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Abstract

The Eulerian idempotents, first introduced for the sym-
metric group and later extended to all reflection groups,
generate a family of representations called the Eulerian
representations that decompose the regular representa-
tion. In Type A, the Eulerian representations have many
elegant but mysterious connections to rings naturally
associated with the braid arrangement. Here, we unify
these results and show that they hold for any reflection
group of coincidental type — that is, S,, B,,, H; or the
dihedral group I,(m) — by giving six characterizations
of the Eulerian representations, including as compo-
nents of the associated graded Varchenko-Gelfand ring
V. As a consequence, we show that Solomon’s descent
algebra contains a commutative subalgebra generated by
sums of elements with a fixed number of descents if and
only if W is coincidental. More generally, for any finite
real reflection group, we give a case-free construction of
a family of Eulerian representations described by a flat
decomposition of the ring V.

MSC (2020)
05Exx (primary), 20F55, 55R80, 14N20, 52C35 (secondary)

© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.

412 wileyonlinelibrary.com/journal/jlms

J. London Math. Soc. (2) 2022;105:412-444.


mailto:braun622@umn.edu
https://wileyonlinelibrary.com/journal/jlms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fjlms.12519&domain=pdf&date_stamp=2022-02-04
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1 | INTRODUCTION

This paper studies two related families of orthogonal idempotents within the group algebra RW of
any finite reflection group W, which decompose the regular representation into W-representations
recurring many times in the literature.

Recall that a reflection group is a finite subgroup W of the general linear group GL(V) for
V = R’, generated by orthogonal reflections through various reflecting hyperplanes H, each of
which is a codimension one linear subspace of V. One then has an associated reflection hyper-
plane arrangement A = {H,};c;, and its intersection lattice L(.A), which is simply the collection
of all intersection subspaces X = H; N --- N H,, of subsets of the hyperplanes. Work of Saliola
[44-46], reviewed in Section 2.4 below, associates to each such intersection X an idempotent ey
in the face (Tits) algebra of A, and {ex}yc,(4) turn out to give a complete family of orthogonal
idempotents for this algebra; we call these flat idempotents” of A. We group them further into two
coarser complete families of orthogonal idempotents. Letting

X]:={y =wX : we W}cC L(A)

denote the W-orbit of the intersection space X, we will consider the idempotents
e = ) ey
Ye[X]

as [X] runs through the W-orbits £(A)/W on L(A), which we call flat-orbit idempotents. The e[y
can be realized as idempotents in RW via a result of Bidigare [13], and in this case they correspond
to idempotents introduced by F. Bergeron, N. Bergeron, Howlett, and Taylor in [12]. There are even
coarser idempotents

YeL(A)
dim(Y)=k

for k = 0,1,...,r. This last family will be called the Eulerian idempotents for W and can also be
realized in RW.

Our goal in this paper is to analyze two families of representations. First, the Eulerian repre-
sentations {RW e, }o<i < when W is a reflection group of coincidental type;* that is, an irreducible
finite real reflection group of rank r whose exponents (equivalently, degrees) can be expressed in
terms of an exponent gap g:

1,14+ ¢9,1+2g,..,1+( —1)g.
These are exactly reflection groups of Types A and B, H;, and the dihedral group I,(m). Second,

we study the family of representations {RW ey }xjcr(4)/w induced by the flat orbit idempotents
for any real finite reflection group W.

The family of idempotents depends on a choice of section map, also to be defined in Section 2.4.

These groups are called good reflection groups by Aguiar-Mahajan in [2].
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414 | BRAUNER

1.1 | Motivating story: Type A

The Eulerian idempotents ¢, described above generalize the Type A Eulerian idempotents, which
have been studied extensively beginning in the late 1980s, when they were introduced indepen-
dently by both Reutenauer in [41] and Gerstenhaber-Schack in [23].

Reutenauer introduced the idempotents e, in RS, as part of his work on the Campbell-Baker-
Hausdorff formula. In [22], Garsia and Reutenauer showed that this family of idempotents could
be defined via the generating function

n—1
Z tk+1ek _ Z <t -1+ nn— des(w)) w, 1)

k=0 wes,
where one defines the Coxeter descent set for any Coxeter system (W, S),
Des(w) :={s € S : Z(w) > £(ws)} 1.2)
and the descent number
des(w) = | Des(w)].

By contrast, Gerstenhaber and Schack were interested in giving a Hodge-type decomposition of
Hochschild homology, a homology theory for associative algebras. Earlier in [7], Barr had defined
a “shuffle product” S(S,,) (Barr’s element), which can be phrased in the language of descents as’

Sy =) D w

seS  wes,
Des(w)c{s}

Gerstenhaber and Schack built upon Barr’s work, proving that S(S,,) (1) acts semisimply on RS,
with eigenvalues o), = 2k+1 _ 2 for0 <k <n—1and (2) commutes with the Hochschild bound-
ary operator. Using Lagrange interpolation, they constructed a family of idempotents that are poly-
nomials in S(S,,) and for each k, project onto the o, -eigenspace of S(S,,). While it is not obvious
that these viewpoints should yield the same results, in [30], Loday shows that these idempotents
are precisely the e, in (1.1). It is likewise not immediately apparent that the Saliola construction
of the Eulerian idempotents is consistent with either of the above definitions; our work will help
elucidate these equivalences.*

For our purposes, perhaps the most interesting aspects of the Type A Eulerian idempotents are
the properties of the S,, representations RS, ¢;.. In the k = 0 case, RS, ¢, ® sgng is isomorphic to
the top homology of the partition lattice IT, (see Barcelo [4], Joyal [29], Wachs [55]), and RS, e, is
isomorphic to the multilinear component of the free Lie algebra on n generators (see Garsia [21],
Reutenauer [42]).

Even more surprising is the following “folklore” fact:

RS,e =g H"*~D4(PConf, (R?);R),

7 Barr’s element was originally defined by tensoring S(S,,) as defined above with the sign representation.

In addition, see Aguiar-Mahajan [2, Sections 16.11-16.12] and the references therein.
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when d > 3 and odd, where PConf ,(R?) is the space of n distinct labeled points in R%. This can be
deduced by comparing a result of Sundaram and Welker for subspace arrangements [51, Theorem
4.4(iii)] with descriptions of the characters of RS, ¢, by Hanlon [25]; see Sundaram [50, Section
2: Theorem 2.2, Eq. 23] for history, or Early-Reiner [20, Eq. 1.1]. The space H* PConf ,(R%) is well
studied and connects the e, to other rings associated with the Braid arrangement (to be discussed
shortly). These Type A properties are the inspiration for our results.

1.2 | Hint at a more general phenomenon: Type B

As in Type A, the work of Aguiar and Mahajan generalizes earlier work by F. Bergeron and N.
Bergeron in [11] for Type B. Like Garsia and Reutenauer, Bergeron and Bergeron define the Type
B Eulerian idempotents as elements in RB,, using the generating function”

n (-1
ke, = Y <T tn- des(w))w. (13)
k=0 h

wEB,

Like Gerstenhaber and Schack, they show that the e, give a Hodge decomposition of Hochschild
homology for a commutative hyperoctahedral algebra,* although they do not use a Barr-like ele-
ment to do so.

In [9], N. Bergeron gives a description of the B,, representation RB, ¢, ® sgnp as the top homol-
ogy of the intersection lattice for the Type B hyperplane arrangement’ — thus hinting that the
features of the Eulerian representations in Type A might hold more generally. We will show this
to be true.

1.3 | Methods

Our aim is to describe the Eulerian representations in terms of three closely related spaces.

(1) The associated graded Varchenko-Gelfand ring V (to be defined in Section 3.3, Definition 2):
intuitively, ¥ can be thought of as a commutative version of the (better studied) Orlik—
Solomon algebra.

(2) The cohomology of a “d-dimensionally thickened” hyperplane complement

M ::V®Rd—< U Hl-®lR{d).
H,eA

(3) The homology of open intervals (V, X) in L(A): for each X in £(.A), the set-wise W-stabilizer
subgroup Ny acts on the order complex A(V, X) and on its homology H,(V, X), which is non-

" The idempotents that Bergeron and Bergeron define are actually obtained by tensoring the ¢, in (1.3) with the sign rep-
resentation.

# A hyperoctahedral algebra is an algebra with an involutive automorphism.
§ See Gottlieb-Wachs [56] for an alternate proof of this fact.

