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Abstract— Robots have to take highly responsive real-time
actions, driven by complex decisions involving a pipeline of
sensing, perception, planning, and reaction tasks. These tasks
must be scheduled on resource-constrained devices such that
the performance goals and the requirements of the application
are met. This is a difficult problem that requires handling mul-
tiple scheduling dimensions, and variations in computational
resource usage and availability. In practice, system designers
manually tune parameters for their specific hardware and ap-
plication, which results in poor generalization and increases the
development burden. In this work, we highlight the emerging
need for scheduling CPU resources at runtime in robot systems.
We use robot navigation as a case-study to understand the
key scheduling requirements for such systems. Armed with
this understanding, we develop a CPU scheduling framework,
Catan, that dynamically schedules compute resources across
different components of an app so as to meet the specified ap-
plication requirements. Through experiments with a prototype
implemented on ROS, we show the impact of system scheduling
on meeting the application’s performance goals, and how Catan
dynamically adapts to runtime variations.

I. INTRODUCTION

Many robots feature a pipeline of tasks that involve
continually sensing the environment and processing the
sensed inputs in software to generate a reaction. In many
low cost robots, the software processing tasks run on on-
board platforms with limited compute resources (e.g., Intel
NUC [1], [2], Raspberry Pi [3], etc.). This work focuses on
managing the compute (CPU) resources on such platforms.

CPU scheduling for a given robotics application (app)
involves tackling two inter-related aspects — how should
the available compute resources be divided across different
app components (i.e., its processing tasks), and the rate at
which each component should be executed. The appropriate
scheduling decisions depend on the amount of available CPU
resources, the compute usage of each component, and the
app’s performance requirements. The scheduler must take
into account dynamic variations in compute usage (e.g., due
to input-dependent logic) and compute availability (e.g., due
to battery constraints). The performance requirements may
differ along different components of an app, and involve
semantic trade-offs (e.g., in a navigating robot, components
responsible for avoiding local collisions are more critical
than those responsible for global path planning).

This is a complex problem in which app developers are
provided little help. While there are frameworks that assist
in app development (e.g., ROS [4]), they leave scheduling
decisions entirely up to the developers. Developers, therefore,
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manually fine-tune their systems to come up with static con-
figurations (i.e., the rates at which different components or
nodes are triggered). This requires heavy engineering effort,
which increases the burden of app development. Moreover,
these static settings generalize poorly across scenarios and
over time, which impacts the robot’s performance.

To ease app development and enable better performance,
we build a CPU scheduling framework, Catan, that takes
an app’s semantic requirements as initial inputs from the
developer, and dynamically schedules the app components at
runtime as per the (varying) compute usage and availability.
It is easier for the developer to specify the semantic inputs
needed by Catan (that are based on domain expertise, and
remain unchanged over time and across compute platforms),
as opposed to directly configuring the lower-level system
scheduling knobs (that must be dynamically adapted based
on compute usage and availability). Catan can be plugged
into ROS, and can be provided as an optional service to the
apps using the framework.

Catan’s central function is thus to translate semantic
requirements into dynamic low-level actions. To accomplish
this, we adopt a hierarchical approach, making scheduling
decisions in two stages — first determining the spatial al-
location of CPU cores across app components, and then
determining the temporal allocation of CPU slices and the
rate of executing different app components. We develop
analytical models and heuristics to translate the scheduling
decisions into light-weight constraint-optimization problems,
that Catan solves periodically at runtime to account for
variability in compute usage and availability.

Our evaluation (using ROS implementation for 2D navi-
gation with Stage simulator [5]) shows how scheduling de-
cisions impact the navigating robot’s performance, and how
Catan can achieve the desired semantic trade-offs and better
performance than the default (hand-tuned) configuration,
while effectively handling the variability in compute usage
at different timescales. In particular, using Catan reduces the
number of collisions with dynamic obstacles by 87%, and
reduces the staleness of sensor (odometry) readings used
for generating trajectories by 18-91% when compared to the
default settings for the ROS app. We also evaluated Catan
with other applications — it enables better tracking perfor-
mance for a ROS-based face tracking app, and lowers the
motion-to-photon latency in an extended reality system [6]
(detailed in the long version of our paper [7]). These results
demonstrate that Catan captures semantic requirements and
improves performance over a wide range of applications.

We begin by providing a brief background in §II, followed
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Fig. 1: DAG representing the robot navigation application.
The colors green, purple, blue represent sensor nodes, per-
ception nodes, and planning nodes respectively.

by describing our scheduling approach in §III, before pre-
senting results in §IV. We discuss related work in §V.

