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We consider the problem of comparing probability densities among multiple groups.
A new probabilistic tensor product smoothing spline framework is developed to model
the joint density of two variables. Under such a framework, the probability density
comparison is equivalent to testing the presence/absence of interactions. We pro-
pose a penalized likelihood ratio test for such interaction testing and show that the
test statistic is asymptotically chi-square distributed under the null hypothesis. Fur-
thermore, we derive a sharp minimax testing rate based on the Bernstein width for
nonparametric multi-sample tests and show that our proposed test statistic is mini-
max optimal. In addition, a data~-adaptive tuning criterion is developed to choose the
penalty parameter. Simulations and real applications demonstrate that the proposed

test outperforms the conventional approaches under various scenarios.

Key words: minimax optimality; nonparametric test; penalized likelihood ratio test;

smoothing splines; multi-sample test; Wilks’ phenomenon.



1. Introduction

A fundamental problem in statistics is to test whether the probability den-
sities underlying U groups of observed data are the same, which is called
the multi-sample test. It plays an essential role in different scientific fields
ranging from modern biological sciences to deep learning. For instance, in
metagenomics studies, comparing densities of specific microbial species (or
strains) from different treatment groups helps researchers gain insights on the
disease and treatments (Bilban et al., 2006; Turnbaugh et al., 2009; Qin et al.,
2012); in genomics, identifying differentially expressed genes among multiple
groups or conditions is fundamental to many downstream analyses; in machine
learning, the multi-sample test is becoming an essential component in some
deep learning algorithms (Li et al., 2017).

In these modern applications, the underlying distributions usually demon-
strate complex patterns, including multi-modality and long-tails. Hence, it is
often difficult to specify their distributional families. Classical normality-based
tests such as the two-sample t-test (Anderson, 1958) and the Shapiro-Wilk test
(Shapiro and Wilk, 1965) are generally inappropriate. Nonparametric ap-
proaches are more appealing due to their distribution-free feature. Classical
examples include distance-based tests such as the Kolmogorov-Smirnov (K-S)

test (Darling, 1957), the Anderson-Darling test (Scholz and Stephens, 1987),



and their variants. An alternative direction is using discretization (“slicing”)
of continuous random variables (Miller and Siegmund, 1982). Jiang et al.
(2015) proposed the dynamic slicing test (DSLICE), which penalizes the num-
ber of slices to regularize the test statistics. Gretton et al. (2007, 2012) pro-
posed maximum mean discrepancy (MMD) two-sample tests via embedding
the probability distribution into a reproducible kernel Hilbert space (RKHS).
Eric et al. (2008) proposed the regularized MMD test by regularizing eigenval-
ues of the kernel matrix. Kim (2021) extended the MMD test to multi-sample
test using the maximum of pair-wise MMDs. In addition, a class of approaches
based on kernel density estimation was proposed (Anderson et al., 1994; Cao
and Van Keilegom, 2006; Martinez-Camblor et al., 2008; Martinez-Camblor
and de Uﬁa—Alvarez, 2009; Zhan and Hart, 2014). One common challenge for
MMD based and kernel density based testing approaches is the choice of tuning
parameters, e.g., the kernel bandwidth or the roughness penalty parameter,
since these parameters sensitively affect the methods’ power. Furthermore,
they have some drawbacks when applied to data of long-tailed distributions:
since the kernel bandwidth is fixed across the entire sample (Silverman, 1986),
they tend to have a low power in detecting changes at tails. In many ap-
plications such as gene expression analyses, metagenomics, and economics,

long-tailed distributions are very common.



To overcome these limitations, we propose a likelihood-based test that can
automatically adapt to densities with different shapes and develop a data-
adaptive tuning method to automatically choose the penalization parameter.
In this paper, we consider X as a continuous random vector and Z as a
discrete random variable indicating the group information. Instead of directly
comparing the multiple densities, we characterize the dependence between X
and Z through its log-transformed joint density n(z, z) within a space H. The
key idea is to uniquely decompose the log-transformed joint density n € H
into the main effects nx,nz and the interaction effect nyz through a novel
probabilistic decomposition of H so that the magnitude of the interaction
exactly quantifies the density difference between multiple groups. The multi-

sample test is thus equivalent to the interaction test
Hy:nxz(x,z) =0vs. Hy:nxz(z,2) #0. (1.1)

We propose a penalized likelihood ratio (PLR) test by evaluating the penal-
ized log-likelihood functional of n under Hy and H;, and establish its null
distribution as a chi-square distribution. Compared with distance-based test-
ing methods, which are not easily generalizable to handle multi-sample tests
since the asymptotic distribution of the maximum pair-wise distance usually
does not have an explicit form, the proposed PLR test can be directly applied

to multi-sample tests by letting Z € {1,..., U}. We further propose a data-



adaptive rule to select the tuning parameter to guarantee testing optimality.
The PLR test makes a full use of the distribution information and is sensitive
to the density difference between the null and alternative hypotheses.

This work has main contributions sumarized in the following. First, with-
out explicit expression of the function estimate, the classical technical tools
used in Wald-type nonparamatric test in Xing et al. (2020) and Liu et al.
(2021, 2020) can not be generalized to likelihood-based test. We propose a
new probabilistic decomposition of the tensor product RKHS in Section 3. Ex-
isting references on functional decomposition without considering probabilistic
measures (Gu, 2013; Wahba, 1990) mainly focus on estimation while leaving
the hypothesis testing an open problem. Embedding the probability measures
of X and Z into the tensor product decomposition of H, we can transform
the problem of density comparison to the problem of significance test of the
interaction between X and Z, which provides a foundation to establish the
minimax testing principle (see Section 4). This new probabilistic decompo-
sition framework can be generalized to a broader class of dependence tests,
including higher order independence tests and conditional independence tests,
by using the magnitudes of the decomposed terms to measure the correspond-
ing dependency. Second, we establish the minimax lower bound for density