1 Henceforth, all cohomology and homology groups are assumed to have coefficients in R.
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416 | BRAUNER

vanishing only in degree codim(X) — 2. We will abbreviate the name of its N -representation
as

WHy = Hcodim(X)—Z(V’X)
and define from it an induced W-representation
WH[X] = Ind]v\‘l/x WHX 02 detv/X,

where dety, /x(w) is the determinant of w € Ny actingon V /X.

The relationship between the associated graded Varchenko-Gelfand ring and Orlik-Solomon
algebra is best understood through Mi: in the d = 2 case, Mit is the complexification of the
hyperplane complement M, , and H *(Mi‘) is (equivariantly) isomorphic to the Orlik—-Solomon
algebra as a graded ring. A recent result of Moseley in [32] shows that when d > 3 and odd,
H* (MdA) (equivariantly) describes V as a graded ring.

In the case of the Braid arrangement, Mj €)= PConf ,(R%) and there is a description of the

cohomology due to F. Cohen [17] for d of any parity. Similarly, in Type B, Mi ®.) is PConf ZZ(IRd),
the Z, orbit configuration space (see Section 4.4, Definition 5) with cohomology f)resentation given
by Xicotencatl [57] for any d.

Our contribution will be to connect all of these spaces — which already have well-known rela-
tionships to each other — to the Eulerian idempotents (in all of their guises). In doing so, we will
avoid any character computations and rather tie together various equivariant versions of results in
the literature, such as work by Aguiar-Mahajan [2], Reiner-Saliola-Welker [39], and Sundaram-
Welker [51]. The main novelties in our methods are (1) to define generalizations and extensions
of Barr’s element and study their action on RW and (2) to further analyze the associated graded
Varchenko-Gelfand ring in order to use it as a stepping stone between other spaces.

1.4 | Results for coincidental reflection groups

In the case of coincidental reflection groups, our primary tool will be a generalization of Barr’s
element in RW. Define

swy:==) > w

seS  weWw
Des(w)c{s}

We will show that S(W) acts semisimply on RW, and when W is coincidental has eigenvalues
0y <0y < - <0,inZ,,, where o) counts the number of rays (i.e., halfspaces for lines L in £(.A))
lying in any intersection space X with dim(X) = k.

As a consequence, we are able to determine when the Eulerian subspace

EW) := { Z CpW : ¢y, = ¢,y if des(w) = des(w’)} C RW
wew

7 The notation here refers to the fact that WHy is a summand of Whitney Homology; see Section 3.1.
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is a commutative subalgebra, as it is in Types A and B (see Garsia-Reutenauer [22] and Bergeron-
Bergeron [11]).

Theorem 1.1 (Theorem 4.3). The Eulerian subspace £(W) is a subalgebra if and only if W is coin-
cidental. Moreover, when the Eulerian subalgebra exists, it is always commutative.

Let
1 3 r=¢
B = —[]-ed [ +en
Wl =1
Our main theorem is a description of the Eulerian representations.

Theorem 1.2 (Theorem 4.4). When W is a coincidental reflection group of rank r, foreach 0 < k <
r, the following are equivalent as W -representations:

(i) the kth graded piece of the associated graded Varchenko-Gelfand ring, V¥;
(ii) H*I=D(M?) for d > 3 and odd;
(iii) @[X] WH,x, where the direct sum is over all [X] € L(A)/W with codim(X) = k;
(iv) the o,_; eigenspace of S(W) in RW;
(v) the left RW-module RWe,_,;
(vi) the left RW-module RWE,_,;, where {E; } C £(W) are idempotents defined by

.
DB = D B desin®) - 0.
k=0

wew

Theorem 4.4 recovers all known descriptions of the Type A and B Eulerian representations, and
also implies that the Type B Eulerian representations are isomorphic to the non-trivial pieces of
H* PConf’2(R%) for d > 3 and odd (Corollary 4.6).

1.5 | Results for arbitrary finite reflection groups

We then study the representations RWex, for any finite Coxeter group (W, S). As in the coinci-
dental case, we define an element 7 € RW and show that 7 acts semisimply with eigenspaces
indexed by flat orbits [X] € L(.A)/W. In Theorem 5.2, we show that V admits a grading by flats.
Theorem 5.4 then gives a case-free description of the representation carried by each eigenspace of
T indexed by [X] € L(.A)/W in terms of

—- adirect summand Viy of the ring ¥ indexed by [X],
- the representation WH[X], and
- the representation RWe x| generated by a flat-orbit idempotent e[y;.

1.6 | Outline

The remainder of the paper proceeds as follows. Section 2 gives relevant background on the the-
ory of hyperplane arrangements; Section 3 covers necessary topological descriptions of subspace
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418 | BRAUNER

arrangements and defines the Varchenko-Gelfand ring; Section 4 examines the case that W is a
coincidental reflection group; Section 5 addresses the case that W is any finite reflection group;
Section 6 proposes directions for future study.

2 | REAL HYPERPLANE ARRANGEMENTS

The theory of real hyperplane arrangements underpins much of this paper; in this section we
review the essential details. For a more in-depth study, consult [2].

2.1 | Basics

A central hyperplane H in a vector space V = R’ is a codimension one subspace of V; a collection
of hyperplanes is a hyperplane arrangement, A. All hyperplane arrangements we will consider
will be central and essential, meaning that (1) « H = {0} is the center of A.

A flat X of A is a subspace of V formed by intersecting a subset of the hyperplanes in .A; when
A is essential and central, V and {0} are always flats. The collection of all flats of .4, ordered by
reverse inclusion, defines a lattice £(A) (written £ when the context of A is clear.) This lattice
is geometric, meaning that it is atomic and semimodular, with minimum element V' and max-
imum element {0}. The rank function of £ is defined by codimension, so that X € £ has rank
codim(X) :=r — dim(X); because A is essential the rank of £ is dim(V') = r. Throughout this
paper, u will denote the M&bius function of L.

For any flat X € L, it is possible to define two new hyperplane arrangements. The localization
arrangement of X, Ay is

Ax :={H : He Aand X C H}.

In Ay, X is the maximal element of £L(Ay) and V is the minimal element. The restriction arrange-
ment of X, AX is

A :={HnX e A:X¢H}

In this case, the maximal element of £(.AX) is {0} and the minimal element is X.

2.2 | The Tits algebra

Every hyperplane H € A defines two disjoint open half spaces H* and H™ in V with respective
closures H*, H-, so that H = H* n H-. Index the hyperplanes in A with a setI. A face of A is an
intersection of the closure of half-spaces F = n,c;H%®), where ¢;(F) € {+,—,+} and H* := H.
Let F = F(A) be the set of faces of .A. For our purposes, we will say two arrangements A, A’ are
isomorphic if there is a poset isomorphism between the set of faces 7(.4) and F(A"), ordered by
reverse inclusion.

The support of a face F is the smallest flat containing F; the support map

8:F->L
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Hio @
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FIGURE 1 On the left, the Type A hyperplane arrangement .A(S;) with the positive half-spaces shown. On
the right, the faces of A(S;)

sends each face to its support. The dimension of F is the (vector space) dimension of 8(F). A face of
maximal dimension (or equivalently, a face whose support is V) is called a chamber. Let C(A) = C
be the set of chambers of A.

The set F has a semigroup structure, with a product called the Tits product.

Definition 1 (Tits product). For F,G € F, let

c(FG) = (F) gF)#=+
’ &(G) (F)=+.

The product FG is then defined to be

FG := ﬂ He(FG),
iel

The Tits product has a geometric interpretation as well. For F,G € F, FG is the first face one
enters when moving an infinitesimally small (but non-zero) distance along the straight line seg-
ment from any point in the interior of F toward any point in the interior of G.

Example 1 (Braid arrangement). Perhaps the most well-studied hyperplane arrangement is the
Braid arrangement .A(S,), which consists of hyperplanes H;; := {x; — x; = 0} and reflections
(ij) € S, over the H;;. The H;; are defined in R", but to make the arrangement essential, we
must project them into R" /(x; + x, + --- + x,,) & R"~!. In Figure 1, the graphic on the left shows
the essentialized arrangement .A(S;) in R?.

The faces of A(S;) are shown in the graphic on the right of Figure 1. The origin (or center),
written O, is defined by

“HE nHE nHE
O = Hi nHi nHE,.