II. BACKGROUND

1) Development Frameworks: Software frameworks for
developing robotics applications (e.g. [8], [9], [4], [10],
[11], [12]) allow developers to program each component
of an application individually, and provide communication
APIs among those components. However, such frameworks
(including the most popular ones, ROS [4] and ROS 2 [12])
leave compute resource management entirely up to the
app developers. Developers manually configure the rate at
which different nodes are triggered. CPU scheduling across
nodes is left up to the default OS policies, unless explicitly
configured by the developer. | We design a scheduler for
robotics applications that can be provided as a plug-in feature
for such frameworks, and that can appropriately schedule
the on-device CPU resources across different application
components.

2) DAG Representation: We can represent a robotics
application as a directed acyclic graph (DAG), where each
node (or vertex) represents a computation task and each edge
represents flow of data between tasks. The source nodes in
the DAG (with no incoming edges) represent various sensors
(e.g., camera, LiDAR, IMU, etc.), that continually capture
environmental inputs. The sink nodes (with no outgoing
edges) produce reactions (e.g., actuators). The in-between
nodes are responsible for processing the input streams, e.g.,
by running detection and planning algorithms to determine
appropriate reactions to changes in the environment. We use
the term chain to denote a unique path from a source node to
a sink node along the DAG. A node may belong to multiple
chains. We next present a specific example.

3) Case-study: 2D Navigation: We study 2D navigation
implemented in ROS [13], where the robot is tasked with
exploring and mapping an unknown area. Figure 1 represents
the application’s DAG. It uses two sensors — a laser scanner
(to capture the environment seen by the robot) and an
odometer (which reports speed and location information to
all other nodes). The global localization, mapping and plan-
ning nodes (GL, GM, and GP) are responsible for planning
the robot’s trajectory based on its accumulated knowledge
about the area. The trajectory is planned so as to move
towards unknown areas for exploration. The local mapping
and planning nodes (LM and LP) are responsible for ensuring
that the robot avoids collision with obstacles in its immediate

'We do not know what scheduling knobs and policies are used in closed-
source / proprietary systems, which are heavily engineered nonetheless.

vicinity when following the global trajectory. The DAG
consists of multiple chains from scan and odometry to the
mobile base, that pass through different sets of intermediate
nodes (e.g. {scans - LM — LP — base}, {scans — GL
— NC — LP — base}, etc). We list the specific function
of each processing node below. More details about relevant
algorithms can be found in [14], [15].

(i). The local mapper (LM) uses laser scans and odometry to
update its knowledge about the robot’s immediate vicinity.
(ii). The global localization node (GL) performs two tasks:
(a) for every scan that it receives, it uses particle filtering
(Chapter 8 in [14]) to produce an estimated correction for
the robot’s location (which accounts for potential drifts
in odometry readings), and (b) it then filters the scans,
discarding the ones that carry little new information about the
environment. Unlike other nodes in the app that use the latest
inputs available from their predecessor nodes, GL buffers the
received scans and batch processes them every time it runs.
(iii) The global mapper (GM) maintains a global map of all
the areas that the robot has explored so far. It uses occupancy
grid mapping (Chapter 9 in [14]) to update the map based
on newly filtered scans produced by GL.

(iv) The global planner (GP) computes the global trajectory
based on GM’s map and the robot’s position (derived from
the latest correction from GL and the corresponding odom-
etry reading) using graph search (Chapter 3 in [15]).

(v) Navigation Command (NC) uses the robot’s position,
along with the current trajectory (i.e. GP’s output) to decide
the direction in which the robot should move.

(vi) The local planner (LP) uses the local cost map (that has
information about nearby obstacles) and odometry informa-
tion, along with the command from NC, to output the robot’s
velocity to the actuator (the mobile base).

III. APPROACH

We begin with describing some design considerations for
the CPU scheduler (§III-A), followed by detailing Catan’s
design (§III-B) and implementation (§1II-C).

A. Design Considerations for CPU Scheduler

1) Scheduling dimensions: The CPU scheduler must co-
optimize the following key dimensions.

(i) Spatial Core Allocation. Given a multi-core platform, the
scheduler must determine how the CPU cores are divided
across different components of an app.

(ii) Temporal CPU Allocation. For a core to which multiple
components are assigned, the scheduler must decide how
many CPU slices must be allocated to each of them.

