
Artificial Intelligence 317 (2023) 103864

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Risk-aware analysis for interpretations of probabilistic 

achievement and maintenance commitments✩

Qi Zhang a,∗, Edmund H. Durfee b, Satinder Singh b

a University of South Carolina, United States of America
b University of Michigan, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 January 2022
Received in revised form 16 January 2023
Accepted 21 January 2023
Available online 26 January 2023

Keywords:

Probabilistic commitment
Cooperative multiagent planning
Planning under uncertainty
Achievement commitment
Maintenance commitment

Probabilistic commitments provide a computational framework for multi-agent coordina-
tion, where one autonomous agent (the commitment provider), commits to a future course 
of action that probabilistically influences the local state of another agent (the commitment 
recipient) in ways that the recipient desires. Conventionally, a probabilistic commitment is 
specified abstractly so as to give the provider latitude at run time about how to achieve 
it. Unfortunately, as we analyze in this article, this abstraction incurs a risk of subop-
timal performance for the recipient. For (achievement) commitments by the provider to 
achieve conditions that the recipient prefers but that do not initially hold, we prove that 
the recipient can make modeling choices that bound its risk of suboptimality. Somewhat 
surprisingly, however, for (maintenance) commitments by the provider to maintain condi-
tions whose initial values are already ones the recipient prefers, we prove that no such 
bounds on suboptimality risk are possible. We study the two types of commitments em-
pirically to measure the suboptimality they incur under different conditions, and based on 
our theoretical and empirical results suggest that adding selective details when specifying 
probabilistic maintenance commitments can be beneficial.

 2023 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

A cooperative artificial intelligence (AI) system involves multiple autonomous agents collectively accomplishing shared 
tasks, with examples including drone delivery systems, household robots, and smart manufacturing lines. Successful cooper-
ation generally requires coordination among agents, because an individual agent’s actions might not yield desired outcomes 
unless others also act in concert. While the most efficient coordination can be best achieved by a centralized decision maker 
that directly controls all agents, in many interesting settings the agents are physically distributed, sensing and communica-
tion are limited, and centralization introduces vulnerabilities and computational bottlenecks. Thus, we focus on multiagent 
systems where each individual agent needs to make its own decisions based on its local information and on judiciously-
chosen information communicated by others.
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Inspired by how people coordinate in many settings, one important form of information agents can exchange is that of a 
commitment, which refers to an agent making credible and prolonged promises about various aspects of the consequences 
of its future actions, addressing the coordination problem in a principled manner. For example, consider the scenario of 
multiple cars navigating through an intersection. While there is a large amount of information that each car could share 
(e.g., the status of its battery and fuel supply, its maintenance history, how alert its driver is, its driver’s level of impatience, 
its destination and deadline for arriving there, etc.), what is most germane for intersection safety is that other cars know 
which road out of the intersection it intends to take. Thus, turn signals can be viewed as credible commitments that other 
cars can use to anticipate the consequences of their own actions, and hence cars can coordinate their actions to move 
through an intersection more safely and efficiently by each choosing which turn signals to and not to activate.

In this article, we specifically focus on the two-agent scenario, where the agent that makes a commitment (e.g., signals 
its intended turn) is referred to as the commitment provider, and the other agent that uses the commitment to improve its 
own plans (e.g., avoid a collision) as the commitment recipient. In a general sense, a commitment is an abstraction of the 
provider’s future behavior, summarizing the most important (to the recipient) effects the provider’s future actions will have 
on the recipient’s environment, and hence on the recipient’s decisions.

When stochasticity is inherent in the environment, the provider cannot always firmly guarantee to bring about particular 
outcomes, and in fact could discover after committing that its plan to pursue those outcomes is more costly or risky than it 
had previously realized. Under such circumstances, commitments are conditional [1]. While in principle the provider could 
enumerate and include in the specification to the recipient the conditions upon which meeting the commitment’s outcomes 
are predicated, in practice this is not generally sensible: even if the provider can afford the expense of enumerating and 
communicating them, the recipient will generally be unable to observe them, much less predict ahead of time how likely 
they are to hold. Therefore, a provider in such settings should instead provide a probabilistic commitment, using its local 
model to arrive at a summary probability of the necessary conditions holding for the outcomes to be realized.

1.2. Contributions

Prior work has focused on semantics and mechanisms for the provider to follow to faithfully pursue its commitments 
despite uncertainty [2–5]. That work held that a probabilistic commitment should be considered fulfilled if the provider’s 
actions would have brought about the desired outcome by the promised time with at least the promised probability, even 
if in a particular instance the desired outcome was not realized. In this vein, the focus was largely on the provider’s pursuit 
of achievement commitments [6–9], where the provider commits to changing some features of the state in a way desired by 
the recipient with some probability by some time. For example, the recipient plans to take an action (e.g., move from one 
room to another) with a precondition (e.g., the door separating rooms is open) that the provider has promised to likely en-
able by some deadline. In this article, we also consider another form of commitment, a maintenance commitment, where the 
provider instead commits to a course of action that, up until a promised time, is sufficiently unlikely to change features that 
are already the way the recipient wants them maintained. After that time, the provider can freely change the features. For 
example, a door the recipient wants open might initially be so, but the provider wants to close it to clean behind it during 
housekeeping tasks. The provider could postpone closing it (clean elsewhere first), but by changing other doors while clean-
ing elsewhere it might accidentally introduce a draft that could prematurely close the door the recipient wants left open.

Even though decision-theoretic formulations of, and reasoning methods for, achievement and maintenance commitments 
are nearly identical, prior work has found it much harder to successfully coordinate for maintenance than achievement 
[10–12]. That is, maintenance commitments have appeared to be riskier to trust. In the past, it has been assumed that the 
difficulty lies on the provider’s side—that it might be inherently harder for a provider to find good policies that maintain 
a feature than to change it. However, in this article we claim and justify that instead the challenge actually lies on the 
recipient’s side. Although a commitment abstracts the provider’s behavior to summarize information about the timing and 
likelihood of the key effects, such abstraction is intentionally incomplete, omitting details that leave the recipient with 
residual uncertainty. Our core claim is that it is fundamentally harder for the recipient to manage the risk associated with 
the residual uncertainty in a maintenance commitment than in an achievement commitment. Specifically, here we study the 
type of abstraction where the probabilistic commitment specifies the provider’s behavior at a single time step, which is 
a widely-adopted abstraction because with it computationally efficient solutions for choosing optimal commitments exist 
[13,14], and it gives a provider that is learning aspects of its local world model during execution more latitude for improving 
its behavior based on what it learns, as illustrated in Section 2.2 and more comprehensively investigated in [9,15,16].

We substantiate our core claim both theoretically and empirically. We theoretically frame the recipient’s problem of risk-
aware interpretation of an achievement or maintenance commitment as a robust planning problem against the incomplete 
information about the provider’s impacts on the environment specified in the commitment. We then begin by analyzing a 
straightforward strategy to deal with such incomplete information, adopted in previous work, where the recipient minimizes 
risk by modeling an achievement commitment pessimistically—it assumes the feature will not (probabilistically) attain its 
desired value any earlier than the commitment’s promised time. We show analytically that the worst-case suboptimality 
induced by such pessimism can be bounded fairly tightly. For the maintenance counterpart, however, we show that adopt-
ing the same form of pessimistic model fails to bound the risked suboptimality. We advance our theoretical analysis by 
motivating several alternative interpretation strategies that attempt to bound risk, yet for maintenance the suboptimality 
induced by any of the strategies remains effectively unbounded. We then empirically measure the realized suboptimality 
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for the alternative interpretation strategies in various settings, and the results show that there is no choice of risk-aware 
interpretation strategy the recipient can adopt for maintenance commitments that reliably limits the suboptimality of co-
ordination with the provider. Our results suggest that successful maintenance commitments will generally require that the 
provider’s and recipient’s plans be more tightly coupled than for achievement commitments, intentionally sacrificing some 
of the provider’s autonomy in order to reduce the recipient’s risk.

1.3. Related work

Others have adopted alternative frameworks, such as conditional commitments [17,18] and contracting frameworks [19], 
for managing uncertainty when a commitment is being pursued. In this vein, there has been substantial work for developing 
protocols for agents who are modeling and communicating about commitments. The focus is on the lifecycle of a commit-
ment [20–22], from its initial proposed creation, to the mutual agreement to adopt it, to determining whether it has been 
fulfilled, to whether it is time to abandon it or replace it with a better commitment. Over the lifecycle, it is important that 
interacting agents engage in a communication protocol that ensures their beliefs about the status of a shared commitment 
are aligned. In our work, we adopt the probabilistic commitment framework to study both achievement and maintenance 
commitments, and focus just on the “detached” stage of the commitment lifecycle where an agreed-upon commitment is 
being actively pursued, and the pursuit requires a sequence of actions, where some might not have desired outcomes, or an 
agent’s priorities could change in the midst of executing the sequence.1

The probabilistic commitment framework [6,13,25] summarizes the likelihood the commitment will be successfully dis-
charged by a given time, versus violated due to bad luck or a better option appearing. Probabilities let a decision-theoretic 
recipient optimally hedge for violations while waiting for the provider. Existing work in probabilistic commitments mostly 
focuses on the provider’s side, e.g., developing semantics and planning methods for the provider to faithfully fulfill its 
commitment despite inherent uncertainty in its environment [16], yet largely overlooks the recipient’s risk in modeling a 
commitment that only partially specifies the provider’s behavior. We close this loop in this article by systematically study-
ing how the recipient should robustly plan to manage the risk associated with modeling a probabilistic achievement or 
maintenance commitment.

While we discuss the notions of achievement and maintenance in multi-agent systems under the framework of proba-
bilistic commitment, there has been other work characterizing achievement and maintenance in alternative frameworks for 
intelligent agent systems absent multi-agent commitments, primarily based on the Belief-Desire-Intention (BDI) model that 
categorizes goals for an agent into achievement ones and maintenance ones. Kaminka et al. [26] models teamwork in agents 
using the BDI model, and, similar to our work, notice that teamwork models focus much more on achievement goals than 
maintenance goals. They implement mechanisms for collaborative maintenance in two teamwork architectures for situated 
agent teams on top of Soar [27] and BITE [28]. Baral et al. [29] reveal the limitations of earlier characterizations of main-
tenance using the notion of stabilizability [30,31], and propose an improved characterization where the agent is situated in 
an adversarial environment. Duff [32] notices that existing agent systems for maintenance are mostly reactive, and discusses 
methods for proactive maintenance where the agent acts before a maintenance condition is violated. Our research similarly 
focuses on proactivity in the sense that a commitment provider chooses actions that are sufficiently unlikely to violate a 
maintenance commitment over the committed timeframe.