The chambers are ¢y, ..., ¢s; the chamber ¢; = H 1+2 NH ;3 NnH 1+3, and the other ¢; can be expressed

similarly. There are six one-dimensional faces, f1, f5, ..., f¢, Which are rays with starting point O.
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420 | BRAUNER

Theface f; isdefined by f; = H_I—'Z N H_2+3 N H_E Note that smaller dimensional faces are contained
in larger dimensional faces; for example, © C f; C c;. Under the Tits product, every face in .A(S;)
is idempotent, and O is the identity. Other example computations include:

fico=c,  fies=c, =0, fifa =0

The Tits product on F was introduced by Tits in [52] and has proved to be a powerful tool in
the study of hyperplane arrangements. It makes 7 an example of a left regular band, meaning that
FGF = FG forevery F,G € F.

The Tits algebra RF is the semigroup R-algebra over 7. Write a typical element in the Tits
algebra as u = Y, upF, where u; € R. Similarly, the lattice £ — which has the structure of a
semigroup with multiplication given by the join operation x v y — can be turned into a semigroup
algebra RL. In this way, 8 : RF — RL becomes an algebra homomorphism. "

Forany F € F and C € C, one has FC € C. Hence RC is a left ideal of RF and thus a left RF-
module, where u € RF actson C € C by

u-C= Z upFC.
FeF

In their celebrated result, Bidigare, Hanlon, and Rockmore provide a way to analyze the action
of u € RF on RC.

Theorem 2.1 (Bidigare-Hanlon-Rockmore [14, Theorem 1.2]). Let u = ) .. upF € F act on
RC. Then for every X € L, u has an eigenvalue

A’X = Z uF,
FcX
which has multiplicity |u(V, X)|. Moreover, if up € R, then u acts semisimply on RC.

Remark1. Theorem 2.1 has been applied extensively in the study of random walks on the chambers
of hyperplane arrangements. To construct such a random walk, assign coefficients u, to each
F € Fsuch thatuy > 0and ) ., up = 1. See [14] and [39] for details.

2.3 | Reflection arrangements

The arrangements we are interested in are those coming from reflection groups, called reflection
arrangements. Given a reflection group W, identify W with its canonical faithful representation in
GL(V) for V = R". The reflection arrangement .A(W) (written .A when the context is clear) is the
hyperplane arrangement {H,};c; where for each H;, there is an element t; € W that orthogonally
reflects over H.

There are many deep connections between the properties of W and .A(W). For example, the
characteristic polynomial of A, defined for a general arrangement by

XA 1= Y v 0,
XeL(A)

*In fact, 8 is the abelianization morphism for RF.
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS | 421

can be factored as y(A) = (t —e;)(t —e,)...(t — e,) when A is a reflection arrangement (where
the e; :=d; — 1 are the exponents of W).

By construction, the reflections in W preserve A, inducing an action on £ and F. This action
extends to RF and commutes with the support map 8, so w - 8(F) = 8(wF).

The action of W on C is simply transitive; because of this, once one makes a choice of a funda-
mental chamber c¢; € C (which forms a fundamental domain for the W-action on V), each remain-
ing chamber can be uniquely identified with a w € W by ¢, := w(c;). From this it follows that
RC is isomorphic as a (left-)RW-module to the group algebra RW itself.

The localization of a reflection arrangement Ay is always a reflection arrangement with cor-
responding reflection group Wy, the point-wise stabilizer of X. By contrast, the restriction of a
reflection arrangement A% is not necessarily a reflection arrangement. In fact, using a result of
Abramenko [1, Proposition 5], Aguiar and Mahajan show that an essential reflection arrangement
A has the property that .AX is a reflection arrangement for every flat X € £(A) if and only if W
is a direct product of coincidental reflection groups. This fact will prove instrumental in studying
the Eulerian representations of coincidental reflection groups.

2.31 | Solomon’s descent algebra

While the results discussed in the Introduction take place in the group algebra, thus far, we have
only discussed RF. Solomon’s descent algebra and a theorem of Bidigare provide the tools to
translate between RF and RW.

In [47] Solomon observed that the descent set of an element of a Coxeter group, as defined in
(1.2), could be used to define a subalgebra of RW. In particular, he showed that there is a subal-
gebra of RW, now known as Solomon’s descent algebra, defined by

DW)=D := { 2 CpW : ¢, = ¢,y if Des(w) = Des(w')}.
wew

What is surprising about Solomon’s result is that elements of D are closed under multiplication.

Let
YT = Z w,
w:Des(w)CT
Zri= ) w,
w:Des(w)=T

where T varies over subsets of S; the collection of {y;}rcg and {z;}rcg form bases of D. Ele-
ments in D act by left multiplication on RW. The opposite descent algebra D°PP can be defined
as the same set as D acting by right multiplication on RW. Note that Y and Z; are also bases for
DOppP,

Every reflection arrangement is linked to D°PP as follows. Let RFY be the algebra of W-
invariants of RF. A basis for RF" is indexed by W-orbits of elements of 7. Define
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g[G] = Z F.
Fe[G]

Both {y|} and {{|¢} as [G] runs over orbits in 7 form bases for RFW.

Using the fact that ¢; € C forms a fundamental domain for the W-action on V, each face orbit
[G] can be identified uniquely with a face F C ¢; where F € [G]. Hence, each [G] can be uniquely
identified with every subset T of S by

[G] = T:={seS:s(F)#F}CS.

In this case we say that G is of type T.
From this identification, Bidigare proves a beautiful connection between D°PP and RFY.

Theorem 2.2 (Bidigare, [13, Theorem 3.81]). There is an algebra isomorphism
¢ : RFY — DoPP

given by sending
® Y6 P Zr

¢ g Yo,
where [G] is of type T.

Example 2. Consider once again the arrangement .4(S;) discussed in Example 1. In this case,
W = S; and S = {(12), (23)}. The face orbits in F and their face types are:

(0] ={0} <= 0
[f1] =1{f1. 15 fst <= {(23)}
[fel =1{f2 4, f6} = {(12)}

[e;] = {e1,c,03,¢4505, ¢ = {(12),(23)}

2.4 | Eulerian idempotents for hyperplane arrangements

In this section we will briefly summarize the most relevant parts of the theory of Eulerian
idempotents for hyperplane arrangements initiated by Saliola in [44-46] and later studied by
Aguiar-Mahajan in [2]. For generalizations of these idempotents to settings other than hyper-
plane arrangements, see [8, 26, 35, 43].

In [2], Aguiar and Mahajan give a number of equivalent ways to define the idempotents first
introduced by Saliola. We will focus on Saliola’s original framework of homogeneous sections of
the support map (called the Saliola method in [2]).

Let u : RL — RF be any section of the support map, meaning that the composition

u 3
RL — RF — RL
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is the identity on RL. For any X € L£(A), define uy := u(X). By construction, 3(uy) = X and uy
can be written as

Uy = Z upF,

FeFr

where Y oo up = 1.
The section u is homogeneous if each uy is a sum of faces with support exactly X:

Uy = Z upF.

FeF
3(F)=X

A homogeneous section u is the uniform section if up = u; whenever 3(G) = 3(F).
In [45], Saliola shows that using any homogeneous section u, one can recursively define a fam-
ily of idempotents {ex}xc, in RF by

eX3=11X— z ux'ey.
Y:Y<X

He shows that the family {ey}y, (henceforth flat idempotents”) form a complete, primitive, and
orthogonal system of idempotents in RF. Importantly, each family depends on the section being
used, and, in fact, homogeneous sections are in correspondence with families of flat idempotents
{exixer-

A homogeneous section u is an eigensection of an element u € RF if there are scalars 1 =
{Ax}xer such that forevery X € £

uX . uX = /1X . uX, (2.1)

whereuX := Y., upF.Saliola studies eigensections’ in [46], where he shows that u is an eigen-
section of u with eigenvalues A = {Ax}xc, asin (2.1)ifand only if u = } ., Axey.

When A is a reflection arrangement, Saliola shows in [44] that one can define a complete,
orthogonal system of idempotents inside of RF" using an invariant homogeneous section, which
is a homogeneous section such that up = ug if [F] = [G]. For example, the uniform section is
an invariant section. A family of flat-orbit idempotents {e[x1}xjer(4)/w In RFY is obtained from
an invariant homogeneous section in an analogous way to the non-invariant case. Equivalently,
given an invariant section one can group the ey by flat orbit:

E[X] = Z ey.