(iii) Execution Rate. For each component, the scheduler must
decide the rate at which it is triggered (or executed).

2) Scheduling granularity: We use the term subchain to
refer to a series of DAG nodes within a chain that runs at the
same rate in an event-driven manner (with the output from
one node triggering the next). Two nodes in a chain would
belong to different subchains if there is value to running them
at different rates. For example, for 2D navigation, it makes
semantic sense for LP to output a new velocity only upon
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every new input from LM that carries updated knowledge of
the robot’s immediate vicinity. Therefore, LP and LM belong
to the same subchain. On the other hand, it is useful to run
GP at a higher rate than GM (which is computationally more
expensive), allowing the global trajectory to be updated based
on updated position estimates from GM. 2

Since all nodes within a subchain must run at the same
rate, a subchain forms the natural granularity at which we can
make the scheduling decisions listed above. The scheduler
actively triggers only the first node in each subchain, and
each of the remaining nodes in the subchain can be event-
triggered when the preceding node produces a new output.

3) Performance metrics: In Catan, the user specifies
semantic requirements — but what is the right level of
granularity for those requirements? More specifically, what
is a practical choice of performance metrics? The highest-
level goal is an application objective like avoiding collisions
or tracking a moving object, but it is difficult for a scheduler
to directly reason about these long-term goals. We therefore
choose to have the user specify DAG-level metrics that the
scheduler can directly optimize. > We use two principal
metrics. Our first metric corresponds to how quickly and
frequently new inputs are processed along a given chain in
the DAG, while the second corresponds to the processing
rate of a given node. We describe these metrics below:
Chain Response Time. It is the worst-case time from the
moment a change occurs in the environment, to the moment
a reaction is produced at the sink of the chain. We define
response time for consecutive pairs of inputs (¢;—; and i)
that are fully processed by the chain to produce new outputs
at the sink (ox_1 and oy respectively). In the worst case, an
environmental change occurs immediately after the source of
the chain captures a previous input i;_; — the system will
not react to the change until the next input i; is captured
and processed by the chain to produce the output 0. Chain
response time is, therefore, the time difference between when
the sink produces a new output o, and when the source
captures the previous input ij_.

For example, a navigating robot’s ability to avoid colli-
sions is correlated with the response time along the chain
‘scans — LM — LP — base’, which captures how quickly
the robot can react to dynamic obstacles in its vicinity.
Node Throughput. It is the rate at which a given node
processes its inputs to produce new outputs. Ensuring that
the latest position estimate is available for generating robot’s
trajectory requires high throughput for the GL node (that
feeds into multiple other nodes) in the navigation app.

4) Semantic preferences and constraints: Having defined
the performance metrics above, we can now describe how
the user specifies semantic requirements in terms of those
metrics. Certain performance metrics are more important
than others. For example, in order to avoid collisions during

2Note that each node belongs to only one subchain.

3We believe these metrics are practical choices as they are understandable
to an application developer, allowing them to express useful domain
knowledge, while still allowing the developer to avoid dealing with low-
level dynamic resource allocation.
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Fig. 2: Variation in the CPU usage over time of two compo-
nents in the navigation application: GP (left) and GL (right).
Experiment setup described in §IV.

navigation, minimizing response time along the local chain
must be given the highest priority, followed by ensuring high
GL throughput (to avoid faulty navigation commands derived
from stale position information), followed by a sufficiently
high throughput for the remaining nodes to minimize explo-
ration time.

An app may further require an upper bound on a chain’s
response time or a lower bound on a node’s through-
put, based on semantic requirements. In addition, a node’s
throughput can be upper bounded by the hardware limits of
the sensors and actuators/display.

5) Variations in Compute Usage and Availability: The
scheduler must dynamically handle the following:

Variation in compute usage over time. We use node com-
putation time to capture the amount of CPU consumed by
a node every time it runs. Computation time of some nodes
may increase over time. For example, as the navigating robot
covers more area, the size of the global map increases, which
increases the time taken by (i) GM to update and generate
the global map, and (ii) GP to plan the robot’s trajectory
based on the map (as shown in Figure 2 (left)).
Input-dependent variability. We observe that the GL node
for robot navigation has a bimodal computation time — for
each laser scan, it either does a quick check and discards
it if there is no new information, or processes the scan to
update the pose correction. For the frames that were fully
processed by GL, we additionally observe occasional spikes
in computation times (as shown in Figure 2 (right)). A closer
analysis revealed that these spikes arise from “loop closure”,
where the robot runs an expensive non-linear optimization
on re-visiting a location [14].