As will be detailed in Section 2, we adopt a subclass of Dec-POMDPs [33], Transition-Decoupled POMDPs (TD-POMDPs) 
[34], to formulate and analyze the interaction between the provider, the recipient, and their environment, where the com-
mitment is specifying the transition dependence between the two agents. We note here that the framework of commitment 
can be generalized into other Dec-POMDP subclasses that characterize other forms of inter-agent dependence. For exam-
ple, Becker et al. [35] considered a form of reward independence that couples multiple agents. In another formulation of 
transition dependence, Varakantham et al. [36] use the so-called task state values to characterize their weak inter-agent 
transition dependence. Varakantham et al. mainly discuss the two task state values: Done and NotDone, which translate 
to our binary values of the commitment feature as will be detailed in Section 2, but they did not discuss the distinction 
between achievement and maintenance as in this work. The commitments in this work are formulated for the inter-agent 
(transition) dependence in TD-POMDPs, and incorporating commitments into other types of DEC-(PO)MDPs would similarly 
need them to have inter-agent dependence. Our two agents exist in a common MDP but each has its own local MDP and 
reward, where the reward structure is analogous to that in stochastic games [37] where agents have their own reward 
functions to model the general self-interested case. In our setting, commitments are motivated when the two agents are 
cooperative to maximize their joint reward, or even in some non-cooperative cases (e.g., if side payments are possible in 
the environment). Our analysis focuses only on the recipient’s local performance and therefore applies to both cooperative 
and non-cooperative cases, as long as the agents (for whatever reason) have agreed on a commitment.

1 A common example used to illustrate the commitment lifecycle is the purchase of a good such as a book [23,24]. When a buyer accepts a seller’s offer 
to sell the book, the commitment becomes active, and then when the seller’s antecedent conditions are met (e.g., payment has been made and a shipping 
address provided by the buyer), the commitment enters the “detached” stage. Within this stage, the seller pursues the commitment by taking multiple 
steps involving the book, such as retrieving it from a warehouse, packaging it, handing it off for shipment, transporting it, and delivering it to the address. 
If all of the steps are successful, the commitment transitions to a satisfied state, and otherwise to a violated state. Hence, it is during the “detached” stage 
that decisions are made about how/whether the active commitment will be met, and the focus of this article is on reasoning about these decisions.
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2. Preliminaries

In this section, we begin by describing the decision-theoretic setting we adopt for analyzing probabilistic commitments 
for the recipient and the provider, including both achievement commitments and maintenance commitments.

The recipient’s environment is modeled as a Markov Decision Process (MDP) defined by the tuple M = (S, A, P , R, H, s0)
where S is the finite state space, A is the finite action space, P : S × A → �(S) (�(S) denotes the set of all probability 
distributions over S) is the transition function, R : S → R is the reward function, H is the finite horizon, and s0 is the initial 
state. The state features are explicitly augmented with the time step, such that the state space is partitioned into disjoint 
sets by the time step, S =

⋃H
h=0 Sh , where states at time step h in Sh only transition to states at time step h + 1 in Sh+1 . 

The MDP starts in s0 and terminates in SH . Given a policy π : S →A and starting in the initial state, a random sequence of 
transitions {(sh, ah, rh+1, sh+1)}

H−1
h=0 is generated by ah = π(sh), sh+1 ∼ P (sh, ah), rh+1 = R(sh+1). The value function of policy 

π is V π
M(s) = E[

∑H
h′=h+1 rh′ |π , sh = s] where h is such that s ∈ Sh . The optimal policy for M , denoted as π∗

M , maximizes V π
M

for all s ∈ S , and its value function V
π∗
M

M is abbreviated as V ∗
M . The value of the initial state is abbreviated as vπ

M = V π
M(s0).

Similarly, the provider’s environment is modeled as another MDP with a finite state space, a finite action space, and 
a finite horizon. As one way to model the interaction between the provider and the recipient, we adopt the Transition-
Decoupled POMDP (TD-POMDP) framework [34] where both the recipient’s state and the provider’s state can be factored 
into state features. The recipient’s state is factored as s = (l, u), where l is the set of all the recipient’s state features locally 
controlled by the recipient, and u is the set of state features shared with the provider. The provider’s state features, including 
u, are all locally controlled by the provider. The provider and the recipient are weakly coupled in the sense that the shared 
state features u are only controllable by the provider. (For example, u could be features associated with the status of a door 
that the recipient wants open but can only be opened/closed by the provider.)

Formally, the dynamics of the recipient’s state can be factored as

P (sh+1|sh,ah) =P
(
(lh+1,uh+1)|(lh,uh),ah

)

=Pu(uh+1|uh)P l

(
lh+1|(lh,uh),ah

)
.

We refer to Pu as the true influence that the provider exerts on the recipient’s environment dynamics [34,38,39], which is 
the transition function of u that is fully determined by the provider’s policy (it is not a function of ah ).

2.1. Commitment semantics

A commitment is concerned with state features u that are shared by both agents but only controllable by the provider. 
Intuitively, a commitment provides partial information about Pu from which the recipient can plan accordingly. For sim-
plicity in this article, we focus on the setting where the set u contains a single, binary state feature. In a slight abuse 
of notation, we henceforth refer to this feature as u, where binary value u+ , as opposed to u− , is the value of u that is 
desirable for the recipient. Intuitively, u+ (u−) stands for an enabled (disabled) precondition needed by the recipient. We 
will refer to u as the commitment feature. Further, we assume that u can be toggled at most once [40,8,9]. In transactional 
settings (e.g., [41,42]), a feature changing only once is common, as it is in multiagent planning domains where one agent 
enables a precondition needed by an action of another. Some cooperative agent work requires agents to return changed fea-
tures to prior values, and in extreme cases where toggling reliably repeats there may be no need for explicit commitments. 
While, in general, toggling more than once can be modeled by a series of alternating achievement and maintenance com-
mitments, the fundamental differences between these commitment types are most readily revealed and understood without 
such complications, and so in what follows we consider the two types separately.

2.1.1. Achievement commitments

Let the initial state be factored as s0 = (l0, u0). For achievement commitments, the initial value of the commitment 
feature is u− , i.e. u0 = u− . The provider commits to pursuing a course of action that can bring about the commitment 
feature value desirable to the recipient with some lower bound on probability. Formally, an achievement commitment is 
defined by tuple ca = (Ta, pa), where Ta is the achievement commitment time, and pa is the achievement commitment 
probability [8,9]. The commitment semantics is that the provider is to follow a policy that sets u to u+ by time step Ta
with at least probability pa , i.e.

Pr(uTa = u+|u0 = u−) ≥ pa. (1)

When planning with the achievement commitment, the provider finds an optimal policy (one that maximizes its local value) 
that respects the commitment’s semantics. A straightforward way of doing so adopted in prior work solves the provider’s 
planning problem using linear programming (LP) [43], where the commitment semantics are captured simply by adding 
the above inequality as an additional constraint to the LP [13,44]. Specifically, the provider’s planning problem can be 
solved with the linear program in Equation (2) [13], where (sp, ap) denotes the provider’s state-action pair; Rp(sp, ap) and 
Pp(sp, ap) are the provider’s reward and transition function, respectively; decision variable xp is the provider’s occupancy 
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measure (where xp(sp, ap) is the expected number of times action ap will be taken in state sp); δi, j is the Kronecker delta 
which is 1 if variables i and j are equal, and 0 otherwise; constraints (2b)(2c) guarantee that xp is a valid occupancy 
measure; and constraint (2d) expresses the semantics of the achievement commitment from Equation (1), noting that, since 
the state features are explicitly augmented with the time step and therefore each state is never re-visited, the occupancy 
measures can be viewed as probability measures, as similarly treated in prior work [43,45].

max
xp

∑

sp,ap

xp(sp,ap)Rp(sp,ap) (2a)

s.t. ∀sp,ap xp(sp,ap) ≥ 0; (2b)

∀sp′ ∑
ap′ xp(sp′,ap′) =

∑
sp,ap x

p(sp,ap)Pp(sp′|sp,ap) + δsp′,s
p
0
; (2c)

∑
s
p
Ta

: u+∈s
p
Ta

∑
ap x

p(s
p
Ta

,ap) ≥ pa for achievement ca = (Ta, pa) (2d)

or
∑

s
p
Tm

: u+∈s
p
Tm

∑
ap x

p(s
p
Ta

,ap) ≥ pm for maintenance cm = (Tm, pm) (2e)

2.1.2. Maintenance commitments

As a reminder, a maintenance commitment is appropriate in scenarios where the initial value of state feature u is 
desirable to the recipient, who wants it to maintain its initial value for some interval of time (e.g., [40,46]), but where 
the provider might want to take actions that could change it. Formally, a maintenance commitment is defined by tuple 
cm = (Tm, pm), where Tm is the maintenance commitment time, and pm is the maintenance commitment probability. Given 
such a maintenance commitment, the provider is constrained to follow a policy that keeps u unchanged for the first Tm time 
steps with at least probability pm . Since u can be toggled at most once, this is equivalent to probabilistically guaranteeing 
that u is still u+ at the commitment time Tm , i.e.

Pr(uTm = u0|u0 = u+) ≥ pm. (3)

As with an achievement commitment, the provider with a maintenance commitment finds a policy that optimizes its local 
value while respecting the commitment semantics, again by including the commitment constraint in its LP. Specifically, 
in the LP of Equation (2), one only needs to replace constraint (2d) with constraint (2e) that expresses the semantics 
in Equation (3) for the maintenance commitment. Hence, from the provider’s perspective, achievement and maintenance 
commitments are treated essentially identically.