Ye[X]

The flat-orbit idempotents can be realized in RW using the isomorphism ¢ : RFY — DPP and
the resulting idempotents @(e|x) recover primitive idempotents in D°PP defined earlier by F. Berg-
eron, N. Bergeron, Howlett, and Taylor in [12].

"In [2], the ey are called Eulerian idempotents.

In fact he does this in the more general context of left regular bands.
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One can define coarser idempotents

e 1= Z exy = Z G[X].
XeL(A) [XleLa)/w
dim(X)=k dim(X)=k

In the case of the uniform section, the family e, has particularly nice properties; we will call these
idempotents the Eulerian idempotents, and henceforth, the notation e; will refer only to them.
When W is S, or B,,, applying the map ¢ to the e, recovers the idempotents defined by Equations
(1.1) and (1.3), respectively.

When W is a coincidental reflection group, Aguiar and Mahajan show the ¢, have an elegant
expression.

Theorem 2.3 (Aguiar-Mahajan [2, Theorem 12.71]). For a coincidental reflection group W,

SV x(AX) ~ X (A5F)
Zt & = Z X Z F)= Z c3(F) SiFls
k=0 [FleFrW

XeL(A) F:3(F)=X

where cX is the number of chambers in AX.

3 | TOPOLOGY OF SUBSPACE ARRANGEMENTS

Our goal is eventually to give a description of the Eulerian representations in terms of the
(co)homology of topological spaces closely related to hyperplane arrangements. We discuss those
spaces and their (co)homology below.

3.1 | The (equivariant) Goresky-MacPherson formula

We will first consider the more general setting of subspace arrangements. A real subspace arrange-
ment is a collection of linear subspaces U" = {U;};; of an R-vector space V. Note that a hyperplane
arrangement is a subspace arrangement where every subspace has codimension one.

As in the case of hyperplane arrangements, let £L(U") be the poset of intersection subspaces,
ordered by reverse containment. In general, £(V") is a not necessarily a geometric lattice, but in the
cases relevant to us it will be. Let (V/, X) be the open interval between V and X in L(U"). The order
complexof (V,X), written A(V, X), is the simplicial complex with k-dimensional faces correspond-
ing to k-chains in (V, X); this simplicial complex has homology H,(V,X). When L(U") is a geomet-
ric lattice, H;(V,X) = 0 unless i = codim(X) — 2. Recall from the Introduction that we defined

WHy = Hcodim(X)—Z(V’ X),

which is a summand of Whitney homology; see Bjorner [15] or Orlik-Terao [37] for precise
definitions of Whitney homology in general.

Let M, :=V —U'. If a group W acts on V in a way that preserves U’, call U" a W-subspace
arrangement. In this case, W also acts on M., making H*(M;,) a W-module. Moreover,
for every X € L(U"), the set-wise stabilizer Ny acts on the order complex A(V,X) and on its
homology H,.(V, X).
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The W-module structure of H*(M,,) is determined in part by a one-dimensional represen-
tation of Ny for each X € U" as follows. Define the space X := s¢0dim(X)-1 n x1 in V, where
seodimX)—1 s the unit sphere within the perp space X*. Thus X¥ will have non-trivial reduced
homology in degree codim(X) — 1 only, in which case the homology will be one-dimensional. The
group Ny acts on X' and hence on Hogimeo -1 X ™); the latter action is determined by whether
Ny reverses or preserves the orientation of the fundamental class of X ™.

For example, if A is a rank r reflection arrangement and X = 0, then X L=y, Ny =W, and
0" = S"~1. Hence W acts as the sign representation on H,_;(S"~!) because reflections are orien-
tation reversing; note that sgn(w) = det,(w), the determinant of w acting on V. In fact, for any
X € L(A), by an analogous argument, Hgimx)—1(X D! =y, dety /x, where dety x is the linear
character given by the determinant of w € Ny acting on V /X. That Ny acts on V /X is clear from
the fact that Ny stabilizes X set-wise; one can then identify the action on V /X with X* because
W and all of its subgroups preserve inner products.

From this, we can describe H*(M,) as both a vector space and a W-module.

Theorem 3.1. Let U be a real subspace arrangement in V. Then
(i) (Goresky-MacPherson: [24], [27], [54], [58]). As a vector space,

Hi('/\/lv')E @ Hcodim(X)—i—z(V:X)-
XeL(U)

(ii) (Sundaram-Welker: [51]). If U is a W-subspace arrangement, then as W-modules,

H'(My) =y @ Ind}f,’x (Heodime)—i—2(V>X) ® Hoogimeo)-1(X D).
[Xlecr)/w

Example 3. Let A be a hyperplane arrangement in a real vector space V, and consider the sub-
space arrangement A% in V ® R¢ defined by tensoring every H € A by R%. Then £(.A) is isomor-
phic to £(A%), and both are geometric lattices. When d = 2, one has V ® R? = C as a real vector
space and .A¢ can be thought of as the complexification of A.

Ford > 1, let Mi =V ® R% — A9, Observe that given X € L(A),

codimy gpd(X ® RY) =d- codimy, (X)
and A(V,X) = A(V @ R4, X ® RY). Hence Theorem 3.1 implies that

Hi(M‘i)= @ H . codim, (x)—i—2 (V> X). (3.1)
XeL(A)

Since H;(V,X) =0 unless k = codim; (X) — 2, the right-hand side of (3.1) is 0 unless d -
codimy(X) — i — 2 = codimy (X) — 2, forcing i = (d — 1) - codimy, (X). It follows that as a vector
space, every non-zero component of H* (M‘i) is of the form

HOD M= P ALv.x)= P WH.
XerL(A) XeL(A)
codim(X)=j codim(X)=j
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To equivariantly describe H* (M‘i), note that Ny, stabilizes X ® R¢ set-wise for any X € L£(A).

Since w € Ny acts on X by dety, /y(w), it follows that w acts on (X ® R%)" by (dety, /x(w)). If d
is even, this is the trivial representation, while if d is odd, this is det;, /X(w). Hence:

Dixteccw Indlv\fx WHy d is even,
Hj(d_l)(./\/li) = codim(X)=j
Dixjecc,w Ind}VVX WHy ®dety x disodd.
codim(X)=j

Recall that WHx; := Indg’x WHy ® dety,/x. Hence when d is odd, the latter case can be written
as

i(d—1)¢ Aqd Y —

H@EDWMD = @ WHy,.
[Xlec(/w
codim(X)=j

Whend =2,H* (Mi) is isomorphic (as a graded ring) to the Orlik—Solomon algebra (see [37]).
When d > 3 is odd, H *(M‘i) is isomorphic (as a graded ring) to the associated graded of the
Varchenko-Gelfand ring, to be discussed and defined in Section 3.3.

3.2 | Equivariant BHR Theory

When A is a reflection arrangement, the W-module structure of WH;y; can also be framed
in terms of the eigenspaces of semisimple operators u € F on RC. Given u € FW that acts
semisimply on RC, let (RC); be the eigenspace of u corresponding to the eigenvalue A. For a flat
X € L, denote by 1y the eigenvalue corresponding to X given by Theorem 2.1.

Reiner, Saliola and Welker give an equivariant formulation of Theorem 2.1:

Theorem 3.2 (Reiner-Saliola-Welker [39, Theorem 4.9]). Letu € FY act semisimply on RC. Then
there is an isomorphism of W-modules

RC); =y @ WH,.
[X]:Ax=2

To recover Theorem 2.1 from Theorem 3.2, note that the dimension of WHy is |u(V, X)|.
Our goal in Sections 4 and 5 will be to relate the spaces in Theorems 3.1 and 3.2 to the Eule-
rian representations.

3.3 | The Varchenko-Gelfand Ring

Equipped with a description of H*(M;,) for any subspace arrangement, we now wish to study in
detail two particular (and related) cases: first, the case that the subspace arrangement is a reflec-
tion arrangement .4 in V, and second, the case of A4 = A ® R described in Example 3 when
d > 3 and odd. It will turn out that we can describe H’(M ,) in terms of H *(Mi) and give an
explicit construction of the cohomologically graded pieces of the latter.
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For an arrangement A = {H,};;, the ring of locally constant functions on M 4 is precisely
H°(M 4), and has a filtration by Heaviside functions, where for each i € I, the Heaviside func-
tion x; € H(M ) is given by

1 veH"
x;(v) := L
0 U¢Hi.

