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ABSTRACT

Regression models with a functional response and functional covariate have received significant attention
recently. While various nonparametric and semiparametricmodels have been developed, there is an urgent
need for model selection and diagnostic methods. In this article, we develop a unified framework for
estimation and model selection in nonparametric function-on-function regression. We propose a general
nonparametric functional regression model with the model space constructed through smoothing spline
analysis of variance (SSANOVA). Theproposedmodel reduces to someof the existingmodelswhen selected
components in the SS ANOVA decomposition are eliminated. We propose new estimation procedures
under either L1 or L2 penalty and show that the combination of the SS ANOVA decomposition and
L1 penalty provides powerful tools for model selection and diagnostics. We establish consistency and
convergence rates for estimates of the regression function and each component in its decomposition under
both the L1 and L2 penalties. Simulation studies and real examples show that the proposed methods
perform well. Technical details and additional simulation results are available in online supplementary
materials.
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1. Introduction

With the advance of modern technology, it becomes increas-
ingly common that data are in the form of functions. Rapid
developments of new statistical methods for this new type of
data has created the field of functional data analysis (FDA)
(Yao, Müller, and Wang 2005b; Ramsay and Silverman 2006;
Ferraty and Vieu 2006; Hsing and Eubank 2015; Kokoszka and
Reimherr 2017; Lin, Müller, and Yao 2018; Lin and Yao 2019).
Many semiparametric and nonparametric methods have been
proposed for regressionwith functional response and/or covari-
ates. Nevertheless, there is a lack of flexible model selection and
diagnostics methods for functional regression (Wang, Chiou,
andMüller 2015; Morris 2015). Ling and Vieu (2018) suggested
model building and testing using nonparametric methods as
two important future research areas.

In this article, we consider function-on-function regres-
sion where both the response Y and covariate X are func-
tions. Denote the functional observations by {(Yi(t),Xi(t)), i =

1, . . . , n; t ∈ T }, where T is an arbitrary set. We
want to investigate the relationship between X and Y . Ram-
say and Silverman (2006) proposed the concurrent linear
model (CLM),

Yi(t) = α(t) + β(t)Xi(t) + ǫi(t), i = 1, . . . , n, (1)

where α(t) and β(t) are unknown functions to be estimated,
ǫi(t), independent of Xi(t), are iid random errors. Model (1)

CONTACT Yuedong Wang yuedong@pstat.ucsb.edu Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara,

CA 93106.
∗These authors contributed equally to this work.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JCGS.

assumes that the value of Y at t depends onX at the same point t
only. Ramsay and Silverman (2006) also proposed the functional
linear model (FLM),

Yi(t) = α(t) +

∫

T

β(s, t)Xi(s)ds + ǫi(t), i = 1, . . . , n, (2)

where Y(t) depends on the whole function ofX(·), and α(t) and
β(s, t) are unknown functions to be estimated. Both models (1)
and (2) assume that Y is linearly dependent on X, which could
be restrictive for some applications. While many nonlinear
models have been proposed for scalar-on-function regression
(Reiss et al. 2017; Ling and Vieu 2018), nonlinear function-
on-function regression has received considerably less attention
(Morris 2015; Reimherr, Sriperumbudur, and Taoufik 2018).
Müller and Yao (2008) considered an additive model where
functional principal component analysis (FPCA) scores were
used as predictors.

Different from aforementioned linear and nonlinear models,
nonparametricmethods, which providemore flexible regression
relationship between the response and covariates, have been
considered by many authors (Yuan and Cai 2010; Ferraty et al.
2011; Ferraty, Van Keilegom, and Vieu 2012; Lian 2007; Kardi
et al. 2016; Ling and Vieu 2018). In particular, the nonpara-
metric concurrentmodel (NCM) (Zhang, Park, andWang 2013;
Scheipl, Staicu, and Greven 2015; Kim, Maity, and Staicu 2018)
assumes that

Yi(t) = g(t,Xi(t)) + ǫi(t), i = 1, . . . , n, (3)

© 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
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where g is an unknown bivariate function; and an extension of
functional linear model (EFLM) (Ma and Zhu 2016; Kim et al.
2018; Reimherr, Sriperumbudur, and Taoufik 2018) assumes
that

Yi(t) =

∫

T

g(t, s,Xi(s))ds + ǫi(t), i = 1, . . . , n, (4)

where g is an unknown function of three variables. In prac-
tice, Y(t) may depend on both X(t) and the whole function
of X (see examples in Section 6). Furthermore, data-driven
model diagnostic tools are still lacking. It is very difficult for
practitioners to decide how to choose an adequate model for
their data. Hypothesis testing could be used for the model
selection (Xing et al. 2020). However, rigorous tests are only
available for simple settings. In addition, since these models
were fitted using different methods, the convergence rate of
the estimated functions have not been analyzed and compared
carefully.

To establish a unified framework for estimation,model selec-
tion, and theoretical study, we consider the following nonpara-
metric functional regression model,

Yi(t) =

∫

T

g(t, s,Xi(t),Xi(s))ds + ǫi(t), i = 1, . . . , n, (5)

where g : T × T × R × R → R is an unknown function of
four variables to be estimated, R is the range of the functional
covariate X, and ǫi(t)s are iid random error functions in L2

with mean zero and finite
∫

T
E(ǫ2i (t))dt. The proposed method

can be extended to other nonparametric functional models,
such as scalar-on-function and function-on-scalar regression
models.

Model (5) is a flexible function-on-function model that has
not been studied in the literature. Different from the methods
used in Scheipl, Staicu, and Greven (2015), Ma and Zhu (2016),
Kim, Maity, and Staicu (2018), and Reimherr, Sriperumbudur,
and Taoufik (2018), in this article we construct model space
for the multivariate function g through smoothing spline anal-
ysis of variance (SS ANOVA) based on the decomposition of
tensor product of reproducing kernel Hilbert spaces (RKHS).
Model (5) reduces to existingmodelswhen selected components
in the SS ANOVA decomposition are eliminated. We propose
penalized least squares methods for estimating g under either
L1 or L2 penalty. We establish the representer theorem and
develop computational methods for solving both L1 and L2-
regularized least squares problems. The SS ANOVAmodel with
L1 penalty provides a systematic approach for model selection
and diagnostics of existing models. We establish a coherent
framework to study the convergence rates of the penalized least-
square estimates as well as each component of the SS ANOVA
model under both the L1 and L2 penalties.Wenote that Sun et al.
(2018) constructed SS ANOVA for the bivariate function β(s, t)
in the FLM (2). However, there is an error in their derivation
of the representer theorem. We will use a different approach
to derive the representer theorem and our estimate is different
from that in Sun et al. (2018).

Our methodological contribution for nonparametric
function-on-function regression is to develop new estimation
procedures under either a L2 or a joint L1 and L2 penalty.
Note that through eliminating selected components in a SS

ANOVA model, our model (5) can be reduced to models
(1)–(4) and other special cases. In practice, researchers may
use a reduced model appropriate for their data rather than
the general model (5). However, coherent model selection
and model diagnostics tools for function-on-function
regression are still lacking. Model selection and diagnostics
have to be conducted manually, which is laborious, time-
consuming, and error prone. The lack of model selection and
diagnostics hinders the wide application of the aforementioned
models. Our work is the first to provide model selection and
diagnostic tools through the combination of SS ANOVA and
a joint L1 and L2 penalty. In particular, model fitting, model
selection and diagnostics can be conducted simultaneously and
substantially alleviate the cost of manual model selection and
diagnostics.

