a continuous development process and cells13

within the same cell type tend to have similar gene expression profiles, the cell aligning accuracy14

can be validated by counting the number of aligned cell pairs with the same cell type (Figure 3b).15

We noticed that the accuracy of the cell aligning method has an increasing trend as we added16

more genes in cells for the simulated data. This observation is due to the fact that the CellST17

gets more information to learn the patterns of genes when more genes are simulated in each cell.18

Similarly, increasing cell numbers will also increase the aligning accuracy since cells can be treated19

as information replicates to enhance the accuracy. We also compared the accuracy of coupled1

cells with the Euclidean distance and Pearson’s correlation. Those two methods are the most2

commonly used distances or similarity measures for gene expression analysis. (Angermueller et al.,3

2016; Klimovskaia et al., 2020; Skinnider et al., 2019). The accuracy comparison results (Figure4

3b) show the CellST method achieves the best cell aligning accuracy in the simulation settings.5

In summary, the cell aligning method achieves high accuracy and captures the significant gene6

expressions when aligning cells and constructing individual cell correspondences at two different7

time points. Accurate cell alignment is crucial for the down-streaming individual cell fate prediction8

when aligned cells are transformed into a trajectory over time.9
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3.1.2 CellST estimate cell fates in two simulated pathways10

To investigate the effectiveness in predicting the individual cell fates, we simulated a time-course11

scRNA-seq data with 13 experimental time stamps, and 160 cells were simulated at each time stamp.12

This simulation dataset has two pathways with distinct development expression patterns, and each13

pathway contains 100 genes. The first pathway was created using the contact inhibition genes that14

keep cells growing into only a layer one cell thick (mono-layer) (Pavel et al., 2018; Mendonsa et al.,15

2018). The growth of cells’ average expression in this simulated pathway diminishes and approaches16

an equilibrium expression over time. We simulated the second pathway according to the cellular17

division process, which is more active in cells under mitosis and less active in cells in interphase1

(Tomasetti et al., 2017). Eighty cells contain only the contact inhibition pathway at each time2

point, and eighty cells contain only the cellular division pathway.

Figure 4: a: Cell couplings through all time points constructed by the CellST method. The cells
are classified by the pathway they contain. b: The cell fate trajectories (red curves) built by
CellST and Benchmark average expression cell trajectory(black curve). c: Development expression
patterns for a simulated gene (m 67). The red and black curves estimated by the CellST method
indicate the gene expression in two different pathways. The dotted two curves are constructed by
the tradeseq method.

3

To observe and predict the dynamic cell fates, we utilized cells’ experimental time information4

and built individual cell fate trajectories using CellST. The cell lineages between adjacent time5

points were constructed using cell lineage tracing in CellST (Figure 4a). Those connected cells were6

then smoothed using the smoothing spline technique in CellST to estimate the cell fate trajectories.7

Figure 4b illustrates the estimated individual cell fate trajectories (red curves). Based on the two8

distinct pathways, the two types of cells are automatically well separated by CellST. The expressions9

14

                  



of cell fate trajectories were compared with the benchmark pathway expression patterns (black10

curves). The expression of cell fate trajectories illustrates consistent patterns with the benchmark11

expression of the two simulated pathways over time. In addition to the consistency, we observed12

that cells have unique behaviors over time from the cell fate trajectories. Some cells grow slower13

and have lower expression values, while others grow faster and have higher expression values than14

the simulated average development patterns. The cell fate trajectories predict the unique cell15

development behaviors by smoothing the constructed cell lineages to reduce cell-cell variance.16

Next, we performed a comparative analysis of CellST with the existing trajectories analysis17

method “tradeseq” (Van den Berge et al., 2020). The “tradeseq” is a trajectory-based method to18

estimate the dynamic expressions of differentially expressed genes. By comparing the gene expres-19

sion patterns constructed by CellST and tradeseq (Figure 4c), we notice that the tradeseq method20

constructed two similar expression patterns for a simulated gene expression (dotted curves), while21

the CellST method built two distinct expression patterns (black and red curves). Those constructed22

dynamic gene expression curves by CellST are also consistent with the simulated benchmark ex-23

pressions by showing distinct expression patterns. When constructing the cell fate trajectories,24

the CellST method can automatically classify cells that contain different pathway expressions and25