In [53], Varchenko and Gelfand use these Heaviside functions to describe H(M ). While they
give a presentation for non-central arrangements, we will only present the case that A is central
here. To do so, we recall some basic facts about hyperplanes.

Define E(A) =E := R[e,-]HieA, and for a k-tuple of hyperplanes M = (Hy, ..., Hy), write e;; =
e,e, ...e;. The set M is dependent if

codimV( ﬂ Hi> < |M|

H,eM

and independent otherwise. If M is minimally dependent — that is for any H; € M, M\H; is
independent — M is called a circuit. Let C be any circuit of .4; then C can be uniquely partitioned
into two sets, C* and C~ such that

ﬂ Hfn ﬂ H; =0.

H;eC+ H;eC~
Theorem 3.3 (Varchenko-Gelfand [53, Theorem 4.5]). The ring morphism defined by

VY:E — H (M,

e

i Xi

induces a ring isomorphism H°(M ,) = E/J, with J = ker(¥) generated by:

() e} —e; forH; € A,
(ii) forevery circuit C in A,

H e; H (e;—1)— H (,-1) H ej.

H;eCt H;eC~ H;eC* H;eC—

The map ¥ imposes an ascending filtration on H(M ) obtained from the natural degree grad-
ing on E: the d'" layer in the filtration is the span of monomials in the variables x; having degree
at most d. We will call its associated graded ring the associated graded Varchenko-Gelfand ring,
which Varchenko and Gelfand show has the following presentation.

Definition 2 (Associated graded Varchenko-Gelfand ring). For a central hyperplane arrange-
ment A, let V(A) =V :=E/I(A) be the associated graded Varchenko-Gelfand ring, where
I(A) = T is generated by:

(i) e’ foreach H; € A;
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428 | BRAUNER

(ii) For every circuit C in A

dec) 1= ), e,

HyeC

where

. 1 ifH,ecC,
c(i) =
-1 ifH,eCt.

Let V¥ be the kth graded piece of V spanned by degree k polynomials in the e;.

Remark 2. The relations in V bear a striking resemblance to the graded Orlik-Solomon algebra
(see [37]). However, the former ring is commutative while the latter is anti-commutative. For more
discussion on this distinction, see Moseley [32], or Moseley-Proudfoot-Young [33]. The ring V is
also easily confused with another graded commutative ring U(A) defined by Orlik-Terao in [36].
However, U(A) is not isomorphic to V, as V depends only on the underlying oriented matroid,
while U(.A) depends on the coordinates of .A. Cordovil carefully discusses this distinction in [18].

Varchenko-Gelfand show in [53] that when A is central, ¥ has an nbc-basis; see Cordovil [18,
Corollary 2.8]. To define an nbc-basis, impose an ordering on the hyperplanes in .A. A broken
circuit is a circuit with its largest element removed, and an nbc-set (non-broken-circuit-set) is a set
of hyperplanes that does not contain a broken circuit. The monomials indexed by nbc-sets of size
k form a basis for V¥,

Example 4 (Braid Arrangement). Once again, let W = S, so A(S,,) is the Braid arrangement with
hyperplanes of the form H;; := {x; — x; = 0}. There is a nice description of the nbc-basis in this
case (see Barcelo-Goupil in [5]) as the monomials formed by choosing one element from each of
the n — 1 sets:

{Leph {L ez, exshs oo {1 €4y s €nm1yn -

Using the nbc-basis, it can be shown that the only circuits needed to generate T are of the form

C* ={H;;,H},C~ = {Hy}. Hence T is generated by
N p2

9) e forevery H;; € A,

(i) e;jej —e;jey — ejrey forevery H;j, Hji, Hy € A.

Example 5 (Type B). Let W = B,,. There are three types of hyperplanes in .A(B,,): they are, for

1<i<j<n,

H;; = {x; —x; =0}, Hij:{xi+xj:0}’ H; ={x; = 0}.

Let the corresponding generators in V be e;}, ¢;;, and e;. The nbc-monomials in this case are
obtained by multiplying one element from each of the n sets:

{1, el}, {1, 612, Elz, 62}, ooy {1, eln, ey €(n_1)n, Eln’ ves ’E(n—l)n’ en}.
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In [57, Section 3.6], Xicotencatl shows that T is generated by seven quadratic relations in the e;;,
€;j, and e;. In his notation, H*F, (R" — {0}, q) gives the Varchenko Gelfand ring for A(B,) if n is

odd, and his generators A and A;, correspond to our ¢;, e;,;, and e;, respectively.

jir Ajio ij» €ij>
Remark 3. Both the type A and B reflection arrangements are supersolveable, meaning that £(.A)
is a supersolveable lattice for both arrangements; see [48] for an in-depth treatment of super-
solveable lattices. It is for precisely this reason that we have the particularly nice choice of bases
described in Examples 4 and 5. In fact, the only real coincidental group that does not have a super-
solveable arrangement is H;. This may be one reason the coincidental groups are named as such
— they are types A, B, the dihedral group I,(m), and by coincidence H;. Thank you to the anony-

mous referee for pointing this out.

Remark 4. When a group W acts on A (and therefore also on M(.A)), one naturally obtains a
W -action on the Varchenko-Gelfand ring and its associated graded V(.A) as follows. For H; € A,
leta; € H;r be the unit length normal vector to H;. By construction, for w € W,

w ‘C(i = Cjaj,

where ¢ j € {+1}, H jEA and o ;EH *, is the unit length normal vector to H 7
This induces an action on the Heaviside function x;:

w.xi= xj CJ:].
l_xj' CJ=—1

The identification of x; with e; in Theorem 3.3 then describes the W action on the Varchenko-
Gelfand ring. To obtain a W-action on V(A), we again filter by degree so that

W'ei :Cjej.

For example, in the braid arrangement, if one considers the hyperplane H;; and transposition (i ),
then

(i)) - a;j = —oy; in M(A),
(ij)-x;j=1-x;1in H°M(A), and
(l]) . eij == —el‘j in V(A)

There is an connection between V and the cohomology ring of M‘i for odd d due to Moseley,
which will prove instrumental to our results in Sections 4 and 5.

Theorem 3.4 (Moseley [32, Theorem 1.4]). Let A be a real hyperplane arrangement and d > 3 an
odd integer. Then V is isomorphic as a graded ring to H* (MdA), with

k ~ prk(d-1) d
Vi D).

If a finite group W acts on A, this isomorphism is W -equivariant.
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In the case that A is an irreducible reflection arrangement with reflection group W, Theo-
rem 3.4 says that

V(A) =y H*(M?).

If we then consider the localization arrangement Ay for X € £(A), one has Ny, the set-wise
stabilizer of X, acting on A . Theorem 3.4 then implies that

V(Ax) 2y, H (M.

4 | EULERIAN REPRESENTATIONS FOR COINCIDENTAL
REFLECTION GROUPS

In this section, we will draw upon the theories in Sections 2 and 3 to develop a unified theory of
Eulerian representations for coincidental reflection groups.

Given a coincidental reflection group W, let S be the Coxeter generators of W, A be its reflec-
tion arrangement, and r be the rank of A (or equivalently, |S|). Because W is coincidental, the
exponents (equivalently, degrees) of W can be expressed in terms of the exponent gap g as

1,1+ 9,1+2g,...,1+ (@ —1)g.

Here are the ranks r and exponent gaps g for the coincidental groups:

w r g
S, n—1 1
B, n 2
H, 4
L,(m) 2 m—2
4.1 | Generalizing Barr’s element

The key ingredient in developing the theory of the Eulerian representations for coincidental reflec-
tion groups lies in generalizing the technique used in Type A by Barr in [7] and Gerstenhaber-
Schack in [23].

Definition 3. For any reflection group W, the Barr-element in RW is

swy:=) Y w

SES  weW
Des(w)C{s}

Equivalently, in the notation of Section 2.3.1,

SW) = Yy

seS
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As before, when the context is clear write S(W) = S. Recall that ¢ : RFW — DOPP s the algebra
isomorphism in Theorem 2.2. Let S := ¢~!(S). By Theorem 2.2, it follows that

[GleFY _Fer
dim(G)=1 dim(F)=1

Proposition 4.1. For any reflection group W, the element S acts semisimply on RW. When W is
coincidental, S hasr + 1 eigenvalues o, < 0y < -+ < 0, such that o, is the number of 1-dimensional
faces in AX for any flat X of dimension k.