Variation in available compute resources. The amount of
resources available to the application would vary across
different hardware platforms. Even for a given platform, the
amount of available compute resources may change over the
duration of the application run — e.g., as a robot’s battery
starts draining over time, the number or frequency of CPU
cores can be reduced to save power.

B. Catan Design Details

We design Catan, a CPU scheduler for robot application,
based on the above considerations. It provides an interface
for the app developers to specify (i) the DAG structure (nodes
and edges), (ii) grouping of nodes into subchains, (iii) which
metrics must be optimized (i.e., response times of which
chains and throughput of which nodes) and the corresponding
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constraints and weights across these metrics. These inputs
depend on app semantics and remain unchanged across de-
ployment platforms and over time. Catan periodically tracks
the per-node computation times and compute availability, and
adaptively determines the schedule (node execution rates and
CPU allocation), so as to best meet the specified semantic
requirements. It thus eases app development burden by
translating static semantic requirements specified by the app
developers into dynamic low-level system schedule.

We model our scheduling problem in Catan as a con-
strained optimization problem, wherein the objective is a
weighted linear combination of the DAG-level metrics (i.e.,
chain response times and reciprocal of node throughputs).
Catan schedules the app subchains, so as to optimize the
specified objective and meet any specified constraints.*

Catan breaks the scheduling decisions into two stages —
the first stage determines the mapping between subchains
and cores ($III-B.1), and the second stage makes scheduling
decisions at per-core and per-subchain granularity (§III-B.2).
We first outline our approach under the assumption that the
computation time at each node and the number of cores stays
constant, and discuss how we handle variability in §III-B.3.

1) Stage I: Core Allocation: For a DAG with N subchains
on a system with K cores, the first stage of Catan outputs
a boolean matrix of size N x K, where an element a;;
is 1 if subchain ¢ is allowed to execute on core j. Given
the exponential solution space, we add a constraint for
tractability: each subchain either runs alone on one or more
cores or shares a single core with other subchains (i.e., two
or more subchains do not share two or more cores). We also
add a trivial constraint: each subchain should be assigned to
at least one core, and vice versa.

We estimate the period p; of subchain S;, as a function
of a;;. A subchain S;’s period captures its execution rate: .S;
processes a new input every p; time units. We consider two
cases, and make simplifying assumptions in each case for
computational tractability (we relax these assumptions when
making finer-grained decisions in Stage II in §III-B.2):

(i) If multiple subchains share a single core z, we assume
each subchain gets an equal share of CPU. The period of
a subchain S; that is assigned to core x will then be the
sum of computation time of all nodes in S; multiplied by
the number of subchains that are sharing the core x.

(ii) If a subchain S; is assigned k; number of cores (k; >
1), we assume all nodes in S; have the same degree of
parallelism and their compute scales perfectly with it. We
use the analytical formulation described later in §III-B.2 to
compute the period p; from the computation time of each
node in the subchain.

Thus, for a given core allocation a;;, we get approximate
periods p; for each subchain .S;. We next estimate the chain-
level and node-level metrics as a function of p; for each
subchain which, in turn, allows us to estimate the final
objective function as a function of a;;. For a subchain S;

4We allow the constraints to be soft, i.e., if the scheduler cannot meet
them, it prints a warning, and aims to meet a scaled up set of constraints.

Chain Cy: St1 — Si2..Stn, with periods p¢1..pin
Metric

Approximation

Chain Latency
Chain Throughput
Chain Response Time

pt1 + X0 _52 * Dia
1/(mazy_pta)
Latency + 1/Throughput

TABLE I: Approximate formulae for chain-level metrics.

with period p;, the throughput of each node in S; is equal
to the subchain’s throughput, i.e., 1/p;. Table I lists how
we estimate chain-level metrics, for a chain C; comprising
of subchains Sy; — Siz — Si3..Sy,. The average chain
throughput is bottlenecked by its slowest subchain. We
estimate the worst-case chain latency as follows: at each
subchain Sy; in the chain, a new output oy;_1) from the
preceding subchain (Sy(;_1)) might have to wait for a whole
period, (i.e., py;) for Sy; to finish its current execution (except
for at S;; where there’s no waiting time), and it will take
py; time for Sy; to fully process o4(;—1) and produce a new
output. We then estimate chain response time as the sum of
the chain latency and period (reciprocal of throughput).

Using the models above, we formulate a Mixed Integer
Linear Program (MILP) that solves for a;; such that the
specified objective function is optimized.

