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Abstract
The Eulerian idempotents, first introduced for the sym-
metric group and later extended to all reflection groups,
generate a family of representations called the Eulerian
representations that decompose the regular representa-
tion. In Type𝐴, the Eulerian representations have many
elegant but mysterious connections to rings naturally
associated with the braid arrangement. Here, we unify
these results and show that they hold for any reflection
group of coincidental type — that is, 𝑆𝑛, 𝐵𝑛, 𝐻3 or the
dihedral group 𝐼2(𝑚)— by giving six characterizations
of the Eulerian representations, including as compo-
nents of the associated graded Varchenko–Gelfand ring
 . As a consequence, we show that Solomon’s descent
algebra contains a commutative subalgebra generated by
sums of elements with a fixed number of descents if and
only if𝑊 is coincidental. More generally, for any finite
real reflection group, we give a case-free construction of
a family of Eulerian representations described by a flat
decomposition of the ring  .
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 413

1 INTRODUCTION

This paper studies two related families of orthogonal idempotents within the group algebraℝ𝑊 of
any finite reflection group𝑊, which decompose the regular representation into𝑊-representations
recurring many times in the literature.
Recall that a reflection group is a finite subgroup 𝑊 of the general linear group 𝐺𝐿(𝑉) for

𝑉 = ℝ𝑟, generated by orthogonal reflections through various reflecting hyperplanes 𝐻, each of
which is a codimension one linear subspace of 𝑉. One then has an associated reflection hyper-
plane arrangement  = {𝐻𝑖}𝑖∈𝐼 , and its intersection lattice (), which is simply the collection
of all intersection subspaces 𝑋 = 𝐻1 ∩⋯ ∩ 𝐻𝑚 of subsets of the hyperplanes. Work of Saliola
[44–46], reviewed in Section 2.4 below, associates to each such intersection 𝑋 an idempotent 𝔢𝑋
in the face (Tits) algebra of , and {𝔢𝑋}𝑋∈(𝐴) turn out to give a complete family of orthogonal
idempotents for this algebra; we call these flat idempotents† of. We group them further into two
coarser complete families of orthogonal idempotents. Letting

[𝑋] ∶= {𝑌 = 𝑤𝑋 ∶ 𝑤 ∈ 𝑊} ⊂ ()

denote the𝑊-orbit of the intersection space 𝑋, we will consider the idempotents

𝔢[𝑋] ∶=
∑
𝑌∈[𝑋]

𝔢𝑌

as [𝑋] runs through the𝑊-orbits()∕𝑊 on(𝐴), which we call flat-orbit idempotents. The 𝔢[𝑋]
can be realized as idempotents inℝ𝑊 via a result of Bidigare [13], and in this case they correspond
to idempotents introduced by F. Bergeron,N. Bergeron,Howlett, andTaylor in [12]. There are even
coarser idempotents

𝔢𝑘 ∶=
∑

𝑌∈()
dim(𝑌)=𝑘

𝔢𝑌

for 𝑘 = 0, 1, … , 𝑟. This last family will be called the Eulerian idempotents for𝑊 and can also be
realized in ℝ𝑊.
Our goal in this paper is to analyze two families of representations. First, the Eulerian repre-

sentations {ℝ𝑊𝔢𝑘}0⩽𝑘⩽𝑟 when𝑊 is a reflection group of coincidental type;‡ that is, an irreducible
finite real reflection group of rank 𝑟 whose exponents (equivalently, degrees) can be expressed in
terms of an exponent gap g :

1, 1 + g , 1 + 2g , … , 1 + (𝑟 − 1)g .

These are exactly reflection groups of Types 𝐴 and 𝐵, 𝐻3, and the dihedral group 𝐼2(𝑚). Second,
we study the family of representations {ℝ𝑊𝔢[𝑋]}[𝑋]∈()∕𝑊 induced by the flat orbit idempotents
for any real finite reflection group𝑊.

† The family of idempotents depends on a choice of section map, also to be defined in Section 2.4.
‡ These groups are called good reflection groups by Aguiar–Mahajan in [2].
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414 BRAUNER

1.1 Motivating story: Type 𝑨

The Eulerian idempotents 𝔢𝑘 described above generalize the Type A Eulerian idempotents, which
have been studied extensively beginning in the late 1980s, when they were introduced indepen-
dently by both Reutenauer in [41] and Gerstenhaber–Schack in [23].
Reutenauer introduced the idempotents 𝔢𝑘 in ℝ𝑆𝑛 as part of his work on the Campbell–Baker–

Hausdorff formula. In [22], Garsia and Reutenauer showed that this family of idempotents could
be defined via the generating function

𝑛−1∑
𝑘=0

𝑡𝑘+1𝔢𝑘 =
∑
𝑤∈𝑆𝑛

(
𝑡 − 1 + 𝑛 − des(𝑤)

𝑛

)
𝑤, (1.1)

where one defines the Coxeter descent set for any Coxeter system (𝑊, 𝑆),

Des(𝑤) ∶= {𝑠 ∈ 𝑆 ∶ 𝓁(𝑤) > 𝓁(𝑤𝑠)} (1.2)

and the descent number

des(𝑤) = |Des(𝑤)|.
By contrast, Gerstenhaber and Schack were interested in giving a Hodge-type decomposition of

Hochschild homology, a homology theory for associative algebras. Earlier in [7], Barr had defined
a “shuffle product” (𝑆𝑛) (Barr’s element), which can be phrased in the language of descents as†

(𝑆𝑛) ∶=
∑
𝑠∈𝑆

∑
𝑤∈𝑆𝑛

Des(𝑤)⊂{𝑠}

𝑤.

Gerstenhaber and Schack built upon Barr’s work, proving that (𝑆𝑛) (1) acts semisimply on ℝ𝑆𝑛
with eigenvalues 𝜎𝑘 = 2𝑘+1 − 2 for 0 ⩽ 𝑘 ⩽ 𝑛 − 1 and (2) commutes with the Hochschild bound-
ary operator.Using Lagrange interpolation, they constructed a family of idempotents that are poly-
nomials in (𝑆𝑛) and for each 𝑘, project onto the 𝜎𝑘-eigenspace of (𝑆𝑛). While it is not obvious
that these viewpoints should yield the same results, in [30], Loday shows that these idempotents
are precisely the 𝔢𝑘 in (1.1). It is likewise not immediately apparent that the Saliola construction
of the Eulerian idempotents is consistent with either of the above definitions; our work will help
elucidate these equivalences.‡
For our purposes, perhaps the most interesting aspects of the Type𝐴 Eulerian idempotents are

the properties of the 𝑆𝑛 representations ℝ𝑆𝑛𝔢𝑘. In the 𝑘 = 0 case, ℝ𝑆𝑛𝔢𝑘 ⊗ sgn𝑆𝑛 is isomorphic to
the top homology of the partition latticeΠ𝑛 (see Barcelo [4], Joyal [29], Wachs [55]), and ℝ𝑆𝑛𝔢𝑘 is
isomorphic to the multilinear component of the free Lie algebra on 𝑛 generators (see Garsia [21],
Reutenauer [42]).
Even more surprising is the following “folklore” fact:

ℝ𝑆𝑛𝔢𝑘 ≅𝑆𝑛 𝐻
(𝑛−𝑘−1)𝑑(PConf𝑛(ℝ

𝑑); ℝ),

† Barr’s element was originally defined by tensoring (𝑆𝑛) as defined above with the sign representation.
‡ In addition, see Aguiar-Mahajan [2, Sections 16.11–16.12] and the references therein.
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 415

when 𝑑 ⩾ 3 and odd, where PConf𝑛(ℝ𝑑) is the space of 𝑛 distinct labeled points inℝ𝑑. This can be
deduced by comparing a result of Sundaram andWelker for subspace arrangements [51, Theorem
4.4(iii)] with descriptions of the characters of ℝ𝑆𝑛𝔢𝑘 by Hanlon [25]; see Sundaram [50, Section
2: Theorem 2.2, Eq. 23] for history, or Early–Reiner [20, Eq. 1.1]. The space𝐻∗ PConf𝑛(ℝ𝑑) is well
studied and connects the 𝔢𝑘 to other rings associated with the Braid arrangement (to be discussed
shortly). These Type 𝐴 properties are the inspiration for our results.

1.2 Hint at a more general phenomenon: Type 𝑩

As in Type 𝐴, the work of Aguiar and Mahajan generalizes earlier work by F. Bergeron and N.
Bergeron in [11] for Type 𝐵. Like Garsia and Reutenauer, Bergeron and Bergeron define the Type
𝐵 Eulerian idempotents as elements in ℝ𝐵𝑛 using the generating function†

𝑛∑
𝑘=0

𝑡𝑘𝔢𝑘 =
∑
𝑤∈𝐵𝑛

( 𝑡−1
2
+ 𝑛 − des(𝑤)

𝑛

)
𝑤. (1.3)

Like Gerstenhaber and Schack, they show that the 𝔢𝑘 give a Hodge decomposition of Hochschild
homology for a commutative hyperoctahedral algebra,‡ although they do not use a Barr-like ele-
ment to do so.
In [9], N. Bergeron gives a description of the𝐵𝑛 representationℝ𝐵𝑛𝔢0 ⊗ sgn𝐵𝑛 as the top homol-

ogy of the intersection lattice for the Type 𝐵 hyperplane arrangement§ — thus hinting that the
features of the Eulerian representations in Type 𝐴 might hold more generally. We will show this
to be true.

1.3 Methods

Our aim is to describe the Eulerian representations in terms of three closely related spaces.

(1) The associated graded Varchenko–Gelfand ring  (to be defined in Section 3.3, Definition 2):
intuitively,  can be thought of as a commutative version of the (better studied) Orlik–
Solomon algebra.

(2) The cohomology¶ of a “𝑑-dimensionally thickened” hyperplane complement

𝑑

∶= 𝑉 ⊗ ℝ𝑑 −

( ⋃
𝐻𝑖∈

𝐻𝑖 ⊗ ℝ
𝑑

)
.

(3) The homology of open intervals (𝑉, 𝑋) in (): for each 𝑋 in (), the set-wise𝑊-stabilizer
subgroup𝑁𝑋 acts on the order complexΔ(𝑉,𝑋) and on its homology𝐻∗(𝑉,𝑋), which is non-

† The idempotents that Bergeron and Bergeron define are actually obtained by tensoring the 𝔢𝑘 in (1.3) with the sign rep-
resentation.
‡A hyperoctahedral algebra is an algebra with an involutive automorphism.
§ See Gottlieb–Wachs [56] for an alternate proof of this fact.
¶ Henceforth, all cohomology and homology groups are assumed to have coefficients in ℝ.
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416 BRAUNER

vanishing only in degree codim(𝑋) − 2.Wewill abbreviate the name of its𝑁𝑋-representation†
as

WH𝑋 ∶= 𝐻codim(𝑋)−2(𝑉, 𝑋)

and define from it an induced𝑊-representation

WH[𝑋] ∶= Ind
𝑊
𝑁𝑋
WH𝑋 ⊗det𝑉∕𝑋,

where det𝑉∕𝑋(𝑤) is the determinant of 𝑤 ∈ 𝑁𝑋 acting on 𝑉∕𝑋.

The relationship between the associated graded Varchenko–Gelfand ring and Orlik–Solomon
algebra is best understood through 𝑑


: in the 𝑑 = 2 case, 2


is the complexification of the

hyperplane complement1

, and 𝐻∗(2


) is (equivariantly) isomorphic to the Orlik–Solomon

algebra as a graded ring. A recent result of Moseley in [32] shows that when 𝑑 ⩾ 3 and odd,
𝐻∗(𝑑

𝐴
) (equivariantly) describes  as a graded ring.

In the case of the Braid arrangement,𝑑
(𝑆𝑛)

= PConf𝑛(ℝ
𝑑) and there is a description of the

cohomology due to F. Cohen [17] for 𝑑 of any parity. Similarly, in Type 𝐵,𝑑
(𝐵𝑛)

is PConfℤ2𝑛 (ℝ𝑑),
theℤ2 orbit configuration space (see Section 4.4, Definition 5)with cohomology presentation given
by Xicotencatl [57] for any 𝑑.
Our contribution will be to connect all of these spaces —which already have well-known rela-

tionships to each other — to the Eulerian idempotents (in all of their guises). In doing so, we will
avoid any character computations and rather tie together various equivariant versions of results in
the literature, such as work by Aguiar–Mahajan [2], Reiner–Saliola–Welker [39], and Sundaram–
Welker [51]. The main novelties in our methods are (1) to define generalizations and extensions
of Barr’s element and study their action on ℝ𝑊 and (2) to further analyze the associated graded
Varchenko–Gelfand ring in order to use it as a stepping stone between other spaces.