Proof. Because S has non-negative coefficients, it acts semisimply on RC by Theorem 2.1, and
thus S acts semisimply on RW by the algebra isomorphism in Theorem 2.2.

Suppose W is coincidental. Then for any X,Y € L, one has AX =~ AY if and only if dim(X) =
dim(Y’). By Theorem 2.1 the eigenvalues of S are indexed by oy for each X € £ and

ox= Y 1=#FcCX:dim®F) =1}

FcxX
dim(F)=1

A flat X is spanned by the 1-dimensional faces it contains, and therefore, if X > Y in £(A), then
ox < oy. Thus oy depends only on dim(X) and so can be written o for 0 < k <r. O

Remark 5. Proposition 4.1 gives another explanation for why (as Barr observed) the eigenval-
ues of S(S,) are {2"+1 —2} for 0 < k <n—1. In Type A a dimension k flat X has restriction
arrangement A% (S,) = A(Si;1)- Hence o, counts the number of one-dimensional faces
in A(Sy,;), which correspond to ordered pairs of non-empty, disjoint subsets (I,J) with
ITuJ=1{1,2,..,k + 1} (see Aguiar—-Mahajan [2, Section 6.3]). Given (I,J), the face F is where the
coordinates in V' have x; constant for all i € I and x; constant for all j € J, and where x; < x;
fori €I, j € J. There are 21 — 2 choices for the set @ G I € {1,...,k + 1}, determining the pair
I, J).

Similarly, we can deduce from Proposition 4.1 that in Type B, the eigenvalues of S(B,,) are {3* —
1} for 0 < k < n using the fact that a dimension k flat X has restriction arrangement AX(B,) =
A(By). One-dimensional faces in .A(By,) correspond to the 3k — 1 assignments

€:{1,..,k} — {+1,-1,0},
which avoid being identically zero (see Aguiar-Mahajan [2, Section 6.7]). Given such an assign-

ment ¢, the face F is where x; = 0 if e(j) =0and e(d)x; = e(j)xj > 0 for e(i),e(j) # 0.
The eigenvalues for S(I,(m)) and S(H;) are listed below.

w (=) o, g, g3
I,(m) 0 2 2m
H, 0 2 12 62

Because S acts semisimply on RW, by Lagrange interpolation, there are idempotents that
project onto each eigenspace of S. Let ([RW)Uk be the o,-eigenspace of S and denote by S®) the
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projector onto (RW),, :
S—o

s® = .
O'k—O'j

Jj#k

By construction,

.
S=Y g,-5®,
k=0

Example 6. In A(S;), one has S(S;) = 2 + (12) + (23) + (123) + (132) and

SO = %(2 —(12) = (23) — (123) — (132) + 2(13)),

SO = 2a-a3),

s® = %(1 +(12) + (23) + (13) + (123) + (132)).

We will see in Theorem 4.4 that S in Types A and B are precisely the Type A and B Eulerian
idempotents from Equations (1.1) and (1.3), and more generally the following proposition.

Proposition 4.2. When W is coincidental, S® = ¢(e,) for0 <k <r.

Proof. Using the notation in Section 2.4,

S¥ = Z F,

FcX
dim(F)=1

which is invariant under the action of the reflection group corresponding to .AX for any X. By
an analogous argument to Aguiar-Mahajan [2, Lemma 12.70], this implies that the uniform sec-
tion is an eigensection for S. Moreover, S is separating, meaning that if X > Y in £(A), then
ox < 0y. By another theorem of Aguiar and Mahajan [2, Theorem 12.17], it follows that the uni-
form section is the unique eigensection for S, giving the family of flat idempotents {ey }yc, such
that S = Y, oxey. Because oy = o when dim(X) = dim(Y),

r
S = de-ek.
k=0

Now apply ¢. O

4.2 | Implications for Eulerian subalgebras

Recall that in the Introduction, we defined an R-linear subspace of RW called the Eulerian sub-
space,

EW) =& = { Z CpW & €y = ¢y if des(w) = des(w’)}.
wew
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While € always exists as a subspace of RW for any reflection group W, it is natural to ask whether
& forms a subalgebra (i.e., like D, is closed under multiplication). In Types A and B, this is known
to be true (see [22], [11]); our framework allows us to answer this question for any reflection group.

Theorem 4.3. The Eulerian subspace £ is a subalgebra if and only if W is coincidental. Moreover,
when the Eulerian subalgebra exists, it is always commutative.

Proof. The Eulerian subspace £ always has dimension r + 1 by definition. If £ is a subalgebra, it
will contain the subalgebra RS generated by the Barr element S. Since S always acts semisimply,
RS will be commutative and have dimension equal to the number of distinct eigenvalues of S.
Recall from the proof of Proposition 4.1 that these eigenvalues are indexed by flats X in £(A), with
eigenvalue o equal to the number of 1-dimensional faces (henceforth rays) in .AX. Since a flat X
is spanned by the rays it contains, any complete flag of flats {0} = X, ¢ X; € - ¢ X, & X, =V
gives rise to at least r + 1 distinct eigenvalues oy < -+ < gy . Hence £ is a subalgebra if and only
if £ = RS if and only if any two flats X, Y of the same dimension have oy = oy. Proposition 4.1
showed that this occurs whenever W is coincidental.

We check here that when W is not coincidental, one always has at least two flats X, Y of the
same dimension with oy # oy. This can be verified computationally for H, and F,,. The existence
of such flats for E, E-, and Eg can be deduced from computations in Orlik-Terao [37, Appendix D],
where they compute the number of lines in all possible arrangements A% of rank 3; every line must
contain exactly two rays.

In Type D, a result of Barcelo-Thrig [6, Theorem 4.1] describes a bijection between flats of A(D,,)
(for n > 4) and partitions A of the set {I, ...,n,1,...,n}such that

(i) A has at most one zero-block A, where if i € A, then i € A, and |1,| # 2; and
(ii) every non-zero block 1 ;j of 4 has a partner /1_J ifi € 4, theni € Z (with i = i).

Write such a partition as 1 = (/1_k, ,/1_1, Aogs Ay s A ), evenif Ay = @. Let X; € L(A) be the flat
corresponding to 4; when A has 2k non-zero blocks, X; has dimension k. If 4 is a refinement of
a partition A', then X; < X » in L(A). Consider the partition 4 with 4, =@, 4, = {1} and 1, =
{2,3,...,n}. The partitions refined by A with two non-zero parts (corresponding to lines in .4%2)
are:

() (AU, A, AU =({L2,. 9,11,2,...,n}),

(i) (4 U4y, A 4 UA) = ({12, {0},{1,2,...,n}), and
(i) (4, L, UG Uy, A) = ({14,12,2, ..., 1,1}, {1)).

"ﬁ’}’
"n3}9

Let p be the partition with p, = @, p; = {1, 2}, and p, = {3, ..., n}. The partitions refined by p which
correspond to lines in A%e are

@) B1UBs: Pos P1UP) = (T2, e, L AL (L2, o 1)),
(i) (o UBs. Pos P1UPY) = (1,23, AL (01123 .., 1)),
(i) Br. 52U Po Upss p1) = (L. 2313.3,.., 7,0}, {1,2}), and
) (B30 P1Up Uy 02) = (B L {L1,2,2,3, .., ).

Hence 4% contains six rays and .A*# contains eight rays, but both X; and X , have dimension 2

in £(A). Ll
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As in the case of Solomon’s descent algebra D, where we defined bases Y and Z; for T C S
(see Section 2.3.1), there are natural bases for £ (and £°PP) defined by

Yo 1= Z w= Z Yr,
w:des(w)<? TcS

|T|=¢

= ¥ w= ¥z
w:des(w)=¢ TCS
|T|=¢

for 0 < # < r. These bases will be useful in defining a generating function for the S®) in the sub-
sequent section (Theorem 4.4(vi)).

4.3 | Main results

At last, we can collect the theories developed in previous sections to give a description of the
representations generated by the Eulerian idempotents. Recall that

we =l H(t—e)H(t+e) (4.1)

Theorem 4.4. Let W be a real coincidental reflection group. Then for 0 < k < r, the following are
isomorphic as W -representations:

(i) VK, the kth graded piece of the associated graded Varchenko-Gelfand ring;
(ii) H(d_l)k(jvld ) ford > 3 and odd;
(iii) @[X WH] ), where the direct sum is over all [X] € L(A)/W with codim(X) =
(iv) (RW)U,_k the 0,_j-eigenspace of S;
(v) e,_xRC, the representation generated by the Eulerian idempotent e,_;;
(vi) the left RW-module RWE,_,;, where {E;} C E(W) are idempotents defined by

r r
Y FB =) By () - 2,
k=0 =0

Proof.