2) Stage II: Per Core and Per Subchain Scheduling:
Given the subchain to core mappings from our first opti-
mization stage, the next stage makes finer-grained scheduling
decisions for each subchain and core. We consider two cases:
Single subchain on one or more cores. For a subchain S;
comprising of nodes {n;i,n2,...n:m} with k; assigned
cores, the scheduler computes the time period p; of the
source node (n;1) and the degree of parallelism (g;), such
that the response time along the subchain is minimized. The
degree of parallelism indicates the number of cores any node
in the subchain can use in parallel.

The period of the subchain corresponding to a given degree
of parallelism ¢ € [1, k;] is given by:

pi(q) = max(mazi, (cf;), ¥ (cly)/[ki/al) (D)

where ¢ is n;;’s computation time when it uses at most ¢
cores (only a subset may be designed to use all g cores).
Intuitively, the above formula captures that a subchain’s
throughput can either be limited by its slowest node or by
the total amount of available compute resources.

The corresponding response time of the subchain, for a
given g, can be analytically computed as (X7, (¢f;)+pi(q))-
We iterate over all possible values of g € [1, k;] and select
the value ¢; (and the corresponding p;) that results in the
lowest response time for the subchain. This rate allocation
achieves subchain response time within 2x the optimal, and
equal to the optimal if all the nodes in the subchain can only
use a single core (proof omitted for brevity).

Multiple subchains on a single core. For subchains
S1,99...5, assigned the same core, the scheduler must
determine their periods and temporal allocation of CPU
across them. We construct a periodic schedule, and exe-
cute f; fraction of subchain S; in each period, such that
Yy—1(fy * c(Sy)) equals the period of the schedule, where
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c(Sy) is the sum of computation time for all nodes in
Sy. The execution of each (fractional) subchain within a
period follows a configurable ordering. Each subchain will
finish processing one input once every 1/f; periods, i.e.,

pi = w We allow f; to be larger than 1 for
subchains that require optimizing average throughput (e.g.,
GL in robot navigation) >, and constrain 1/ f; to be an integer
for other subchains to allow the scheduler to control the
exact throughputs. We combine the above period formula
with metric estimations given in Table I, and formulate a
Geometric Programming problem to compute the f; and
p; variables such that the specified objective function is
optimized under the specified constraints.

3) Handling Variations: Coarse Grained Variations. We

handle coarse-grained variations over time by continually
recording the computation time across all nodes and tracking
the number of available cores. We re-compute the stage II
scheduling decisions (§III-B.2) periodically using the 95%ile
computation time for each node measured over the previous
50 values in our implementation. We handle multimodal
computation times by taking the weighted sum of 95%ile
computation times across the different modes. We invoke
the more expensive stage I optimization (§III-B.1) less
frequently.
Fine Grained Variability. In spite of periodically adapting the
scheduling decisions, a node may still exceed its expected
(previously measured) computation time. To handle these
situations, the scheduler implements a priority-based stealing
mechanism, wherein if nodes A and B share a core, and B
has lower priority than A, then in each period of the schedule,
the scheduler allocates B’s CPU time to A if the last output
from A was not received at its expected time period. We infer
node priorities from the specified weights, and also provide
the option to specify these as semantic inputs.

C. Implementation Details

We implement Catan scheduler as a ROS node.
Initialization. Catan requires the DAG structure and the
thread ids corresponding to each node, since they are re-
quired to enforce fine grained scheduling. We modify ROS
communication library to expose the ids of all the threads
it uses under-the-hood to handle communication between
nodes.’

Bootstrapping. Catan takes the application DAG and con-
straints/weights as input, and bootstraps the core allocation
by assigning equal compute time to all the nodes and running
the Stage - I solver. Based on the output, Catan spawns a
thread T'Q); for each core j with multiple subchains, and a
thread T'S; for every subchain S; assigned to one or more
cores, to handle the per-core and per-subchain scheduling
respectively. It bootstraps the per-core fractional schedule by

SWe cannot assume a fixed time period of input processing for nodes
that buffer and batch process inputs, and instead consider their average
throughput. Such nodes can either be auto-identified (given support from
framework) or can be explicitly identified by the developer.