1.4 Results for coincidental reflection groups

In the case of coincidental reflection groups, our primary tool will be a generalization of Barr’s
element in ℝ𝑊. Define

(𝑊) ∶=
∑
𝑠∈𝑆

∑
𝑤∈𝑊

Des(𝑤)⊂{𝑠}

𝑤.

We will show that (𝑊) acts semisimply on ℝ𝑊, and when 𝑊 is coincidental has eigenvalues
𝜎0 < 𝜎1 <⋯ < 𝜎𝑟 inℤ⩾0, where 𝜎𝑘 counts the number of rays (i.e., halfspaces for lines 𝐿 in())
lying in any intersection space 𝑋 with dim(𝑋) = 𝑘.
As a consequence, we are able to determine when the Eulerian subspace

(𝑊) ∶=
{ ∑
𝑤∈𝑊

𝑐𝑤𝑤 ∶ 𝑐𝑤 = 𝑐𝑤′ if des(𝑤) = des(𝑤′)
}
⊂ ℝ𝑊

† The notation here refers to the fact that𝑊𝐻𝑋 is a summand ofWhitney Homology; see Section 3.1.
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 417

is a commutative subalgebra, as it is in Types𝐴 and 𝐵 (see Garsia–Reutenauer [22] and Bergeron–
Bergeron [11]).

Theorem 1.1 (Theorem 4.3). The Eulerian subspace (𝑊) is a subalgebra if and only if𝑊 is coin-
cidental. Moreover, when the Eulerian subalgebra exists, it is always commutative.

Let

𝛽𝑊,𝓁 ∶=
1|𝑊| 𝓁∏

𝑖=1

(𝑡 − 𝑒𝑖)

𝑟−𝓁∏
𝑖=1

(𝑡 + 𝑒𝑖).

Our main theorem is a description of the Eulerian representations.

Theorem 1.2 (Theorem 4.4). When𝑊 is a coincidental reflection group of rank 𝑟, for each 0 ⩽ 𝑘 ⩽
𝑟, the following are equivalent as𝑊-representations:

(i) the 𝑘th graded piece of the associated graded Varchenko–Gelfand ring, 𝑘;
(ii) 𝐻𝑘(𝑑−1)(𝑑


) for 𝑑 ⩾ 3 and odd;

(iii)
⨁
[𝑋] WH[𝑋], where the direct sum is over all [𝑋] ∈ ()∕𝑊 with codim(𝑋) = 𝑘;

(iv) the 𝜎𝑟−𝑘 eigenspace of (𝑊) in ℝ𝑊;
(v) the left ℝ𝑊-module ℝ𝑊𝔢𝑟−𝑘;
(vi) the left ℝ𝑊-module ℝ𝑊𝐸𝑟−𝑘 , where {𝐸𝑘} ⊂ (𝑊) are idempotents defined by

𝑟∑
𝑘=0

𝑡𝑘𝐸𝑘 ∶=
∑
𝑤∈𝑊

𝛽𝑊,des(𝑤)(𝑡) ⋅ 𝑤.

Theorem 4.4 recovers all known descriptions of the Type𝐴 and𝐵 Eulerian representations, and
also implies that the Type 𝐵 Eulerian representations are isomorphic to the non-trivial pieces of
𝐻∗ PConf

ℤ2
𝑛 (ℝ

𝑑) for 𝑑 ⩾ 3 and odd (Corollary 4.6).

1.5 Results for arbitrary finite reflection groups

We then study the representations ℝ𝑊𝔢[𝑋] for any finite Coxeter group (𝑊, 𝑆). As in the coinci-
dental case, we define an element  ∈ ℝ𝑊 and show that  acts semisimply with eigenspaces
indexed by flat orbits [𝑋] ∈ ()∕𝑊. In Theorem 5.2, we show that  admits a grading by flats.
Theorem 5.4 then gives a case-free description of the representation carried by each eigenspace of
 indexed by [𝑋] ∈ ()∕𝑊 in terms of

– a direct summand [𝑋] of the ring  indexed by [𝑋],
– the representationWH[𝑋], and
– the representation ℝ𝑊𝔢[𝑋] generated by a flat-orbit idempotent 𝔢[𝑋].

1.6 Outline

The remainder of the paper proceeds as follows. Section 2 gives relevant background on the the-
ory of hyperplane arrangements; Section 3 covers necessary topological descriptions of subspace
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418 BRAUNER

arrangements and defines the Varchenko-Gelfand ring; Section 4 examines the case that𝑊 is a
coincidental reflection group; Section 5 addresses the case that𝑊 is any finite reflection group;
Section 6 proposes directions for future study.

2 REAL HYPERPLANE ARRANGEMENTS

The theory of real hyperplane arrangements underpins much of this paper; in this section we
review the essential details. For a more in-depth study, consult [2].

2.1 Basics

A central hyperplane𝐻 in a vector space 𝑉 = ℝ𝑟 is a codimension one subspace of 𝑉; a collection
of hyperplanes is a hyperplane arrangement, . All hyperplane arrangements we will consider
will be central and essential, meaning that

⋂
𝐻∈𝐻 = {0} is the center of.

A flat 𝑋 of is a subspace of 𝑉 formed by intersecting a subset of the hyperplanes in; when
 is essential and central, 𝑉 and {0} are always flats. The collection of all flats of , ordered by
reverse inclusion, defines a lattice () (written  when the context of  is clear.) This lattice
is geometric, meaning that it is atomic and semimodular, with minimum element 𝑉 and max-
imum element {0}. The rank function of  is defined by codimension, so that 𝑋 ∈  has rank
codim(𝑋) ∶= 𝑟 − dim(𝑋); because  is essential the rank of  is dim(𝑉) = 𝑟. Throughout this
paper, 𝜇 will denote the Möbius function of .
For any flat 𝑋 ∈ , it is possible to define two new hyperplane arrangements. The localization

arrangement of 𝑋,𝑋 is

𝑋 ∶= {𝐻 ∶ 𝐻 ∈  and 𝑋 ⊂ 𝐻}.

In𝑋 ,𝑋 is themaximal element of(𝑋) and𝑉 is theminimal element. The restriction arrange-
ment of 𝑋,𝑋 is

𝑋 ∶= {𝐻 ∩ 𝑋 ∈  ∶ 𝑋 ⊄ 𝐻}.

In this case, the maximal element of (𝑋) is {0} and the minimal element is 𝑋.

2.2 The Tits algebra

Every hyperplane 𝐻 ∈  defines two disjoint open half spaces 𝐻+ and 𝐻− in 𝑉 with respective
closures𝐻+,𝐻−, so that𝐻 = 𝐻+ ∩ 𝐻−. Index the hyperplanes inwith a set 𝐼. A face of is an
intersection of the closure of half-spaces 𝐹 = ∩𝑖∈𝐼𝐻𝜖𝑖(𝐹), where 𝜖𝑖(𝐹) ∈ {+,−,±} and 𝐻± ∶= 𝐻.
Let  = () be the set of faces of. For our purposes, we will say two arrangements,′ are
isomorphic if there is a poset isomorphism between the set of faces () and (

′
), ordered by

reverse inclusion.
The support of a face 𝐹 is the smallest flat containing 𝐹; the support map

𝔰 ∶  → 
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f4

f1

f5

f2

f3 f6
O

F IGURE 1 On the left, the Type 𝐴 hyperplane arrangement(𝑆3) with the positive half-spaces shown. On
the right, the faces of(𝑆3)

sends each face to its support. The dimension of𝐹 is the (vector space) dimension of 𝔰(𝐹). A face of
maximal dimension (or equivalently, a face whose support is𝑉) is called a chamber. Let () = 

be the set of chambers of.
The set  has a semigroup structure, with a product called the Tits product.

Definition 1 (Tits product). For 𝐹,𝐺 ∈  , let

𝜖𝑖(𝐹𝐺) =

{
𝜖𝑖(𝐹) 𝜖𝑖(𝐹) ≠ ±

𝜖𝑖(𝐺) 𝜖𝑖(𝐹) = ±.

The product 𝐹𝐺 is then defined to be

𝐹𝐺 ∶=
⋂
𝑖∈𝐼

𝐻𝜖𝑖(𝐹𝐺).

The Tits product has a geometric interpretation as well. For 𝐹,𝐺 ∈  , 𝐹𝐺 is the first face one
enters when moving an infinitesimally small (but non-zero) distance along the straight line seg-
ment from any point in the interior of 𝐹 toward any point in the interior of 𝐺.

Example 1 (Braid arrangement). Perhaps the most well-studied hyperplane arrangement is the
Braid arrangement (𝑆𝑛), which consists of hyperplanes 𝐻𝑖𝑗 ∶= {𝑥𝑖 − 𝑥𝑗 = 0} and reflections
(𝑖𝑗) ∈ 𝑆𝑛 over the 𝐻𝑖𝑗 . The 𝐻𝑖𝑗 are defined in ℝ𝑛, but to make the arrangement essential, we
must project them intoℝ𝑛∕⟨𝑥1 + 𝑥2 +⋯ + 𝑥𝑛⟩ ≅ ℝ𝑛−1. In Figure 1, the graphic on the left shows
the essentialized arrangement(𝑆3) in ℝ2.
The faces of (𝑆3) are shown in the graphic on the right of Figure 1. The origin (or center),

written , is defined by

 = 𝐻±
12
∩ 𝐻±

23
∩ 𝐻±

13
.

The chambers are 𝑐1, … , 𝑐6; the chamber 𝑐1 = 𝐻+12 ∩ 𝐻
+
23
∩ 𝐻+

13
, and the other 𝑐𝑖 can be expressed

similarly. There are six one-dimensional faces, 𝑓1, 𝑓2, … , 𝑓6, which are rays with starting point.
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420 BRAUNER

The face𝑓1 is defined by𝑓1 = 𝐻
±
12
∩ 𝐻+

23
∩ 𝐻+

13
. Note that smaller dimensional faces are contained

in larger dimensional faces; for example, ⊂ 𝑓1 ⊂ 𝑐1. Under the Tits product, every face in(𝑆3)
is idempotent, and  is the identity. Other example computations include:

𝑓1𝑐1 = 𝑐1, 𝑓1𝑐5 = 𝑐1, 𝑐1𝑐6 = 𝑐1, 𝑓1𝑓2 = 𝑐2.

The Tits product on  was introduced by Tits in [52] and has proved to be a powerful tool in
the study of hyperplane arrangements. It makes an example of a left regular band, meaning that
𝐹𝐺𝐹 = 𝐹𝐺 for every 𝐹,𝐺 ∈  .
The Tits algebra ℝ is the semigroup ℝ-algebra over  . Write a typical element in the Tits

algebra as 𝑢 =
∑
𝐹∈ 𝑢𝐹𝐹, where 𝑢𝐹 ∈ ℝ. Similarly, the lattice —which has the structure of a

semigroupwithmultiplication given by the join operation 𝑥 ∨ 𝑦—can be turned into a semigroup
algebra ℝ. In this way, 𝔰 ∶ ℝ → ℝ becomes an algebra homomorphism.†
For any 𝐹 ∈  and 𝐶 ∈ , one has 𝐹𝐶 ∈ . Hence ℝ is a left ideal of ℝ and thus a left ℝ -

module, where 𝑢 ∈ ℝ acts on 𝐶 ∈  by

𝑢 ⋅ 𝐶 =
∑
𝐹∈

𝑢𝐹𝐹𝐶.

In their celebrated result, Bidigare, Hanlon, and Rockmore provide a way to analyze the action
of 𝑢 ∈ ℝ on ℝ.

Theorem 2.1 (Bidigare–Hanlon–Rockmore [14, Theorem 1.2]). Let 𝑢 =
∑
𝐹∈ 𝑢𝐹𝐹 ∈  act on

ℝ. Then for every 𝑋 ∈ , 𝑢 has an eigenvalue

𝜆𝑋 =
∑
𝐹⊂𝑋

𝑢𝐹,

which has multiplicity |𝜇(𝑉,𝑋)|. Moreover, if 𝑢𝐹 ∈ ℝ⩾0, then 𝑢 acts semisimply on ℝ.
Remark 1. Theorem2.1 has been applied extensively in the study of randomwalks on the chambers
of hyperplane arrangements. To construct such a random walk, assign coefficients 𝑢𝐹 to each
𝐹 ∈  such that 𝑢𝐹 ⩾ 0 and

∑
𝐹∈ 𝑢𝐹 = 1. See [14] and [39] for details.