Our theoretical contribution is to establish a coherent frame-
work to study the convergence rates of the penalized least-
square estimates and components in the SS ANOVA model. In
the literature, the convergence of the estimators and compo-
nents are conducted through two technical routes, dimension-
less approach (Gu and Qiu 1993) and tensor product approach
(Lin 2000). In this article, we reconcile these two methods
into one coherent framework. As far as we know, these con-
vergence rates of the estimators and components are the first
ones established for function-on-function regression models in
a general framework. Moreover, the convergence rates of the
estimators and components under a joint L1 and L2 penalty are
still lacking in the literature even for simple SS ANOVAmodels.
We bridge this gap by establishing the first convergence rates
for function-on-function regression models in a general frame-
work. Equipped with all these convergence rates, our theoretical
work lays out the first full-fledged analysis framework in this line
of research.

The remainder of the article is organized as follows. In Sec-
tion 2, we present SS ANOVAmodel for the function g inmodel
(5), and the estimation procedure under L2 penalty. In Section 3,
we present model selection method through SS ANOVA and
estimation under L1 penalty. In Section 4, consistence and con-
vergence rates of estimators of the overall regression function
and each component in the SS ANOVA decomposition are
obtained. Numerical studies and real examples are given in
Section 5 and 6. We conclude in Section 7. Additional technical
details, proofs, and codes are included in the supplementary
materials.

2. Model Space and Estimation

We introduce the SS ANOVA model in Section 2.1 and present
the estimation procedure with L2 penalty in Section 2.2.

2.1. SS ANOVAModels

Different from the methods used in Scheipl, Staicu, and Greven
(2015), Ma and Zhu (2016), Kim, Maity, and Staicu (2018), and
Reimherr, Sriperumbudur, and Taoufik (2018), we use tensor
product of RKHS’s and the SSANOVAdecomposition to build a
model space for the regression function g in (5). DenoteH1(T ),
H2(T ),H3(R), andH4(R) as RKHS’s of functions on domains
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T and R, respectively. The choices of these RKHS’s depend
on the domain of these functions, prior knowledge, and the
purpose of study (Wang 2011). For example, for functions on a
compact interval, without loss of generality denote the interval
as [0, 1], we may consider the Sobolev space

Wm
2 [0, 1] =

{

f : f , f ′, . . . , f (m−1) are absolutely continuous,
∫ 1

0
(f (m))2dx < ∞

}

. (6)

We consider an SS ANOVA decomposition of g in the tensor
product RKHSH1(T )⊗H2(T )⊗H3(R)⊗H4(R) (Wang 2011;
Gu 2013):

g(t, s,X(t),X(s)) = μ + g1(t) + g2(s) + g3(X(t)) + g4(X(s))

+ g12(t, s) + g13(t,X(t)) + g14(t,X(s)) + g23(s,X(t))

+ g24(s,X(s)) + g34(X(t),X(s)) + g123(t, s,X(t))

+ g124(t, s,X(s)) + g134(t,X(t),X(s))

+ g234(s,X(t),X(s)) + g1234(t, s,X(t),X(s)),

where μ is the grand mean, g1 and other single subscript g are
main effects, double subscript g are two-way interactions, and
so on. For identifiability of model (5), we need side conditions,

g2(s) = g12(t, s) = g23(s,X(t)) = g123(t, s,X(t))

= g134(t,X(t),X(s)) = 0.

Thus, g has a decomposition as follows,

g(t, s,X(t),X(s)) = μ + g1(t) + g3(X(t)) + g4(X(s))

+ g13(t,X(t)) + g14(t,X(s)) + g24(s,X(s)) + g34(X(t),X(s))

+ g124(t, s,X(s)) + g234(s,X(t),X(s)) + g1234(t, s,X(t),X(s)).
(7)

The SS ANOVA decomposition (7) builds a hierarchical struc-
ture for function g and handles the side conditions in a natural
manner. In addition to having nice interpretation asmain effects
and interactions, the SS ANOVAdecomposition facilitates diag-
nostics and model selection. It is easy to see that models (1)–(3)
are special cases of (7) with certain components equal zero. For
example, the NCM (4) and EFLM (3) are special cases with

g4 = g14 = g24 = g34 = g124 = g234 = g1234 = 0, (8)

and

g3 = g13 = g34 = g234 = g1234 = 0, (9)

respectively. Conditions for the CLM (1) and FLM (2) are
presented in the Supplemental Materials. Therefore, checking
whether components in these conditions equal zero provides a
diagnostic tool for existing models. In addition, we can fit exist-
ing models by removing components in these conditions. Thus,
the proposed estimation methods provide a unified framework
for fitting some of the existing models with theoretical guaran-
tees.

We may model g using any subset of components in the SS
ANOVA decomposition (7). Given an SS ANOVA model, we
can regroup components and rewrite the model space for g as
Section 4.5 of Wang (2011)

M = H0 ⊕ H1 ⊕ · · · ⊕ Hq, (10)

where H0 is a finite dimensional space with an orthonormal
basis {φ1, . . . ,φm}, H1, . . . ,Hq are orthogonal RKHS’s with
reproducing kernels (RK) R1, . . . , Rq, respectively, and q is the
number of components in the SS ANOVA model. We note
that different regrouping may be used for different purposes. In
particular, we may consider different groups of components for
model selection with L1 penalty (see Section 3).

2.2. Penalized Least Squares with L2 Penalty

We assume that Yi(t)’s are stochastic processes that belongs to
L2(T ). We estimate g as a minimizer of the following penalized
least squares (PLS):

1

n

n
∑

i=1

∫

T

{

Yi(t) −

∫

T

g(t, s,Xi(t),Xi(s))ds

}2

dt

+
λ

2

q
∑

j=1

1

θj
||Pjg||

2, (11)

wherePj is a projection operator ontoHj,λ and θj are smoothing
parameters, and || · || is an induced norm inM.

We shall now present the solution to the PLS (11). LetH∗
1 =

H1 ⊕ · · · ⊕ Hq, and define a new inner product inH∗
1 as

〈f , g〉∗ =

q
∑

j=1

1

θj
〈Pjf ,Pjg〉, (12)

where 〈·, ·〉 is the inner product in M. Under the new inner
product, the RK ofM is R = R0 + R1, where

R0(t, s, x, z, t′, s′, x′, z′) = R0t,s,x,z(t
′, s′, x′, z′)

=

m
∑

k=1

φk(t, s, x, z)φk(t
′, s′, x′, z′),

R1(t, s, x, z, t′, s′, x′, z′) = R1t,s,x,z(t
′, s′, x′, z′)

=

q
∑

j=1

θjRj(t, s, x, z, t
′, s′, x′, z′).