%Note that our approach can be generalized to ROS 2 as well, we leave
that to future work.

assigning a fraction of 1 to all subchains. The bootstrapped
configuration lasts only for the first 2s, until actual node
computation times are measured and the solver is invoked.
Lastly, it spawns a dynamic re-optimization thread which
periodically updates the scheduling decisions. All the sched-
uler threads (1'Q); and T'S;) are assigned the SCHED_FIFO
policy with a very high priority of 4, except for the re-
optimization thread which runs with the SCHED_OTHER
policy, so as not to interfere with the application’s execution.
Runtime. At runtime, each scheduler thread 7'S; triggers the
first node of the subchain ¢ at the analytically computed
time period. The threads T'Q); enforce the core j’s periodic
fractional schedule using two mechanisms. First, it triggers
the first node in each subchain s, once every period if
fy > 1, and once every 1/ f, periods otherwise. Secondly, in
each period of the schedule, it assigns SCHED_FIFO policy
with the lowest priority of 1 to all the node threads, and
iteratively bumps up the SCHED _FIFO priority (to 2) of (all
the threads of) each subchain for the computed fraction of
its time within the period 7 As described in §III-B.3, the
controller can enforce priority-based stealing within each
period.

Dynamic Re-optimization. We periodically re-solve for new
optimal scheduling decisions, based on the latest compute
time estimates of all nodes (as discussed in III-B.3). We
implemented both the MILP and GP formulations using the
Mosek Fusion C++ library[16]. It takes our solver 24-26ms
to solve the GP for the navigation application and 5-6ms for
VR. Solving the MILP is more expensive, requiring 60ms for
the navigation DAG for 2 cores. We invoke both the solvers
2s after initialization, and then re-run Stage I every 20s, and
Stage II every 5s. Increasing the time periods can decrease
the overhead of running the solvers. We chose the periods
so as to keep the overhead roughly under 0.05 CPU cores®.

IV. EXPERIMENTS AND RESULTS

We now evaluate how Catan influences the performance
of the 2D navigation app.

A. Experiment Setup

We use Stage [5] to simulate a P3AT robot [17]. The
simulator feeds laser scans and odometry into the navigation
application, which is implemented on top of ROS [13]. The
application feeds the robot’s velocity back into Stage. We
configure the simulator to publish laser scans and odometry
at 50 Hz. We conduct experiments on two maps: (i) Map 1
(Figure 3(left)) requires the robot to move around a dynamic
obstacle at the entrances of a room (this models realistic
scenarios where collisions with dynamic obstacles may occur
at narrow doorways). This map allows us to evaluate the
ability of the robot to avoid collisions with dynamic obstacles
under different configurations. (ii) Map 2 (Figure 3(right))
requires the robot to explore a larger area. We do not

7One could use Linux> SCHED_DEADLINE scheduler to implement
Catan’s scheduling decisions instead of SCHED_FIFO, but we found it to
be too inflexible for handling variations.

8The process of selecting the solver periods can easily be automated based
on this criteria by tracking the solvers’ compute usage.
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Fig. 3: Map 1 (left) and Map 2 (right) used for navigation
experiments. The blue squares represent the obstacles and
the red square represents the robot. The obstacles in Mapl
are dynamic, and move along the two doorways.

Default

1 Core e
Default

= (LC, LP 50Hz) 9

1Core

Catan 3
1 Core

0 10 20 30 40
# Runs with Collisions (in 40 explorations)

Scheduling Policy

Fig. 4: No. of runs with collisions (out of 40) on Mapl.

add any dynamic obstacles to this map, focusing on other
performance metrics. Unless otherwise specified, all nodes
run on a system with one core (it is common for robots to
have single / dual core on-device compute [17]).

Catan Inputs: We provide the following inputs to Catan
(that remain unchanged over time and across scenarios). We
configure Scan — LM — LP as a single subchain, and
configure the remaining nodes as individual subchains that
can run at different rates. We model the objective function as
weighted sum of response times for the different chains in the
navigation DAG, and the average output period for GL. We
assign the highest weight of 1.0 to the response time for the
local chains (involving LM and LP), as they are responsible
for avoiding collisions. We use a weight of 0.5 for GL’s
average output period (to ensure freshness of pose estimates
and odometry for path planning). We assign a small weight
of 0.005 to the response time along the chains that include
the three remaining processing nodes (GM, GP, NC) sourced
at GL (to ensure that these nodes are not starved as the local
chain and GL are prioritized). We also add the following
app specific constraints into our optimization formulation: (i)
GL’s average throughput must be at most 50 Hz, based on
the maximum frequency at which the simulator can publish
laser scans. (ii) GP’s throughput must be at most 1Hz.