2.3 Reflection arrangements

The arrangements we are interested in are those coming from reflection groups, called reflection
arrangements.Given a reflection group𝑊, identify𝑊 with its canonical faithful representation in
GL(𝑉) for 𝑉 = ℝ𝑟. The reflection arrangement(𝑊) (writtenwhen the context is clear) is the
hyperplane arrangement {𝐻𝑖}𝑖∈𝐼 where for each𝐻𝑖 , there is an element 𝑡𝑖 ∈ 𝑊 that orthogonally
reflects over 𝐻.
There are many deep connections between the properties of 𝑊 and (𝑊). For example, the

characteristic polynomial of, defined for a general arrangement by

𝜒() ∶=
∑

𝑋∈()

𝜇(𝑉, 𝑋)𝑡dim(𝑋),

† In fact, 𝔰 is the abelianization morphism for ℝ .
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 421

can be factored as 𝜒() = (𝑡 − 𝑒1)(𝑡 − 𝑒2)… (𝑡 − 𝑒𝑟) when  is a reflection arrangement (where
the 𝑒𝑗 ∶= 𝑑𝑗 − 1 are the exponents of𝑊).
By construction, the reflections in𝑊 preserve , inducing an action on  and  . This action

extends to ℝ and commutes with the support map 𝔰, so 𝑤 ⋅ 𝔰(𝐹) = 𝔰(𝑤𝐹).
The action of𝑊 on  is simply transitive; because of this, once one makes a choice of a funda-

mental chamber 𝑐1 ∈  (which forms a fundamental domain for the𝑊-action on𝑉), each remain-
ing chamber can be uniquely identified with a 𝑤 ∈ 𝑊 by 𝑐𝑤 ∶= 𝑤(𝑐1). From this it follows that
ℝ is isomorphic as a (left-)ℝ𝑊-module to the group algebra ℝ𝑊 itself.
The localization of a reflection arrangement 𝑋 is always a reflection arrangement with cor-

responding reflection group 𝑊𝑋 , the point-wise stabilizer of 𝑋. By contrast, the restriction of a
reflection arrangement 𝑋 is not necessarily a reflection arrangement. In fact, using a result of
Abramenko [1, Proposition 5], Aguiar andMahajan show that an essential reflection arrangement
 has the property that 𝑋 is a reflection arrangement for every flat 𝑋 ∈ () if and only if𝑊
is a direct product of coincidental reflection groups. This fact will prove instrumental in studying
the Eulerian representations of coincidental reflection groups.

2.3.1 Solomon’s descent algebra

While the results discussed in the Introduction take place in the group algebra, thus far, we have
only discussed ℝ . Solomon’s descent algebra and a theorem of Bidigare provide the tools to
translate between ℝ and ℝ𝑊.
In [47] Solomon observed that the descent set of an element of a Coxeter group, as defined in

(1.2), could be used to define a subalgebra of ℝ𝑊. In particular, he showed that there is a subal-
gebra of ℝ𝑊, now known as Solomon’s descent algebra, defined by

(𝑊) =  ∶=
{ ∑
𝑤∈𝑊

𝑐𝑤𝑤 ∶ 𝑐𝑤 = 𝑐𝑤′ if Des(𝑤) = Des(𝑤′)
}
.

What is surprising about Solomon’s result is that elements of  are closed under multiplication.
Let

𝑌𝑇 ∶=
∑

𝑤∶Des(𝑤)⊆𝑇

𝑤,

𝑍𝑇 ∶=
∑

𝑤∶Des(𝑤)=𝑇

𝑤,

where 𝑇 varies over subsets of 𝑆; the collection of {𝑦𝑇}𝑇⊂𝑆 and {𝑧𝑇}𝑇⊂𝑆 form bases of . Ele-
ments in  act by left multiplication on ℝ𝑊. The opposite descent algebra opp can be defined
as the same set as acting by right multiplication on ℝ𝑊. Note that 𝑌𝑇 and 𝑍𝑇 are also bases for
opp.
Every reflection arrangement is linked to opp as follows. Let ℝ𝑊 be the algebra of 𝑊-

invariants of ℝ . A basis for ℝ𝑊 is indexed by𝑊-orbits of elements of  . Define

𝛾[𝐺] ∶=
∑

𝐹∶[𝐹]⊆[𝐺]

𝐹,
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422 BRAUNER

𝜁[𝐺] ∶=
∑
𝐹∈[𝐺]

𝐹.

Both {𝛾[𝐺]} and {𝜁[𝐺]} as [𝐺] runs over orbits in  form bases for ℝ𝑊 .
Using the fact that 𝑐1 ∈  forms a fundamental domain for the𝑊-action on 𝑉, each face orbit

[𝐺] can be identified uniquely with a face 𝐹 ⊂ 𝑐1 where 𝐹 ∈ [𝐺]. Hence, each [𝐺] can be uniquely
identified with every subset 𝑇 of 𝑆 by

[𝐺] ⟺ 𝑇 ∶= {𝑠 ∈ 𝑆 ∶ 𝑠(𝐹) ≠ 𝐹} ⊆ 𝑆.

In this case we say that 𝐺 is of type 𝑇.
From this identification, Bidigare proves a beautiful connection betweenopp and ℝ𝑊 .

Theorem 2.2 (Bidigare, [13, Theorem 3.81]). There is an algebra isomorphism

𝜑 ∶ ℝ𝑊 → opp

given by sending
𝜑 ∶ 𝛾[𝐺] ↦ 𝑍𝑇,

𝜑 ∶ 𝜁[𝐺] ↦ 𝑌𝑇,

where [𝐺] is of type 𝑇.

Example 2. Consider once again the arrangement (𝑆3) discussed in Example 1. In this case,
𝑊 = 𝑆3 and 𝑆 = {(12), (23)}. The face orbits in  and their face types are:

[] = {} ⟺ ∅

[𝑓1] = {𝑓1, 𝑓3, 𝑓5} ⟺ {(23)}

[𝑓6] = {𝑓2, 𝑓4, 𝑓6} ⟺ {(12)}

[𝑐1] = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6} ⟺ {(12), (23)}.

2.4 Eulerian idempotents for hyperplane arrangements

In this section we will briefly summarize the most relevant parts of the theory of Eulerian
idempotents for hyperplane arrangements initiated by Saliola in [44–46] and later studied by
Aguiar–Mahajan in [2]. For generalizations of these idempotents to settings other than hyper-
plane arrangements, see [8, 26, 35, 43].
In [2], Aguiar and Mahajan give a number of equivalent ways to define the idempotents first

introduced by Saliola. We will focus on Saliola’s original framework of homogeneous sections of
the support map (called the Saliola method in [2]).
Let 𝔲 ∶ ℝ→ ℝ be any section of the support map, meaning that the composition

ℝ
𝔲
⟶ ℝ

𝔰
⟶ ℝ
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 423

is the identity onℝ. For any𝑋 ∈ (), define 𝔲𝑋 ∶= 𝔲(𝑋). By construction, 𝔰(𝔲𝑋) = 𝑋 and 𝔲𝑋
can be written as

𝔲𝑋 =
∑
𝐹∈

𝑢𝐹𝐹,

where
∑
𝐹∈ 𝑢𝐹 = 1.

The section 𝔲 is homogeneous if each 𝔲𝑋 is a sum of faces with support exactly 𝑋:

𝔲𝑋 =
∑
𝐹∈
𝔰(𝐹)=𝑋

𝑢𝐹𝐹.

A homogeneous section 𝔲 is the uniform section if 𝑢𝐹 = 𝑢𝐺 whenever 𝔰(𝐺) = 𝔰(𝐹).
In [45], Saliola shows that using any homogeneous section 𝔲, one can recursively define a fam-

ily of idempotents {𝔢𝑋}𝑋∈ in ℝ by

𝔢𝑋 ∶= 𝔲𝑋 −
∑
𝑌∶𝑌<𝑋

𝔲𝑋 ⋅ 𝔢𝑌.

He shows that the family {𝔢𝑋}𝑋∈ (henceforth flat idempotents†) form a complete, primitive, and
orthogonal system of idempotents in ℝ . Importantly, each family depends on the section being
used, and, in fact, homogeneous sections are in correspondence with families of flat idempotents
{𝔢𝑋}𝑋∈.
A homogeneous section 𝔲 is an eigensection of an element 𝑢 ∈ ℝ if there are scalars 𝜆 =

{𝜆𝑋}𝑋∈ such that for every 𝑋 ∈ 

𝑢𝑋 ⋅ 𝔲𝑋 = 𝜆𝑋 ⋅ 𝔲𝑋, (2.1)

where 𝑢𝑋 ∶=
∑
𝐹⊂𝑋 𝑢𝐹𝐹. Saliola studies eigensections† in [46], where he shows that𝔲 is an eigen-

section of 𝑢 with eigenvalues 𝜆 = {𝜆𝑋}𝑋∈ as in (2.1) if and only if 𝑢 =
∑
𝑋∈ 𝜆𝑋𝔢𝑋 .

When  is a reflection arrangement, Saliola shows in [44] that one can define a complete,
orthogonal system of idempotents inside of ℝ𝑊 using an invariant homogeneous section, which
is a homogeneous section such that 𝑢𝐹 = 𝑢𝐺 if [𝐹] = [𝐺]. For example, the uniform section is
an invariant section. A family of flat-orbit idempotents {𝔢[𝑋]}[𝑋]∈()∕𝑊 in ℝ𝑊 is obtained from
an invariant homogeneous section in an analogous way to the non-invariant case. Equivalently,
given an invariant section one can group the 𝔢𝑋 by flat orbit:

𝔢[𝑋] ∶=
∑
𝑌∈[𝑋]

𝔢𝑌.

The flat-orbit idempotents can be realized in ℝ𝑊 using the isomorphism 𝜑 ∶ ℝ𝑊 → opp, and
the resulting idempotents𝜑(𝔢[𝑋]) recover primitive idempotents inopp defined earlier by F. Berg-
eron, N. Bergeron, Howlett, and Taylor in [12].

† In [2], the 𝔢𝑋 are called Eulerian idempotents.
† In fact he does this in the more general context of left regular bands.
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424 BRAUNER

One can define coarser idempotents

𝔢𝑘 ∶=
∑

𝑋∈()
dim(𝑋)=𝑘

𝔢𝑋 =
∑

[𝑋]∈()∕𝑊
dim(𝑋)=𝑘

𝔢[𝑋].

In the case of the uniform section, the family 𝔢𝑘 has particularly nice properties; we will call these
idempotents the Eulerian idempotents, and henceforth, the notation 𝔢𝑘 will refer only to them.
When𝑊 is 𝑆𝑛 or 𝐵𝑛, applying the map 𝜑 to the 𝔢𝑘 recovers the idempotents defined by Equations
(1.1) and (1.3), respectively.
When𝑊 is a coincidental reflection group, Aguiar and Mahajan show the 𝔢𝑘 have an elegant

expression.

Theorem 2.3 (Aguiar–Mahajan [2, Theorem 12.71]). For a coincidental reflection group𝑊,

𝑟∑
𝑘=0

𝑡𝑘𝔢𝑘 =
∑

𝑋∈()

𝜒(𝑋)

𝑐𝑋

( ∑
𝐹∶𝔰(𝐹)=𝑋

𝐹

)
=

∑
[𝐹]∈𝑊

𝜒(𝔰(𝐹))

𝑐𝔰(𝐹)
𝜁[𝐹],

where 𝑐𝑋 is the number of chambers in𝑋 .

3 TOPOLOGY OF SUBSPACE ARRANGEMENTS

Our goal is eventually to give a description of the Eulerian representations in terms of the
(co)homology of topological spaces closely related to hyperplane arrangements. We discuss those
spaces and their (co)homology below.