Let {vk(t), k = 1, 2, . . .} be an orthonormal basis of L2(T )

where the first n basis functions are the empirical functional
principal components (EFPC) of Y1, . . . ,Yn. See Hsing and
Eubank (2015) for principal component analysis of stochastic
processes defined on a general compact metric space. Our result
is presented in the following representer theorem, which proof
is in the supplemental materials.

Theorem 2.1 (Representer Theorem). (a) The solution to the
PLS (11) is

ĝ(t, s, x, z) =

m
∑

k=1

dkφk(t, s, x, z) +

n
∑

i=1

n
∑

j=1

cijξij(t, s, x, z), (13)

where ξij(t, s, x, z) =
∫

T

∫

T
R1t,s,x,z(t

′, s′,Xi(t
′),Xi(s

′))vj(t
′)

dt′ds′.
(b) Consider the following standard SS ANOVA model with

a scalar response variable,

Yij = Lijg + ǫij, (14)
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where Yij = 〈Yi, vj〉, g ∈ M, Lijg =
∫

T

∫

T
g(t, s,Xi(t),

Xi(s))νj(t)dsdt which is assumed to be a bounded linear func-
tional, and ǫij are iid random errors with mean zero. Then the
estimate ĝ in (11) is the same as the solution to the following PLS

1

n

n
∑

i=1

n
∑

j=1

{

Yij − Lijg
}2

+
λ

2
||P∗

1g||
2
∗, (15)

where P∗
1 is the projection operator onto H∗

1 with the inner
product 〈f , g〉∗ in (12), and || · ||∗ is the induced norm in H∗

1
by 〈·, ·〉∗.

The representer theorem states that the task of fitting a
function-on-function regression model reduces to the task of
fitting an SS ANOVAmodel with a scalar response variable. We
now present the computation details. Note that R = R0 + R1

and it can be shown that

〈g,

∫

T

∫

T

R0t,s,Xi(t),Xi(s)
vj(t)dsdt〉 =

m
∑

k=1

aijkdk,

〈g,

∫

T

∫

T

R1t,s,Xi(t),Xi(s)
vj(t)dsdt〉 =

n
∑

k=1

n
∑

l=1

cklbijkl,

where

aijk =

∫

T

∫

T

φk(t, s,Xi(t),Xi(s))vj(t)dsdt,

bijkl =

∫

T

∫

T

ξkl(t, s,Xi(t),Xi(s))vj(t)dsdt.

Let Y j = (Y1j, . . . ,Ynj)
⊤, Y = (Y⊤

1 , . . . ,Y
⊤
n )⊤, d =

(d1, . . . , dm)⊤, c = (c11, c21, . . . , cnn)
⊤, T be an n2 × mmatrix

with the (i+ (j− 1)n, k)th element as aijk, and � be an n2 × n2

matrix with the (i + (j − 1)n, k + (l − 1)n)th element as bijkl.
Then the PLS (15) reduces to

1

n

n
∑

i=1

n
∑

j=1

(

Yij −

m
∑

k=1

aijkdk −

n
∑

k=1

n
∑

l=1

cklbijkl

)2

+
λ

2

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

cijbijklckl

=
1

n
||Y − Td − �c||2 +

λ

2
c
⊤
�c. (16)

Following the above discussion, one may use existing soft-
ware to compute the estimate. Details for solving the PLS (16)
with data-driven smoothing parameters selectionmethods such
as the generalized cross-validation (GCV) and restricted maxi-
mum likelihood (REML), also known as generalized maximum
likelihood (GML), can be found in Wang (2011). The recent
development in selecting smoothing parameters can be found
in Sun, Zhong, and Ma (2020). Since the reduced models have
n2 observations, existing procedures may be infeasible when n
is large. One may consider an approximate solution by using
the first p (p ≪ n) EFPCs. Furthermore, to save computational
time, we propose a backfitting procedure to estimate smooth-
ing parameters. Details about the backfitting procedure can be
found in the Supplemental Materials.

3. Model Selection

In this section, we consider penalized least squares with L1
penalty for model selection and diagnostics. Given an SS
ANOVA model, we can regroup and rewrite the model space
in the form (10). Different regrouping may be considered for
different purposes. For estimationwithL2 penalty, we usually set
H0 as the space collecting all functions that are not penalized,
and other spaces contain main effects and interactions subject
to penalties. For model selection, we are interested in whether
certain components in the SS ANOVA decomposition can be
eliminated. We may use the same regrouping as (10) with L1
penalties to all components including functions in the spaceH0

except for the constant functions. For diagnostics of a specific
model, we are interested in whether a group of components in
the SS ANOVA decomposition can be eliminated. For example,
the NCM is equivalent to all components in (8) equal zero. We
may regroup such that one subspace collects all components in
(8). Consequently, the L1 penalty to functions in this subspace
encourages all components in (8) to be simultaneously zero.
For generality, for a given SS ANOVA model, we rewrite the
regrouped model space as

M = H̃0 ⊕ H̃1 ⊕ · · · ⊕ H̃q̃, (17)

where H̃0 is a finite dimensional space with an orthonormal
basis {φ̃1, . . . , φ̃m̃}, and H̃1, . . . , H̃q̃ are orthogonal RKHS’s with

RKs R̃1, . . . , R̃q̃, respectively. Note that, as discussed above, each

space H̃j may include parametric components in the space H0

and multiple components ofH1, . . . ,Hq.

Denote the projection of g onto H̃0 as
∑m̃

k=1 dkφ̃k(t, s, x, z)

and the RK of M as R̃. Following the same arguments in Sec-
tion 2.2, we estimate g via the following PLS with L1 penalties:

1

n

n
∑

i=1

n
∑

j=1

{

Yij − 〈g,

∫

T

∫

T

R̃t,s,Xi(t),Xi(s)vj(t)dsdt〉
}2

+ λ1

m̃
∑

k=1

w1k|dk| + λ2

q̃
∑

v=1

w2v||P̃vg||, (18)

where P̃v is the projection operator onto H̃v, λ1 and λ2 are
tuning parameters, and 0 ≤ w1k,w2v < ∞ are prespecified
weights that can be selected based on some initial estimates.
One may set w11 = 0 when φ̃1 = 1 to avoid penalty to the
constant functions. Note that if one subspace, say H̃1, collects all
components in (8), then ||P̃1g|| = (||g4||

2 + ||g14||
2 + ||g24||

2 +

||g34||
2 + ||g124||

2 + ||g234||
2 + ||g1234||

2)1/2 is a group penalty
that encourages all components in (8) to be simultaneously zero.

As in Zhang, Cheng, and Liu (2011), instead of (18),
Lemma 3.1 indicates that we can solve the following equivalent
but more convenient minimization problem:

1

n

n
∑

i=1

n
∑

j=1

{

Yij − 〈g,

∫

T

∫

T

R̃t,s,Xi(t),Xi(s)vj(t)dsdt〉
}2

(19)

+ λ1

m̃
∑

k=1

w1k|dk| + τ0

q̃
∑

v=1

w2vθ
−1
v ||P̃vg||

2 + τ1

q̃
∑

v=1

w2vθv,

subject to θv ≥ 0 for 1 ≤ v ≤ q̃, where λ1, τ0, and τ1 are tuning
parameters.
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Lemma 3.1. Let θ = (θ1, . . . , θq̃)
T , and τ1 = λ22/4τ0. If ĝ

minimizes (18), set θ̂v = τ
1/2
0 τ

−1/2
1 ||P̃vĝ||, then (θ̂ , ĝ) mini-

mizes (19). On the other hand, if (θ̂ , ĝ) minimizes (19), then ĝ
minimizes (18).