2.2. Exploiting abstraction in the commitment specification

As we have seen, the commitment specification and semantics constrain the provider’s policy based on a single future 
time step: at that time step, the value of u will (still) be u+ with at least the promised probability. By abstracting away 
the probabilities at intervening (and subsequent) time steps, the commitment specification allows the provider to retain 
flexibility to revise its policy on the fly as it learns more about its environment.

Our prior work has shown the value to the provider of retaining such flexibility [9,15,16], and because the rest of this 
article focuses on challenges the recipient faces due to the abstraction in the commitment specification, we here briefly 
illustrate its benefits to the provider using the classic partially-observable MDP problem known as RockSample [47]. In a 
RockSample(n, s) problem instance, a rover agent is tasked to explore an unknown environment of an n × n grid containing 
s rocks, as shown in Fig. 1 for (n = 2, s = 2) and (n = 4, s = 4). Some rocks are of type good; the others are of type bad. 
The type of each rock has a uniformly random prior, and the rover can make noisy sensor observations detecting the rock 
type. The task is to determine which rocks are valuable, approach and take samples of valuable rocks, and exit the map 
as soon as possible. Our prior work [16] adapts the original problem such that the rover commits to exit the map by a 
predefined time Ta horizon with a certain probability pa; that is, the rover can be viewed as an achievement commitment 
provider with u+ denoting that it has exited.

If the rover knew exactly which rocks were valuable, it could at the outset formulate an optimal policy to follow from 
beginning to end, where it could not only meet its commitment but could also predict if and when it might in fact exit the 
map earlier than the committed time. However, its uncertainty about which rocks are valuable prevents this. Formulating a 
comprehensive policy that accounts for all possible combinations of rock valuations and sensor observations is intractable in 
all but the simplest settings, so instead the rover should iteratively modify its policy over the course of execution based on 
what it has learned about its environment so far [16]. Since the rover has provided a probabilistic commitment for a time 
by which it will exit, its modifications must always respect the commitment, but even so the rover can flexibly re-optimize 
its trajectory, including whether and when to exit earlier than the commitment time, based on its evolving knowledge of 
its environment.

A consequence of such flexibility is that a commitment provider (in this case, the rover) in general might not know, at 
the time when it and the recipient agree on the commitment, what exact policy it will ultimately follow, and thus what 
true influence Pu it will exert on the recipient’s environment. The only information both agents know with certainty about 
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Fig. 1. Left: RockSample(2,2). Right: RockSample(4,4).

Pu at the outset is the commitment specification, and that the probability will change monotonically (due to u toggling at 
most once). Therefore, to plan its policy, the recipient must interpret the abstract commitment by fleshing out the rest of 
the influence in some way, into an approximation of the true influence.

2.3. The approximate influence

We notate the approximate influence that the recipient uses for its planning as P̂u . Because u toggles at most once, 
any (true or approximate) influence Pu is fully specified as a vector of probabilities for each time h = 0, ..., H . We thus 
denote the value at time step h as Pu[h]. Fig. 2 illustrates two influences for an achievement commitment in Fig. 2a and 
two influences for a maintenance commitment in Fig. 2b. The gray area in each of the figures represents the admissible 
time-probability combinations based on the commitment semantics (Equation (1) for achievement and Equation (3) for 
maintenance). Any monotonically non-decreasing (non-increasing) function, for achievement (maintenance), falling entirely 
within the gray area is an admissible (commitment-respecting) influence, where again two examples of the many possible 
such influences are drawn.

In principle, the recipient could approximate the provider’s influence with any admissible influence, but we are specifi-
cally interested in how the recipient can adopt an approximate influence P̂u that, in expectation, maximizes the quality of 
its plan when evaluated in (true) influence Pu . Formally, given P̂u , let M̂ = (S, A, ̂P , R, H, s0) be the approximate model 
that only differs from M in terms of the dynamics of u, i.e. P̂ = (P l, ̂Pu). The quality of P̂u is evaluated using the difference 
between the value of the optimal policy for M̂ and the value of the optimal policy for M when both policies are evaluated2

in M starting in s0 , i.e.

Suboptimality( P̂u; Pu) = V ∗
M(s0) − V

π∗
M̂

M (s0) = v∗
M − v

π∗
M̂

M .

Because Pu is entirely determined (perhaps iteratively) by the provider, the recipient should limit its risk of miscoordi-
nation by adopting a strategy for formulating an approximate influence P̂u[·] that robustly induces low suboptimality for 
any admissible Pu given the commitment. This problem of risk-aware interpretation of the commitment is the focus of the rest 
of this article.

2.4. Summary

In this section, we have shown that, from the provider’s perspective, achievement and maintenance commitments are 
treated essentially identically. Further, from the recipient’s perspective, the notions of approximate influence and subopti-
mality also identically apply to the two types of commitment. Even though decision-theoretic formulations of, and reasoning 
methods for, achievement and maintenance commitments are nearly identical, prior work has found it much harder to suc-
cessfully coordinate for maintenance than achievement [10–12]. In the past, it has been assumed that the difficulty lies 
on the provider’s side—that it might be inherently harder for a provider to find good policies that maintain a feature than 
to change it. However, in the remainder of this article, we show that the challenge instead actually lies on the recipient’s 
side: that a maintenance commitment is fundamentally harder for the recipient to interpret robustly to bound risk than an 
achievement commitment is. We now substantiate this claim theoretically in Section 3 and empirically in Section 4.

3. Bounds on interpretation suboptimality

In this section, we develop several interpretation strategies for the recipient to approximate the true influence, and 
present theoretical analyses that bound the worst-case suboptimality of some of these strategies, and prove no such bounds 

2 Note that when the support of Pu is not fully contained in the support of P̂u , the recipient’s policy π∗

M̂
can associate zero occupancy (hence plan no 

action) for certain states when executed in M , which makes V
π∗
M̂

M ill-defined. In this work, we resolve this by re-planning: during the execution of π∗

M̂
in 

M , the recipient re-plans from any zero occupancy state that it happens to reach.
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Fig. 2. Example admissible true influences for an achievement commitment and a maintenance commitment. Because time is discrete, these are step func-
tions. As indicated using the solid lines for the values of the functions, the probability takes the higher value at a “step” for the achievement commitment, 
and the lower value of a “step” for the maintenance commitment.

exist for the others. As stated earlier, to analyze each type of commitment separately, we need to ensure that only one 
commitment can hold between the agents. For that reason, as explained in Section 2.1, we assume that u can toggle at 
most once, since toggling more than once implies more than one commitment. Concretely, if u = u− initially and can toggle 
to u+ and then back to u−, the recipient wants a commitment by the provider to achieve u+ and also a commitment to 
maintaining u+ long enough for the recipient to make use of it. Alternatively, if u = u+ initially and can toggle to u− and 
back to u+ , the recipient wants commitments both about maintaining u+ initially and about re-achieving it in case the 
maintenance did not last long enough.

Assuming at most a single toggling, however, is not enough, because even so it is still possible that multiple commit-
ments can be required if the recipient’s preferred value of u can change. That is, if the recipient sometimes prefers u = u−

to u = u+ , and (by definition) also sometimes prefers u = u+ to u = u− , then even with a single toggling it could want both 
a commitment that the initial value be maintained for some period of time, and also a commitment that the other value 
be achieved by some later time. To ensure that this cannot happen requires the following two assumptions, one about the 
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reward function (that reward for a reachable state with u = u− is never higher than for the same state with u+), and one 
about the transition function (that the recipient will never prefer u = u− over u = u+ because it causes some actions to 
reach preferable outcomes).

Assumption 1. For the recipient’s reward function R , we assume

R(s,a) = R(s) = R((l,u)) and R((l,u+)) ≥ R((l,u−))

for all (s, a) and l.

Again, in words, this assumption ensures multiple preferences for the value of u cannot occur due to the reward function 
because there is no state the recipient can reach where its reward will be higher if u = u− than if u = u+ . This assumption 
is, for example, trivially met in domains where the reward function is designed to only consider the state features l that the 
recipient can actually control, as well as in domains where the reward function can be factored as R((l, u)) = R(l) + R(u).

Assumption 2. Let s− = (l, u−) and s+ = (l, u+) be a pair of states that only differ in u. For any M with arbitrary influence 
Pu , there exists an optimal policy π∗

M such that

P l

(
·|s−,π∗

M(s−)
)
= P l

(
·|s+,π∗

M(s−)
)
.

Again, in words, this assumption avoids different preferences for u due to the recipient’s transition function by requiring 
that any action in its optimal policy assuming u = u− has identical dynamics even if u = u+ instead. Note that if this 
assumption does not hold, then u+ and u− could induce different dynamics (make different states more or less likely to be 
reached), and thus the recipient could sometimes prefer that u = u− while executing its policy.

As a simple example of a domain where this assumption holds, consider an indoor robot whose only actions move it 
around its environment, and there is a door that can be open u+ or closed u− . If it believes that the door is closed, the 
robot’s optimal policy will only include actions that move it between locations in whichever room it begins in. Note though 
that none of these actions are actually affected by the status of the door, and so the policy will behave identically even if 
the door is open.

Note further that the assumption can also hold even when u = u− is in fact a precondition to the success of some 
actions in the domain, as long as those actions are not in the optimal policy for the specific problem instance. Continuing 
the example, it could be that the door being closed improves the success for some actions (e.g., preventing the dog from 
sleeping on the bed), but the assumption still holds if such actions are not included in the policy over the finite time 
horizon H .

To derive bounds on achievement and maintenance commitments, we will make use of the following lemma, where M+

(M−) is defined as the recipient’s MDP identical to M except that u is always set to u+ (u−). Lemma 1 directly follows from 
Assumption 2, stating that the value of M− is no more than that of M+ and the value of any M is between the two.

Lemma 1. For any M with arbitrary influence Pu and initial value of u, we have v∗
M− ≤ v∗

M ≤ v∗
M+ .

Proof. Let’s first consider the case in which Pu toggles u only at a single time step. We show v∗
M− ≤ v∗

M by constructing 
a policy in M for which the value is at least v∗

M− by executing π∗
M− . Whether u is initially u− and later toggled to u+ or 

vice versa, we can construct a policy πM that chooses the same actions as π∗
M− assuming u = u− throughout the episode. 