3.1 The (equivariant) Goresky–MacPherson formula

Wewill first consider themore general setting of subspace arrangements. A real subspace arrange-
ment is a collection of linear subspaces = {𝑈𝑖}𝑖∈𝐼 of anℝ-vector space𝑉. Note that a hyperplane
arrangement is a subspace arrangement where every subspace has codimension one.
As in the case of hyperplane arrangements, let ( ) be the poset of intersection subspaces,

ordered by reverse containment. In general,( ) is a not necessarily a geometric lattice, but in the
cases relevant to us it will be. Let (𝑉, 𝑋) be the open interval between𝑉 and𝑋 in( ). The order
complex of (𝑉, 𝑋), writtenΔ(𝑉,𝑋), is the simplicial complexwith 𝑘-dimensional faces correspond-
ing to 𝑘-chains in (𝑉, 𝑋); this simplicial complex has homology𝐻∗(𝑉,𝑋).When( ) is a geomet-
ric lattice, 𝐻̃𝑖(𝑉, 𝑋) = 0 unless 𝑖 = codim(𝑋) − 2. Recall from the Introduction that we defined

WH𝑋 ∶= 𝐻̃codim(𝑋)−2(𝑉, 𝑋),

which is a summand of Whitney homology; see Bjorner [15] or Orlik–Terao [37] for precise
definitions of Whitney homology in general.
Let  ∶= 𝑉 − . If a group𝑊 acts on 𝑉 in a way that preserves  , call  a𝑊-subspace

arrangement. In this case, 𝑊 also acts on  , making 𝐻∗( ) a 𝑊-module. Moreover,
for every 𝑋 ∈ ( ), the set-wise stabilizer 𝑁𝑋 acts on the order complex Δ(𝑉,𝑋) and on its
homology𝐻∗(𝑉,𝑋).
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 425

The 𝑊-module structure of 𝐻∗( ) is determined in part by a one-dimensional represen-
tation of 𝑁𝑋 for each 𝑋 ∈  as follows. Define the space 𝑋† ∶= 𝕊codim(𝑋)−1 ∩ 𝑋⟂ in 𝑉, where
𝕊codim(𝑋)−1 is the unit sphere within the perp space 𝑋⟂. Thus 𝑋† will have non-trivial reduced
homology in degree codim(𝑋) − 1 only, in which case the homology will be one-dimensional. The
group 𝑁𝑋 acts on 𝑋† and hence on 𝐻̃codim(𝑋)−1(𝑋†); the latter action is determined by whether
𝑁𝑋 reverses or preserves the orientation of the fundamental class of 𝑋†.
For example, if  is a rank 𝑟 reflection arrangement and 𝑋 = 0, then 𝑋⟂ = 𝑉, 𝑁0 = 𝑊, and

0† = 𝕊𝑟−1. Hence𝑊 acts as the sign representation on 𝐻𝑟−1(𝕊𝑟−1) because reflections are orien-
tation reversing; note that sgn(𝑤) = det𝑉(𝑤), the determinant of 𝑤 acting on 𝑉. In fact, for any
𝑋 ∈ (), by an analogous argument, 𝐻codim(𝑋)−1(𝑋†) ≅𝑁𝑋 det𝑉∕𝑋 , where det𝑉∕𝑋 is the linear
character given by the determinant of𝑤 ∈ 𝑁𝑋 acting on 𝑉∕𝑋. That𝑁𝑋 acts on 𝑉∕𝑋 is clear from
the fact that 𝑁𝑋 stabilizes 𝑋 set-wise; one can then identify the action on 𝑉∕𝑋 with 𝑋⟂ because
𝑊 and all of its subgroups preserve inner products.
From this, we can describe𝐻∗( ) as both a vector space and a𝑊-module.

Theorem 3.1. Let be a real subspace arrangement in 𝑉. Then

(i) (Goresky–MacPherson: [24], [27], [54], [58]). As a vector space,

𝐻𝑖( ) ≅
⨁

𝑋∈( )

𝐻̃codim(𝑋)−𝑖−2(𝑉, 𝑋).

(ii) (Sundaram–Welker: [51]). If is a𝑊-subspace arrangement, then as𝑊-modules,

𝐻𝑖( ) ≅𝑊
⨁

[𝑋]∈( )∕𝑊

Ind𝑊𝑁𝑋

(
𝐻̃codim(𝑋)−𝑖−2(𝑉, 𝑋) ⊗ 𝐻̃codim(𝑋)−1(𝑋

†)
)
.

Example 3. Let be a hyperplane arrangement in a real vector space 𝑉, and consider the sub-
space arrangement𝑑 in𝑉 ⊗ℝ𝑑 defined by tensoring every𝐻 ∈  byℝ𝑑. Then() is isomor-
phic to (𝑑), and both are geometric lattices. When 𝑑 = 2, one has 𝑉 ⊗ℝ2 ≅ ℂ as a real vector
space and𝑑 can be thought of as the complexification of.
For 𝑑 > 1, let𝑑


= 𝑉 ⊗ℝ𝑑 −𝑑. Observe that given 𝑋 ∈ (),

codim𝑉⊗ℝ𝑑(𝑋 ⊗ ℝ
𝑑) = 𝑑 ⋅ codim𝑉(𝑋)

and Δ(𝑉,𝑋) ≅ Δ(𝑉 ⊗ ℝ𝑑, 𝑋 ⊗ ℝ𝑑). Hence Theorem 3.1 implies that

𝐻𝑖(𝑑

) =

⨁
𝑋∈()

𝐻̃𝑑⋅codim𝑉(𝑋)−𝑖−2(𝑉, 𝑋). (3.1)

Since 𝐻𝑘(𝑉,𝑋) = 0 unless 𝑘 = codim𝑉(𝑋) − 2, the right-hand side of (3.1) is 0 unless 𝑑 ⋅
codim𝑉(𝑋) − 𝑖 − 2 = codim𝑉(𝑋) − 2, forcing 𝑖 = (𝑑 − 1) ⋅ codim𝑉(𝑋). It follows that as a vector
space, every non-zero component of𝐻∗(𝑑


) is of the form

𝐻𝑗(𝑑−1)(𝑑

) =

⨁
𝑋∈()
codim(𝑋)=𝑗

𝐻̃𝑗−2(𝑉, 𝑋) =
⨁
𝑋∈()
codim(𝑋)=𝑗

WH𝑋 .
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426 BRAUNER

To equivariantly describe𝐻∗(𝑑

), note that𝑁𝑋 stabilizes 𝑋 ⊗ ℝ𝑑 set-wise for any 𝑋 ∈ ().

Since 𝑤 ∈ 𝑁𝑋 acts on 𝑋† by det𝑉∕𝑋(𝑤), it follows that 𝑤 acts on (𝑋 ⊗ ℝ𝑑)† by (det𝑉∕𝑋(𝑤))𝑑. If 𝑑
is even, this is the trivial representation, while if 𝑑 is odd, this is det𝑉∕𝑋(𝑤). Hence:

𝐻𝑗(𝑑−1)(𝑑

) ≅𝑊

⎧⎪⎨⎪⎩
⨁
[𝑋]∈()∕𝑊
codim(𝑋)=𝑗

Ind𝑊𝑁𝑋
WH𝑋 𝑑 is even,⨁

[𝑋]∈()∕𝑊
codim(𝑋)=𝑗

Ind𝑊𝑁𝑋
WH𝑋 ⊗det𝑉∕𝑋 𝑑 is odd.

Recall thatWH[𝑋] ∶= Ind𝑊𝑁𝑋 WH𝑋 ⊗det𝑉∕𝑋 . Hence when 𝑑 is odd, the latter case can be written
as

𝐻𝑗(𝑑−1)(𝑑

) =

⨁
[𝑋]∈()∕𝑊
codim(𝑋)=𝑗

WH[𝑋] .

When 𝑑 = 2,𝐻∗(𝑑

) is isomorphic (as a graded ring) to the Orlik–Solomon algebra (see [37]).

When 𝑑 ⩾ 3 is odd, 𝐻∗(𝑑

) is isomorphic (as a graded ring) to the associated graded of the

Varchenko–Gelfand ring, to be discussed and defined in Section 3.3.

3.2 Equivariant BHR Theory

When  is a reflection arrangement, the 𝑊-module structure of 𝑊𝐻[𝑋] can also be framed
in terms of the eigenspaces of semisimple operators 𝑢 ∈ 𝑊 on ℝ. Given 𝑢 ∈ 𝑊 that acts
semisimply on ℝ, let (ℝ)𝜆 be the eigenspace of 𝑢 corresponding to the eigenvalue 𝜆. For a flat
𝑋 ∈ , denote by 𝜆𝑋 the eigenvalue corresponding to 𝑋 given by Theorem 2.1.
Reiner, Saliola and Welker give an equivariant formulation of Theorem 2.1:

Theorem3.2 (Reiner–Saliola–Welker [39, Theorem 4.9]). Let𝑢 ∈ 𝑊 act semisimply onℝ. Then
there is an isomorphism of𝑊-modules

(ℝ)𝜆 ≅𝑊
⨁

[𝑋]∶𝜆𝑋=𝜆

WH[𝑋] .

To recover Theorem 2.1 from Theorem 3.2, note that the dimension ofWH𝑋 is |𝜇(𝑉,𝑋)|.
Our goal in Sections 4 and 5 will be to relate the spaces in Theorems 3.1 and 3.2 to the Eule-

rian representations.

3.3 The Varchenko–Gelfand Ring

Equipped with a description of𝐻∗( ) for any subspace arrangement, we now wish to study in
detail two particular (and related) cases: first, the case that the subspace arrangement is a reflec-
tion arrangement  in 𝑉, and second, the case of 𝑑 = ⊗ℝ𝑑 described in Example 3 when
𝑑 ⩾ 3 and odd. It will turn out that we can describe 𝐻0(𝐴) in terms of 𝐻∗(𝑑

𝐴
) and give an

explicit construction of the cohomologically graded pieces of the latter.
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 427

For an arrangement  = {𝐻𝑖}𝑖∈𝐼 , the ring of locally constant functions on  is precisely
𝐻0(), and has a filtration by Heaviside functions, where for each 𝑖 ∈ 𝐼, the Heaviside func-
tion 𝑥𝑖 ∈ 𝐻0() is given by

𝑥𝑖(𝑣) ∶=

{
1 𝑣 ∈ 𝐻+

𝑖

0 𝑣 ∉ 𝐻+
𝑖
.

In [53], Varchenko and Gelfand use these Heaviside functions to describe𝐻0(). While they
give a presentation for non-central arrangements, we will only present the case that is central
here. To do so, we recall some basic facts about hyperplanes.
Define 𝐸() = 𝐸 ∶= ℝ[𝑒𝑖]𝐻𝑖∈, and for a 𝑘-tuple of hyperplanes𝑀 = (𝐻1,… ,𝐻𝑘), write 𝑒𝑀 =

𝑒1𝑒2 … 𝑒𝑘. The set𝑀 is dependent if

codim𝑉

( ⋂
𝐻𝑖∈𝑀

𝐻𝑖

)
< |𝑀|

and independent otherwise. If 𝑀 is minimally dependent — that is for any 𝐻𝑗 ∈ 𝑀, 𝑀∖𝐻𝑗 is
independent—𝑀 is called a circuit. Let 𝐶 be any circuit of; then 𝐶 can be uniquely partitioned
into two sets, 𝐶+ and 𝐶− such that ⋂

𝐻𝑖∈𝐶
+

𝐻+
𝑖
∩

⋂
𝐻𝑗∈𝐶

−

𝐻−𝑗 = ∅.

Theorem 3.3 (Varchenko–Gelfand [53, Theorem 4.5]). The ring morphism defined by

Ψ ∶ 𝐸 ⟶ 𝐻0()

𝑒𝑖 ⟼ 𝑥𝑖

induces a ring isomorphism𝐻0() ≅ 𝐸∕ , with  = ker(Ψ) generated by:

(i) 𝑒2
𝑖
− 𝑒𝑖 for𝐻𝑖 ∈ ,

(ii) for every circuit 𝐶 in, ∏
𝐻𝑖∈𝐶

+

𝑒𝑖
∏
𝐻𝑗∈𝐶

−

(𝑒𝑗 − 1) −
∏
𝐻𝑖∈𝐶

+

(𝑒𝑖 − 1)
∏
𝐻𝑗∈𝐶

−

𝑒𝑗.

ThemapΨ imposes an ascending filtration on𝐻0() obtained from the natural degree grad-
ing on 𝐸: the 𝑑𝑡ℎ layer in the filtration is the span of monomials in the variables 𝑥𝑖 having degree
at most 𝑑. We will call its associated graded ring the associated graded Varchenko–Gelfand ring,
which Varchenko and Gelfand show has the following presentation.