comparison problems based on the Bernstein width (Pinkus, 2012). Existing



minimax lower bounds of the testing rate are commonly derived based on
Gaussian sequence models (Ingster, 1989, 1993; Wei and Wainwright, 2018;
Xing et al., 2020) in a simple regression setting, and thus cannot be adapted
to density comparison. In contrast, our result can be easily generalized to a
wide range of dependence testing problems. We further prove the PLR based
multi-sample test is minimax optimal. Compared with our proposed PLR test,
the log-likelihood ratio without a penalty term does not enjoy the minimax
optimality. Parallel to our work, Li and Yuan (2019) proposed a normalized
MMD by choosing scaling parameters of the Gaussian kernel properly, and es-
tablished its minimax property. Similar to the original MMD (Gretton et al.,
2007), the approach in Li and Yuan (2019) is also based on a fixed kernel
bandwidth, which can lead to low sensitivity when the underlying densities
are long-tailed. However, our proposed approach is based on the penalized
likelihood estimators, which can automatically adapt to long-tailed distribu-
tions. As shown in various simulation and real data studies in Sections 5 and
6, our proposed test shows a higher power when the underlying densities have
complex features such as long-tails and multi-modality. In addition, we reveal
an interesting connection between the PLR and MMD tests in our supplime-
nary. Also, we thank our referees for providing some helpful insights on the

connections between MMD test and Hilbert-Schmidt independence criterion



(HSIC) test. We show that the MMD test (with a particularly selected kernel)
is exactly the squared norm of the gradient of the log-likelihood ratio.

The rest of this paper is organized as follows. In Section 2, we con-
struct our proposed penalized likelihood ratio test. Section 3 introduces the
construction of the probabilistic decomposition of tensor product RHKS and
main theoretical results, including the asymptotic distribution of the PLR test
and its power performance. Section 4 established the minimax lower bound
of density comparisons., we demonstrate the finite sample performance of our
test through simulation studies. Section 6 is the analysis of two real-world ex-
amples using our test. Section 7 contains some discussion. In supplementary,
we extend our PLR test to the case when the number of samples is diver-
gent, and establish the minimax distinguishable rate and build the connection
between our PLR test and the MMD test. Also, the the proofs of the main

results are provided in Supplemenary.

2. Penalized likelihood ratio (PLR) for multi-sample test

The multi-sample problem can be stated as follows. Suppose that we have n
independent d-dimensional observations, X; € [0,1]%,i = 1,...,n. Each X, is
associated with a label Z; € {1, ..., U}, which indicates that X; is taken from

the population indexed by Z; with a probability density function fz. We aim



to test whether fi,..., fu are the same. Other than a smoothness constraint,

we will not impose any other constraints on the probability density functions

An equivalent formulation of the problem can be given in terms of the
joint distribution of X and Z and their conditional independence. That is,
consider n ii.d. observations, Y, = (X;,Z;), i = 1,...,n, taken from a

population Y = (X, Z) with a joint probability density f(z,z). Let

(i, 2) = log(f(z, 2)).

Let fx|z=.(x) be the conditional density of X given Z = z for z =1,...,U.

The multi-sample problem is equivalent to testing whether X and Z are in-

dependent, i.e.,

Hy: fxiz=1() = = fxz=v(")

v.s.  Hy 3wy # ug such that fyz—y, (-) # fxjz=w(). (2.1)

We denote ny = [{i : Z; = 1}|,...,ny = |{i : Z; = U}|, and assume that
the n;’s are comparable, i.e., there exist constants 0 < ¢; < ¢y such that
cing < ny < cong, Yu=1,...,U. We characterize the dependence between
X and Z by their interaction with respect to their joint density, and show that

testing the significance of such interaction is equivalent to the multi-sample

test. We first consider the case when U is a fixed constant and then extend



the theory for diverging U.

In order to characterize the interaction between X and Z, we first define
two averaging operators acting on the log-transformed joint density function
n(x, z). For any z, the operator A, maps n(x,z) to Exn(X, z), a function in
z; and for any z, the operator A, maps n(z, z) to Ezn(x, Z). The interaction

term is then characterized through the decomposition

nxz(z,2) = (T— AT~ An(x, 2) = 0@, 2) — (An)(2) = (Aam) (@) + Ap Ao,

(2.2)
where 7 is the identity operator. Note that (2.2) is essentially derived from
a functional ANOVA decomposition of n(x, z) where A,.A.n is the constant,
(Z — A,)A,n and (Z — A,)A,n are respectively the main effects of x and z,
and (Z — A,)(Z — A.)n is the interaction effect. A straightforward derivation
shows that the multi-sample test is equivalent to testing whether ny is zero
or not; see Proposition S.4 in the Supplimentary.

We assume that 7 is in a reproducing kernel Hilbert space (RKHS) H and
let Hy = {n € H | nxz = 0} be the subspace of H containing all bivariate
functions whose ANOVA decompositions have a zero interaction term. Based
on Proposition S.4, the multi-sample test problem in (2.1) is equivalent to

testing

Hy:neHy vs. Hp:ne H\H,. (2.3)



2.1 Penalized likelihood functional under the full model

Consider estimating n by the minimizer of the penalized likelihood

1 w— A
Lan(n) = o ZW(%:Z:‘) + Z f "3 dy 4 §J(n), (2.4)
, £ Ja

i= ze{1,.,.U

where X = [0, 1]%, the two sums form the negative log-likelihood representing
the goodness-of-fit, J(-) is a quadratic functional enforcing a roughness penalty
on n, and A > 0 is a tuning parameter controlling the trade-off. We propose

the following PLR test statistic
PLR = inf ¢, — inf ¢, , 2.
R nleﬂ? . () %Iel? An), (2.5)

where the first and second terms are respectively the optimal penalized likeli-
hoods under the reduced model Hy and the full model H.

Note that the integrals in (2.4) are to guarantee the unitary constraint
of a probability density function (see Theorem 3.1 in Silverman (1982)). We
choose equation (2.4) instead of the logarithm of the integral in Gu and Qiu
(1993) since the Fréchet derivative of the PLR will include an integral in the

denominator, which makes the theoretical derivation more difficult.

2.1 Penalized likelihood functional under the full model

Under the full model, the minimization of (2.4) is performed in H. Let HX
be an RKHS of functions on the marginal domain [0, 1]¢ and H %’ be an RKHS

of functions on {1, ..., U}. Then the full space H = HY) @H?) is their tensor



2.1 Penalized likelihood functional under the full model

product and also an RKHS, where & denotes the tensor product of two linear
spaces. Correspondingly, if K™ and K%’ are respectively the reproducing
kernels (RKs) uniquely associated with the RKHS HY’ and H'%), then the
RK for H is simply the product of K¥) and K%, that is, K(Y;,Y;) =
XX, X)) K9 (2, Z5).