Formally, for any s− = (l, u−), letting s+ = (l, u+),

πM(s+) = πM(s−) = π∗
M−(s−).

By Assumption 2, πM in M yields the same distribution over the trajectory of l as π∗
M− in M− , and therefore vπM

M ≥ v∗
M−

by Assumption 1.
Similarly, we show v∗

M ≤ v∗
M+ by constructing a policy πM+ in M+ for which the value is at least v∗

M by executing 
π∗

M . Formally, for time steps when u = u− in M , let πM+ (s+) = π∗
M(s−). For time steps when u = u+ in M , let πM+ (s+) =

π∗
M(s+), where s− = (l, u−), s+ = (l, u+).
When Pu is such that the single toggling of u could occur at any of K > 1 time steps, we can decompose the value 

function for Pu as the weighted average of K value functions corresponding to the K influences that toggle u at a single 
time step, and the weights of the average are the toggling probabilities of Pu at these K time steps. �

3.1. Minimal enablement duration

We begin by analyzing an intuitive and straightforward interpretation strategy that has been adopted in previous work 
[34,9] to create approximate influences for achievement commitments. The strategy models the influence with a single 
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transition, at the commitment time, where u− probabilistically toggles to u+ . Approximating the influence as toggling to 
u+ at the latest possible time ignores the possibilities of being enabled earlier than the deadline and of being enabled 
serendipitously after the deadline. We say that such an approximate influence interprets the achievement commitment 
pessimistically, in the sense that it tries to reduce the risk of prematurely expecting the condition to hold by minimizing the 
expected duration of u being enabled over all admissible influences (Equation (1)):

min
Pu∼ (1)

EPu

[∑H
t=0 1{ut=u+}

]

where Pu ∼ (1) means influence Pu satisfies Equation (1), and 1E is the indicator function that takes value one if event 
E occurs and zero otherwise. We refer to this minimizing approximation as the minimal enablement duration influence, as 
formalized in Definition 1 and illustrated in Fig. 3a.

Definition 1. Given achievement commitment ca = (Ta, pa), its minimal enablement duration influence P̂min+
u (ca) toggles u

in the transition from time step t = Ta − 1 to t = Ta with probability pa , and does not toggle u at any other time step.

For maintenance commitments, the counterpart approximation minimizes the expected enablement duration over all 
influences that respect the maintenance commitment semantics (Equation (3)):

min
Pu∼ (3)

EPu

[∑H
t=0 1{ut=u+}

]
.

This minimizing approximation thus models a probabilistic toggling to u− at the earliest possible time, and a deterministic 
toggling to u− (if it had not toggled earlier) after the commitment time, as formalized in Definition 2 and illustrated in 
Fig. 3b.

Definition 2. Given maintenance commitment cm = (Tm, pm), its minimal enablement duration influence P̂min+
u (cm) toggles 

u in the transition from time step t = 0 to t = 1 with probability 1 − pm , and (unless already toggled) from t = Tm to 
t = Tm + 1 with probability one. It does not toggle u at any other time step.

3.2. Bounding suboptimality for achievement commitments

Suboptimality in the recipient’s performance given the provider’s actual behavior with respect to a commitment can 
arise from two sources: (1) when the recipient poorly approximates the provider’s true influence on u as the provider 
pursues the promised commitment; and/or (2) when the provider actually pursues a better commitment than what was 
promised, in which case the recipient likely acts suboptimally to the better commitment because it is unaware of it. For our 
analyses of interpretation strategies for how the recipient chooses to approximate commitment influences, we focus only on 
suboptimality due to the first reason. To ensure that suboptimality due to the provider exceeding what was promised in the 
commitment cannot arise, we introduce Assumption 3.

Assumption 3. Pu[uTa ] = pa and Pu[uTm ] = pm for probabilistic achievement and maintenance commitments, respectively. 
Further, uh = uTa for h ≥ Ta and uh = u− for h > Tm for probabilistic achievement and maintenance commitments, respec-
tively.

In words, the assumption is that the provider’s actual influence does not exceed the probabilities for achievement or 
maintenance promised in the commitment, and that it will not achieve (toggle from u− to u+) or maintain (prevent tog-
gling from u+ to u−) later than the time promised in the commitment. With this assumption, note that Pu will behave 
identically to the minimal-enablement-duration approximate influence (and, per Fig. 3, the other approximate influences 
we will consider) after the commitment time, meaning that suboptimality only arises due to the approximation up to the 
commitment time.

We should emphasize that Assumption 3 actually typically holds in domains where commitments are useful as a coor-
dination strategy. Commitments are useful if, without a commitment, the provider would not otherwise choose to incur the 
costs of achieving/maintaining u+ . Given these costs, therefore, a rational provider will never choose to pursue u+ harder 
(seek a higher probability of success) or longer than promised. Moreover, if the provider’s MDP is such that, to meet the 
commitment, it cannot help but attain a probability higher than pa (pm) or achieve u+ later (maintain u+ longer) than Ta
(Tm), then the agents would have adopted the better commitment in the first place. For example, elsewhere we have proven 
that the recipient’s value is monotonically non-decreasing as a function of the achievement probability [14].

With Assumption 3 in place, we can now prove Lemma 2 which states that, for achievement commitments, the possible 
ways the true influence differs from the minimal enablement duration approximation can only improve the expected value.

Lemma 2. Given achievement commitment ca = (Ta, pa), let P̂u = P̂min+
u (ca), then we have v

π∗
M̂

M ≥ v
π∗
M̂

M̂
where influence Pu in M

respects the commitment semantics of ca .

9
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Fig. 3. Minimal enablement duration influences are depicted for an achievement and a maintenance commitment, along with other heuristic strategies 
described in Section 3.4.

Proof. For achievement commitments, the initial value of u is u− . Let Pu[t] be the probability that u is not enabled to u+

until time step t in influence Pu , and vπ
t be the initial state’s value under π when u is enabled from u− to u+ at t with 

probability one. By Assumption 3, v
π∗
M̂

M and v
π∗
M̂

M̂
can be decomposed as

v
π∗
M̂

M =
∑Ta

t=1 Pu[t]v
π∗
M̂

t + (1 − pa)v
π∗
M̂

M− ,

v
π∗
M̂

M̂
= pav

π∗
M̂

Ta
+ (1− pa)v

π∗
M̂

M− .

When u is enabled at t in M , π∗

M̂
can be executed as if u is not enabled, by Assumption 2, yielding identical trajectory 

distribution of l and therefore no less value by Assumption 1 as in M̂ . Further, the recipient’s re-planning at t when u = u+

will derive a better policy if possible. Therefore, the value of executing π∗

M̂
in M is no less than that in M̂ , i.e. v

π∗
M̂

t ≥ v
π∗
M̂

Ta
. 

Therefore,
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Fig. 4. 1D Walk. Top: Example in the proof of Theorem 1. Bottom: Example in the proof of Theorem 2.

v
π∗
M̂

M =
∑Ta

t=1 Pu[t]v
π∗
M̂

t + (1− pa)v
π∗
M̂

M−

≥
∑Ta

t=1 Pu[t]v
π∗
M̂

Ta
+ (1− pa)v

π∗
M̂

M−

≥pav
π∗
M̂

Ta
+ (1 − pa)v

π∗
M̂

M− (commitment semantics)

=v
π∗
M̂

M̂
. �

Finally, with Assumptions 2 and 3, and Lemma 2, we derive Theorem 1 that bounds the suboptimality of the approximate 
influence based on the minimal enablement duration strategy, when applied to achievement commitments, as the difference 
between v∗

M− and v∗
M+ .

Theorem 1. Given achievement commitment ca , let ̂Pu = P̂min+
u (ca). The suboptimality can be bounded as

v∗
M − v

π∗
M̂

M ≤ v∗
M+ − v∗

M− (4)

where influence Pu in M respects the commitment semantics of ca . Further, there exists an achievement commitment for which the 
equality is attained.

Proof. The derivation of the bound in Equation (4) is straightforward from Lemma 2:

v∗
M − v

π∗
M̂

M ≤ v∗
M+ − v

π∗
M̂

M̂
≤ v∗

M+ − v∗
M− .

Next, to prove that the bound is tight, we use a simple illustrative example as an existence proof of an achievement 
commitment for which the equality is attained.

Example: An Achievement Commitment in 1D Walk. Consider the example of a 1D walk of L locations on [0, L −1], as shown 
in Fig. 4(top), where the recipient starts at L0 and can move right, left, or stay still. There is a gate between 0 and 1 for 
which u+ denotes the state of open and u− closed. The provider toggles the gate stochastically according to Pu . For each 
time step the recipient is at neither end, it gets a reward of −1. Hence, the optimal policy is to reach either end as soon as 
possible in expectation. Note that the reward function makes Assumptions 1 and 2 hold.

Here, we derive an achievement commitment for which the bound in Theorem 1 is attained. Consider L = 10, L0 = 3, H =

10, achievement commitment (Ta = L − 1 − L0 = 6, pa = 1), and the true influence Pu in M that toggles the gate to open at 
t = L0−1 = 2 with probability pa = 1. The optimal policy in M is to move left to 0. Therefore, v∗

M = v∗
M+ = −L0 = −3. Given 

the minimal enablement duration influence, moving right to L (arriving at time L −1 − L0 = 6) is faster than waiting for the 
gate to toggle at Ta = 6 and then reaching location 0 at time Ta + 1 = 7. Had the recipient known the gate would toggle at 
time t = L0 − 1 = 2, it would have moved left, but by the time the gate toggles the recipient is at location L0 + L0 − 1 = 5, 

and continuing on to L is the faster choice. Therefore, v
π∗
M̂

M = v∗
M− = −(L − 1 − L0) = −6, and the bound in Theorem 1 is 

attained. �

3.3. Failing to bound suboptimality for maintenance commitments

We next ask if the bound in Equation (4) on suboptimality in achievement commitments also holds for maintenance 
commitments. Unfortunately, as stated in Theorem 2, the optimal policy of the minimal enablement duration influence for 
maintenance commitments can be arbitrarily bad when evaluated in the true influence, incurring a suboptimality exceeding 
the bound in Equation (4). We give an example for an existence proof.