Definition 2 (Associated graded Varchenko–Gelfand ring). For a central hyperplane arrange-
ment , let () =  ∶= 𝐸∕() be the associated graded Varchenko–Gelfand ring, where
() =  is generated by:

(i) 𝑒2
𝑖
for each𝐻𝑖 ∈ ;
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428 BRAUNER

(ii) For every circuit 𝐶 in

𝜕̃(𝑒𝐶) ∶=
∑
𝐻𝑖∈𝐶

𝑐(𝑖)𝑒𝐶∖𝐻𝑖 ,

where

𝑐(𝑖) =

{
1 if𝐻𝑖 ∈ 𝐶−,
−1 if𝐻𝑖 ∈ 𝐶+.

Let 𝑘 be the 𝑘th graded piece of  spanned by degree 𝑘 polynomials in the 𝑒𝑖 .

Remark 2. The relations in  bear a striking resemblance to the graded Orlik–Solomon algebra
(see [37]). However, the former ring is commutativewhile the latter is anti-commutative. Formore
discussion on this distinction, see Moseley [32], or Moseley–Proudfoot–Young [33]. The ring  is
also easily confused with another graded commutative ring 𝕌() defined by Orlik–Terao in [36].
However, 𝕌() is not isomorphic to  , as  depends only on the underlying oriented matroid,
while 𝕌() depends on the coordinates of. Cordovil carefully discusses this distinction in [18].

Varchenko–Gelfand show in [53] that when is central,  has an nbc-basis; see Cordovil [18,
Corollary 2.8]. To define an nbc-basis, impose an ordering on the hyperplanes in . A broken
circuit is a circuit with its largest element removed, and an nbc-set (non-broken-circuit-set) is a set
of hyperplanes that does not contain a broken circuit. The monomials indexed by nbc-sets of size
𝑘 form a basis for 𝑘.

Example 4 (BraidArrangement).Once again, let𝑊 = 𝑆𝑛, so(𝑆𝑛) is the Braid arrangementwith
hyperplanes of the form 𝐻𝑖𝑗 ∶= {𝑥𝑖 − 𝑥𝑗 = 0}. There is a nice description of the nbc-basis in this
case (see Barcelo–Goupil in [5]) as the monomials formed by choosing one element from each of
the 𝑛 − 1 sets:

{1, 𝑒12}, {1, 𝑒13, 𝑒23}, … , {1, 𝑒1𝑛, … , 𝑒(𝑛−1)𝑛}.

Using the nbc-basis, it can be shown that the only circuits needed to generate  are of the form
𝐶+ = {𝐻𝑖𝑗, 𝐻𝑗𝑘}, 𝐶− = {𝐻𝑖𝑘}. Hence  is generated by

(i) 𝑒2
𝑖𝑗
for every𝐻𝑖𝑗 ∈ ,

(ii) 𝑒𝑖𝑗𝑒𝑗𝑘 − 𝑒𝑖𝑗𝑒𝑖𝑘 − 𝑒𝑗𝑘𝑒𝑖𝑘 for every𝐻𝑖𝑗,𝐻𝑗𝑘,𝐻𝑖𝑘 ∈ .

Example 5 (Type 𝐵). Let𝑊 = 𝐵𝑛. There are three types of hyperplanes in (𝐵𝑛): they are, for
1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛,

𝐻𝑖𝑗 = {𝑥𝑖 − 𝑥𝑗 = 0}, 𝐻𝑖𝑗 = {𝑥𝑖 + 𝑥𝑗 = 0}, 𝐻𝑖 = {𝑥𝑖 = 0}.

Let the corresponding generators in  be 𝑒𝑖𝑗 , 𝑒𝑖𝑗 , and 𝑒𝑖 . The nbc-monomials in this case are
obtained by multiplying one element from each of the 𝑛 sets:

{1, 𝑒1}, {1, 𝑒12, 𝑒12, 𝑒2}, … , {1, 𝑒1𝑛, … , 𝑒(𝑛−1)𝑛, 𝑒1𝑛, … , 𝑒(𝑛−1)𝑛, 𝑒𝑛}.
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 429

In [57, Section 3.6], Xicotencatl shows that  is generated by seven quadratic relations in the 𝑒𝑖𝑗 ,
𝑒𝑖𝑗 , and 𝑒𝑖 . In his notation, 𝐻∗𝐹ℤ2(ℝ

𝑛 − {0}, 𝑞) gives the Varchenko Gelfand ring for(𝐵𝑞) if 𝑛 is
odd, and his generators 𝐴𝑗𝑖 , 𝐴𝑗𝑖 , and 𝐴𝑖0 correspond to our 𝑒𝑖𝑗 , 𝑒𝑖𝑗 , and 𝑒𝑖 , respectively.

Remark 3. Both the type 𝐴 and 𝐵 reflection arrangements are supersolveable, meaning that ()
is a supersolveable lattice for both arrangements; see [48] for an in-depth treatment of super-
solveable lattices. It is for precisely this reason that we have the particularly nice choice of bases
described in Examples 4 and 5. In fact, the only real coincidental group that does not have a super-
solveable arrangement is 𝐻3. This may be one reason the coincidental groups are named as such
— they are types 𝐴, 𝐵, the dihedral group 𝐼2(𝑚), and by coincidence𝐻3. Thank you to the anony-
mous referee for pointing this out.

Remark 4. When a group 𝑊 acts on  (and therefore also on ()), one naturally obtains a
𝑊-action on the Varchenko–Gelfand ring and its associated graded () as follows. For𝐻𝑖 ∈ ,
let 𝛼𝑖 ∈ 𝐻+𝑖 be the unit length normal vector to 𝐻𝑖 . By construction, for 𝑤 ∈ 𝑊,

𝑤 ⋅ 𝛼𝑖 = 𝑐𝑗𝛼𝑗,

where 𝑐𝑗 ∈ {±1},𝐻𝑗 ∈  and 𝛼𝑗 ∈ 𝐻+𝑗 , is the unit length normal vector to 𝐻𝑗 .
This induces an action on the Heaviside function 𝑥𝑖:

𝑤 ⋅ 𝑥𝑖 =

{
𝑥𝑗 𝑐𝑗 = 1

1 − 𝑥𝑗 𝑐𝑗 = −1.

The identification of 𝑥𝑖 with 𝑒𝑖 in Theorem 3.3 then describes the 𝑊 action on the Varchenko–
Gelfand ring. To obtain a𝑊-action on (), we again filter by degree so that

𝑤 ⋅ 𝑒𝑖 = 𝑐𝑗𝑒𝑗.

For example, in the braid arrangement, if one considers the hyperplane𝐻𝑖𝑗 and transposition (𝑖𝑗),
then

(𝑖𝑗) ⋅ 𝛼𝑖𝑗 = −𝛼𝑖𝑗 in(),

(𝑖𝑗) ⋅ 𝑥𝑖𝑗 = 1 − 𝑥𝑖𝑗 in 𝐻0(), and

(𝑖𝑗) ⋅ 𝑒𝑖𝑗 = −𝑒𝑖𝑗 in ().

There is an connection between  and the cohomology ring of𝑑

for odd 𝑑 due to Moseley,

which will prove instrumental to our results in Sections 4 and 5.

Theorem 3.4 (Moseley [32, Theorem 1.4]). Let be a real hyperplane arrangement and 𝑑 ⩾ 3 an
odd integer. Then  is isomorphic as a graded ring to𝐻∗(𝑑


), with

𝑘 ≅ 𝐻𝑘(𝑑−1)(𝑑

).

If a finite group𝑊 acts on, this isomorphism is𝑊-equivariant.
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430 BRAUNER

In the case that  is an irreducible reflection arrangement with reflection group 𝑊, Theo-
rem 3.4 says that

() ≅𝑊 𝐻
∗(𝑑


).

If we then consider the localization arrangement 𝑋 for 𝑋 ∈ (), one has 𝑁𝑋 , the set-wise
stabilizer of 𝑋, acting on𝑋 . Theorem 3.4 then implies that

(𝑋) ≅𝑁𝑋 𝐻
∗(𝑑

𝑋
).

4 EULERIAN REPRESENTATIONS FOR COINCIDENTAL
REFLECTION GROUPS

In this section, we will draw upon the theories in Sections 2 and 3 to develop a unified theory of
Eulerian representations for coincidental reflection groups.
Given a coincidental reflection group𝑊, let 𝑆 be the Coxeter generators of𝑊, be its reflec-

tion arrangement, and 𝑟 be the rank of  (or equivalently, |𝑆|). Because 𝑊 is coincidental, the
exponents (equivalently, degrees) of𝑊 can be expressed in terms of the exponent gap g as

1, 1 + g , 1 + 2g , … , 1 + (𝑟 − 1)g .

Here are the ranks 𝑟 and exponent gaps g for the coincidental groups:

𝑾 𝒓 g

𝑆𝑛 𝑛 − 1 1
𝐵𝑛 𝑛 2
𝐻3 3 4
𝐼2(𝑚) 2 𝑚 − 2

4.1 Generalizing Barr’s element

Thekey ingredient in developing the theory of theEulerian representations for coincidental reflec-
tion groups lies in generalizing the technique used in Type 𝐴 by Barr in [7] and Gerstenhaber–
Schack in [23].

Definition 3. For any reflection group𝑊, the Barr-element in ℝ𝑊 is

(𝑊) ∶=
∑
𝑠∈𝑆

∑
𝑤∈𝑊

Des(𝑤)⊂{𝑠}

𝑤.

Equivalently, in the notation of Section 2.3.1,

(𝑊) =
∑
𝑠∈𝑆

𝑌{𝑠}.
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 431

As before, when the context is clear write (𝑊) =  . Recall that 𝜑 ∶ ℝ𝑊 → opp is the algebra
isomorphism in Theorem 2.2. Let ̃ ∶= 𝜑−1(). By Theorem 2.2, it follows that

̃ =
∑

[𝐺]∈𝑊

dim(𝐺)=1

𝜁[𝐺] =
∑
𝐹∈

dim(𝐹)=1

𝐹 ∈ ℝ𝑊.

Proposition 4.1. For any reflection group𝑊, the element  acts semisimply on ℝ𝑊. When𝑊 is
coincidental, has 𝑟 + 1 eigenvalues 𝜎0 < 𝜎1 <⋯ < 𝜎𝑟 such that 𝜎𝑘 is the number of 1-dimensional
faces in𝑋 for any flat 𝑋 of dimension 𝑘.

Proof. Because ̃ has non-negative coefficients, it acts semisimply on ℝ by Theorem 2.1, and
thus  acts semisimply on ℝ𝑊 by the algebra isomorphism in Theorem 2.2.
Suppose𝑊 is coincidental. Then for any 𝑋,𝑌 ∈ , one has 𝑋 ≅ 𝑌 if and only if dim(𝑋) =

dim(𝑌). By Theorem 2.1 the eigenvalues of  are indexed by 𝜎𝑋 for each 𝑋 ∈  and

𝜎𝑋 =
∑
𝐹⊂𝑋

dim(𝐹)=1

1 = #{𝐹 ⊂ 𝑋 ∶ dim(𝐹) = 1}.

A flat 𝑋 is spanned by the 1-dimensional faces it contains, and therefore, if 𝑋 > 𝑌 in (), then
𝜎𝑋 < 𝜎𝑌 . Thus 𝜎𝑋 depends only on dim(𝑋) and so can be written 𝜎𝑘 for 0 ⩽ 𝑘 ⩽ 𝑟. □

Remark 5. Proposition 4.1 gives another explanation for why (as Barr observed) the eigenval-
ues of (𝑆𝑛) are {2𝑘+1 − 2} for 0 ⩽ 𝑘 ⩽ 𝑛 − 1. In Type 𝐴 a dimension 𝑘 flat 𝑋 has restriction
arrangement 𝑋(𝑆𝑛) ≅ (𝑆𝑘+1). Hence 𝜎𝑘 counts the number of one-dimensional faces
in (𝑆𝑘+1), which correspond to ordered pairs of non-empty, disjoint subsets (𝐼, 𝐽) with
𝐼 ⊔ 𝐽 = {1, 2, … , 𝑘 + 1} (see Aguiar–Mahajan [2, Section 6.3]). Given (𝐼, 𝐽), the face 𝐹 is where the
coordinates in 𝑉 have 𝑥𝑖 constant for all 𝑖 ∈ 𝐼 and 𝑥𝑗 constant for all 𝑗 ∈ 𝐽, and where 𝑥𝑖 < 𝑥𝑗
for 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽. There are 2𝑘+1 − 2 choices for the set ∅ ⊊ 𝐼 ⊊ {1, … , 𝑘 + 1}, determining the pair
(𝐼, 𝐽).
Similarly, we can deduce from Proposition 4.1 that in Type 𝐵, the eigenvalues of(𝐵𝑛) are {3𝑘 −

1} for 0 ⩽ 𝑘 ⩽ 𝑛 using the fact that a dimension 𝑘 flat 𝑋 has restriction arrangement 𝑋(𝐵𝑛) ≅
(𝐵𝑘). One-dimensional faces in(𝐵𝑘) correspond to the 3𝑘 − 1 assignments

𝜖 ∶ {1, … , 𝑘}⟶ {+1,−1, 0},

which avoid being identically zero (see Aguiar–Mahajan [2, Section 6.7]). Given such an assign-
ment 𝜖, the face 𝐹 is where 𝑥𝑗 = 0 if 𝜖(𝑗) = 0 and 𝜖(𝑖)𝑥𝑖 = 𝜖(𝑗)𝑥𝑗 > 0 for 𝜖(𝑖), 𝜖(𝑗) ≠ 0.
The eigenvalues for (𝐼2(𝑚)) and (𝐻3) are listed below.