* (i) if and only if (ii): follows from Theorem 3.4;

* (ii) if and only if (iii): follows from Theorem 3.1 (2), applied as in Example 3;

* (iii) if and only if (iv): follows from Theorem 3.2 and Proposition 4.1 because a flat X with
codim(X) = khasoy = 0,_;;

* (iv) if and only if (v): follows from Proposition 4.2;

* (v)ifand only if (vi) will follow from translating Theorem 2.3 into the context of the polynomial
algebra DCPP[t]. Specifically, applying ¢ to Theorem 2.3 gives

Z Pote) = 3, Xy, (42)

TCcS

d ‘1 TTOT ‘0SLLEYYT

sdny woxy

IPUO)) PUE SULId | 34} 39S “[£70T/40/60] U0 A1eiqi auiuQ) Ad[IA\ ‘qI] BIOSIUUIIA JO ANSIOAIUN AQ 61ST 1 SW{/Z] [ 1°01/10p/w0d Ad[Im',

- Kopia-Kreaqupour

2591 SUOWIWIO)) 2A1ER1) A[qEat]dde 9y Aq POUIGAOS 1B SAPILIE V() 595N JO SI[N 0] AIeIqI] AU AS[IAY UO



EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS | 435

where y(AT) is the characteristic polynomial of A% for some F € F of type T, and ¢’ is the
number of chambers in .43, The right side of (4.2) can be simplified by grouping together
subsets T C S of the same size. Because W is coincidental, y(AT) and ¢’ depend only on the
size of T. In particular, when |T| = j,

X(AT):(l'—].)(t_1_g)"'(t_1_g(j_1)):gj<%>'
J

and

T=2)Q2+¢9)..C+g(j—-1)= gj<§> .
Jj
Hence

(4.3)

<ﬂ> r(—1>
fkfp(ek)
P OO

Note that an element w € W with descent set U of size # will appear on the right-hand side of
(4.3) each time U C T as T varies over every subset of S. The set U will appear in exactly (r f)

subsets of size j. Thus

zmek) ZOUZS i(;’_:g(ﬂ) Z ;( >”)". (4.4)

o <g>1 =0 o

One can then check that on the right side of (4.4), the innermost summation appearing in front
of z, equals By, ,(t), via the Chu-Vandermonde summation formula

—n b (C - b)n
ZFl( c 1) "o,

withn=r—f,b=—(%—f),andc=§+f. 0

Remark 6. An equivalent way to write By, , is as

(5= -5,
(3),

where g is the exponent gap of W and (¢t), := (£)(t + 1)...(t + k — 1) is the rising factorial. We
originally used the form of By, , given by (4.5), and thank the anonymous referee for pointing
out the form of By, , used in (4.1). To recover (4.5) from (4.1), note that when W is coincidental,

Bw ,(t) 1= ) (4.5
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436 | BRAUNER

Remark 7. Surprisingly, the polynomial g8y, , defined in (4.1) has appeared before in the work
of Reiner, Shepler, and Sommers [40, Theorem 1.1]. Let /\f V Dbe the £th exterior power of the
reflection representation V' of a real coincidental group W. Then by [40, Theorem 1.1],

‘ = Xy (@)

1 1
Bw () = W H(t - ei)g(t +e¢)= Wi Z

- dimV) (4.6)
i=1 wew X\’ ey

>

where y AV is the character of /\f V and V¥ is the w-fixed space of V.
To derive (4.6) from [40], one needs to do a bit of work. In particular, Theorem 1.1 computes the
Hilbert series of the W-invariant space

Hib(SV)® AV ® AV)Y.q.2.9),

where V* is the dual of V and S(V*) is the symmetric algebra of V*. We extract the s° coefficient
of this Hilbert series and set z = —g. Combining [40, Eq. 2.11] and taking the limit as g goes to 1
then gives (4.6). The motivation for this comes from the theory of graded parking functions; see
[40, §10]. Note that Theorem 1.1 is in terms of exponents e; and co-exponents e, but in the case of
real reflection groups, e; = el.*.

We thank the anonymous referee for pointing out this remarkable and mysterious connection.

Remark 8. The generating functions for the Type A and B Eulerian idempotents (Equations (1.1)
and (1.3)) are easily deduced from Theorem 4.4 ((vi)) by takingr =n —1,¢g =1 in Type A and
r =n,g = 2 in Type B. Note that in Type A, to obtain (1.1) one must multiply the formula in
Theorem 4.4((vi)) by ¢.

Remark 9. In [31, Theorem 9], A. Miller shows that the change of basis matrix from the z,-basis
of £ to the S®)-basis is described by the transpose of the (reduced) Foulkes character matrix in
Types A and B (as well as the complex reflection groups G(m, 1, n) for m > 2; see Section 6). Using
Theorem 4.4, it is a straightforward to check that this surprising fact is true for I,(m) and H;
as well.

4.4 | Connections to configuration spaces
The final noteworthy feature of the Eulerian representations that we will discuss is their relation-
ship to the cohomology of certain configuration spaces; recall that this was already known in Type
A.
Definition 4. The nth ordered configuration space of a topological space X is

PConf,(X) :={(x1,...,x,) € X" : x; # x; whenever i # j}.

The case that X = R? has been studied extensively. In [3], Arnol'd gave a presentation of
H* PConf,(R?); Fred Cohen extended this presentation to H* PConf ,(R?) for all d > 2 in [17].
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Importantly for our purposes, when d > 1,

PConfn(IRd) ={(x,...,x,) € R x; # x;ifi # jt = MdA(Sn)'
Thus Theorem 4.4 yields the following corollary.

Corollary 4.5. ForO<k<n—1landoddd > 3,

HX4=D pConf ,(R?) =5 RS, E,_;_
with E,_,_ as in Theorem 4.4.

Since H* PConf ,l(IRd) =H* (M‘i), the Eulerian representations give a complete description of
every nonzero-graded component of H* PConf,(R%). Corollary 4.5 was already known by com-
paring the computation of H *(M‘i) in [51, Theorem 4.4 (iii)] with the character computations of
the Type A Eulerian idempotents by Hanlon in [25]. In our framework, the proof of Corollary 4.5
follows immediately from Theorem 4.4.

Theorem 4.4 provides a similar description for the Type B Eulerian idempotents.

Definition 5. For a group G acting on a topological space X, the nth orbit configuration space is
PConerl(X) ={G, e x)EX L g-x;Ng- Xj= @fori # jand any g € G}.

Take G = Z, and X = R? with the action by the generator of Z, on z € RY mapping z to —z.
In his thesis, Xicocencatl gives a description of H* PConf Zz(Rd) for d of any parity [57, Theorem
3.1.3]. Once again, for our purposes, it is enough to note that

PConffz(Rd) ={(x,...,x,) € R9" x; # +x; fori # jand x; # 0} = Mj(B,,)'

Thus Theorem 4.4 immediately gives an equivariant description of each nonzero graded piece of
H* PConf’2(R%).

Corollary 4.6. ForO <k <nandoddd > 3,
H"=V pConf*(R%) =5 RB,E,
with E,_, as in Theorem 4.4.

For connections between H* PConf,(R*) and H* PConf ZZ(IR@) with polynomial factorizations
over finite fields, see recent work by Hyde [28] and Peterson-Tosteson [38].

5 | EULERIAN REPRESENTATIONS FOR FINITE COXETER GROUPS

We now turn to the case that W is an arbitrary finite Coxeter group with reflection arrangement
A. For our purposes, the key differences between coincidental and general reflection groups are
that
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438 | BRAUNER

(1) in general AX is not necessarily a reflection arrangement, and
(2) ifdim(X) = dim(Y) for X,Y € L(A), it is not necessarily true that oy = oy

Hence the eigenspaces of S will not effectively group together all flats of the same codimension
as in the coincidental case.

To combat this problem, we do two new things. First we introduce an element 7 € RW whose
eigenspaces will be indexed by flat orbits [X]. Second, we will introduce a finer grading on V(A)
by flat.

5.1 | A Barr-like element

We first define the element of RW whose eigenspaces will be indexed by flat orbits.