For the continuous domain [0, 1]?, we consider the mth order Sobolev
space on [0,1]%, i.e., H'X = {f € L*([0,1]9) | f@ e L*([0,1]%), V]|a| < m}
where |a| = 3¢ . When d = 1, the associated kernel KX)(X;, X;) =
1+ (—=1)" ko (X; — X;), where ko, (2:) is the 2m-th order scaled Bernoulli
polynomial (Abramowitz and Stegun, 1948). For m = 2, ky(z) = 3;((z —
0.5)* — 0.5(x — 0.5)2 + 5=) and the corresponding KX is known as the ho-

240

mogeneous cubic spline kernel. When d > 2, Novak et al. (2018) showed that
the associated kernel is K™(X;, X;) = [ TT0, cos(2m( Xy — X;)G)]/1 +
> 0<]al<m [T, (27G;)?*]dG where G € R?. An example for the discrete kernel
is K(Z;, Z;) = Lyz,=z,

Let 7, be the penalized likelihood estimator of  under H;, that is,
Nn,a = AXgMIN 3.0, 5(7). (2.6)

Due to the integration in (2.4), the Representer Theorem (Wahba, 1990) does
not apply here and the exact solution is not computable (Gu, 2013). We

consider an efficient approximation in Gu (2013) by calculating the minimizer



2.1 Penalized likelihood functional under the full model

of the penalized likelihood functional in HI = span{K(Y;,-),i = 1,...,n}.

By the definition of HT, the minimizer 7(-) of ¢,(n) for n* € H' has the

form
n() = Zn:lC(Yi, Jeg =CFe, Wt e H! (2.7)
i=1
where (7 = (K(Yy,), -+ ,K(Yn,-)) is the vector of functions obtained from
kernel K with its first argument fixed at Y,, and ¢ = (¢y,--- ,¢,) is the

coefficient vector. Since J(n) is (n,n)y where (-, )% is the inner product in
H with reproducing kernel K, we have J(n') = ¢TQc where Q € R™" is the
empirical kernel matrix with its (¢, j)-th entry being Q;; = K(Y;,Y;). This
representation converts the infinite-dimensional minimization problem of (2.4)
with respect to 1 to the finite-dimensional optimization problem with respect

to the coefficient vector ¢ by solving

¢ = argmin {%15@0 + / exp{¢Te}dy + %CTQC} : (2.8)
e ﬂ y

where 1,, is an n x 1 vector of ones, and the second term is the same as the
second term in (2.4) with summation and integration over (z, z) replaced by
integration over y for the convenience of presentation. The objective function
in (2.8) is strictly convex (Tapia and Thompson, 1978). Its optimization with
respect to ¢ can be performed via a standard convex optimization procedure
such as the Newton-Raphson algorithm; see, e.g., Gu (2013) and Wang (2011).

The integrals in (2.8) can be calculated by numerical integration (see Section



2.2  Penalized likelihood functional under the reduced model

7.4.2 in Gu (2013) for details). When n is large, the representation (2.7) in-
volves a large number of coefficients, which may lead to numerical instability.
To tackle this, one may consider only a subsample of {Y; : i =1,...,n} to use
in the presentation (Kim and Gu, 2004; Ma et al., 2015). For the nonparamet-
ric inference problem, subsampling method can maintain the minimax opti-
mality through properly selected subsample size as shown in Liu et al. (2021).
Practically, we follow the guide in Liu et al. (2021) to select the subsample
sample size, which shows comparable power with the full data. In general, we
denote by

ﬁjz,,\ = CTE (2-9)

the penalized maximum likelihood estimate under the full model.

2.2 Penalized likelihood functional under the reduced model

Let ﬁg , be the penalized likelihood estimator of n under Hy in (2.3), that is,

7’ = argmin nerotn A (). (2.10)

3

In Section 3.1, we show that H, is also an RKHS equipped with kernel function
K°(-,-), which enables us to use a similar reparameterization trick to solve the
problem in (2.10). In the following, we show the kernel function K°(Y;,Y;) =
K5 (X3, X)) K8 (i, Z) 4K (X3, X)KE (2, Z3)+K8 Y (X0, X))k (23, 2))

where K5 (X, X;) = Ex[KY (X, X))+ Ex[KX (X, X)| - Ey cKX(X, X),



2.2  Penalized likelihood functional under the reduced model

K7 = KX =KV K (2 23) = wa, +wz, = Vgt Ky = K9 - K7,
and w; = P(Z = 1) for | = 1,...,U. We plug the emprical estimate of

W =mn/n forl =1,...,U to calculate K{!. The detailed derivation of K°
depends on our proposed probabilistic decomposition of H, and is deferred to
Section 3.1.

Similar to (2.7), we consider the efficient approximation in Gu (2013)

by calculating the minimizer of the penalized likelihood functional in H% =

span{K°(Y;,-),i = 1,...,n}, which has the form
T]O]L(') = Z }CO(Yi ')C()i = CUTCO: VT]OT € HO]L. (211)
i=1

To obtain the penalized likelihood estimators, we first solve the quadratic

program

~ . 1 A
Cy = argmin {—15@000 + f exp{¢leo} + §CgQ0c0} (2.12)
n y

Cp

where the (i, j)-th entry of @ is K°(Y;,Y;). Numerically, we could express

Qo = [(I = H)QW! (I, = H)] o [(I, — H)Q¥ (I, — H)]
+HQWH]o (I, — H)QP (I, — H)| + (I, — H)Q™ (I, — H)| o [HQ¥ H]
where Q%Y is the empirical kernel matrix of H%/ with (i, j)-th entry Qg.{) =

KP(X;,X;), Q%% is the empirical kernel matrix of H'% with (i, j)-th entry

Qt(f) = K%z, Z;), and H = I, — %1,115 with 1, being the n x n identity



2.3 Test statistics

matrix, 1, the n x 1 vector of ones, and o denotes the Hadamard product.
Then we solve the quadratic optimization similar to (2.8) and output the

function estimate

7L
2
I

e, (2.13)

2.3 Test statistics

Plugging the minimizers of the penalized likelihood functional under the full
and reduced models into (2.5), we have the penalized likelihood ratio (PLR)
statistic