𝑾 𝝈𝟎 𝝈𝟏 𝝈𝟐 𝝈𝟑

𝐼2(𝑚) 0 2 2𝑚

𝐻3 0 2 12 62

Because  acts semisimply on ℝ𝑊, by Lagrange interpolation, there are idempotents that
project onto each eigenspace of  . Let (ℝ𝑊)𝜎𝑘 be the 𝜎𝑘-eigenspace of  and denote by  (𝑘) the
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432 BRAUNER

projector onto (ℝ𝑊)𝜎𝑘 :

 (𝑘) ∶=
∏
𝑗≠𝑘

 − 𝜎𝑗

𝜎𝑘 − 𝜎𝑗
.

By construction,

 =

𝑟∑
𝑘=0

𝜎𝑘 ⋅ 
(𝑘).

Example 6. In(𝑆3), one has (𝑆3) = 2 + (12) + (23) + (123) + (132) and

 (0) =
1

6
(2 − (12) − (23) − (123) − (132) + 2(13)),

 (1) =
1

2
(1 − (13)),

 (2) =
1

6
(1 + (12) + (23) + (13) + (123) + (132)).

We will see in Theorem 4.4 that  (𝑘) in Types 𝐴 and 𝐵 are precisely the Type 𝐴 and 𝐵 Eulerian
idempotents from Equations (1.1) and (1.3), and more generally the following proposition.

Proposition 4.2. When𝑊 is coincidental,  (𝑘) = 𝜑(𝔢𝑘) for 0 ⩽ 𝑘 ⩽ 𝑟.

Proof. Using the notation in Section 2.4,

̃𝑋 =
∑
𝐹⊂𝑋

dim(𝐹)=1

𝐹,

which is invariant under the action of the reflection group corresponding to 𝑋 for any 𝑋. By
an analogous argument to Aguiar–Mahajan [2, Lemma 12.70], this implies that the uniform sec-
tion is an eigensection for ̃ . Moreover, ̃ is separating, meaning that if 𝑋 > 𝑌 in (), then
𝜎𝑋 < 𝜎𝑌 . By another theorem of Aguiar and Mahajan [2, Theorem 12.17], it follows that the uni-
form section is the unique eigensection for ̃ , giving the family of flat idempotents {𝑒𝑋}𝑋∈ such
that ̃ =

∑
𝑋∈ 𝜎𝑋𝔢𝑋 . Because 𝜎𝑋 = 𝜎𝑌 when dim(𝑋) = dim(𝑌),

̃ =

𝑟∑
𝑘=0

𝜎𝑘 ⋅ 𝔢𝑘.

Now apply 𝜑. □

4.2 Implications for Eulerian subalgebras

Recall that in the Introduction, we defined an ℝ-linear subspace of ℝ𝑊 called the Eulerian sub-
space,

(𝑊) ∶=  =
{ ∑
𝑤∈𝑊

𝑐𝑤𝑤 ∶ 𝑐𝑤 = 𝑐𝑤′ if des(𝑤) = des(𝑤′)
}
.
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 433

While  always exists as a subspace ofℝ𝑊 for any reflection group𝑊, it is natural to ask whether
 forms a subalgebra (i.e., like, is closed under multiplication). In Types𝐴 and 𝐵, this is known
to be true (see [22], [11]); our framework allows us to answer this question for any reflection group.

Theorem 4.3. The Eulerian subspace  is a subalgebra if and only if𝑊 is coincidental. Moreover,
when the Eulerian subalgebra exists, it is always commutative.

Proof. The Eulerian subspace  always has dimension 𝑟 + 1 by definition. If  is a subalgebra, it
will contain the subalgebraℝ generated by the Barr element  . Since  always acts semisimply,
ℝ will be commutative and have dimension equal to the number of distinct eigenvalues of  .
Recall from the proof of Proposition 4.1 that these eigenvalues are indexed by flats𝑋 in(), with
eigenvalue 𝜎𝑋 equal to the number of 1-dimensional faces (henceforth rays) in𝑋 . Since a flat 𝑋
is spanned by the rays it contains, any complete flag of flats {0} = 𝑋0 ⊊ 𝑋1 ⊊ ⋯ ⊊ 𝑋𝑟−1 ⊊ 𝑋𝑟 = 𝑉

gives rise to at least 𝑟 + 1 distinct eigenvalues 𝜎𝑋0 < ⋯ < 𝜎𝑋𝑟 . Hence  is a subalgebra if and only
if  = ℝ if and only if any two flats 𝑋,𝑌 of the same dimension have 𝜎𝑋 = 𝜎𝑌 . Proposition 4.1
showed that this occurs whenever𝑊 is coincidental.
We check here that when𝑊 is not coincidental, one always has at least two flats 𝑋,𝑌 of the

same dimension with 𝜎𝑋 ≠ 𝜎𝑌 . This can be verified computationally for𝐻4 and 𝐹4. The existence
of such flats for𝐸6, 𝐸7, and𝐸8 can be deduced fromcomputations inOrlik–Terao [37, AppendixD],
where they compute the number of lines in all possible arrangements𝑋 of rank 3; every linemust
contain exactly two rays.
In Type𝐷, a result of Barcelo–Ihrig [6, Theorem4.1] describes a bijection between flats of(𝐷𝑛)

(for 𝑛 ⩾ 4) and partitions 𝜆 of the set {1, … , 𝑛, 1, … , 𝑛} such that

(i) 𝜆 has at most one zero-block 𝜆0 where if 𝑖 ∈ 𝜆0, then 𝑖 ∈ 𝜆0 and |𝜆0| ≠ 2; and
(ii) every non-zero block 𝜆𝑗 of 𝜆 has a partner 𝜆𝑗; if 𝑖 ∈ 𝜆𝑗 , then 𝑖 ∈ 𝜆𝑗 (with 𝑖 = 𝑖).

Write such a partition as 𝜆 = (𝜆𝑘, … , 𝜆1, 𝜆0, 𝜆1, … , 𝜆𝑘), even if 𝜆0 = ∅. Let 𝑋𝜆 ∈ () be the flat
corresponding to 𝜆; when 𝜆 has 2𝑘 non-zero blocks, 𝑋𝜆 has dimension 𝑘. If 𝜆 is a refinement of
a partition 𝜆′ , then 𝑋𝜆 < 𝑋𝜆′ in (). Consider the partition 𝜆 with 𝜆0 = ∅, 𝜆1 = {1} and 𝜆2 =
{2, 3, … , 𝑛}. The partitions refined by 𝜆 with two non-zero parts (corresponding to lines in 𝑋𝜆 )
are:

(i) (𝜆1 ∪ 𝜆2, 𝜆0, 𝜆1 ∪ 𝜆2) = ({1, 2, … , 𝑛, }, {∅}, {1, 2, … , 𝑛}),
(ii) (𝜆1 ∪ 𝜆2, 𝜆0, 𝜆1 ∪ 𝜆2) = ({1, 2, … , 𝑛, }, {∅}, {1, 2, … , 𝑛}), and
(iii) (𝜆1, 𝜆2 ∪ 𝜆0 ∪ 𝜆2, 𝜆1) = ({1}, {2, 2, … , 𝑛, 𝑛}, {1}).

Let 𝜌 be the partitionwith 𝜌0 = ∅, 𝜌1 = {1, 2}, and 𝜌2 = {3, … , 𝑛}. The partitions refined by 𝜌which
correspond to lines in𝑋𝜌 are

(i) (𝜌1 ∪ 𝜌2, 𝜌0, 𝜌1 ∪ 𝜌2) = ({1, 2, … , 𝑛, }, {∅}, {1, 2, … , 𝑛}),
(ii) (𝜌1 ∪ 𝜌2, 𝜌0, 𝜌1 ∪ 𝜌2) = ({1, 2, 3, … , 𝑛, }, {∅}, {1, 2, 3… , 𝑛}),
(iii) (𝜌1, 𝜌2 ∪ 𝜌0 ∪ 𝜌2, 𝜌1) = ({1, 2}, {3, 3, … , 𝑛, 𝑛}, {1, 2}), and
(iv) (𝜌2, 𝜌1 ∪ 𝜌0 ∪ 𝜌1, 𝜌2) = ({3, … , 𝑛}, {1, 1, 2, 2}, {3, … , 𝑛}).

Hence𝑋𝜆 contains six rays and𝑋𝜌 contains eight rays, but both 𝑋𝜆 and 𝑋𝜌 have dimension 2
in (). □
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434 BRAUNER

As in the case of Solomon’s descent algebra , where we defined bases 𝑌𝑇 and 𝑍𝑇 for 𝑇 ⊂ 𝑆
(see Section 2.3.1), there are natural bases for  (and opp) defined by

𝑦𝓁 ∶=
∑

𝑤∶des(𝑤)⩽𝓁

𝑤 =
∑
𝑇⊂𝑆|𝑇|=𝓁

𝑌𝑇,

𝑧𝓁 ∶=
∑

𝑤∶des(𝑤)=𝓁

𝑤 =
∑
𝑇⊂𝑆|𝑇|=𝓁

𝑍𝑇,

for 0 ⩽ 𝓁 ⩽ 𝑟. These bases will be useful in defining a generating function for the  (𝑘) in the sub-
sequent section (Theorem 4.4(vi)).

4.3 Main results

At last, we can collect the theories developed in previous sections to give a description of the
representations generated by the Eulerian idempotents. Recall that

𝛽𝑊,𝓁 ∶=
1|𝑊| 𝓁∏

𝑖=1

(𝑡 − 𝑒𝑖)

𝑟−𝓁∏
𝑖=1

(𝑡 + 𝑒𝑖). (4.1)

Theorem 4.4. Let𝑊 be a real coincidental reflection group. Then for 0 ⩽ 𝑘 ⩽ 𝑟, the following are
isomorphic as𝑊-representations:

(i) 𝑘 , the 𝑘th graded piece of the associated graded Varchenko–Gelfand ring;
(ii) 𝐻(𝑑−1)𝑘(𝑑


) for 𝑑 ⩾ 3 and odd;

(iii)
⨁
[𝑋] WH[𝑋], where the direct sum is over all [𝑋] ∈ ()∕𝑊 with codim(𝑋) = 𝑘;

(iv) (ℝ𝑊)𝜎𝑟−𝑘 , the 𝜎𝑟−𝑘-eigenspace of  ;
(v) 𝔢𝑟−𝑘ℝ, the representation generated by the Eulerian idempotent 𝔢𝑟−𝑘;
(vi) the left ℝ𝑊-module ℝ𝑊𝐸𝑟−𝑘 , where {𝐸𝑘} ⊂ (𝑊) are idempotents defined by

𝑟∑
𝑘=0

𝑡𝑘𝐸𝑘 ∶=

𝑟∑
𝓁=0

𝛽𝑊,𝓁(𝑡) ⋅ 𝑧𝓁 .

Proof.