Definition 6. Let

T = Z Z crw = ZCTYT,

TcS weWw TCS
Des(w)CT

where the collection of coefficients {c;}r-g C R is positive and algebraically independent over Q.

Recalling that ¢ : RFY — DCPP is the isomorphism in Theorem 2.2, applying ¢! to 7 gives:

Ti=¢' M= qrF= Y, qrlrp

FeF [FleFW
where ¢ = ¢y for F of type T.

Proposition 5.1. The element T acts semisimply on RW with eigenvalues Ty, for [X] € L(A)/W,
such that T x| = 1jy) if and only if [X] = [Y].

Proof. LetX,Y € L.1Itis clear that 7 acts semisimply on RW because 7 acts semisimply on RC
as each ¢z > 0. Suppose that each face of type T C S lies in X with multiplicity m’T‘ and in Y with
multiplicity m) . Hence

_ X
Ty = Z mi.cr,
TcS

and similarly for 7y. By construction vy = 7y if [X] = [Y]. On the other hand, if 7y = 7y, then
because the coefficients c; are algebraically independent over Q, it follows that m)T( = m}’ for
every T C S. This forces dim(X) = dim(Y’). Moreover, for a maximal face F in X, there must be a
face G € Y such that wF = G for some w € W. Because dim(X) = dim(Y) and F is maximal, G
is maximal. Since the W-action commutes with 8,

wX = 3(wF) =38(G) =Y.

Hence [X] = [Y]. O
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5.2 | Afiner grading for V

We would like to give an interpretation of the decomposition of RW by 7 in terms of graded
pieces of V(A). In order to do so, we must prove that V(A) admits a grading by flats. Our work
will parallel the analogous result by Orlik-Terao [37, Theorem 3.26, Corollary 3.27] that the Orlik-
Solomon algebra has a flat decomposition.

Recall that E = R[eHi] HeA and V = E/T (Definition 2), where T is generated by

(1) e’ for every H; € A and
(2) d(ec) for every circuit C in A.

ForM = (H; ,..,H; ), writeey, = ¢; ...¢; andNM = H; N H; N - NH,; .Defineforeach X €
L(A) the R-subspace Ey := R{e,, : NnM = X}. Note that E has a vector space decomposition

E= @ Ex (.

XeL(A)

We will show that this decomposition holds for V as well.

Theorem 5.2. For a central arrangement A, there is a vector space decomposition

I= @P 1nE

XeL(A)
inducing the decomposition

V)= @ VA,

XeL(A)
where V(A)y 1= Ex /I N Ey.

Proof. Itisclear that 3y .,y I N Ex C I. By (5.1), itis sufficient to show the other containment.
Since E is spanned by e), it will follow from the generating relationsof Z that I C ¥ x4 I N Ex
if for any subset of hyperplanes M in A,

(1) efey € 2 I NEy forevery H; € A and
XeL(A)

(2) eyd(ec) € 2 T n Ey for every circuit C in A.
XeL(A)

The first condition is satisfied because eizeM € I NnEy forX = Nn(H; U M). The second condition
follows from the fact that if C is a circuit, \C = NC\H; for any H; € C. Hence e, d(ec) € I N Ey
forY =n(MuC). O

Remark 10. Since V(A) has an nbc-basis, Theorem 5.2 implies that V(A)y also has an nbc-basis
of monomials e,; indexed by nbc-sets M with NM = X.

Recall that Ay is the localized arrangement at X. We would like to relate V(A)y to the top
degree of V(Ay).
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440 | BRAUNER

Proposition 5.3. Forany X € L(A) with codim(X) = k, there is an Ny -equivariant isomorphism
VE(Ax) =y, V(A

Proof. Let 1 be the natural inclusion i : E(Ay) & E(A). The relations in Z(Ay) hold in Z(A),
and thus i(Z(Ay)) C I(A), inducing a map

i V(Ay) = V(A).

Consider the image of t(V*(Ay)). Since both V¥(Ay) and V(A)x have a basis given by nbc-
monomials e,, with "M = X, it follows that i(V¥(A)) must map isomorphically onto V(A)y.
The Ny equivariance is clear from the definitions of Ny and . I

Recall that Ny is the set-wise stabilizer of X. To index pieces of V(.A) by flat orbits, define the
W-module V(A)y 1= Ind]‘f,/x V(A)x. The space V(A)[x| will be used to describe the eigenspaces
of 7 in the subsequent section.

5.3 | Results for arbitrary finite reflection groups

Using the tools developed above, we may now give a description of the eigenspaces of 7 for any
reflection group W. Recall that (RW)Tm is the 7x)-eigenspace of 7.

Note that like S, the element 7 = ¢~!(7) € RFY acts semisimply and is separating, mean-
ing that for X > Y in L(A) one has 7[x) < 7|y}. Thus 7 determines a unique family of flat-
orbit idempotents coming from an invariant section” by [2, Theorem 12.17]; write this family as

{ex }x1ecca) w> where

T = Z Tix18x)-
[X]eL(A)/W

Theorem 5.4. Foreach [X] € L(A)/W, the following are isomorphic as W -representations:
@ V(A

(i) WHx,

(iii) (RW) and

Tx)’

(IV) E[X] RC.

Proof.

- (i) if and only if (ii): Suppose codim(X) = k. Since Ny acts on Ay, Theorem 3.4 implies that
H *(M‘ix =y, V(Ax) whend > 3 and odd. Applying Theorem 3.1 (2) to the top cohomology
group gives

WHy ®dety /y =y V(Ay).

Finally, apply Proposition 5.3 and induce from Ny to W.

T Recall that a family of flat orbit idempotents depends on the choice of invariant section. By contrast to the Eulerian
idempotents considered in Section 4, the section in this context comes from 7, not the uniform section.
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- (ii) if and only if (iii): follows immediately from Proposition 5.1 and Theorem 3.2.
— (iii) if and only if (iv): follows from the fact that the ey, are uniquely determined by 7 and
¢ : RFY — DOPP is an isomorphism with p(7) = 7. O

Remark 11. By Theorems 4.4 and 5.4 when W is coincidental, as W-representations

RW), ,, =y RW),,

[X]eL(A)/w
dim(X)=k

despite the fact that

P wlep) # ole)

[XleL(a)/w
dim(X)=k

since the idempotents on the left-hand side do not come from the uniform section, while the
idempotents on the right-hand side do.

6 | FUTURE DIRECTIONS
6.1 | Description of the Eulerian representations

In [25], Hanlon describes the characters of the Type A Eulerian representations as a direct sum
of induced representations of certain centralizers in S,. Bergeron and Bergeron conjectured that
there was a similar description in Type B [11, Remark 3.2], which N. Bergeron resolved in [10]. Our
work raises more questions, potentially related to Conjecture 2.1 in Douglass—Pfeiffer-Rohrle [19].

Question 1. Is there a uniform description of either (IRW)Uk for W coincidental or (IRW)T[X] for
any W as (direct sums of) induced representations from centralizers in W? Is there a formula for

their characters?

6.2 | Connections to Solomon’s descent algebra

In [16], Cellini constructs commutative subalgebras’ of QW for every Weyl group W; in Type C,
her subalgebra is semisimple and contains £(B,,). A natural question is therefore as follows.

Question 2. Can the subalgebras defined by Cellini be described in terms of some family of flat-
orbit idempotents {e|x}x|cr4)/w and “Barr-like” element?

Progress on Question 2 could determine whether the subalgebras she introduces are semisimple
for other types. Relatedly, R7 C D, the subalgebra generated by the “Barr-like” element 7 from
Section 5.1, is also commutative.

T In fact, her subalgebras are in DPP,
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Question 3. Is R7 a maximal commutative subalgebra of D?

6.3 | Extension to complex reflection groups

Though we have only discussed real coincidental reflection groups, there is a notion of coinci-
dental type for complex reflection groups as well. Nonreal reflection groups of coincidental type
are exactly what have been called the (nonreal) Shephard groups, and share many properties with
real coincidental reflection groups. See A. Miller [31] and Reiner-Shepler—Sommers [40] for more
detail. This motivates the following question.

Question 4. Can the Eulerian representations be generalized to all Shephard groups?

The complex reflection group G(m,1,n) = Z,, 1 S,, seems like a good place to start, due to
promising work by A. Miller [31] using results by Moynihan [34] and Steingrimsson [49].
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