PLRH,)\ = gn,/\(ﬁg,)\) - gn,/\(ﬁn,)\)- (214)

We will show in Section 3.2 that PLR,  is asymptotically x? distributed

under Hy in the sense that (2b,,) Y2(2PLR,\ — b,,) — N(0,1) with b,

diverges for a wide range of A\. Since 7, \ and ﬁ?l , are not computable, we use
-

their efficient approximations 7, , and nnt\. Then an efficient approximation

of the test statistic (2.14) is
PLRL,,\ = m(?ﬂi\) - gn,)\(ﬁjz,)\)'

We show that this efficient approximation has the same asymptotic distribu-
tion as PLR, . In practice, we use the gss package (Gu and Qiu, 1993) to

obtatin the which implement the scalable computation via efficient approxi-



2.3 Test statistics

mation in Kim and Gu (2004) with compuation cost of the order O(N¢?) with
q = O(N*2m+1)) for the mth order Sobolev space.

For the nonparametric multi-sample test, the parameter space under H,
is infinite-dimensional as n — oo. The assumptions of the Neyman-Pearson
Lemma cannot be satisfied. Thus the uniformly most powerful test may not
exist in general. We evaluate the power performance by the minimax rate
of testing, which is defined as the minimal distance between the null and
alternative hypotheses such that valid testing is possible (Ingster, 1989). For
any generic 0-1 valued testing rule & = ®(Y,....Y,) and a distinguishable

rate d, > 0 measuring the distance between the null and the alternative

hypotheses, we define the total error Err(®,d,) of ® under d, as

Err(®,d,) = Ep, {®} + sup E,{1-— o}, (2.15)

HTn'XZHZEdR

where Ep, {-} denotes the expectation with respect to the truth n* under H,.
The first and second terms on the right side of (2.15) represent type I and
type II errors of @ respectively. In Section 3, we show that the distinguishable
rate of our proposed PLR test is related to the tuning parameter A. We
then derive the optimal distinguishable rate by carefully selecting A\. A data-
adaptive tuning method is developed for practical use. In Section 4, we will use
the information theory to establish the minimum distinguishable rate d,, for

general testing rules, which extends the minimax testing principle pioneered



in Ingster (1989) to density comparison.

3. Theoretical Properties of PLR Test

In this section, we first introduce the probabilistic decomposition of a tensor
product RKHS, enabling us to construct the kernel on the subspace Hy. Such
a decomposition is also of independent interest for studying different kinds of
dependence among random variables. Compared with the function ANOVA
decomposition in Wahba (1990) and Gu and Qiu (1993), the proposed proba-
bilistic measure embedded decomposition makes the interaction term in (2.2)
have zero expectation under null hypothesis which plays an essential role in
deriving the limiting distribution of our test statistic. We then derive the
asymptotic null distribution of our proposed test statistic and the optimal
power of the test. Lastly, we develop a data-adaptive tuning procedure to

choose the penalty parameter.

3.1 Probabilistic decomposition of the tensor product RKHS

We assume that the function 7(x, z) belongs to a tensor product RKHS H =
HX @ H P in which HY? and H%) represent the marginal RKHS of X and
Z respectively. We aim to decompose H into orthogonal subspaces with a

hierarchical structure similar to the main effects and interactions in smooth-



3.1 Probabilistic decomposition of the tensor product RKHS

ing spline ANOVA (Wahba, 1990; Gu, 2013; Lin, 2000; Wang, 2011), while
embedding the probabilistic distributions of X and Z into the decomposition.
Such decomposition enables us to convert the multi-sample test problem into
testing the presence of the interaction. It includes two steps: decompose each
marginal RKHS into mean and main effects; apply the distributive law to
expand the tensor product of marginal RKHS into a series of subspaces.

We first introduce the probabilistic tensor decomposition of the discrete
domain function space H'%' := {f(z) : z € {1,...,U}} via a probabilistic
averaging operator. Note that H‘4’ = RY with the Euclidean inner product
({.+)2) and the kernel on H'# is K\#)(2,Z) = 1{,—z. Consider a discrete
probabilistic measure P, on 2 = {1,...,U} such that P4(Z = j) = w; >

0 with Z?zl wj = 1. Let w = (wi,...,wy), and define the probabilistic
averaging operator as Ay = f = Ez f(Z) = (w, f)5z. Since EZ[IC‘(ZZ)} = w,
we can rewrite the probabilistic averaging operator as Az := f — Ezf(Z) =

(Ey [IC(ZZ)}, f)2. Then E, [IC(ZZ)} can be treated as a mean embedding of P in

H'% . We further define the tensor sum decomposition of H %' as
HD =1 o U = span{EKP Y {f € H:EL{f(2)} =0}, (3.1)

where 'H(()Z) is the grand mean space, ’HiZ) is the main effect space. Each sub-
space in (3.1) is an RKHS with their corresponding kernels stated in Lemma

S.1 in Supplimentary. For fixed design of Z, we set w; = n,/ Z;}=1 n;.



3.1 Probabilistic decomposition of the tensor product RKHS

Next, let us consider the continuous random variable X € X and a prob-
ability measure Px on X. We suppose H'X? is the mth order Sobolev space
with the corresponding inner product (-,-);;x;. The results also hold for
its homogeneous subspace. Let K7 be the corresponding kernel satisfying
( f,ICiX))Hm = f(x) for any f € H¥X). Similarly, the probabilistic averag-
ing operator is Ay = f — Exf(X) = EX</C§(X),f>H(x> = (]EX}C‘(,?{},f')H(m.
Ex IC&)Q has the same role as w in the Euclidean space. Then, the tensor sum

decomposition of a functional space is defined as
HX = ”H(()X} oHM = span{]EX]C;X}} o {f e HY : Axf=0}. (3.2)

Analogously, we name ’HéX> as the grand mean space and ’Hix) as the main
effect space. E XICE?Q is known as the kernel mean embedding which is well
established in the statistics literature (Berlinet and Thomas-Agnan, 2011).
The construction of the kernel functions for ”H(()X} and ”Hix} are included in
Lemma S.2 in Supplementary.