Theorem 2. Consider P̂u = P̂min+
u (cm) to be the approximate influence when modeling the maintenance commitment in M̂. There 

exists an MDP M and a maintenance commitment cm , such that the true influence Pu in M respects the commitment semantics of cm , 

v∗
M = v∗

M+ , v
π∗
M̂

M < v∗
M− , and therefore the suboptimality
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v∗
M − v

π∗
M̂

M > v∗
M+ − v∗

M− (5)

exceeds the bound in Equation (4).

Proof. As an existence proof, we give an example of a maintenance commitment in 1D Walk for which v∗
M = v∗

M+ and 

v
π∗
M̂

M < v∗
M− . Consider 1D Walk with the same L = 10, L0 = 3, H = 10 as in the example for Theorem 1. Consider maintenance 

commitment (Tm = L0 + 1 = 4, pm = 0+) where we use pm = 0+ to denote an infinitesimally small positive probability (i.e., 
very close to 0 yet strictly larger than 0), and Pu toggles the gate to closed at Tm = 4 with probability 1 − pm . As shown in 
Fig. 4(bottom), the optimal policy should take L0 steps to move directly to 0, and since probability 1 − pm approaches one, 
for the policy’s value approaches v∗

M = v∗
M+ . Meanwhile, the optimal policy assuming the gate is closed is to simply move 

right, so v∗
M− = −(L − 1 − L0) = 6 (which is the same as we computed for Theorem 1 since L and L0 are the same in both 

examples).
The optimal policy with the minimal enablement duration approximation is as follows. Because it models that with near 

certainty the gate will close at time step 1, the first move is to the right. Then, it observes that the gate did not close. 
With pm = 0+ , the policy includes a branch for this unlikely but possible situation, and the approximate influence models 
the dynamics in this case to be that the gate is expected to be open until Tm + 1 = 5, at which point it will be shut with 
certainty. Since the agent can just barely get through the gate by then, the policy directs it to move left. However, with the 
true influence the gate is almost surely closed at Tm = 4, just when the agent would have moved through it. At that point, 
re-planning occurs (since the policy did not model the possibility of the gate being closed at time 4), and the optimal policy 

is to move right. Thus, v
π∗
M̂

M
∼= −H = −10 < v∗

M− , where the approximate equality (∼=) accounts for the extremely unlikely 
case of the gate remaining untoggled with probability pm = 0+ . �

In the example used in the preceding existence proof, the maximum suboptimality is incurred with maintenance com-
mitment probability pm = 0 (a no-guarantee commitment), because this is when the recipient is most uncertain about the 
influence and will be most negatively affected by the uncertainty. Note that for achievement, a no-guarantee commitment 
still falls within the Theorem 1 bound.

Comparing the bound Equation (4) in Theorem 1 with the bound Equation (5) in Theorem 2 reveals a fundamental dif-
ference between achievement and maintenance commitments: maintenance commitments are inherently less tolerant to an 
unexpected change in the commitment feature. For achievement commitments, the easily-constructed minimal enablement 
duration influence has the property of being pessimistic, in that any unexpected changes to the feature, if they impact the 
recipient at all, can only improve the expected value. Thus, if despite its minimal enablement duration influence approxima-
tion, a recipient has chosen to follow a policy that exploits the commitment, it never risks experiencing a true admissible 
influence that would lead it to regret having done so. The same cannot be said for maintenance commitments. There, the easily-
constructed minimal enablement duration influence is not pessimistic—it does not guarantee that any deviations from the 
influence can only improve the expected value. As our theoretical results show, the minimal enablement duration influence 
assuming toggling from u+ to u− right away still risks negative surprises, since if the toggling does not immediately occur 
the influence suggests that it is safe to assume no toggling until Tm , but that is not true since toggling could happen sooner, 
after the recipient has incurred cost for a policy that would need to be abandoned. In the example for Theorem 2, the worst 
time for toggling to u− is not right away, but right before the precondition would be used, where the gate shuts just as the 
recipient is about to pass through it, and now the recipient needs to go all the way to the other end.

3.4. Alternative influence approximations

There are of course many other candidate approximations that are just as legitimate as the minimal enablement du-
ration strategy, in terms of obeying the commitment semantics. Visually, this equates to staying within the “gray” region 
depicted in Fig. 3 and being monotonically non-decreasing (non-increasing) for achievement (maintenance) commitments. 
Two obvious alternative candidate approximations, also shown in that figure, are described next.

Maximal enablement duration As opposed to the minimal enablement duration strategy, the maximal enablement duration 
strategy optimistically toggles u right after the initial time step for achievement commitments, and at the commitment time 
for maintenance commitments, as shown in Fig. 3. Formally, given achievement commitment ca = (Ta, pa), the maximal 
enable duration strategy, denoted as P̂max+

u [·], chooses the influence P̂max+
u (ca) that toggles u in the transition from time 

step t = 0 to t = 1 with probability pa , and does not toggle u at any other time step; given maintenance commitment 
cm = (Tm, pm), the maximal enablement duration strategy chooses the influence P̂max+

u (cm) that toggles u in the transition 
from time step t = Tm − 1 to t = Tm with probability 1 − pm , and (unless already toggled) from t = Tm to t = Tm + 1 with 
probability one. It does not toggle u at any other time step.

Constant toggling The constant toggling strategy, denoted as P̂ const
u [·], chooses the influence P̂ const

u (c), for either an achieve-
ment or a maintenance commitment c, that linearly interpolates between the probability of u+ at time t = 0 and the 
commitment time. That is, it toggles u at every time step up to the commitment time with a constant probability, and 
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the probability is chosen such that the overall probability of toggling by the commitment time matches the commitment 
probability. The influence P̂ const

u (c) agrees with the minimal enablement duration influence after the commitment time. This 
strategy is also depicted in Fig. 3.

While the preceding alternative approximation strategies make sense as complements to the minimal enablement du-
ration strategy, they are not formulated so as to directly address the shortcomings of the minimal enablement duration 
strategy for maintenance commitments illustrated in the proof of Theorem 2. As shown in that proof, sometimes the worst 
time for toggling does not correspond to either the minimal or maximal enablement duration. Instead, it is when the recip-
ient has invested effort in a plan that will utilize the u+ precondition, and is just about to use that precondition when the 
condition toggles (e.g., the gate closes just before it is to be passed through).

The following strategies therefore try to be even more pessimistic by trying to find the worst possible toggling time, and 
build the approximate influence accordingly. That is, like the minimal and maximal enablement duration strategies, they 
model toggling at a single time step and agree with Assumption 3 thereafter. We denote the set of such influences as P1

u (c)

for either an achievement or a maintenance commitment c.

Minimal value timing The approximate influence based on the minimal value timing strategy, denoted as P̂minV
u [·], chooses 

the influence from P1
u (c) that has the minimal optimal value. Formally, for either an achievement or a maintenance com-

mitment c, its minimal value timing influence P̂minV
u (c) is argmin P̂u∈P1

u (c) v
∗

M̂
where P̂u is the influence in M̂ . Thus, to find 

P̂minV
u (c), the recipient builds approximate influences that toggle for every time up to the commitment time, computes the 

value of its optimal policy for each of these candidate approximate influences, and adopts the approximate influence with 
the worst value. (Note that the first and last of these approximations correspond to the minimal and maximal enablement 
duration approximations, where which is minimal and which is maximal depends on the commitment type.)

Minimax regret timing The minimax regret timing strategy P̂minimax
u [·] chooses an influence from P1

u (c) based on the min-

imax regret principle. Formally, for either an achievement or a maintenance commitment c, its minimax regret timing 
influence P̂minimax

u (c) is

argmin P̂u∈P1
u (c) maxPu∈P1

u (c) v
∗
M − v

π∗
M̂

M

where Pu, ̂Pu are the influences in M, ̂M , respectively. The straightforward algorithmic realization of this strategy is to once 
again build an approximation for each time up to the commitment time and compute an optimal policy based on the 
approximation, but then to evaluate that policy against the toggling happening at all of the possible times (again up to the 
commitment time), and choosing the approximation that minimizes the maximum regret (how badly the approximation’s 
optimal policy performs compared to how well the policy optimal for that toggling time can perform, in the worst case).

We have therefore described a total of five influence approximation strategies: minimal enablement duration, maximal 
enablement duration, constant toggling, minimal value timing, and minimax regret timing. Recall that our overarching ob-
jective is to find one (or more) strategies that the recipient can use to bound the degree of suboptimality that it risks 
due to uncertainty about the true influence. A secondary objective is that the strategy be computationally inexpensive, in 
computing the approximation and/or in computing a policy based on the approximation. Of the five strategies, the maximal 
enablement duration strategy, while computationally inexpensive to compute and use, seems intuitively unlikely to help 
the recipient avoid suboptimal decisions, since it would often lead to the recipient being overoptimistic in the provider’s 
behavior. On the other hand, the minimal duration strategy as initially motivated is pessimistic, as well as computationally 
inexpensive. The minimal value timing and the minimax regret timing strategies are considerably more computationally ex-
pensive, but because they explicitly search for the worst case based on their respective criteria, the hope would be that they 
support the overarching objective of bounding suboptimality, especially in the case of maintenance commitments where the 
simple minimal enablement duration strategy fell short. Finally, the constant toggling strategy occupies a middle ground 
computationally: it is inexpensive to compute the approximation, but the recipient must compute substantially more trajec-
tories than for the other strategies where toggling only happens once before the commitment time. In its favor is that, by 
modeling possible toggling at each possible time, it can avoid the problem that arose for the minimal enablement duration 
strategy for maintenance commitments (seen in the proof of Theorem 2) where, if the toggling did not occur right at the 
outset, the recipient did not model toggling as even being possible before the commitment time.

Unfortunately, despite the intuitions above, Theorem 3 proves that, while the minimal value timing influence coincides 
with the minimal enablement duration for achievement and thus enjoys the same suboptimality bound as in Equation (4), 
the bound does not hold for any of the other alternative strategies in either achievement or maintenance.