construct cell correspondences within the same pathway.26

3.2 Real scRNA-Seq Experiments27

3.2.1 CellST construct accurate cell lineages28

We applied the proposed method on a single cell mouse hematopoietic system experiment to evalu-1

ate the effectiveness of constructing cell lineages (Weinreb et al., 2020). The dataset includes three2

experimental time points and the cells defined a continuous state map spanning from multipotent3

progenitors (MPPs) to nine mature cell types, including erythrocytes (Er), megakaryocytes (Mk),4

basophils (Ba), mast cells (Ma), eosinophils (Eos), neutrophils (Neu), monocytes (Mo), plasmacy-5

toid dendritic cells (pDCs), Ccr7+ migratory DCs (migDCs), and lymphoid precursors (Ly) (Figure6

5a). We constructed the cell developing lineages for neutrophils (Neu) cell type and compared the7

results with the benchmark cell pseudo-time from the original experiment (Figure 5a). CellST8

connected cells through the three experimental time points to represent the developing process’s9
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penitential cell lineages. Specifically, we estimated an empirical transportation cost for the indi-1

vidual cell correspondence between two time points using the gene expressions in cells and then2

aligned cells by selecting pairs with the smallest transportation cost.3

Figure 5: Constructing individual cell lineages with mouse hematopoietic system. a: scRNA-seq
dataset for hematopoietic stem cell differentiation. We specifically focus on the cell differentiation
of neutrophils (Neu) mature cell types. b: The distribution pseudo time difference between aligned
individual cells between two time points. The distribution has been compared with the Pearson
Correlation method, which measures the similarities between cells. c: Boxplot comparison for the
pseudo time difference between CellST and Pearson correlation method.

Since cell development is a gradual process and cells within the adjacent time points tend to have4

similar gene expression profiles, we measured the differences from cell pseudo-time in all constructed5

cell lineages. We compared the distribution of cell pseudo-time with Pearson’s correlation method,6

which has been widely used to measure similarity between two cells (Angermueller et al., 2016;7

Klimovskaia et al., 2020; Skinnider et al., 2019). Comparing with Pearson’s correlation method,8

we observed that CellST constructs cell lineages with higher cell similarities, in which the changes9
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in pseudo-time of connected cells are gathering near zero (Figure 5b and c). The results indicate10

that CellST can observe the gradually step-wise developing behaviors of cells at each time point.11

CellST constructed cell lineages based on the cell-cell correspondence connection to represent the12

cell-developing behaviors throughout the time points.13

3.3 Discover critical genes in zebrafish cell embryogenesis14

To further investigate individual cell differentiation behaviors and gene-gene relationships, we per-15

formed CellST on a zebrafish embryogenesis scRNA-seq dataset. This dataset contains 38,731 cells16

and 11,588 genes of early zebrafish development using Drop-seq (Macosko et al., 2015). Samples17

in the dataset are from the high blastula stage (3.3 hours post-fertilization) when most cells are18

pluripotent, to the six-somite stage (12 hours post-fertilization), when many cells have differen-19

tiated into different cell types. We observed that cells were clustered together at the beginning20

high blastula stage and differentiated into different cell types in later development stages. Since21

we are constructing cell trajectories for multiple cell types simultaneously, the proliferation rates22

potentially vary across cells. To address this, we utilize our generalized CellST method to construct23

cell fate trajectories (Figure 6a), which capture the unique individual cell development behaviors24

under more general scenarios. This method also enables us to estimate the proliferation rate for25

each individual cell. The histograms of the normalized proliferation rates at different time points26

are presented in Figure 6b. Note that the mean of the normalized proliferation rates at each time27

point equals 1, while the variance indicates the heterogeneity level of the proliferation rates among28

cells at the corresponding time point. We notice that this heterogeneity is significantly high in the29

early stages of the cell differentiation process and decreases gradually over time.1

Unlike the bulk cell trajectory, the CellST cell fate trajectories achieved full cell development2

coverage for all cells. The full coverage indicates that the cell fate trajectories can reveal less3

frequent cell development patterns overlooked by the bulk cell trajectory. The CellST constructed4

cell fate trajectories throughout the stages and illustrated the unique individual cell development5

behaviors. The cell fate trajectories return each cell’s potential cell fate paths into different cell6

types throughout the 12 developmental stages.7

Furthermore, as cells developed into multiple cell types at the 12.0-6-somite stage (last devel-8

opmental stage), we built trajectory groups to those cell fate paths by CellST according to the cell9
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Figure 6: a: We constructed the individual cell fate trajectories by connecting cells through the 12
developing stages. b: Histograms of the distribution of the cell proliferation rates at different time
points. c: Illustration of identifying multiple cell trajectory groups based on the cell types at the
12.0-6-somite stage (last developmental stage). d: Example of critical genes identified using CellST
dynamic gene network. e: Dynamic gene networks constructed by CellST for the cell trajectory
groups.