We are now ready to consider the RKHS H = H'Y @ H'% on the product
domain Y = X x Z. Applying the distributive rule, the decomposition of H

1s written as
H=H a1 o HY an?)=Ho @ Hiw® Ho & Hu,  (3.3)

where H;; = ”HEX} ® ’H;Z) for i = 0,1 and 7 = 0,1. Analogous to the classic



3.2 Asymptotic distribution and Wilks’ phenomenon

ANOVA, Hyg and Hg; are the RKHS’s for the main effects, and Hq; is the
RKHS for the interaction. We call the decomposition of H in (3.3) as the
probabilistic decomposition of the tensor product RKHS H since it embeds the
probability measure of the random variable X and Z. Based on Theorems
2.6 in Gu (2013), we can construct the kernels K%, K Kt and K'! for the
subspaces Hog, Hio, Ho1 and Hy; accordingly; see Lemma S.3 in supplimentary

for detailed construction.

3.2 Asymptotic distribution and Wilks’ phenomenon

In this section, we present the asymptotic distribution of our PLR test statistic
in Theorem 3.1. The proof relies on a technical lemma about the cigen-

structures of Hy and H; see Lemma 1 below. For any n,7 € H, define

(.7 = V(0. 7) + A (. 7). (3.4)

where V(n,n) = E»{n(Y)n(Y)} with the expectation taken under the true
n*, and J is a bilinear form corresponding to (2.4). It holds that H and H,,
endowed with the inner product (3.4), are both RKHSs; see Lemma 2. In
the following lemma, we characterize the eigenvalues and eigenvectors of the

Rayleigh quotient V/.J.

Lemma 1. (a) There exist a sequence of functions {£,}52, C H and a se-

quence of nonnegative eigenvalues {py}o2, with p, = p*™ e such that



3.2 Asymptotic distribution and Wilks’ phenomenon

V(& &) = Opprs S (&, &) = POy, for all p,p’ =1, and that any n €

H can be written as n =37, V(1,§)Ep.

o0

(b) Moreover, there exists a proper subset {p). £93°° 1 of {p,, §p} 02, satisfying
{6121 C Ho and for anyn € Ho, =32 V(1,8))E,). Convergence of

both series holds under (3.4).

(c) p, = p*™/d where {py )52y C {pptisy is a subset of eigenvalues corre-
sponding to {122, = {& 1\ &0}02,. The set {&) }52, generates the

orthogonal complement of Hy under the inner product (3.4).

Lemma 1 introduces an eigensystem that simultaneously diagonalizes the
bilinear forms V' and .J. This eigensystem does not depend on the unknown
null density, but only depends on the functional space H. Moreover, H, can
be generated by a proper subset of the eigenfunctions, which is crucial for
analyzing the likelihood ratios.

Let (-,-)g denote the restriction of (-,-) on the subspace Hg. Specifically,
for any 0,7 € Ho, (0, Mo = (n,7). Then H and H, are both RKHS’s endowed

with these inner products.

Lemma 2. (H, (-, ) and (Ho, (-, )o) are both RKHS’s with the corresponding

inner products.

Following Lemma 2, there exist reproducing kernel functions ié( -) and
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KO(-,-) defined on Y x Y satisfying, for any y € Y, n € H, ] € Ho:
Ky()=K(y,)eH. K)=K(y.") € Ho.
(Kyon) =n(y), Ky o =7(y). (35)

We further introduce positive definite self-adjoint operators Wy : H — H

and WY : Hy — Hg such that
(Wan,m) = XJ(n,n) for all n,n € H,
(W2, o = Ao, ) for all 0,7 € Hy, (3.6)

where Jo(1,77) = 01" Jor(n, ) + 075 J1o(n, 7)) is the restriction of .J over Hy. By

(36) we get (U»ﬁ) = V(n= m (VV)\TL ﬁ): <n:ﬁ>0 - (7? m + < 1707? ~>0 In the

following, we give the explicit expression of Ey() and W&, (+).

Proposition 1. For anyy € Y and n € H, we have

Inl|* = Z (0, &) (1 + App),
= ~ &(y)
Z; Ky() = pz_: 1+)\ppf‘]()
Wi () = 22,0, W) = 12200

where {0, 80}52 and {p,. & )52, are eigensystems defined in Lemma 1.

As shown in Proposition 1, the eigenvalues for K are {(1+ Apy)t 1>

having a slower decay rate than the decay rate of eigenvalues for K due to
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the scaling by A. In particular, K can be viewed as a scaled kernel comparing
with the product kernel K* = K% 4 £ + K1° + K introduced in Lemma
S.3 in supplimentary. Note that trace(ﬁ) = Z;O:l(l + App) Tt = AHEM g
the effective dimension that measures the complexity of H; see Bartlett et al.
(2005); Mendelson (2002).

Next, we will derive the null asymptotic distribution of the PLR statistics,
which relies on the Taylor expansion of the PLR functional. First, we introduce
the Frechét derivatives of the log-likelihood functional. Denote by D, D?, D?
the first-, second- and third-order Frechét derivatives of ¢, x(n). Let S, ()
and 5'27 \ be respectively the score functions of the log-likelihood functionals
U and €9 . Define y = (x, z). Then these derivatives can be summarized as

follows.
For any n, Any, Ang, Anz € H,
N n(y)
Dlaa(m)Am = —— D An(Y) + [ Am(y)e"™dy +NJ(n, Am)
i=1 Y
L ~
= (—; Z_I: Ky, + E, Ly +Win, Any)

= (Sn,/\('n)= AT}l)? (37)

D2£n’,\(?'])AT]1AT]2 = / Anl(y)Ang(y)e”(y)dy + AJ(Any, Ang), (3.8)
y

D\ () Ay A g = f Ay (y) A (y)Ans(y)e"™dy.  (3.9)
y
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The second equality of (3.7) is due to the reproducing property (3.5) and that
/ An(y)e"™dy = E,An (Y) = En<ﬁy, An) = (Eﬁﬁy, Any).
y
The Taylor expansion of the PLR functional gives

PLRn,)\ = gn,/\('ﬁg,,\) - gn,)\(ﬁn,)\)
101
= Dlp (1 n)g + // 8D 0\ (T x + 55'g)ggdsds’
0.Jo
101 1
= [ A G + 559199 = D079} s + D00 )9
0Jo

where g =7 \ —u.a and 7* is the underlying truth. In the proof of Theorem
3.1, we will show that I, is a leading term compared with [;. From (3.8),
we have that I, = 3||g)|? = {75, — Tmall®. As we will see, the asymptotic
distribution of ||7,x —7j;, ,||” relies on the Bahadur representations of 7, , and

We further prove the following Bahadur representations for the difference
of the two penalized likelihood estimators, by adapting an empirical processes
technique in Shang and Cheng (2013). Lemma 3 is crucial for proving Theorem

3.1.