∙ (i) if and only if (ii): follows from Theorem 3.4;
∙ (ii) if and only if (iii): follows from Theorem 3.1 (2), applied as in Example 3;
∙ (iii) if and only if (iv): follows from Theorem 3.2 and Proposition 4.1 because a flat 𝑋 with
codim(𝑋) = 𝑘 has 𝜎𝑋 = 𝜎𝑟−𝑘;

∙ (iv) if and only if (v): follows from Proposition 4.2;
∙ (v) if and only if (vi) will follow from translating Theorem 2.3 into the context of the polynomial
algebraopp[𝑡]. Specifically, applying 𝜑 to Theorem 2.3 gives

𝑟∑
𝑘=0

𝑡𝑘𝜑(𝔢𝑘) =
∑
𝑇⊂𝑆

𝜒(𝑇)

𝑐𝑇
𝑌𝑇, (4.2)
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 435

where 𝜒(𝑇) is the characteristic polynomial of𝔰(𝐹) for some 𝐹 ∈  of type 𝑇, and 𝑐𝑇 is the
number of chambers in 𝔰(𝐹). The right side of (4.2) can be simplified by grouping together
subsets 𝑇 ⊂ 𝑆 of the same size. Because𝑊 is coincidental, 𝜒(𝑇) and 𝑐𝑇 depend only on the
size of 𝑇. In particular, when |𝑇| = 𝑗,

𝜒(𝑇) = (𝑡 − 1)(𝑡 − 1 − g) … (𝑡 − 1 − g(𝑗 − 1)) = g𝑗
(
𝑡 − 1

g

)
𝑗

and

𝑐𝑇 = (2)(2 + g) … (2 + g(𝑗 − 1)) = g𝑗
(
2

g

)
𝑗

.

Hence
𝑟∑
𝑘=0

𝑡𝑘𝜑(𝔢𝑘) =

𝑟∑
𝑗=0

∑
𝑇⊂𝑆|𝑇|=𝑗

(
𝑡−1

g

)
𝑗(

2

g

)
𝑗

𝑌𝑇 =

𝑟∑
𝑗=0

(
𝑡−1

g

)
𝑗(

2

g

)
𝑗

𝑦𝑗. (4.3)

Note that an element 𝑤 ∈ 𝑊 with descent set 𝑈 of size 𝓁 will appear on the right-hand side of
(4.3) each time 𝑈 ⊂ 𝑇 as 𝑇 varies over every subset of 𝑆. The set 𝑈 will appear in exactly

(𝑟−𝓁
𝑗−𝓁

)
subsets of size 𝑗. Thus

𝑟∑
𝑘=0

𝑡𝑘𝜑(𝔢𝑘) =

𝑟∑
𝓁=0

∑
𝑈⊂𝑆|𝑈|=𝓁

𝑍𝑈

⎛⎜⎜⎜⎝
𝑟∑
𝑗=𝓁

(
𝑟 − 𝓁
𝑗 − 𝓁

)(
𝑡−1

g

)
𝑗(

2

g

)
𝑗

⎞⎟⎟⎟⎠ =
𝑟∑

𝓁=0

𝑧𝓁

⎛⎜⎜⎝
𝑟∑
𝑗=𝓁

(
𝑟 − 𝓁
𝑗 − 𝓁

) ( 𝑡−1
g
)𝑗

( 2
g
)𝑗

⎞⎟⎟⎠. (4.4)

One can then check that on the right side of (4.4), the innermost summation appearing in front
of 𝑧𝓁 equals 𝛽𝑊,𝓁(𝑡), via the Chu–Vandermonde summation formula

2𝐹1

(
−𝑛 𝑏

𝑐

|||||1
)
=
(𝑐 − 𝑏)𝑛
(𝑐)𝑛

with 𝑛 = 𝑟 − 𝓁, 𝑏 = −( 𝑡−1
g
− 𝓁), and 𝑐 = 2

g
+ 𝓁. □

Remark 6. An equivalent way to write 𝛽𝑊,𝓁 is as

𝛽𝑊,𝓁(𝑡) ∶=

(
𝑡+g−1

g
− 𝓁

)
𝓁

(
𝑡+1

g

)
𝑟−𝓁(

2

g

)
𝑟

, (4.5)

where g is the exponent gap of 𝑊 and (𝑡)𝑘 ∶= (𝑡)(𝑡 + 1)… (𝑡 + 𝑘 − 1) is the rising factorial. We
originally used the form of 𝛽𝑊,𝓁 given by (4.5), and thank the anonymous referee for pointing
out the form of 𝛽𝑊,𝓁 used in (4.1). To recover (4.5) from (4.1), note that when𝑊 is coincidental,
𝑒𝑖 = 1 + (𝑖 − 1)g .

 14697750, 2022, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12519 by U

niversity O
f M

innesota Lib, W
iley O

nline Library on [09/04/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



436 BRAUNER

Remark 7. Surprisingly, the polynomial 𝛽𝑊,𝓁 defined in (4.1) has appeared before in the work
of Reiner, Shepler, and Sommers [40, Theorem 1.1]. Let

⋀𝓁 𝑉 be the 𝓁th exterior power of the
reflection representation 𝑉 of a real coincidental group𝑊. Then by [40, Theorem 1.1],

𝛽𝑊,𝓁(𝑡) =
1|𝑊| 𝓁∏

𝑖=1

(𝑡 − 𝑒𝑖)

𝑟−𝓁∏
𝑖=1

(𝑡 + 𝑒𝑖) =
1|𝑊| ∑

𝑤∈𝑊

𝜒⋀𝓁 𝑉
(𝑤)

𝜒⋀𝓁 𝑉
(1)

⋅ 𝑡dim(𝑉
𝑤), (4.6)

where 𝜒⋀𝓁 𝑉
is the character of

⋀𝓁 𝑉 and 𝑉𝑤 is the 𝑤-fixed space of 𝑉.
To derive (4.6) from [40], one needs to do a bit of work. In particular, Theorem 1.1 computes the

Hilbert series of the𝑊-invariant space

Hilb((𝑆(𝑉∗) ⊗
⋀
𝑉∗ ⊗

⋀
𝑉)𝑊, 𝑞, 𝑧, 𝑠),

where 𝑉∗ is the dual of 𝑉 and 𝑆(𝑉∗) is the symmetric algebra of 𝑉∗. We extract the 𝑠𝓁 coefficient
of this Hilbert series and set 𝑧 = −𝑞𝑡. Combining [40, Eq. 2.11] and taking the limit as 𝑞 goes to 1
then gives (4.6). The motivation for this comes from the theory of graded parking functions; see
[40, §10]. Note that Theorem 1.1 is in terms of exponents 𝑒𝑖 and co-exponents 𝑒∗𝑖 , but in the case of
real reflection groups, 𝑒𝑖 = 𝑒∗𝑖 .
We thank the anonymous referee for pointing out this remarkable and mysterious connection.

Remark 8. The generating functions for the Type 𝐴 and 𝐵 Eulerian idempotents (Equations (1.1)
and (1.3)) are easily deduced from Theorem 4.4 ((vi)) by taking 𝑟 = 𝑛 − 1, g = 1 in Type 𝐴 and
𝑟 = 𝑛, g = 2 in Type 𝐵. Note that in Type 𝐴, to obtain (1.1) one must multiply the formula in
Theorem 4.4((vi)) by 𝑡.

Remark 9. In [31, Theorem 9], A. Miller shows that the change of basis matrix from the 𝑧𝓁-basis
of  to the  (𝑘)-basis is described by the transpose of the (reduced) Foulkes character matrix in
Types𝐴 and 𝐵 (as well as the complex reflection groups𝐺(𝑚, 1, 𝑛) for𝑚 > 2; see Section 6). Using
Theorem 4.4, it is a straightforward to check that this surprising fact is true for 𝐼2(𝑚) and 𝐻3
as well.

4.4 Connections to configuration spaces

The final noteworthy feature of the Eulerian representations that we will discuss is their relation-
ship to the cohomology of certain configuration spaces; recall that this was already known in Type
𝐴.

Definition 4. The 𝑛th ordered configuration space of a topological space 𝑋 is

PConf𝑛(𝑋) ∶= {(𝑥1, … , 𝑥𝑛) ∈ 𝑋
𝑛 ∶ 𝑥𝑖 ≠ 𝑥𝑗 whenever 𝑖 ≠ 𝑗}.

The case that 𝑋 = ℝ𝑑 has been studied extensively. In [3], Arnol’d gave a presentation of
𝐻∗ PConf𝑛(ℝ

2); Fred Cohen extended this presentation to 𝐻∗ PConf𝑛(ℝ𝑑) for all 𝑑 ⩾ 2 in [17].
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 437

Importantly for our purposes, when 𝑑 ⩾ 1,

PConf𝑛(ℝ
𝑑) = {(𝑥1, … , 𝑥𝑛) ∈ ℝ

𝑑𝑛 ∶ 𝑥𝑖 ≠ 𝑥𝑗 if 𝑖 ≠ 𝑗} =𝑑
(𝑆𝑛)

.

Thus Theorem 4.4 yields the following corollary.

Corollary 4.5. For 0 ⩽ 𝑘 ⩽ 𝑛 − 1 and odd 𝑑 ⩾ 3,

𝐻𝑘(𝑑−1) PConf𝑛(ℝ
𝑑) ≅𝑆𝑛 ℝ𝑆𝑛𝐸𝑛−1−𝑘

with 𝐸𝑛−1−𝑘 as in Theorem 4.4.

Since𝐻∗ PConf𝑛(ℝ𝑑) = 𝐻∗(𝑑

), the Eulerian representations give a complete description of

every nonzero-graded component of 𝐻∗ PConf𝑛(ℝ𝑑). Corollary 4.5 was already known by com-
paring the computation of𝐻∗(𝑑


) in [51, Theorem 4.4 (iii)] with the character computations of

the Type 𝐴 Eulerian idempotents by Hanlon in [25]. In our framework, the proof of Corollary 4.5
follows immediately from Theorem 4.4.
Theorem 4.4 provides a similar description for the Type 𝐵 Eulerian idempotents.

Definition 5. For a group 𝐺 acting on a topological space 𝑋, the 𝑛th orbit configuration space is

PConf𝐺𝑛 (𝑋) ∶= {(𝑥1, … , 𝑥𝑛) ∈ 𝑋
𝑛 ∶ g ⋅ 𝑥𝑖 ∩ g ⋅ 𝑥𝑗 = ∅ for 𝑖 ≠ 𝑗 and any g ∈ 𝐺}.

Take 𝐺 = ℤ2 and 𝑋 = ℝ𝑑 with the action by the generator of ℤ2 on 𝑧 ∈ ℝ𝑑 mapping 𝑧 to −𝑧.
In his thesis, Xicocencatl gives a description of 𝐻∗ PConfℤ2𝑛 (ℝ𝑑) for 𝑑 of any parity [57, Theorem
3.1.3]. Once again, for our purposes, it is enough to note that

PConf
ℤ2
𝑛 (ℝ

𝑑) = {(𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑑𝑛 ∶ 𝑥𝑖 ≠ ±𝑥𝑗 for 𝑖 ≠ 𝑗 and 𝑥𝑖 ≠ 0} =𝑑

(𝐵𝑛)
.

Thus Theorem 4.4 immediately gives an equivariant description of each nonzero graded piece of
𝐻∗ PConf

ℤ2
𝑛 (ℝ

𝑑).

Corollary 4.6. For 0 ⩽ 𝑘 ⩽ 𝑛 and odd 𝑑 ⩾ 3,

𝐻𝑘(𝑑−1) PConf
ℤ2
𝑛 (ℝ

𝑑) ≅𝐵𝑛 ℝ𝐵𝑛𝐸𝑛−𝑘

with 𝐸𝑛−𝑘 as in Theorem 4.4.

For connections between𝐻∗ PConf𝑛(ℝ3) and𝐻∗ PConf
ℤ2
𝑛 (ℝ

3) with polynomial factorizations
over finite fields, see recent work by Hyde [28] and Peterson–Tosteson [38].

5 EULERIAN REPRESENTATIONS FOR FINITE COXETER GROUPS

We now turn to the case that𝑊 is an arbitrary finite Coxeter group with reflection arrangement
. For our purposes, the key differences between coincidental and general reflection groups are
that
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438 BRAUNER

(1) in general𝑋 is not necessarily a reflection arrangement, and
(2) if dim(𝑋) = dim(𝑌) for 𝑋,𝑌 ∈ (), it is not necessarily true that 𝜎𝑋 = 𝜎𝑌 .

Hence the eigenspaces of  will not effectively group together all flats of the same codimension
as in the coincidental case.
To combat this problem, we do two new things. First we introduce an element  ∈ ℝ𝑊 whose

eigenspaces will be indexed by flat orbits [𝑋]. Second, we will introduce a finer grading on ()

by flat.