We choose to solve (19) since it is similar to the PLS with
L2 penalty in (16). The additional penalties on θv’s control the
sparsity of components in the SSANOVAmodel for the purpose
of model selection. Specifically, θv = 0 implies ||P̃vg|| = 0. It is
easy to show that the solution to (19) is

ǧ(t, s, x, z) =

m̃
∑

k=1

dkφ̃k(t, s, x, z) (20)

+

q̃
∑

v=1

w−1
2v θv

n
∑

i=1

n
∑

j=1

cijξ̃ij(t, s, x, z),

where ξ̃ij(t, s, x, z) =
∫

T

∫

T
R̃v(t, s, x, z, t

′, s′,Xi(t
′),Xi(s

′))

vj(t
′)ds′dt′ and R̃v is the RK in H̃v. Hence, (19) reduces to

1

n

n
∑

i=1

n
∑

j=1

(

Yij −

m̃
∑

k=1

ãijkdk −

q̃
∑

v=1

w−1
2v θv

n
∑

k=1

n
∑

l=1

cklb̃ijkl

)2

+ λ1

m̃
∑

k=1

w1k|dk| + τ0

q̃
∑

v=1

w−1
2v θv

n
∑

i=1

n
∑

j=1

n
∑

k=1

n
∑

l=1

cijb̃ijklckl

+ τ1

q̃
∑

v=1

w2vθv, (21)

where

ãijk =

∫

T

∫

T

φ̃k(t, s,Xi(t),Xi(s))vj(t)dsdt,

b̃ijkl =

∫

T

∫

T

ξ̃kl(t, s,Xi(t),Xi(s))vj(t)dsdt.

Let d = (d1, . . . , dm̃)⊤, c = (c11, c21, . . . , cnn)
⊤, w2 =

(w21, . . . ,w2q̃)
T , T̃ be an n2×m̃matrix with the (i+(j−1)n, k)-

th element as ãijk, �̃v be an n2 × n2 matrix with the (i + (j −

1)n, k + (l − 1)n)-th element as b̃ijkl, and �̃ =
q̃

∑

v=1
w−1
2v θv�̃v.

Then (21) is simplified as

1

n
||Y − T̃d − �̃c||2 + λ1

m̃
∑

k=1

w1k|dk| + τ0c
T
�̃c + τ1w

T
2 θ

(22)

subject to θv ≥ 0, v = 1, . . . , q̃.
We use a backfitting algorithm to solve (22).With fixed d and

θ , (22) reduces to (16) with a working response Ỹ = Y − T̃d.
Therefore, we can update c using existing methods with τ0
chosen by the GCV or the REML method. With fixed c and τ0,
noting that �̃ is linear in θ , (22) reduces to the standard LASSO
for a linear regression model subject to constraints on θ . With
fixed θ and τ1, we apply an LASSO regularization procedure to
update d with λ1 chosen by k-fold cross-validation. Then with
fixed d and λ1, we apply a constrained quadratic programming
procedure to update θ . The selection of τ1 is equivalent to find-
ingM such thatwT

2 θ ≤ M. We apply the k-fold cross-validation
or the BIC method to selectM. The complete algorithm can be
found in the supplemental materials.

4. Statistical Properties

In this section, we study consistence and convergence rate of the
regression function estimates ĝ and ǧ as well as their compo-
nents in the SS ANOVA decompositions under both the L1 and
L2 penalties.

4.1. Loss Function and Regularity Conditions

We will first define a loss function similar to that in Gu
(2013). Denote the least squares as l(g) =

∫

T
{Y(t)−

∫

T
g(t, s,X(t),X(s))ds}2 dt =

∑∞
j=1 Qj(g,Y) where Qj(g,Y) =

{

〈Y , vj〉 − 〈g,
∫

T

∫

T
Rt,s,x(t),x(s)vj(t)dsdt〉M

}2
. Let D be the

Fréchet derivative with respect to g, uj(g;Y) = DQj(g;Y),
wj(g;Y) = D2Qj(g;Y), u(g;Y) =

∑n
j=1 uj(g;Y), and w(g;Y) =

∑n
j=1 wj(g;Y). It is easy to check that the first and second

Fréchet derivatives of Qj(g,Y) at directions h1 and h2 are

uj(g;Y)(h1) = − 2

{

〈Y , vj〉 − 〈g,

∫

T

∫

T

Rt,s,x(t),x(s)vj(t)dsdt〉M

}

× 〈h1,

∫

T

∫

T

Rt,s,x(t),x(s)vj(t)dsdt〉M,

wj(g;Y)(h1, h2) = 2〈h1,

∫

T

∫

T

Rt,s,x(t),x(s)vj(t)dsdt〉M

× 〈h2,

∫

T

∫

T

Rt,s,x(t),x(s)vj(t)dsdt〉M.

Let g0 be the true function of g and wj(g;Y) = wj(g;Y)(g, g).
We denote

V(g1, g2) = 2E[g1g2E{D2l(g0)}] = 2E[g1g2E{

∞
∑

j=1

wj(g0;Y)}]

as a quadratic functional, and define the loss function

V(g) = V(g, g) = 2E[g2E{

∞
∑

j=1

wj(g0;Y)}]. (23)

Note that 〈g0,
∫

T

∫

T
Rt,s,x(t),x(s)vj(t)dsdt〉M = 0 when j ≥

n + 1. Consequently

V(g) = 2E[g2E{w(g0;Y)}]. (24)

We shall show that the loss function V(g) is equivalent to the
integrated mean square loss function E(g2) under some condi-
tions. We denote J(g1, g2) = 〈P∗

1g1,P
∗
1g2〉∗ as another quadratic

functional, and define the penalty function J(g) = J(g, g) =

〈P∗
1g,P

∗
1g〉∗ = ||P∗

1g||
2
∗. A quadratic functional V is said to

be completely continuous with respect to another quadratic
functional J, if for any ǫ > 0, there exist a finite number of linear
functionals L1, . . . , Lk such that Ljf = 0, j = 1, . . . , k, implies
that V(g) ≤ ǫJ(g). To derive the convergence rate, we need the
following conditions.

Condition 1. V is completely continuous with respect to J =

||P∗
1g||

2
∗.