Lemma 3. Suppose h = Asn and nh? — 0o. Then we have

2 i = Tl = 2S00 () = Sa()] + 0 (1),
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where S, (n*) and S° (") are the score functions for £, and £, respec-

tively.

This lemma shows that the main term /5 in Taylor’s expansion of the
PLR functional is determined by the norm of the difference between the score
function of ¢, \ and the score function of 22, - Since the score functions have
explicit expressions through Proposition 1, we can characterize the asymptotic
null distribution of /5 by the eigensystem introduced in Lemma 1.

Before stating our main theorem, we introduce an assumption commonly
used in literature for deriving the rates of density estimates; see, e.g., Theorem

9.3 of Gu (2013).

Assumption 1. There exists a convex set B C ‘H around n* and a constant
¢1 > 0 such that, for any n € B, cE-{7*(Y)} < E,{7*(Y)}. Furthermore,
with probability approaching one, 7, » € B; and under Hy, with probability

approaching one, 7° , € B.

This condition is satisfied when 7, , and 772 , are stochastically bounded
and the members of B have uniform upper and lower bounds on the domain
Y. The following theorem provides the asymptotic distribution for the PLR
test statistic under Assumption 1. The proof of Theorem 3.1 and Corollary

3.1.1 are in Supplimentary S.6.3.



3.2 Asymptotic distribution and Wilks’ phenomenon

Theorem 3.1. Suppose m > 1 and Assumption 1 holds. Let h = A#n and

nh?m+d = O(1), nh* — o0 as n — oo. Under Hy, we have

- PLR,, — 0
e PLEWS =0 4y n00,1), n— oo, (3.11)
V20,

. o0 1 2 1
where 6\ = szl [ESVr Ty = szl (T+raph)z-

We notice that h < n™¢ with ﬁ <c< é satisfying the rate conditions in
Theorem 3.1, so the asymptotic distribution (3.11) holds under a wide range
of choices of h. The quantities #, and o), solely depend on the eigenvalues
p‘j’s and A. Based on (3.11), we propose the following decision rule @, at

the significance level a:
D, 5(a) = 1(|2n- PLR,, — 05| = 21 o/9V20)) (3.12)

where 1(-) is the indicator function, z;_,/s is the 1 — /2 quantile of the stan-
dard normal distribution. Hence, we reject Hp at the significance level « if
¢, » = 1. Wilks’ phenomenon is also observed here similar to the nonparamet-
ric/semiparametric regression framework (Fan et al., 2001; Shang and Cheng,

2013). Specifically, let r) = g—é, then (3.11) implies that, as n — oo,
A

Q?IT)\'PLRH)\*'T‘)\Q)\ d
’ — N(0,1).
VT oy

Therefore, 2nry-PLR,  is asymptotically distributed as a x? distribution with

degrees of freedom r,6),. In the following corollary, we extend our asymptotic

theory to the emiprical version of p‘j’s.
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Corollary 3.1.1. Assume that Assumption 1 holds. Let h = A7 and

nh?m*4 = O(1), nh? — oo as n — oo. Under Hy, we have

2n - PLR:;,/\ -0\ 4

T — N(0,1), n — o0, (3.13)
A
where 8y = P ﬁ, 0= > m, {p, }_, are empirical eigenval-

ues for i1

In Corollary 3.1.1, we show the asymptotic distribution of the efficient
approximation PLRL’ y- The proof of Corollary 3.1.1 is based on the local
Radamacher complexity (Liu et al., 2021; Bartlett et al., 2005) to bound the
tail sum of eigenvalues for Hf and H°', and is also based on the accurate error

bound for the eigenvalues of the kernel matrix in Braun (2006).

3.3 Power analysis and minimaxity

In this section, we investigate the power of PLR under local alternatives.

Define the distinguishable rate as

d, =\ A+ oy/n. (3.14)

The distinguishable rate is used to measure the distance between the null and
alternative hypotheses. Theorem 3.2 shows that the power of PLR approaches

one, provided that the norm of 1% ,, the interaction term in the probabilistic
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decomposition of n*, has a norm bounded below by d,. The squared dis-
tinguishable rate d2 consists of two components: A representing the squared
bias of the estimator, and o, /n with the order of n='h~%/2 representing the
standard derivation of PLR, \. Since o, decreases with A, the minimal dis-
tinguishable rate for the PLR test is achieved by choosing an appropriate A
such that A =< &, /n. Our result owes much to the analytic expression of inde-
pendence (in terms of interactions) based on the proposed probabilistic tensor
product decomposition framework.

Let P, denote the probability measure induced under %, ||7||sup the supre-

mum norm over ). and ||n|ls = +/V(n).

Theorem 3.2. Suppose Assumption 1 holds and let d,, be the distinguishable
rate defined in (3.14), m > 3/2, n* € H with ||n% ;||sup = 0(1), J(nx,) < 00,
n%zllz 2 dn. For any £ € (0,1), there exists a positive N, such that, for any
n > Ng, Ppu(Ppa(a) =1) 21 —e. When A < X\ = p=im/WUm=+d) ©q s upper

bounded by d¥ = n=2m/(4m+d),

The proot of Theorem 3.2 is in Supplimentary S.6.3. Theorem 3.2 demon-
strates that, when A =< A*, PLR can successfully detect any local alternatives,
provided that they separate from the null by at least d;. In Section 4, we
show that this upper bound is unimprovable by establishing the minimax

lower bound for the distinguishable rate of a general multi-sample test. It



means that no test can successfully detect the local alternatives if they sepa-
rate from the null by a rate faster than ;. Therefore, we claim that our PLR
test is minimax optimal.

For any € € (0,1) and o € (0,¢), Theorem 3.1 shows that Ep,{®, ()}
tends to «; Theorem 3.2 shows that E,. {1 — @, y-(a)} < &— «, provided that

7% |l = C._od: for a large constant C._,. That means, asymptotically,
Err(®, \(a), C._ody) < €. (3.15)

In other words, the total error of PLR can be controlled by an arbitrary ¢

provided that the null and local alternatives are separated by d.