B. Results

1) Comparison with manually-tuned configuration: We
compare the performance of Catan with the default con-
figuration that was manually-tuned by the developer of the
navigation app [13]. In line with the interface currently
exposed by ROS, the default configuration only specifies
the execution rate of each node (set to SHz for LM, 10Hz
for LP, 0.2Hz for GM, upto 1Hz for GP, 10Hz for NC).
It uses Linux’ default scheduling policy SCHED_OTHER
(Completely Fair Scheduler [18]) that shares CPU time
equally among all nodes.

650
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Fig. 5: Tail odometry staleness at NC on Map2 (median over
20 runs).

Map1 Results. Figure 4 compares the number of experiments
runs (out of 40) in which the robot collides with an obstacle.
With the default configuration (which runs the LC and LP at
low rates of SHz and 10Hz), more than 50% runs suffer from
collisions. Increasing the rate of LM and LP nodes to 50 Hz
reduces the number of collisions to 9. With a high weight
assigned to response time along the local chain, Catan is able
to run the local chain at an even higher rate (125 - 170Hz),
reducing the number of collisions to only 3. This highlights
the impact of scheduling decisions on a robot’s performance.
Map?2 Results. Figure 5 shows the staleness of odometry
used for generating navigation command. We capture this by
recording the time difference between an odometry reading
and when the corresponding pose is used by NC. For each
experiment run, we aggregate the staleness values collected
over time buckets of 5s by computing the 95%ile values.
For each 5s bucket, we report the median of these values
across 20 runs. We find that, in general, Catan has lower
odometry staleness than the default policy. When GL’s
compute usage spikes up (especially during loop closures)
and as the compute load increases over time (due to increased
CPU usage for GM and GP), Catan is able to explicitly
prioritize GL over GM and GP due to its periodic adaptation
and priority-based stealing. We isolate the impact of priority-
based stealing by disabling it for GL (results shown with the
pink line in Figure 5). Disabling priority-based stealing in-
creases staleness, as the the scheduler cannot handle sudden
spikes in GL due to loop closure.

The above results show how Catan performs better than
the default configuration with respect to avoiding collisions
and ensuring freshness of odometry readings. Improvements
in these more critical metrics come at the cost of a small
reduction in the area exploration rate — the time taken to
explore 90% of the area increases by 10.9%, as GM is
allocated smaller amount of resources in Catan than in the
default scheme®. Thus, Catan achieves the desired trade-offs,
as per the configured weights and priorities.

2) Adapting to temporal variations: We next highlight
the importance of updating scheduling decisions over time,
as resource usage changes. We extend the navigation DAG
by adding another chain that runs an object detector on

9We omit the comparison of low-level metrics for brevity, but Catan is
able to achieve better response time for all chains.
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Fig. 6: Left: YOLO chain output period (reciprocal of throughput) on a 1 core system. Center: Tail odometry staleness at
NC on a 1 core system. Right: YOLO chain output period on a 2 core system. All the numbers are based on aggregating

20 runs on Map 2.

camera images as the robot moves around (this is represen-
tative of robotic tasks, such as ObjectGoal [19]). The chain
comprises of an image pre-processing node and a YOLO
object detection node [20]'°. To model realistic timings in
the simulated environment, we feed images from a real image
dataset [22] to the object detection node. We augment our
objective function for Catan to include response time along
this chain as another metric with a very low weight of 0.0005.
We desire the objects to be detected in real time at a high
rate (i.e., high YOLO chain’s output period), but that should
not come at the cost of not being able to navigate well (i.e.,
low odometry staleness at NC).

We run this extended navigation application on a system
with one core. We conduct experiments on Map2 and com-
pare Catan with two baselines that use a static configuration
(that is not updated over time): (i) Static-FullRun that uses
the same optimization problem as Catan based on the tail
computation time for each node over an entire experiment
run on Map?2 using a single core. It computes the schedule
once, and does not re-solve it periodically. Note that since
computation times of GM and GP nodes increase as the run
progresses, this scheme would use a schedule derived from
over-estimated computation time towards the beginning of
the run. (ii) Static-20s is similar to Static-Full, but uses tail
computation times of each node over the first 20s of the run.
This scheme uses a schedule derived from an under-estimated
computation time in the later half of the run.