Condition 1 is satisfied when c1 ≤ w(g0; y) ≤ c2 holds
for some positive constants c1 and c2. From Theorem 3.1 of
Weinberger (1974), under Condition 1, there exist eigenvalues
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ρk and eigenfunctions ψk such that V(ψk,ψj) = δk,j and
J(ψk,ψj) = ρkδk,j where δk,j is the Kronecker delta and 0 ≤

ρk ↑ ∞.
Define a quadratic functional as

1

n

n
∑

i=1

u(g0i;Yi)gi +
1

2
V(g − g0) +

λ

2
J(g), (25)

where gi = g(t, s,Xi(t),Xi(s)) and g0i = g0(t, s,Xi(t),Xi(s)).
By the Fourier series expansion with basis {ψk}, we have g =
∑

k ζkψk and g0 =
∑

k ζk,0ψk. It is easy to show that the

minimizer g̃ of (25) has Fourier coefficients ζ̃k = (βk+ζk,0)/(1+
λρk), where βk = −n−1

∑n
i=1 u(g0i;Yi)ψk(t, s,Xi(t),Xi(s)).

We need the following conditions for the eigenvalues ρk and
the eigenfunctions ψk.

Condition 2. For k large enough and some β > 0, the eigenval-
ues ρk satisfy ρk > βkr with r > 1 and

∑

k ρkζ
2
k,0 < ∞.

Condition 3. For any k and j, var{ψk(X)ψj(X)w(g0(X),Y)} ≤

c3 with some c3 < ∞, where ψk(X) = ψk(t, s,X(t),X(s)) and
g0(X) = g0(t, s,X(t),X(s)).

Condition 4. For g in a convex set B0 around g0 containing ĝ and
g̃, c4w(g0,Y) ≤ w(g,Y) ≤ c5w(g0,Y) holds uniformly for some
0 < c4 < c5 < ∞.

Conditions 1–4 are common assumptions for convergence
rate analysis of the SS ANOVA estimates, which were also made
in Gu (2013). The

∑

k ρkζ
2
k,0 < ∞ in Condition 2 is a special

case in Theorem 9.15 with p = 1 in Gu (2013), and states that
the growth rate of the eigenvalues ρk is at k

r , which controls how
fast λ approaches zero. Condition 3 requires the fourth moment
of ψi is bounded. Condition 4 bounds w(g,Y) at g in a convex
set B0 around g0.

4.2. Convergence Results Under L2 Penalty

In order to present our theorem, we need the Op notation.
For a sequence of random variables, {An}, and a sequence of
constants, {an}, the notation An = Op(an), means that {An/an}
is stochastically bounded (or bounded in probability). That is,
for any τ > 0, there exit a constant K(τ ) and an integer n(τ )

such that if n ≥ n(τ ), then

P(|An/an| ≤ K(τ )) ≥ 1 − τ .

More details and examples of this can be found in Section 1.2 of
Serfling (1980).

Theorem 4.1. Assume that g0 ∈ M. Under Conditions 1–4, as
λ → 0 and nλ2/r → ∞,

(V + λJ)(ĝ − g0) = Op(n
−1λ−1/r + λ).

For the penalized least-square estimation, we transform the
integration in the objection function (11) to a summation cri-
terion by using EFPCs of Y(t). Different from the proofs of
consistence and convergence rate of function estimation in Gu
(2013), we need to deal with an infinite summation for EFPC
decomposition ofY(t). The proof of Theorem 4.1 is presented in

the Supplemental Materials. In addition, we derive convergence
rate for each term in the SS ANOVA model as follows.

To study the convergence rate of each component in the
decomposition of g, as Lin (2000), we consider the special
case with T = R = [0, 1] and g ∈ ⊗4Wm

2 ([0, 1])
where ⊗kWm

2 ([0, 1]) denotes the tensor product of k Sobolev
spaces Wm

2 ([0, 1]) defined in (6). Then the main effects lies
in Wm

2 ([0, 1]) and the kth order interactions lies in a tensor
product space of ⊗kWm

2 ([0, 1]). From the common norm || ·

||Wm
2

in Wm
2 ([0, 1]), we can deduce a norm || · ||⊗qWm

2
in

the tense product space of ⊗qWm
2 ([0, 1]). For example with

⊗qW0
2([0, 1]), the norm is ||g(z)||2

⊗qW0
2

=
∫

g2(z)dz. Following

Lin (2000), under the condition c1 ≤ w(g0; y) ≤ c2 for some
positive constants c1 and c2, we can show that with m > 0 the
norms || · ||2

⊗qWm
2
and | · |2

⊗qWm
2

= V(·)+||P∗
1 · ||2∗ are equivalent

on the tensor product space⊗qWm
2 ([0, 1]), andwhenm = 0 the

norms ||·||2
⊗qW0

2
and |·|2

⊗qW0
2

= V(·) are equivalent on the tensor

product space ⊗qW0
2([0, 1]), denoted by || · ||2

⊗qWm
2

∼ | · |2
⊗qWm

2

and || · ||2
⊗qW0

2
∼ | · |2

⊗qW0
2

= V(·). From the SS ANOVA

decomposition (7), it is easy to see that

||g||2⊗qWm
2

= μ2 + ||g1||
2
Wm

2
+ ||g3||

2
Wm

2
+ ||g4||

2
Wm

2

+ ||g13||
2
⊗2Wm

2
+ ||g14||

2
⊗2Wm

2

+ ||g24||
2
⊗2Wm

2
+ ||g34||

2
⊗2Wm

2
+ ||g124||

2
⊗3Wm

2
+ ||g234||

2
⊗3Wm

2

+ ||g1234||
2
⊗4Wm

2
.

Thence, we have

|g|2⊗qWm
2

∼ μ2 + ||g1||
2
Wm

2
+ ||g3||

2
Wm

2
+ ||g4||

2
Wm

2
+ ||g13||

2
⊗2Wm

2

+ ||g14||
2
⊗2Wm

2
+ ||g24||

2
⊗2Wm

2
+ ||g34||

2
⊗2Wm

2
(26)

+ ||g124||
2
⊗3Wm

2
+ ||g234||

2
⊗3Wm

2
+ ||g1234||

2
⊗4Wm

2
.

Since |g|2
⊗qW0

2
= V(g), we have |ĝ − g0|

2
⊗qW0

2
=

Op(n
−1λ−1/r + λ). Combined with (26), we have the following

corollary.

Corollary 4.1. Assume that g ∈ ⊗4Wm
2 ([0, 1]), the conditions

in Theorem 4.1 hold, and c1 ≤ w(g0; y) ≤ c2 holds for some
positive constants c1 and c2. As λ → 0 and nλ2/r → ∞, we
have

||ĝI − g0I||
2
W0

2
= Op(n

−1λ−1/r + λ), (27)

I = 1, 3, 4, (1, 3), (1, 4), (2, 4), (3, 4), (1, 2, 4),

(2, 3, 4), (1, 2, 3, 4),

where indices inside each index set I indicate the component in
the SS ANOVA decomposition.

Corollary 4.1 provides convergence rates of the component
estimators in the SS ANOVA decomposition under the inte-
gratedmean square loss function. If we set the tuning parameter

λ as λ = [n(log n)−a]−
m

2m+1 where a > 0, it satisfies that λ → 0
and nλ2/r → ∞. Hence, we have for n larger enough,

n−1λ−1/r = n
−(1− m

(2m+1)r )(log n)
− am

(2m+1)r < [n(log n)−a]−
m

2m+1 .
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From Theorem 4.1 and Corollary 4.1, it follows that

Op(n
−1λ−1/r + λ) = Op([n(log n)

−a]−
m

2m+1 ).