4. Minimax Lower Bound of the Distinguishable Rate

For any € € (0,1), define the minimax distinguishable rate d¢(¢) as
@3 (e) = inf{d, > 0 : inf Exe(®, dy) < e}, (4.1)

where the infimum in (4.1) is taken over all 0-1 valued testing rules based on
the sample Y,;’s. Note that d;(¢) characterizes the smallest separation between
the null and local alternatives such that there exists a testing approach with
a total error of at most €. Next we establish a lower bound for &, i.e., if d,, is
smaller than a certain lower bound, there exists no test that can distinguish

the alternative from the null.



We first introduce a geometric interpretation of the hypothesis testing
(2.3). Here we consider the local alternatives residing in £ = {n € H : ||n|lu <
1/2}. Geometrically, £ is an ellipsoid with axis lengths equal to eigenvalues
of H. For any n € £, the projection of n on £;7 := Hqy1 NE is nxz where Hyy
is defined in (3.3). The magnitude of the interaction 7xz can be qualified by
Inxz|l2- The distinguishable rate d,, is the radius of the sphere centered at
nxz = 0in &,

Intuitively, the testing will be harder when the projection of n on H;; is
closer to the original point nxz = 0. We then introduce the Bernstein width
in Pinkus (2012) to characterize the testing difficulty. For a compact set C,

the Bernstein k-width is defined as

bro(C) := argmax{B5 " (r) € €N S for some subspace S € Sy} (4.2)
r>0

where Sj;; denotes the set of all & + 1 dimensional subspace, and BS™(r) is
the (k + 1)-dimensional Ly-ball with radius r and center at nxz = 0 in Hy;.
Based on the Bernstein width, we give an upper bound of the testing radius,
i.e., for any n projected in the ball with radius less than this bound, the total

error is larger than 1/2.

Lemma 4. For any n € H, we have Err(®,d,) > 1/2 for all d,, < rp(d*) =

sup{d|d < kp(0))Y*}, where kp(0) := argmax {b;_, ,(H11) = 6%} is the

1
s



Bernstein lower critical dimension and rg(6*) is called the Bernstein lower

critical radius.

In Lemma 4, we show that when d,, is less than r5(8*), there is no test
that can distinguish the alternative from the null. In order to achieve a non-
trivial power, we need d,, to be larger than the Bernstein lower critical radius
rp(6*). The critical radius r5(§*) depends on the shape of the space Hy;.
The lower bound of kg(é) depends on the decay rate of the eigenvalues for
H11. According to the Liebig’s law, the radius of a k-dimensional ball that can
be embedded into H;; is determined by the kth largest ecigenvalue. Lemma
5 characterizes the lower bound of kp(d) by the largest k& such that the kth

largest eigenvalue is larger than §2.
Lemma 5. Let ;. be the kth largest eigenvalue of Hyy. Then we have
kp(d) > argmax{\/y; > d} (4.3)
k

Note that v, = k~2™/4 then argmax,{,/7; > d} = 6 %™, Plug in the
lower bound of kg(d) to Lemma 4, we achieve rz(d*), which is the minimax

lower bound for the distinguishable rate in the following theorem.

Theorem 4.1. Suppose n € H. For any ¢ € (0,1), the minimaz distinguish-

able rate for the testing hypotheses (2.3) is d2(g) = n=2m/Um+d),

Theorem 4.1 provides a general guidance to justify a local minimax test for



testing nxz = 0. The proof of Theorem 4.1 is presented in the Supplimentary
S.6.4. Comparing d;,(¢) with d; derived in Theorem 3.2, we see that the PLR

test is minimax optimal.

5. Simulation Studies

In this section, we demonstrate the finite sample performance of the pro-
posed test alongside its competitors through simulation studies. We choose
the Kolmogorov-Smirnov (K-S) test and Anderson-Darling (AD) test as two
representatives of the most popular CDF-based tests, the normalized MMD
test (Li and Yuan, 2019) as a representative of kernel-based tests, the empir-
ical likelihood tests (ELT) (Cao and Van Keilegom, 2006) and kernel density
test (KDT) (Zhan and Hart, 2014) as representatives of density-based tests,
and the dynamic slicing test (DSLICE) (Jiang et al., 2015) as a representa-
tive of discretization-based tests. We use the function ad.test() provided in
the kSamples R package for the AD test, conduct the MMD test using the
dHSIC R package with the default Gaussian kernel, use dslice R package for
DSLICE test, and implement the ELT and KDT test using the code provided
by the authors. For our proposed PLR test, we choose the roughness param-
eter based on the data-adaptive tuning parameter selection criteria in Section

S.1 in supplimentary. Also, we have additional simulation studies for Beta,



Beta Mixtures, multivariate distribution (d > 2) and multiple distributions
(U > 2) in Supplimentary S.4.

The samples Y; = (X;, Z;), i = 1,...,n, were generated as follows. We
first generated Z; ~ Bernoulli(0.5), with 0/1 representing the control/treatment
group. Then X;’s were independently generated from the conditional distribu-
tion fxz(x) in the following settings. In each setting, we chose the averaged
sample size n in each group as 125, 250, 375, 500, 625, 750, 875, 1000. Size
and power were calculated as the proportions of rejection based on 1000 inde-
pendent trials.
Setting 1: Gaussian distributions with mean zero and a group-specific vari-
ance: X | Z =2z~ N(0,(1+ 8 1,-1)%) where §; = 0,0.2,0.3.
Setting 2: Uni-modal Gaussian distribution versus bi-modal Gaussian distri-
bution: X | Z = 2z~ 0.5N (—831.—1, (1 + 631 .,—0))+0.5N (G20 ,—1, (1 + 621 .—p))
where we set d, = 0,1, 1.2.
Setting 3: Asymmetric mixture Gaussian distributions: X | Z = 2z ~
0.5N(2,1) + 0.5N (=2, (1 — d31.—,)?) where §3 = 0,0.3,0.45.
Setting 4: Symmetric mixture distributions: X | Z = 2z ~ 0.5N(2,(1 —
841.-1)%) + 0.5N(-2, (1 — 641.—1)?) where §, = 0,0.3,0.6.