5.1 A Barr-like element

We first define the element of ℝ𝑊 whose eigenspaces will be indexed by flat orbits.

Definition 6. Let

 ∶=
∑
𝑇⊂𝑆

∑
𝑤∈𝑊

Des(𝑤)⊂𝑇

𝑐𝑇𝑤 =
∑
𝑇⊂𝑆

𝑐𝑇𝑌𝑇,

where the collection of coefficients {𝑐𝑇}𝑇⊂𝑆 ⊂ ℝ is positive and algebraically independent over ℚ.

Recalling that 𝜑 ∶ ℝ𝑊 → opp is the isomorphism in Theorem 2.2, applying 𝜑−1 to  gives:

̃ ∶= 𝜑−1( ) =
∑
𝐹∈

𝑐[𝐹]𝐹 =
∑

[𝐹]∈𝑊

𝑐[𝐹]𝜁[𝐹],

where 𝑐[𝐹] = 𝑐𝑇 for 𝐹 of type 𝑇.

Proposition 5.1. The element  acts semisimply on ℝ𝑊 with eigenvalues 𝜏[𝑋] for [𝑋] ∈ ()∕𝑊,
such that 𝜏[𝑋] = 𝜏[𝑌] if and only if [𝑋] = [𝑌].

Proof. Let 𝑋,𝑌 ∈ . It is clear that  acts semisimply on ℝ𝑊 because ̃ acts semisimply on ℝ
as each 𝑐[𝐹] > 0. Suppose that each face of type 𝑇 ⊂ 𝑆 lies in𝑋 withmultiplicity𝑚𝑋𝑇 and in𝑌 with
multiplicity𝑚𝑌

𝑇
. Hence

𝜏𝑋 =
∑
𝑇⊂𝑆

𝑚𝑋𝑇 𝑐𝑇,

and similarly for 𝜏𝑌 . By construction 𝜏𝑋 = 𝜏𝑌 if [𝑋] = [𝑌]. On the other hand, if 𝜏𝑋 = 𝜏𝑌 , then
because the coefficients 𝑐𝑇 are algebraically independent over ℚ, it follows that 𝑚𝑋𝑇 = 𝑚

𝑌
𝑇
for

every 𝑇 ⊂ 𝑆. This forces dim(𝑋) = dim(𝑌). Moreover, for a maximal face 𝐹 in 𝑋, there must be a
face 𝐺 ∈ 𝑌 such that 𝑤𝐹 = 𝐺 for some 𝑤 ∈ 𝑊. Because dim(𝑋) = dim(𝑌) and 𝐹 is maximal, 𝐺
is maximal. Since the𝑊-action commutes with 𝔰,

𝑤𝑋 = 𝔰(𝑤𝐹) = 𝔰(𝐺) = 𝑌.

Hence [𝑋] = [𝑌]. □
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EULERIAN REPRESENTATIONS FOR REAL REFLECTION GROUPS 439

5.2 A finer grading for 

We would like to give an interpretation of the decomposition of ℝ𝑊 by  in terms of graded
pieces of (). In order to do so, we must prove that () admits a grading by flats. Our work
will parallel the analogous result by Orlik–Terao [37, Theorem 3.26, Corollary 3.27] that the Orlik–
Solomon algebra has a flat decomposition.
Recall that 𝐸 = ℝ[𝑒𝐻𝑖 ]𝐻𝑖∈ and  = 𝐸∕ (Definition 2), where  is generated by

(1) 𝑒2
𝑖
for every𝐻𝑖 ∈  and

(2) 𝜕̃(𝑒𝐶) for every circuit 𝐶 in.

For𝑀 = (𝐻𝑖1 , … ,𝐻𝑖𝑘 ), write 𝑒𝑀 = 𝑒𝑖1 … 𝑒𝑖𝑘 and∩𝑀 = 𝐻𝑖1 ∩ 𝐻𝑖2 ∩⋯ ∩ 𝐻𝑖𝑘 . Define for each𝑋 ∈
() the ℝ-subspace 𝐸𝑋 ∶= ℝ{𝑒𝑀 ∶ ∩𝑀 = 𝑋}. Note that 𝐸 has a vector space decomposition

𝐸 =
⨁
𝑋∈()

𝐸𝑋. (5.1)

We will show that this decomposition holds for  as well.

Theorem 5.2. For a central arrangement, there is a vector space decomposition

 =
⨁
𝑋∈()

 ∩ 𝐸𝑋

inducing the decomposition

() =
⨁
𝑋∈()

()𝑋,

where ()𝑋 ∶= 𝐸𝑋∕ ∩ 𝐸𝑋 .

Proof. It is clear that
∑
𝑋∈()  ∩ 𝐸𝑋 ⊂ . By (5.1), it is sufficient to show the other containment.

Since𝐸 is spanned by 𝑒𝑀 , it will follow from the generating relations of that ⊂
∑
𝑋∈()  ∩ 𝐸𝑋

if for any subset of hyperplanes𝑀 in,

(1) 𝑒2𝑖 𝑒𝑀 ∈
∑

𝑋∈()

 ∩ 𝐸𝑋 for every𝐻𝑖 ∈  and

(2) 𝑒𝑀𝜕̃(𝑒𝐶) ∈
∑

𝑋∈()

 ∩ 𝐸𝑋 for every circuit C in.

The first condition is satisfied because 𝑒2
𝑖
𝑒𝑀 ∈  ∩ 𝐸𝑋 for𝑋 = ∩(𝐻𝑖 ∪ 𝑀). The second condition

follows from the fact that if 𝐶 is a circuit, ∩𝐶 = ∩𝐶∖𝐻𝑖 for any 𝐻𝑖 ∈ 𝐶. Hence 𝑒𝑀𝜕̃(𝑒𝐶) ∈  ∩ 𝐸𝑌
for 𝑌 = ∩(𝑀 ∪ 𝐶). □

Remark 10. Since () has an nbc-basis, Theorem 5.2 implies that ()𝑋 also has an nbc-basis
of monomials 𝑒𝑀 indexed by nbc-sets𝑀 with ∩𝑀 = 𝑋.

Recall that 𝑋 is the localized arrangement at 𝑋. We would like to relate ()𝑋 to the top
degree of (𝑋).
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440 BRAUNER

Proposition 5.3. For any 𝑋 ∈ () with codim(𝑋) = 𝑘, there is an𝑁𝑋-equivariant isomorphism
𝑘(𝑋) ≅𝑁𝑋 ()𝑋 .

Proof. Let 𝔦 be the natural inclusion 𝔦 ∶ 𝐸(𝑋) ↪ 𝐸(). The relations in (𝑋) hold in (),
and thus 𝔦((𝐴𝑋)) ⊂ (𝐴), inducing a map

𝔦 ∶ (𝑋) → ().

Consider the image of 𝔦(𝑘(𝑋)). Since both 𝑘(𝑋) and ()𝑋 have a basis given by nbc-
monomials 𝑒𝑀 with ∩𝑀 = 𝑋, it follows that 𝔦(𝑘(𝑋)) must map isomorphically onto ()𝑋 .
The 𝑁𝑋 equivariance is clear from the definitions of 𝑁𝑋 and 𝔦. □

Recall that 𝑁𝑋 is the set-wise stabilizer of 𝑋. To index pieces of () by flat orbits, define the
𝑊-module ()[𝑋] ∶= Ind𝑊𝑁𝑋 ()𝑋 . The space ()[𝑋] will be used to describe the eigenspaces
of  in the subsequent section.

5.3 Results for arbitrary finite reflection groups

Using the tools developed above, we may now give a description of the eigenspaces of  for any
reflection group𝑊. Recall that (ℝ𝑊)𝜏[𝑋] is the 𝜏[𝑋]-eigenspace of  .
Note that like ̃ , the element ̃ = 𝜑−1( ) ∈ ℝ𝑊 acts semisimply and is separating, mean-

ing that for 𝑋 > 𝑌 in () one has 𝜏[𝑋] < 𝜏[𝑌]. Thus ̃ determines a unique family of flat-
orbit idempotents coming from an invariant section† by [2, Theorem 12.17]; write this family as
{𝔢[𝑋]}[𝑋]∈()∕𝑊 , where

̃ =
∑

[𝑋]∈()∕𝑊

𝜏[𝑋]𝔢[𝑋].

Theorem 5.4. For each [𝑋] ∈ ()∕𝑊, the following are isomorphic as𝑊-representations:

(i) ()[𝑋],
(ii) WH[𝑋],
(iii) (ℝ𝑊)𝜏[𝑋] , and
(iv) 𝔢[𝑋]ℝ.

Proof.

– (i) if and only if (ii): Suppose codim(𝑋) = 𝑘. Since 𝑁𝑋 acts on 𝑋 , Theorem 3.4 implies that
𝐻∗(𝑑

𝑋
) ≅𝑁𝑋 (𝑋) when 𝑑 ⩾ 3 and odd. Applying Theorem 3.1 (2) to the top cohomology

group gives

WH𝑋 ⊗det𝑉∕𝑋 ≅𝑁𝑋 𝑘(𝑋).

Finally, apply Proposition 5.3 and induce from 𝑁𝑋 to𝑊.

†Recall that a family of flat orbit idempotents depends on the choice of invariant section. By contrast to the Eulerian
idempotents considered in Section 4, the section in this context comes from  , not the uniform section.
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– (ii) if and only if (iii): follows immediately from Proposition 5.1 and Theorem 3.2.
– (iii) if and only if (iv): follows from the fact that the 𝔢[𝑋] are uniquely determined by ̃ and
𝜑 ∶ ℝ𝑊 → opp is an isomorphism with 𝜑(̃ ) =  . □

Remark 11. By Theorems 4.4 and 5.4 when𝑊 is coincidental, as𝑊-representations⨁
[𝑋]∈()∕𝑊
dim(𝑋)=𝑘

(ℝ𝑊)𝜏[𝑋] ≅𝑊 (ℝ𝑊)𝜎𝑘

despite the fact that ⨁
[𝑋]∈()∕𝑊
dim(𝑋)=𝑘

𝜑(𝔢[𝑋]) ≠ 𝜑(𝔢𝑘)

since the idempotents on the left-hand side do not come from the uniform section, while the
idempotents on the right-hand side do.

6 FUTURE DIRECTIONS

6.1 Description of the Eulerian representations

In [25], Hanlon describes the characters of the Type 𝐴 Eulerian representations as a direct sum
of induced representations of certain centralizers in 𝑆𝑛. Bergeron and Bergeron conjectured that
there was a similar description in Type𝐵 [11, Remark 3.2], whichN. Bergeron resolved in [10]. Our
work raisesmore questions, potentially related to Conjecture 2.1 in Douglass–Pfeiffer–Röhrle [19].

Question 1. Is there a uniform description of either (ℝ𝑊)𝜎𝑘 for𝑊 coincidental or (ℝ𝑊)𝜏[𝑋] for
any𝑊 as (direct sums of) induced representations from centralizers in𝑊? Is there a formula for
their characters?

6.2 Connections to Solomon’s descent algebra

In [16], Cellini constructs commutative subalgebras† of ℚ𝑊 for every Weyl group𝑊; in Type 𝐶,
her subalgebra is semisimple and contains (𝐵𝑛). A natural question is therefore as follows.

Question 2. Can the subalgebras defined by Cellini be described in terms of some family of flat-
orbit idempotents {𝔢[𝑋]}[𝑋]∈()∕𝑊 and “Barr-like” element?

Progress onQuestion 2 could determinewhether the subalgebras she introduces are semisimple
for other types. Relatedly, ℝ ⊂ , the subalgebra generated by the “Barr-like” element  from
Section 5.1, is also commutative.

† In fact, her subalgebras are inopp.
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442 BRAUNER

Question 3. Is ℝ a maximal commutative subalgebra of?

6.3 Extension to complex reflection groups

Though we have only discussed real coincidental reflection groups, there is a notion of coinci-
dental type for complex reflection groups as well. Nonreal reflection groups of coincidental type
are exactly what have been called the (nonreal) Shephard groups, and share many properties with
real coincidental reflection groups. See A.Miller [31] and Reiner–Shepler–Sommers [40] for more
detail. This motivates the following question.

Question 4. Can the Eulerian representations be generalized to all Shephard groups?

The complex reflection group 𝐺(𝑚, 1, 𝑛) ≅ ℤ𝑚 ≀ 𝑆𝑛 seems like a good place to start, due to
promising work by A. Miller [31] using results by Moynihan [34] and Steingrímsson [49].
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