Furthermore, when r ≥ max{2, 2m}, we set λ =

[n(log n)−a]−
2m

2m+1 , then λ → 0 and nλ2/r → ∞. We have faster
convergence rates for ĝ and its components as

Op(n
−1λ−1/r + λ) = Op([n(log n)

−a]−
2m

2m+1 ),

which is similar to the convergence result in Lin (2000).

4.3. Convergence Results Under L1 penalty

We consider model (5) with g ∈ M where the model space is

given in (17). Write g = g(0) + g(1) where g(0) ∈ H̃0 and g(1) ∈

H̃1 ⊕ · · · ⊕ H̃q̃. Then

wj(g;Y)(h1, h2) = 2〈h1,

∫

T

∫

T

R̃t,s,x(t),x(s)vj(t)dsdt〉M

× 〈h2,

∫

T

∫

T

R̃t,s,x(t),x(s)vj(t)dsdt〉M

=2〈h1,

∫

T

∫

T

R̃0t,s,x(t),x(s)vj(t)dsdt〉M

× 〈h2,

∫

T

∫

T

R̃0t,s,x(t),x(s)vj(t)dsdt〉M

+2〈h1,

∫

T

∫

T

R̃1t,s,x(t),x(s)vj(t)dsdt〉M

× 〈h2,

∫

T

∫

T

R̃1t,s,x(t),x(s)vj(t)dsdt〉M

=w0
j (g

(0);Y) + w1
j (g

(1);Y),

where R̃0 and R̃1 are the RKs of H̃0 and H̃1⊕· · ·⊕H̃q̃. The cross

term is zero because H̃0 and H̃1 ⊕ · · · ⊕ H̃q̃ are orthogonal to

each other. Let w0(g(0);Y) =
n
∑

j=1

w0
j (g

(0);Y) and w1(g(1);Y) =

n
∑

j=1

w1
j (g

(1);Y).

Define V∗(g) = V0(g
(0)) + V1(g

(1)) and J∗(g) =

J0(g
(0)) + J1(g

(1)), where

V0(g
(0)) =

√

2E[g(0)2E{w0(g(0);Y)}], V1(g
(1)) =

√

2E[g(1)2E{w1(g(1);Y)}], J0(g
(0)) =

m̃
∑

k=1

||dkφk|| =
m̃
∑

k=1

|dk|,

and J1(g
(1)) =

q̃
∑

j=1

||P̃vg||. Let ǧ and ďk (k = 1, . . . , m̃) be the

minimizer of (18), and λ̌ = max{λ1, λ2}. Then, we have the
following convergence results.

Theorem 4.2. Assume that g0 ∈ M. Under Conditions 1–4 with

ĝ in Condition 4 being replaced by ǧ, as λ̌ → 0 and nλ̌2/r → ∞,

(V∗ + λ̌J∗)(ǧ − g0) = Op(n
−1/2λ̌−1/2r + λ̌1/2).

Corollary 4.2. Assume conditions in Theorem 4.2 hold and c̃1 ≤

w(g0; y) ≤ c̃2 holds for some positive constants c̃1 and c̃2, as

λ̌ → 0 and nλ̌2/r → ∞, we have

|ďk − d0,k| = Op(n
−1/2λ̌−1/2r + λ̌1/2) k = 1, . . . , m̃,

||P̃vǧ − P̃vg0||W0
2

= Op(n
−1/2λ̌−1/2r + λ̌1/2) v = 1, . . . , q̃,

where {d0,k} are coefficients of parametric functions in the true
function g0.

Proofs of Theorem 4.2 and Corollary 4.2 are given in the
supplementary materials.

Remark. The convergence rate in Theorem 4.2 and the compo-
nent convergence rate in Corollary 4.2 are the square root of the
rate in Theorem 4.1 and Corollary 4.1. This is due to the fact
that the square of L2 norm was used in the Section 4.2 while the
L2 norm was used in the Section 4.3.

5. Simulation Results

Simulation studies are conducted to evaluate the performance
of the proposed model selection and estimation methods. We
generate data based on model (5) with T = R = [0, 1]. For

convenience of presentation, let f (t) =
∫ 1
0 g(t, s,X(t),X(s))ds.

We consider a factorial design with the following three choices
of f :

M1: f (t) = 1+ 0.5 cos(2π t) + 3X(t) + 3(X(t) − 0.5)(2t − 1)2,

M2: f (t) = 1+ 3
∫ 1
0 (2X(s)− 1)ds+ 3(t− 0.5)2 +10

∫ 1
0 (X(s)−

0.5)((2s − 1)2 − 1/3)ds,
M3: f (t) = 1+5(2X(t)−1)3+2

∫ 1
0 (2X(s)−1)ds+5(t−0.5)2.

M1 is an NCM model with g1(t) = 0.5cos(2π t), g3(X(t)) =

3X(t), and g13 = 3(X(t) − 0.5)(2t − 1)2. M2 is an EFLM
model with g1(t) = 3(t − 0.5)2, g4(X(s)) = 3(2X(s) − 1),
and g24 = 10(X(s) − 0.5)((2s − 1)2 − 1/3). M3 is neither
an NCM nor an EFLM model with g1(t) = 5(t − 0.5)2,
g3(X(t)) = 5(2X(t) − 1)3, and g4(X(s)) = 2(2X(s) − 1). All
other terms in the SS ANOVA decomposition not mentioned
above are set to be zero. Two choices of sample size n = 40 and
n = 80; and two choices of error standard deviation: σ = 0.2
and σ = 0.5. For M1, we generate Xi(t) = ai1(cos{2π(t +

ai2)} + 1)/2 where ai1, ai2
iid
∼ Uniform(0, 1). For M2 and

M3, Xi(t) = exp (X∗
i (t))/(1 + exp (X∗

i (t))) where X∗
i (t)

iid
∼

GP(0, k), and GP(0, k) is the Gaussian process with mean 0
and Matérn kernel k(t, s) = (1 + 8|t − s|) exp (−8|ul − vl|).
We generate observations of Yi(t) on 20 equally spaced grid
points in [0, 1]. All simulation are repeated 100 times. In all
simulations in this section and real data examples in the next
section, we compute the approximate estimates using the first
p = 10 EFPCs and estimate smoothing parameters using the
GCV method.