Note that &, = 0, & = 0, 43 = 0 or d; = 0 corresponds to the true

Hy which will be used to examine the size of the test statistics. Nonzero §'s



represent different levels of heterogeneity between the two groups.

Figures S1 in supplimentary displays the powers of the six tests. For
Setting 1, Figure S1(a)-(b) show that the powers of the PLR, MMD, ELT,
AD, DSLICE, and KDT tests rapidly approach one when n or 4; increases.
The power of the K-S test increases slightly slower than the other five tests.
DSLICE appears to be slightly less powerful than the other four tests, maybe
because of its discrete nature and its challenges in choosing a proper penal-
ization parameter in their penalized slicing approach. For Setting 2, as shown
in Figure S1(c)-(d), the MMD and PLR tests show comparable power. The
PLR test has slightly higher power when the heterogeneity is higher. The
power difference between these two tests increases as d, increases. AD and
K-S show significantly lower power. For Setting 3, Figure S1(e)-(f) show again
that the PLR test has the highest power. DSLICE performs quite well here,
maybe due to its flexibility in slicing. In contrast, the powers of K-S, MMD,
ELT, AD, and KDT are significantly lower than both PLR and DSLICE. For
Setting 4, PLR and DSLICE show similar power in Figure S1(g)-(h). The
powers of MMD, K-S and AD tests are significantly lower than the others.
The results demonstrate that both PLR and DSLICE are more adaptive to
differently shaped distributions than the other four methods, while PLR en-

joys additional advantages than DSLICE when the underlying distribution is



smooth.

Figure S2 in supplimentary displays the size of K-S, MMD, ELT, AD,
DSLICE, KDT, and PLR tests. It can be seen that the sizes of the six tests
are all around the nominal level 0.05 in Settings 1 and Setting 2, confirming
that all tests are asymptotically valid. In Setting 3 and Setting 4, the size of
the PLR test is still asymptotically correct, and that for DSLICE is reasonably
close; while the sizes of K-S, MMD and ELT are way below 0.05, showing that
these three tests are too conservative in handling bimodal distributions. We
also test the performance under multivariate distribution (d > 2) and multiple
distributions in Supplemenary, the proposed tests maintains highest power
with controlled type-I error. In simulation studies with Beta and mixtrure of
Beta distribution in Supplimentary, our proposed test also shows the highest

power.

6. Real Data Analysis

In this section, application on metagenomic analysis of type II diabetes is
provided to compare our PLR test with the Kolmogorov-Smirnov (K-S) and
maximum mean discrepancy (MMD) tests. We also conduct another real
example about gene expression analysis of chronic lymphocytic leukaemia in

Supplementary S.5.2.



Recent studies have indicated that gut microbiota play an important role
in many human diseases such as obesity and diabetes, and have observed
significant association between diseases and gut microbial composition (Turn-
baugh et al., 2009; Qin et al., 2012). Due to the rapid development of metage-
nomics, it is possible to study microbial DNA contents through environmental
samples directly. Compared with traditional culture-based methods, metage-
nomics can study unculturable microorganisms and are much more scalable.
Recently, several metagenomic binning algorithms such as MetaGen (Xing
et al., 2017) were proposed to estimate the abundance of microbial species
with high accuracy. As observed in Turnbaugh et al. (2009), the microbial dis-
tributions demonstrate large cross-individual differences since there are many
environmental factors, such as age, dietary habits, and antibiotic usage, that
can alter the composition of gut microbiota. A powerful test that can detect
such distributional differences between different populations would be useful
in metagenomic analysis.

This study aims to detect whether the microbial species have different
distributions between case and control groups. For a particular microbial
species, let X; be the log-transformed abundance for the ith individual, and
let Z; = 1/0 represent the case/control group. We applied the proposed

PLR test to a metagenomic data set with 145 sequenced gut microbial DNA



samples from 71 T2D patients (case group) and 74 individuals unaffected by
T2D (control group) using Illumina Genome Analyzer and obtained 378.4
gigabase paired-end reads. We used MetaGen (Xing et al., 2017) to do the
metagenomic binning in which DNA fragments were clustered into species-
level bins and estimated the abundance of 2450 identified species bins. We
applied the KS, MMD, and PLR tests on 1005 species clusters that have an
abundance larger than 1% of the mean abundance in more than 50% of the
total samples. The 1005 p-values were calculated by K-S, MMD and PLR for
each species. We adjusted the p-values by the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995). Through controlling the false discovery rate
at 5%, we compared the identified species from the three methods in Figure
S7 in supplimentary. The PLR, K-S, and MMD tests identified 101, 4, and
13 species, respectively. The species identified by PLR cover those by K-S or
MMD.

Moreover, we highlighted two species that were identified only by the PLR
test in Figure S7 (B-C). The densities of these two species are both bimodal
in both the case and the control groups. Figure S7(B) plots the conditional
density of the log-transformed abundance of Roseburia intestinalis. The ma-
jority of the case group has a significantly low abundance. In Figure S7(C),

the other species, Fuaecalibacterium prausnitzii has a lower abundance for a



subgroup of patients in the case group. Both species are butyrate-producing
bacteria which can exert profound immunometabolic effects, and thus are pro-
biotic less abundant in T2D patients. Our finding is consistent with Tilg and
Moschen (2014) who also observed that the two species’ concentrations are
lower in T2D subjects. Also, we found several Lactobacillus species are in-

creased in T2D patients which are also found in De La Vega-Monroy et al.

(2013); Qin et al. (2012).

7. Discussion

In this paper, we proposed a probabilistic decomposition approach for proba-
bility densities based on the penalized likelihood ratio (PLR). As demonstrated
in simulation studies, our method performs well under various families of den-
sity functions of different modalities. Notably, our test possesses the Wilks’
phenomenon and testing minimaxity. Such results are not easy to derive for
distance-based methods. Furthermore, the Wilks” phenomenon leads to an
easy-to-execute testing rule that does not involve resampling.
Supplementary Materials Contain figures for simulation studies, fig-
ures real data analysis, additional simulated and real examples, the data-
adaptive tuning parameter selection, extension to the case with a divergent
number of samples, connection to maximum mean discrepancy, all technical

proofs, and additional numerical reuslts.
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