Theorem 3. For an achievement commitment ca , the minimal value timing influence coincides with the minimal enablement duration, 
i.e. P̂minV

u (ca) = P̂min+
u (ca), and thus the bound in Equation (4) holds for P̂minV

u (ca). Except for this, the bound does not hold, i.e. 
for P̂u ∈ { P̂max+

u (ca), P̂ const
u (ca), P̂minimax

u (ca), P̂max+
u (cm), P̂ const

u (cm), P̂minV
u (cm), P̂minimax

u (cm)}, there exists an MDP M, and an 
achievement or maintenance commitment, such that the true influence Pu in M respects the commitment semantics of c ∈ {cm, ca}, 
and the suboptimality
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Table 1

1D Walk examples for Theorem 3. We use pm = 0+ to denote that pm > 0 is an infinites-
imally small positive probability.

Achievement Maintenance

Min Enablement The bound in Eq. (4) holds L = 10, L0 = 3, rleft = 0
Tm = 4, pm = 0+

v∗
M+ − v∗

M− = −3− (−6) = 3

Pu ∈ P1
u,c toggles at t =3

Suboptimality = 8.8

Max Enablement L = 10, L0 = 6, rleft = 7
Ta = 4, pa = 0.9
v∗
M+ − v∗

M− = 1− (−3) = 4

Pu ∈ P1
u,c toggles at t =3

Suboptimality = 4.7

L = 10, L0 = 3, rleft = 0
Tm = 3, pm = 0+

v∗
M+ − v∗

M− = −3− (−6) = 3

Pu ∈ P1
u,c toggles at t =1

Suboptimality = 4− 0+

Constant Toggling L = 10, L0 = 3, rleft = 0
Ta = 7, pa = 0.9
v∗
M+ − v∗

M− = −3− (−6) = 3

Pu ∈ P1
u,c toggles at t =6

Suboptimality = 4.0

L = 10, L0 = 3, rleft = 0
Tm = 7, pm = 0.1
v∗
M+ − v∗

M− = −3− (−6) = 3

Pu ∈ P1
u,c toggles at t =1

Suboptimality = 3.3

Min Value The bound in Eq. (4) holds L = 10, L0 = 3, rleft = 9
Tm = 7, pm = 0.3
v∗
M+ − v∗

M− = 6− (−6) = 12

Pu ∈ P1
u,c toggles at t =5

Suboptimality = 14.9

Minimax Regret L = 10, L0 = 6, rleft = 7
Ta = 5, pa = 1.0
v∗
M+ − v∗

M− = 1− (−3) = 4

Pu ∈ P1
u,c toggles at t =4

Suboptimality = 5.8

L = 10, L0 = 3, rleft = 0
Tm = 4, pm = 0+

v∗
M+ − v∗

M− = −3− (−6) = 3

Pu ∈ P1
u,c toggles at t =3

Suboptimality = 8.8

v∗
M − v

π∗
M̂

M > v∗
M+ − v∗

M−

exceeds the bound in Equation (4).

Proof. We first show that the minimal value timing influence coincides with the minimal enablement duration for achieve-
ment commitments, i.e. P̂minV

u (ca) = P̂min+
u (ca). Consider achievement commitment ca = (Ta, pa), and P̂u, ̂P ′

u ∈ P1
u (ca) that 

toggles u at T and T ′ respectively with T ′ < T ≤ Ta . We can construct a recipient’s policy for the earlier toggling P̂ ′
u that 

mimics the optimal policy for P̂u , and hence the optimal value for T ′ is at least that for T , i.e. v∗

M̂
≤ v∗

M̂′ where P̂u and 

P̂ ′
u are the influences in M̂ and M̂ ′ , respectively. Specifically, let π∗

M̂
be the optimal policy for P̂u and π∗

M̂
(·|s) be the ac-

tion probability distribution of π∗

M̂
in state s. For the earlier toggling time T ′ < T , we construct a policy πT ′ that mimics 

π∗

M̂
: it chooses actions as if u = u− until T . Formally, for time steps t < T , πT ′(·|s−) = π∗

M̂
(·|s−) for any state s− = (l, u−)

in which u = u− , and πT ′ (·|s+) = π∗

M̂
(·|s−) where s+ = (l, u+) and s− = (l, u−) only differ in u; for time steps t ≥ T , 

πT ′ (·|sr) = π∗

M̂
(·|sr). Because πT ′ and π∗

M̂
yield the same trajectories of l and the reward only depends on l, they achieve 

the same value, and therefore v∗

M̂
≤ v∗

M̂′ . Because the values are monotonically non-increasing with time, the minimal value 
timing strategy chooses either the same (last admissible) toggling time as the minimal enablement duration strategy, or an 
earlier time than that that gives the recipient no relative benefit.

We now prove that the bound does not hold for the other strategies. As an existence proof, Table 1 summarizes examples 
for which the bound in Equation (4) does not hold for P̂u ∈ { P̂max+

u (ca), P̂ const
u (ca), P̂minimax

u (ca), P̂max+
u (cm), P̂ const

u (cm), 
P̂minV
u (cm), P̂minimax

u (cm) }. All the examples are in the 1D Walk domain with fixed L = 10, H = 20. Besides the −1 reward for 
every time step until reaching either end, the recipient also gets a one-time reward rleft when reaching the left end, which 
is an integer chosen from interval [0, 10]. We compute the suboptimality for a commitment c, achievement or maintenance, 
with initial location L0 chosen from {1, 2, 3, ..., 8}, commitment time chosen from {1, 2, ..., H} and commitment probability 
chosen from {0+, 0.1, 0.2, ..., 1}, with the provider’s true influence Pu chosen from P1

u (c). For all possible combinations of 
rleft , c, L0 , and Pu , the corresponding suboptimality is evaluated, and Table 1 reports combinations for which the bound in 
Equation (4) does not hold. �

The analysis used for the proof above purposely chooses the provider’s true influence from P1
u (c) in an adversarial 

manner (from the recipient’s perspective). One might thus question whether such influences contrived for the proof could 
actually realistically arise. We answer this question by asserting that a rational provider that maximizes its value can indeed 
induce such an influence in P1

u (c) for any given commitment c, as formally stated in Theorem 4.
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Theorem 4. For any commitment c, achievement or maintenance, and any influence Pu ∈P1
u (c), there exists an MDP for the provider 

such that the optimal policy induces influence Pu .

Proof. For achievement commitment c = ca = (Ta, pa) and influence Pu ∈P1
u (ca) that toggles at time step T ≤ Ta , consider 

1D Walk of Ta + 1 locations on [0, Ta] as the provider’s MDP, where the provider starts at location 0. The provider gets a 
reward of +1 for each time step at location Ta , and a reward of 0 everywhere else. For each time step at location T , the 
provider toggles the value of u from u− to u+ with probability pa . Obviously, the provider’s optimal policy is to move to 
and then stay at location Ta , which induces influence Pu .

Similarly, for maintenance commitment c = cm = (Tm, pm) and influence Pu ∈ P1
u (cm) that toggles at time step T ≤ Tm , 

consider the same 1D Walk of Tm + 1 locations as the provider’s MDP, except that the provider toggles the value of u from 
u+ to u− with probability 1 − pm at location T . The provider’s optimal policy remains the same, which induces influence 
Pu . �

3.5. Summary

As a brief summary, in this section we have developed several interpretation strategies for the recipient to create the 
approximate influence, and theoretically analyzed their worst-case suboptimalities for both achievement and maintenance 
commitments. Our theoretical results show that there exists a strategy, minimal enablement duration, such that its worst-
case suboptimality is reasonably bounded for achievement commitments. However, such a guarantee does not hold for 
maintenance commitments for any of the strategies we have considered. This not only includes the counterpart minimal 
enablement duration strategy but also the strategies that are purposely developed using insights about worst-case timing 
of the toggling, as well as the constant toggling strategy that models the toggling at every time step. While we cannot 
assert with certainty that a bounded strategy does not exist for maintenance commitments, we have shown that strategies 
specifically developed to account for the shortcomings of others nonetheless can still induce the worst-case unbounded 
suboptimality, and for this reason believe that no such bounded strategy exists.

4. Empirical study

In Section 3, we motivated and developed several strategies for the recipient to use to create its approximate influence 
for a given (achievement or maintenance) commitment, and analyzed their worst-case suboptimalities. Specifically, we for-
mulated MDPs for the recipient in the 1D Walk domain, commitments between the agents, and true influences for the 
provider that respect the commitment semantics, that together maximize the suboptimality induced by the approximate 
influences. We showed that, for achievement, the worst-case suboptimality of the minimal enablement duration influence 
(or equivalently the minimal value timing influence) strategy can be bounded fairly tightly, while for maintenance the 
worst-case suboptimality of every approximate influence strategy that we could devise is effectively unbounded.

In this section, we conduct empirical evaluations of the suboptimality induced by the approximate influence strategies 
in settings that were not specifically designed to realize the worst case. In Section 4.1, we measure suboptimality for 
general (achievement or maintenance) commitments in the 1D Walk domain, sweeping through the possible combinations 
of commitment times and probabilities. In Section 4.2, we narrow the investigation specifically to combinations that agents 
would be most likely to adopt because they either maximize the provider’s or the recipient’s local commitment value, or 
maximize the joint commitment value.

Our experiments are designed to supplement the theoretical analyses by measuring the suboptimality of the alternative 
influence approximations. To our knowledge, there really are no other approaches to approximating a commitment’s influ-
ence, and therefore no benchmarks for us to compare with. Note that, although there are indeed other formulations/methods 
for coordinating dependent agents that could be applied to the problems studied in the empirical section, this work is not 
about comparing the effectiveness of commitment-based coordination to other methods, but rather it is asking how to 
model commitments well assuming that a commitment-based coordination approach is being employed.

4.1. Suboptimality for general commitments

Here, we measure the suboptimality of the interpretation strategies developed in Section 3 for a general achievement 
commitment ca = (Ta, pa) or maintenance commitment cm = (Tm, pm) in the 1D Walk domain, where the commitment time 
Ta, Tm ∈ {1, 2, ..., H} can be any time step up to the horizon and the commitment probability pa, pm ∈ { i

n
}n
i=0 is chosen from 

the interval [0, 1] evenly discretized with n = 10. For a given (achievement or maintenance) commitment c, we measure the 
suboptimality with respect to all the influences in P1

u (c) as the provider’s true influence. The parameters for the 1D Walk 
domain are the same as the example for Theorem 1 except that the horizon is longer, L = 10, L0 = 3, H = 20.