We assume that g ∈ M = ⊗4W2
2([0, 1]). It is known that

W2
2 [0, 1] = H(0) ⊕H(1) ⊕H(2) which corresponds to constant,

linear, and smooth (nonparametric) functions (Wahba 1990;
Wang 2011). Then

⊗4 W2
2([0, 1])

=(H
(0)
1 ⊕ H

(1)
1 ⊕ H

(2)
1 ) ⊗ (H

(0)
2 ⊕ H

(1)
2 ⊕ H

(2)
2 )

⊗ (H
(0)
3 ⊕ H

(1)
3 ⊕ H

(2)
3 ) ⊗ (H

(0)
4 ⊕ H

(1)
4 ⊕ H

(2)
4 )
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=H∅ ⊕

4
∑

k=1

2
∑

j=1

H
(j)
k ⊕

∑

1≤k1<k2≤4

2
∑

j1,j2=1

H
(j1j2)
k1k2

(28)

⊕
∑

1≤k1<k2<k3≤4

2
∑

j1,j2,j3=1

H
(j1j2j3)
k1k2k3

⊕

2
∑

j1,j2,j3,j4=1

H
(j1j2j3j4)
1234 , (29)

where H∅ contains constant functions; H
(1)
k and H

(2)
k con-

tain the linear and smooth main effects of the kth variable;
H

(11)
k1k2

,H
(12)
k1k2

,H
(21)
k1k2

, andH
(22)
k1k2

contain the linear-linear, linear-
smooth, smooth-linear, and smooth-smooth two-way interac-
tions between the k1th and the k2th variables; and so on. When
fitting the SS ANOVA model under the L2 penalty, we regroup
the model spaceM with

H0 = H∅ ⊕
∑

k∈I1

H
(1)
k ⊕

∑

(k1 ,k2)∈I2

H
(11)
k1k2

⊕
∑

(k1 ,k2 ,k3)∈I3

H
(111)
k1k2k3

⊕ H
(1111)
1234

collecting all parametric components for I1 = {1, 3, 4}, I2 =

{(1, 3), (1, 4), (2, 4), (3, 4)}, I3 = {(1, 2, 4), (2, 3, 4)}, and each of
the remaining subspaces constitute H1 to Hq with q = 10 in
(10). Specifically, H1 to H3 collect smooth main effects with

H1 = H
(2)
1 ,H2 = H

(2)
3 , andH3 = H

(2)
4 ;Hl = H

(12)
k1k2

⊕H
(21)
k1k2

⊕

H
(22)
k1k2

for l = 4, 5, 6, 7 collects the linear-smooth, smooth-
linear, and smooth-smooth two-way interactions between the
k1th and the k2th variables for (k1, k2) ∈ I2; Hl for l = 8, 9
collects three-way interactions that involving nonparametric
components for variables in I3, andH10 collects four-way inter-
actions that involving nonparametric components. Notice that
subspaces containing g2, g12, g23, g123 and g134 are removed
for identifiablity. When fitting the SS ANOVA model with L1
penalty, we use the same regrouping for comparison with the
L2 estimates. That is, we set H̃l = Hl for l = 0, 1, . . . , 10 and
enforce L1 penalties to all elements in the subspace H̃0.

For comparison, we also fit the NCM (4) and EFLM (3)
with reduced SS ANOVA models under conditions (8) and (9),
respectively. We evaluate the performance using the following
integrated mean square errors (IMSE),

IMSE =

∫ 1

0
(f̂ (t) − f (t))2dt.

We apply both the L2 and L1 penalized methods to fit the SS
ANOVA model with all main effects and two-way interactions,
and apply the L2 penalized method to fit the NCM and EFLM.
Table 1 presents IMSEs under different simulation settings. The
IMSEs are generally smaller when the error variance is smaller
or the sample size is larger. In general fitting correctmodels leads
to smaller IMSEs. The proposed general model has comparable
IMSEs withNCMunderM1 and comparable IMSEs with EFLM
under M2. Under M3 when neither NCM nor EFLM holds,
the general model has much smaller IMSEs. IMSEs under L1
penalty are larger than that under L2, confirming the theoretical
results in Theorems 4.1 and 4.2 that the PLS estimate under L1
has a slower convergence rate.

For the purpose of selection, we are interested in the nonzero
entries in d and θ . To evaluate themodel selection performance,

Table 1. Averages and standard deviations (in parentheses) of the integratedmean
square error (IMSE) for M1, M2 and M3 with sample sizes n = 40 and n = 80 and
error standard deviations σ = 0.2 and σ = 0.5.

n σ Method M1 M2 M3

40 0.2 L2 0.006(0.001) 0.003(0.001) 0.006(0.001)
L1 0.080(0.019) 0.011(0.008) 0.019(0.006)
NCM 0.003(0.007) 0.321(0.039) 0.152(0.019)
EFLM 0.011(0.002) 0.002(0.001) 0.096(0.049)

40 0.5 L2 0.017(0.006) 0.010(0.003) 0.017(0.004)
L1 0.080(0.032) 0.022(0.010) 0.034(0.007)
NCM 0.016(0.036) 0.323(0.039) 0.158(0.019)
EFLM 0.034(0.011) 0.006(0.003) 0.172(0.064)

80 0.2 L2 0.005(0.001) 0.003(0.000) 0.005(0.001)
L1 0.081(0.012) 0.004(0.001) 0.012(0.004)
NCM 0.003(0.017) 0.324(0.025) 0.155(0.013)
EFLM 0.009(0.002) 0.002(0.000) 0.093(0.012)

80 0.5 L2 0.014(0.007) 0.006(0.002) 0.013(0.002)
L1 0.086(0.021) 0.012(0.005) 0.021(0.006)
NCM 0.021(0.050) 0.329(0.025) 0.158(0.013)
EFLM 0.022(0.009) 0.004(0.002) 0.146(0.018)

The smallest IMSE among fourmethods for each data example is presented in bold.

Table 2. Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for M1, M2 and M3models with sample sizes n = 40
and n = 80 and error stadard deviations σ = 0.2 and σ = 0.5.

n σ SPE SEN F1

40 0.2 M1 0.929(0.064) 0.997(0.033) 0.849(0.126)
M2 0.928(0.053) 0.977(0.085) 0.828(0.093)
M3 0.872(0.065) 1.000(0.000) 0.806(0.086)

0.5 M1 0.895(0.049) 0.997(0.033) 0.777(0.084)
M2 0.932(0.054) 0.98(0.080) 0.841(0.107)
M3 0.842(0.068) 1.000(0.000) 0.768(0.082)

80 0.2 M1 0.944(0.061) 1.000(0.000) 0.881(0.122)
M2 0.938(0.067) 1.000(0.000) 0.870(0.130)
M3 0.972(0.039) 1.000(0.000) 0.951(0.065)

0.5 M1 0.907(0.065) 1.000(0.000) 0.808(0.115)
M2 0.920(0.070) 0.997(0.033) 0.833(0.127)
M3 0.908(0.049) 1.000(0.000) 0.850(0.070)

we compute three criteria: specificity (SPE), sensitivity (SEN)
and F1 scores:

SPE =
TN

TN + FP
,

SEN =
TP

TP + FN
,

F1 =
2TP

2TP + FN + FP
,

where TP, TN, FP and FN are the numbers of true positives, true
negatives, false positives and false negatives. Here we consider
the nonzero parametric or nonparametric components in (19)
as true positives and the corresponding nonzero entries in the
estimates d and θ as identified positives.

Table 2 presents sensitivities, specificities, and F1 scores.
Overall, the proposed method performed very well under all
simulation settings. The selection performance improves as
sample size increases or error variance decreases.

6. Real Examples

In this section, we illustrate the proposedmethod using four real
data examples.
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Example 1. (Canada weather). Weekly temperature and precip-
itation were collected from 35 Canadian weather observation
stations, and the goal is to study the relationship between tem-
perature (X(t)) and precipitation (Y(t)). Ramsay, Hooker, and
Graves (2010) fitted the CLM and FLMmodels.