Figure 6 (left) shows the average output period for the
YOLO chain (as a measure of reciprocal of its throughput)
over time — lower is better. To aggregate data across 20
runs, we first take the average period (measured as the
time gap between two consecutive outputs from the YOLO
chain) over 10s buckets for each run, and then plot the
median of these average values for each bucket. We find that
Static-FullRun, which overestimates the computation time of
navigation nodes in the first half of the run, assigns a low rate
to the YOLO chain (resulting in high output period in the
first half). Static-20s, which underestimates the computation
of navigation nodes, assigns a high rate to YOLO — as we

10While YOLO execution is usually GPU based, we don’t run it on GPU
since we focus on CPU scheduling. We leave CPU/GPU co-scheduling [21]
to future work.

discuss next, this comes at the cost of worse performance
on a more critical metric. Catan, with its dynamic re-solving
assigns a high rate (low period) to YOLO at the beginning
of the run, and then gradually decreases the rate (increases
the period) over time.

Figure 6 (center) shows the odometry staleness at NC
across the three schemes. While Static-FullRun and Catan
both perform similarly on this metric, Static-20s exhibits
higher staleness towards the second half of the run. By
using under-estimated computation times for the second half,
Static-20s mis-allocates resources, giving a smaller share of
CPU time to GL, GM, and GP, and a more than necessary
amount of CPU resources to the local chain nodes, NC, and
YOLO. This reduces the effective throughput of GL (in spite
of priority-based stealing) and increases odometry staleness.

All three schemes performed similarly in terms of the area
exploration rate and with respect to avoiding collisions on
Mapl, and so we omit detailed results.

3) Adapting to change in resource availability: Our ex-
periments so far used a single core. We next ran the ex-
tended navigation application (with the YOLO chain) on
Map2, on a system with two cores, to evaluate how well
Catan auto-scales. As baselines, we configured the system
to use the same node execution rates as those computed by
the two baselines above (i.e., Static-FullRun and Static-20s
with static schedules derived from node computation times
on Map2 on one core), relying on default Linux policies
to schedule the nodes across two cores. Figure 6 (right)
compares the median of average output period for the YOLO
chain over time across Catan and the two baselines on 2
cores. We find that Catan is able to make efficient use of
the extra core — it dynamically allocates the core to just the
local chain in the first half, and the local chain and GP in the
second half. It is, thus, able to run YOLO at a higher rate
(and lower output period) than other static baselines that do
not increase the execution rates.

V. RELATED WORK

DAG abstraction is common across other systems, in-
cluding real-time (e.g. [23], [24], [25], [26], [27], [28],
[29]), sensor nodes (e.g. [30], [31]), and distributed stream
processing and dataflow systems (e.g. [32], [33]). Robot
systems are distinct from these. As we show in §III-A, the
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compute usage in robot systems exhibits a high degree of
variability over time — an aspect that conventional real-time
systems (based on fixed periodicity) do not handle, including

[8]
[9]
(10]

[11]
those that consider robotics applications [28], [29], [27].
Compared to traditional sensor nodes, robot systems have [12]
higher processing complexity and variability, which empha-
sizes the importance of proper CPU scheduling. Distributed  [13]
stream-processing systems focus on cluster-wide resource
management to handle an incoming stream of queries. We [14]
instead focus on CPU scheduling within a single computer
on a robot, that runs a single long-running app — such a  [15]
system differs in its scheduling knobs and requirements. (16]
Lutac et al. highlight the scalability limits of ROS, as
compared to an Erlang-based framework [34]. Another line  [17]
of work focuses on reducing the inter-node communication (18]
latency in ROS/ROS 2 [35], [36]. ROS 2 supports using real
time OS such as PREEMPT_RT, which makes the kernel  [19]
fully preemptible. These efforts are orthogonal our work, and
look at complementary aspects of robot systems.
[20]
VI. CONCLUSION
. 21
In this work, we develop Catan, a scheduler to manage (21]
on-device CPU resources for robotics applications. Catan
provides a high-level interface for app developers to specify -
their requirements without worrying about low-level system [22]
configuration knobs. Our evaluation, using 2D navigation
as a case-study shows (i) Scheduling decisions impact a  [23]
robot’s performance (e.g., its ability to avoid collisions,
the freshness of sensor data that it reacts to). (ii) It is  [24]
important to adapt scheduling decisions over time — Catan
is able to do so by dynamically re-solving the schedule. (iii) (25]
It is important to adapt to sudden fine-grained variability
in resource usage — Catan is able to do so via priority 2
based stealing. Catan therefore lowers the barrier (in terms [26]
of systems expertise and engineering effort) for developing  [27]
high-performance robotics apps, and could enable achieving
higher performance on resource-constrained platforms. (28]
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