Fig. 5 shows the mean, minimum, and maximum suboptimality over all realizations of the provider’s true influence 
Pu ∈ P1

u for commitment time Ta, Tm ∈ {1, 5, 10, 15}. We see that for achievement commitments, the minimal enablement 
duration (or equivalently the minimal value timing) influence incurs the lowest suboptimality. The more expensive mini-
max regret timing influence has comparable suboptimality. The other two, maximal enablement duration and the constant 
toggling influences, incur the most suboptimality overall. For maintenance commitments, the minimal enablement duration 
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and the minimax regret influences incur the most suboptimality overall, and, among the other three approximate influences, 
it is difficult to identify a single best influence that reliably reduces the suboptimality for all the maintenance commitments. 
The maximal enablement duration strategy has the lowest mean suboptimality overall, yet the maximum suboptimality it 
induces over admissible true influences can be quite high especially when the probability of toggling (1 − pm) is close to 
one. On the other hand, the constant toggling strategy incurs higher mean suboptimality than the maximal enablement 
duration, yet its maximum suboptimality is consistently lower. The suboptimality of the minimum value timing strategy is 
the median among the five.

For both achievement and maintenance commitments, higher suboptimality tends to be induced with a larger commit-
ment time and a larger probability of toggling (i.e., larger pa for toggling from u− to u+ for achievement commitments, 
and larger (1 − pm) for toggling from u+ to u− for maintenance commitments). This is because the recipient has more un-
certainty about the provider’s true influence when both the commitment time and probability of toggling are larger. (Note 
that, to make comparing easier, the x-axes of the graphs go from lower to higher probability of toggling, which again are 
pa and (1 − pm) for achievement and maintenance commitments, respectively.)

In the extreme, as shown in Figs. 5a and 5b, for commitment time Ta = Tm = 1 the recipient has no uncertainty about 
the toggling time, and hence the suboptimality is zero given that the provider’s true influence Pu ∈ P1

u must match the 
one consistent with the commitment probability. Similarly, for any commitment time, when the probability of toggling is 
pa = (1 − pm) = 0, the suboptimality is also zero since the recipient’s approximate influence must match the provider’s true 
influence in the sense that there is no toggling in either of the two influences.

The same reasoning explains why the largest suboptimality occurs at pa = 1 − pm = 1. Intuitively, uncertainty (hence 
potential suboptimality) is larger when the “gray” area between t = 0 and the commitment time is larger in Figs. 2 and 3, 
which is when the commitment time is later and/or the toggling probability is larger.

4.2. Suboptimality for value maximizer commitments

In Section 4.1, we measured the suboptimality that is induced by general commitments across a spectrum of commitment 
times and probabilities. This is informative over the space of possible commitments, but of course some commitments are 
less likely to induce useful cooperation (e.g., achievement commitments with very low probabilities and/or very late times) 
than others. We now complement those results by looking more directly at suboptimality for commitments that are more 
likely to be adopted. Here we introduce an environment that explicitly incorporates the provider’s commitment value, 
and we examine commitments that are rationally chosen to be value maximizers, which either maximize the provider’s 
commitment value vp(c), the recipient’s commitment value vr(c), or the joint commitment value vp(c) + vr(c) [14]. These 
kinds of rationally-chosen commitments are more likely to be the ones adopted by the agents, and they are not chosen 
in favor of a particular type of commitment, nor in favor of a particular approximate influence strategy. Moreover, in both 
Sections 3 and 4.1 we modeled the virtual provider’s true influence Pu ∈P1

u (c) toggling u at a single time step no later than 
the commitment time. In this section, we are concerned with the more general situation in which the true influence Pu is 
not restricted to be an element in P1

u (c); instead, Pu is naturally determined by the provider’s policy that maximizes its 
own value while respecting the commitment semantics. We first describe the recipient’s and the provider’s environments 
below.

The recipient’s environment The recipient’s environment is the same 1D Walk domain used for the previous experiments in 
Section 4.1, with a horizon again set to H = 20 and the starting location L0 randomly chosen from locations 1 − 8. Like in 
the proof of Theorem 3, there is additionally a one-time reward of rleft , an integer value in [0, 10]. In a specific instantiation 
of the recipient’s MDP, L0 and rleft are fixed, and they are randomly chosen to create various MDPs for the recipient. Since 
the left end has higher rewards than the right end, if the recipient’s start position is close enough to the left end and the 
provider commits to opening the gate early enough (or keeping the gate open late enough) with a high enough probability, 
the recipient should utilize the commitment by checking if the gate is open by the commitment time, and pass through it 
if so; otherwise, the recipient should simply ignore the commitment and move to the right end. Thus, the various instances 
of the recipient’s MDP include diverse preferences regarding the commitments.

The provider’s environment The provider’s MDP also has a horizon H = 20, and is randomly generated from a distribution 
designed such that, in expectation, the provider’s value when enabling the precondition is smaller than when not enabling 
it. This introduces tension in the provider between enabling the precondition to help the recipient, versus increasing its 
own reward. We now describe the provider’s MDP-generating distribution. The MDP has 10 states the provider can be in at 
any time step, one out of which is an absorbing state denoted as s+ , and where the initial state is chosen from the non-
absorbing states. There are 3 actions. For each state-action pair (sp, ap) where sp 
= s+ , the transition function Pp(·|sp, ap)
is determined independently by filling the 10 entries with values uniformly drawn from [0, 1], and normalizing Pp(·|sp, ap). 
For achievement commitments, feature u takes the value of u+ only in the absorbing state, i.e. u+ ∈ sp if and only if sp = s+ , 
and the reward Rp(sp, ap) for a non-absorbing state sp 
= s+ is sampled uniformly and independently from [0, 1], and for 
the absorbing state sp = s+ is zero, meaning the provider prefers to avoid the absorbing state, but that state is the only one 
that enables the precondition and realizes the achievement commitment. For maintenance commitments, feature u takes 
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Fig. 5. Suboptimality in 1D Walk. Please view in color. The results are for the recipient with L = 10, L0 = 3, H = 20. Markers on the curves show the 
mean suboptimality over possible true influences that toggles at a single time step before the commitment time, Pu ∈ P1

u (c). Bars show the minimum and 
maximum.
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Table 2

Suboptimality for maximizer commitments (without action a+ for the provider). The 
suboptimality is normalized by v∗

M+ − v∗
M− . The results are means and standard errors 

(in parentheses). Mean + standard error below 5% are underlined, and below 1% are in 
bold.

Suboptimality (%)

Provider Value
Maximizer

Joint Value
Maximizer

Recipient Value
Maximizer

Achv. Min Enablement
Min Value

0.21 (0.03) 0.27 (0.03) 0.40 (0.03)

Max Enablement 26.51 (0.61) 29.25 (0.65) 28.75 (0.65)
Minimax Regret 6.44 (0.23) 7.78 (0.26) 7.20 (0.26)
Constant Toggling 0.03 (0.01) 0.06 (0.01) 0.97 (0.04)

Maint. Min Enablement 9.93 (0.83) 4.00 (0.56) 1.55 (0.18)
Max Enablement 11.04 (0.74) 11.04 (0.74) 11.04 (0.74)
Min Value 15.02 (1.11) 10.82 (1.06) 8.74 (0.96)
Minimax Regret 10.17 (0.83) 7.24 (0.62) 7.63 (0.58)
Constant Toggling 9.47 (1.01) 7.56 (0.91) 0.02 (0.01)

Table 3

Suboptimality for maximizer commitments (p+ = 0). The suboptimality is normalized 
by v∗

M+ − v∗
M− . The results are means and standard errors (in parentheses). Mean + 

standard error below 5% are underlined, and below 1% are in bold.

Suboptimality (%)

Provider Value
Maximizer

Joint Value
Maximizer

Recipient Value
Maximizer

Achv. Min Enablement
Min Value

0.01 (0.01) 0.01 (0.01) 0.31 (0.02)

Max Enablement 2.69 (0.21) 14.81 (0.33) 34.28 (0.69)
Minimax Regret 0.66 (0.09) 6.01 (0.25) 10.15 (0.37)
Constant Toggling 0.01 (0.01) 0.01 (0.01) 0.46 (0.02)

Maint. Min Enablement 6.31 (0.67) 0.68 (0.21) 0.01 (0.01)

Max Enablement 8.12 (0.63) 8.12 (0.63) 4.80 (0.49)
Min Value 14.42 (1.15) 6.62 (0.87) 0.97 (0.33)
Minimax Regret 7.30 (0.65) 7.56 (0.60) 4.45 (0.46)
Constant Toggling 6.33 (0.83) 2.56 (0.91) 0.01 (0.01)

the value of u+ only in the non-absorbing states, i.e. u+ ∈ sp if and only if sp 
= s+ , and the reward Rp(sp, ap) for a non-
absorbing state sp 
= s+ is sampled uniformly and independently from [−1, 0], and for the absorbing state sp = s+ is zero, 
meaning the provider prefers to reach the absorbing state, but that state disables the precondition and fails the maintenance 
commitment.

We observe that, for small values of commitment time, the provider’s maximum feasible probability of toggling u, or 
equivalently reaching s+ , by the commitment time is fairly low. Hence, in some experiments we also introduce a fourth 
action for the provider, a+ , such that, after taking a+ in any non-absorbing state sp 
= s+ , the provider will transit to 
the absorbing state s+ with probability p+

sp , and will stay in the current state sp with probability 1 − p+
sp . For each non-

absorbing state sp 
= s+ , p+
sp is sampled from a Gaussian distribution and then clipped into [0, 1]. In a specific instantiation 

of the provider’s MDP, the mean of the Gaussian distribution, denoted as p+ , is chosen from {0, 0.5, 0.9}, and the standard 
deviation is fixed to 0.1.

Results Tables 2, 3, 4, and 5 show the suboptimality for the value maximizer commitments without action a+ , and with ac-
tion a+ and p+ = 0, 0.5, and 0.9, respectively, each reporting the means and standard errors over 2500 randomly-generated 
pairs of the provider’s MDP and the recipient’s MDP. Since the problem instances have different reward scales, the sub-
optimality is normalized by the bound in Equation (4), i.e. v∗

M+ − v∗
M− . The tables highlight strategies that induce low 

suboptimality for certain types of value maximizer commitments, with mean+error ≤ 5% underlined and mean+error ≤ 1%
in bold.