Example 2. (Gait curve). The gait curve data consist of move-
ment cycle curve of hip and knee angles in degrees of 39 boys
(Ramsay and Silverman 2006). Relationship of knee angle curve
(Y(t)) and hip angle curve (X(t)) is studied.We fit the proposed
model and check the NCMmodel.

Example 3. (Growth curve). The growth curve data consist of
heights of 39 boys and 54 girls from age 1 to 18 (Jones and Bayley
1941). Regarding the first derivative of growth curve as the
responseY(t) and the growth curve as the covariateX(t), Verze-
len, Tao, and Müller (2012) studied the dynamics of girl growth

Table 3. Model selection results from the PLS with L1 penalty.

Function components

Data g1 g3 g4 g13 g14 g34 g24 g124 g234 g1234

Weather 1 0 1 0 1 1 1 0 0 0
Gait 1 1 0 1 0 0 0 0 0 0
Growth 1 1 0 1 1 0 1 0 0 1
GE/JPM 1 1 0 0 0 0 0 1 1 1
IBM/JPM 0 1 0 1 0 0 0 0 1 0

NOTE: The selected and removed components are denoted by 1s and 0s, respec-
tively.

by a nonlinear dynamic systems. We fit the proposed model
and check the NCMmodel in Verzelen, Tao, andMüller (2012).
We use functions in the fda R package, smooth.basis and
deriv.fd, to smooth the growth curves and then compute
their first derivatives.

Figure 1. 3D-plots for estimates of the function g(t, s, x, z) or interaction. Gait data: (a) g as a function of t and x, (b) the interaction g13 as a function of t and x; Weather
data: (c) g as a function of t and swith x and z fixed at their mean values, (d) g as a function of x and z with t and s set to be the value of the 10th observation time.
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Table 4. Mean square prediction error (MSPE) and their standard deviations (in parentheses) based on 10-fold cross-validation for each real dataset.

Weather Gait Growth GE/JPM IBM/JPM

L1 + L2 0.537(0.737) 0.106(0.029) 0.204(0.08) 0.470(0.445) 0.509(0.341)
L1 0.592(0.373) 0.261(0.034) 0.245(0.097) 0.553(0.561) 0.552(0.375)
L2 0.540(0.694) 1.797(1.083) 0.620(0.053) 0.496(0.477) 0.561(0.371)

EFLM 0.371(0.502) 1.043(0.592) 0.659(0.103) 0.64(0.663) 0.577(0.362)
NCM 0.669(0.512) 0.079(0.017) 0.208(0.081) 0.588(0.473) 0.516(0.353)

The smallest MSPE among four methods for each data example is presented in bold.

Example 4. (Stock price). We collect weekly stock prices of GE
(General Electric), IBM (International Business Machines), and
JPM (JPMorgan Chase & Co.) from 1996 to 2015. The goal is to
study the relationship between two stock prices. For illustration,
we build twomodels to investigate howweeklyGEprices or IBM
prices (Y(t)) depend on weekly JPM price (X(t)).

Data in Example 1–3 can be found in the fda R package,
and stock data in Example 4 will be provided with code in the
supplements. We transform the domains and ranges for all real
data examples such that T = R = [0, 1].We considermodel (5)
for all real data examples with g ∈ M = ⊗4W2

2([0, 1]) and the
same SS ANOVA regrouping as discussed in Section 5 including
all high-order interactions.

We first apply our model selection method with L1 penalty.
We avoid the selection of the constant function by settingw11 =

0 where φ̃1 = 1. Table 3 lists the selected components. For
Gait data, the selected model reduces to an NCM model which
indicates that the knee angle depends on the current time and
current hip angle only. The other selected models contain com-
ponents that are functions of X(t) and X(s), indicating that Y(t)
depends on both current values and the whole function.

After selection with the L1 penalty, we then use the PLS with
L2 penalty to estimate the selected models. Figure 1 presents
the 3D-plots for Gait and Weather data. Note that the selected
model for Gait data is an NCM model, which only depends
on current time t and x. Therefore, to visualize the estimate of
function g(t, s, x, z) and two-way interaction g13, we construct
3D-plots of g against (t, x) and g13 against (t, x). For Weather
data, we construct 3D-plots of g(t, s, x, z) against (t, s) with x
and z fixed at their mean values, and 3D-plots of g(t, s, x, z)
against (x, z) with t and s set to be the value of the tenth obser-
vation time. The 3D plots show complex interactions between
variables.

To evaluate the prediction performance, we consider three
approaches to fit model (5): PLS with L2 penalty (denoted as
L2), PLS with L1 penalty (denoted as L1), and PLS with L2
penalty after selection with the L1 penalty (denoted as L1 +

L2). For comparison, we consider EFLM and NCM with PLS
subject to the L2 penalty. We use 10-fold cross-validation to
show performance of prediction from the five fitted methods
and average the prediction errors on the test fold. For each real
data example, we compute the mean square prediction error
(MSPE)

MSPE =
1

n

10
∑

j=1

∑

i∈jth fold

∫ 1

0
(Yi(t) − Ŷ

(−j)
i (t))2dt,

where Ŷ
(−j)
i (t) is the prediction of Yi(t) without using data in

the jth fold.

MSPE’s are listed in Table 4. For theWeather data, the EFLM
has the smallest MSPE. For the Gait data, the NCM has the
smallest MSPE, which agrees with model selection result. For
the Growth and Stock price data, the propose general model has
smaller MSPEs. Overall, the L1 + L2 approach performs well.

7. Conclusion and Discussion

In this article, we developed a unified framework for estimation,
model selection, and theoretical study for function-on-function
nonparametric regression. We proposed a flexible function-on-
function nonparametric regressionmodel that includes concur-
rent linear model, function linear model, extensions of function
linear model, and nolinear concurrent model as special cases.
We modeled the regression function using SS ANOVA decom-
position of a tensor product of RKHS’s. We fitted the model
using penalized least squares with L1 or L2 penalty. The L1
regularization can be used to select important components in
an SS ANOVA model and check the adequacy of existing mod-
els. Consistency and convergence rates of regression function
estimation were obtained.We note that the proposed estimation
andmodel selectionmethods apply to existingmodels which are
special cases of the proposed general model, and the theoretical
results fill the gaps in the literature.

It is not difficult to extend the proposed methods to fit non-
parametric scalar-on-function and function-on-scalar regres-
sion models. For simplicity, we considered the case where func-
tional datawere observed at equally spaced points in our simula-
tion. When functional data are observed at irregular points, we
can estimate each function first using any existing smoothing
methods, and then apply the proposed method (Yao, Müller,
andWang 2005a; Zhang and Chen 2007). Future research topics
include extending the proposed model and methods to more
complex data such as repeated measures, developing methods
and theories with sparse and irregular functional data, and
developing computational methods for big data.

Supplemental Materials

Supplementary Materials: Relationship between the proposedmodel and
some existing models, backfitting and model selection algorithm and
some proofs. (.pdf file)

Computational R code and dataset: Computational R code for simula-
tion and real examples. This file also contains the dataset used in one
of the real examples. (.zip file)
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