types in the last developmental stage. We constructed the dynamic gene networks (Figure 6c) for10

each group of cell fate trajectories. In those dynamic networks, we observed some genes that behave11

significantly differently from other genes (Figure 6c) as cells developed into different cell types. For12

instance, MYF5, MYOD1, and KRT18 genes appeared to behave differently in two of the trajectory1

groups in later developmental stages. The MYF5 is a protein with a key role in regulating muscle2

differentiation or myogenesis, specifically the development of skeletal muscle (Esteves de Lima and3

Relaix, 2021; Agarwal et al., 2022), and MyoD1 is a key regulator that orchestrates skeletal muscle4

differentiation through the regulation of gene expression (Blum et al., 2012; Agaram et al., 2019).5

Moreover, KRT18 regulates the epithelial cell differentiation process (Jiang et al., 2020; Liu et al.,6

2021).7

We then visualized and validated the expressions of those critical genes (Figure 6d and Figure8

6e). The expressions of MYF5 and MYOD1 genes are significantly higher in trajectory group 59

18

                  



versus in other trajectory groups, which is consistent with the discovery in the CellST dynamic10

networks. KRT18 is highly expressed in trajectory group 15, which is also consistent with the11

CellST dynamic network results. Additionally, we performed functional deferentially expressed12

gene tests based on the CellST cell fate trajectories. We discovered a total of 268 differentially13

expressed genes in this zebrafish cell development process dataset. We performed gene ontology14

annotations to those genes (Table 1), and the function of those genes is highly related to regulating15

the cell development/differentiation process.

Gene Ontology (GO) annotations Count P-value

Multicellular organism development 133 2.100393e-45
Cell Differentiation 86 4.8e-25

Differentiation 36 8.6e-10
Cell fate specification 13 1.3e-5
Cell fate commitment 12 6.1e-5

Table 1: Top five gene functional annotation groups.

16

Those results proved that the cell fate trajectories and dynamic gene networks in the CellST17

method can be used to discover critical genes in a cell differentiation process. We also demonstrated18

the CellST cell fate trajectories have full coverage on different cell lineages even in some rare19

cell types since the trajectories track individual cell behaviors. Lastly, those individual cell fate20

trajectories reflect unique gene expression patterns when cells develop into different mature cell21

types.22

4 Discussion1

Understanding the dynamic of cell differentiation throughout a period is crucial for future research2

in scRNA-Seq analysis. We developed a novel machine learning analysis framework, CellST, to3

build cell fate trajectories and dynamic gene networks for time-course scRNA-seq datasets. The4

cell fate trajectories enabled researchers to observe the individual cell development behaviors and5

better use the benefit of the single cell sequencing technology. Compared to the existing bulk single-6

cell trajectory, we brought the cell development analysis into a more precise and unprecedented7

resolution. The dynamic gene networks estimated the dynamic relationship of genes and discovered8

potential critical genes during cell differentiation processes.9
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There are three major advantages of the CellST analysis framework. Firstly, the cell lineages10

were constructed with high accuracy and provides unique individual cell differentiation behaviors11

between time points. Secondly, since the trajectory tracks individual cells, the cell fate trajectories12

will have full coverage on different cell lineages even in some rare cell types (Figure 6a). Thirdly,13

the dynamic gene networks analysis in the CellST framework can accurately estimate gene-gene14

relationships and discover critical genes in the cell differentiation process. Through the simulation15

and real dataset analysis, We constructed cell fate trajectories in single cell RNA-seq experiment16

and various dynamic cell differentiation behaviors were observed.17

5 Data Availability18

All data used in this paper are publicly available datasets. The mouse hematopoietic system19

experiment dataset can be found on GitHub (https://github.com/AllonKleinLab/paper-data).20

The zebrafish embryogenesis dataset from the original paper (Wagner et al., 2018) can be found in21

the NCBI database with accession number GSE106587.1

6 Code Availability2
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