For achievement commitments, the minimal enablement duration (or equivalently the minimal value timing) strategy 
consistently induces suboptimality below 1% with or without action a+ , for all three types of maximizer commitment, 
while the maximal enablement duration and the minimax regret often induce suboptimality higher than 5%. Table 2 shows 
that, without action a+ , the constant toggling influence also induces suboptimality below 1% for all three types of maximizer 
commitment, and this also holds with action a+ and a small p+ = 0 as shown in Table 3. However, as p+ increases, the 
constant toggling influence can induce suboptimality higher than 5%, especially for the joint value maximizer commitments, 
as shown in Tables 4 and 5. Generally, the provider value maximizers are “weak” achievement commitments with late 
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Table 4

Suboptimality for maximizer commitments (p+ = 0.5). The suboptimality is normalized 
by v∗

M+ − v∗
M− . The results are means and standard errors (in parentheses). Mean + 

standard error below 5% are underlined, and below 1% are in bold.

Suboptimality (%)

Provider Value
Maximizer

Joint Value
Maximizer

Recipient Value
Maximizer

Achv. Min Enablement
Min Value

0.16(0.02) 0.12 (0.01) 0.14 (0.01)

Max Enablement 28.00 (0.63) 31.69 (0.69) 38.08 (0.63)
Minimax Regret 6.82 (0.23) 9.67 (0.34) 4.53 (0.30)
Constant Toggling 0.01 (0.01) 10.66 (0.43) 0.02 (0.01)

Maint. Min Enablement 22.66 (0.70) 3.08 (0.36) 1.74 (0.20)
Max Enablement 45.09 (1.54) 45.09 (1.54) 45.09 (1.54)
Min Value 6.33 (0.39) 2.81 (0.35) 2.17 (0.31)
Minimax Regret 22.99 (0.70) 4.72 (0.35) 10.62 (0.65)
Constant Toggling 4.36 (0.37) 2.48 (0.34) 0.01 (0.01)

Table 5

Suboptimality for maximizer commitments (p+ = 0.9). The suboptimality is normalized 
by v∗

M+ − v∗
M− . The results are means and standard errors (in parentheses). Mean + 

standard error below 5% are underlined, and below 1% are in bold.

Suboptimality (%)

Provider Value
Maximizer

Joint Value
Maximizer

Recipient Value
Maximizer

Achv. Min Enablement
Min Value

0.16 (0.02) 0.10 (0.01) 0.01 (0.01)

Max Enablement 27.89 (0.63) 32.40 (0.67) 32.36 (0.67)
Minimax Regret 6.71 (0.23) 9.58 (0.36) 5.15 (0.31)
Constant Toggling 0.01 (0.01) 52.79 (1.48) 0.01 (0.01)

Maint. Min Enablement 10.40 (0.48) 0.71 (0.16) 1.72 (0.20)
Max Enablement 46.83 (1.32) 50.00 (1.34) 50.00 (1.34)
Min Value 1.66 (0.13) 0.52 (0.11) 0.45 (0.10)

Minimax Regret 9.17 (0.42) 5.62 (0.24) 13.13 (0.64)
Constant Toggling 1.80 (0.13) 0.45 (0.10) 0.01 (0.01)

commitment time Ta and low commitment probability pa , while the recipient value maximizers are “strong” commitments 
with early Ta and high pa . Since later commitment time Ta and higher commitment probability pa often cause the recipient 
more uncertainty about the true influence and therefore higher suboptimality (as evidenced by the results in Figs. 5a, 5c, 5e, 
and 5g), it is difficult to predict which type of value maximizer induces higher suboptimality. Thus, it should be unsurprising 
that some strategies work well for one type of value maximizer achievement commitment but not for another. Nonetheless, 
the minimal enablement duration (or equivalently the minimal value timing) strategy consistently induces low suboptimality 
for all types of value maximizer achievement commitment.

For maintenance commitments, the results show that none of the five strategies has suboptimality below 1% consistently 
for all three types of maximizer commitment, with or without action a+ . Overall, the suboptimality of all five strategies for 
maintenance is significantly higher than the suboptimality of the minimal enablement duration strategy for achievement. It 
is worth noting that, while the maximal enablement duration was an above-average strategy for maintenance commitments 
if the true influence is chosen from P1

u (cm) which toggles only at a single time step (shown in Figs. 5b, 5d, 5f, and 5h), 
here we see that the maximal enablement duration is overall the worst among the five strategies, confirming that being 
overly optimistic does not result in robust risk-aware interpretation of maintenance commitments. Similarly to achievement 
commitments, it is difficult to predict which type of value maximizer maintenance commitment is harder for the recipient 
to model, and a strategy can work well for one value maximizer but not for another. For example, constant toggling induces 
the lowest suboptimality for recipient value maximizer maintenance commitments, suggesting that, when the commitment 
time Tm is late and the toggling probability ≤ 1 − pm is low, it is empirically better to model the toggling more often than 
a single time step. However, such a claim about the constant toggling strategy does not hold for joint value maximizers, as 
shown in Table 3.

4.3. Summary

While our theoretical analyses in Section 3 showed that suboptimality could not be bounded in the worst case for most 
of the interpretation strategies (and for all of the interpretation strategies when applied to maintenance commitments), 
this does not necessarily answer the question of whether the strategies can nonetheless work well for some regions of the 
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commitment space, or for commitments that are most likely to arise. The empirical results in this section begin to answer 
such questions. Perhaps the most important (if not altogether surprising) high-level insight from the results is that a longer 
commitment time and larger difference between the initial and the commitment probabilities (or equivalently, in Fig. 2, the 
larger the “gray” area up to the commitment time) is, the larger the risk and degree of suboptimality there generally is.

This in turn suggests that one way to improve recipient performance for maintenance commitments is for the commit-
ment to specify intermediate probabilities, so as to reduce the recipient’s uncertainty. That is, based on our results, the 
question arises, both within our research project and more broadly for researchers studying coordination mechanisms, as to 
whether commitment specifications for maintenance commitments should differ from those for achievement commitments. 
Of course, any changes to the specifications would also impact the provider too, and in the case of needing to specify and 
adhere to intermediate probabilities, the provider’s flexibility over choices of policies would be reduced. Thus, the question 
of finding the right compromise between abstraction for the provider’s flexibility and detail for the recipient’s risk-aware 
interpretation poses an interesting joint optimization problem for future research.

5. Conclusion

In this article, we focus on how the recipient of a commitment should robustly plan against the risk associated with 
interpreting a probabilistic achievement or maintenance commitment. We have formally characterized and analyzed an al-
gorithmic and representational strategy that had previously only been described and justified intuitively. In so doing, we 
have carefully explained why it has succeeded for probabilistic commitments of achievement but has failed for those of 
maintenance, despite the fact that the two types of commitments are identical except in their directions of precondition 
toggling. Contrary to intuitions, the difficulty lies not on the provider’s side, but as we have analytically and empirically 
shown it lies in the recipient’s uncertainty in how to approximate the provider’s influence that probabilistically changes 
the precondition over time. Although this uncertainty is present for both commitment types, we have proven that the 
suboptimality it induces is effectively unbounded only in the case of maintenance commitments. Further, we have de-
fined alternative new interpretation strategies for approximating the uncertain influences, including in sophisticated ways 
intended to overcome these limitations, but we have analytically and empirically shown that they still fall short.

Our work thus proves how a risk-aware recipient of an achievement commitment can easily approximate the provider’s 
uncertain influence in a manner that bounds suboptimality regardless of the provider’s true influence. Further, by proving 
that such risk-aware interpretation is elusive for a maintenance commitment, our work in this article encourages future 
research in coordination especially for maintenance. One immediate next step is to try to develop and investigate bet-
ter interpretation strategies than the ones we studied in this work. Possibly, instead of developing environment-agnostic 
heuristics (e.g., minimal/maximal enablement duration), one can also approach the recipient’s modeling problem by directly 
minimizing the worst-case suboptimality in a domain-specific manner, such that the suboptimality minimizer strategy will 
depend on both the commitment and the recipient’s MDP environment.

Another avenue for future research is to relax the assumptions of only a single toggling, and that u = u− can never be 
preferred (Assumptions 1 and 2), which together ensured the presence of only a single commitment. Since these assump-
tions were largely made to avoid confounding factors in the analyses and experiments, we speculate that suboptimality 
bounds (or lack thereof) for the different types of commitments and influence approximations will apply to each of the 
commitments individually in a multi-commitment setting. However, without Assumptions 1 and 2, calculating the bounds 
will be more challenging than in Lemma 1, likely drawing on minimax regret concepts like those used to compute the 
P̂minimax
u (ca) and P̂minimax

u (cm) approximate influences. Further, such settings could introduce other, possibly overriding, 
concerns besides suboptimality risk when choosing among influence approximations. As a simple example, let’s say that 
u can toggle twice, from u− to u+ and back to u− , and that the window is short between when the provider has com-
mitted to achieve u+ and when it has committed to maintaining u+ until. In this case, the recipient might be better off 
approximating the achievement influence more optimistically—anticipating that u+ could hold earlier than the promised 
time—because the expected value of using u+ over a larger time interval outweighs the risks of being wrong. Studying the 
interplay between influence approximations for combinations of commitments remains future work.

Finally, another direction for future study that was suggested in Section 4.3 is that instead of trying to build better 
approximations for the given abstract commitment specification, one can explore new specifications particularly for main-
tenance commitments that are more detailed than the single time step specifications for achievement commitments. These 
added details would reduce the recipient’s uncertainty when creating its approximate influence, but, as a potential cost, 
could also reduce the flexibility of the provider to adapt its policy as it learns to improve its own model of the environ-
ment. As a first step in pursuing this problem, one can focus on the recipient and ask: to ensure a desired bound on the 
suboptimality for a given commitment, how many (and which) time steps should be specified for the provider’s influence 
as part of the commitment? Then, after identifying what additional details would be most valuable to the recipient, one 
would need ways to estimate the expected costs to the provider of being locked in by having to satisfy those details that it 
would now be committed to.
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