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Abstract

We give a Type B analog of Whitehouse’s lifts of the Eulerian representations from S, to
Sn+1 by introducing a family of B,-representations that lift to B,41. As in Type A, we
interpret these representations combinatorially via a family of orthogonal idempotents in the
Mantaci-Reutenauer algebra, and topologically as the graded pieces of the cohomology of
a certain Zj-orbit configuration space of R®. We show that the lifted B, -representations
also have a configuration space interpretation, and further parallel the Type A story by giving
analogs of many of its notable properties, such as connections to equivariant cohomology
and the Varchenko-Gelfand ring.
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1 Introduction

Let V be a representation of a finite group H; then V is said to have a lift to a group G
containing H if there is a representation of G that restricts to V. The goal of this paper is
to (1) identify a family of representations of the hyperoctahedral group B, that decompose
the regular representation Q[B,] and lift to B,11, and (2) interpret these representations
combinatorially and topologically.

1.1 Type A motivation

Our work is inspired by the well-documented Type A story of a family of S, -representations
lifting to representations of S, studied by Whitehouse [52], Early—Reiner [23], Mathieu
[37], Getzler—Kapranov [28], Moseley—Proudfoot—Young [40], and others. These S,-
representations and their lifts arose from two distinct perspectives. The first is via a family
of orthogonal idempotents {ex}o<k<n—1 known as the Eulerian idempotents. The ¢ lie in
Solomon’s descent algebra X[S,], the subalgebra of Q[S,] generated by sums of permuta-
tions 0 = (o1, ..., 0,) with the same descent set

Des(oy, - ,0y):={ien—-1]:0; > 0o + 1)}.

The Eulerian idempotents have been extensively researched in the world of algebraic combi-
natorics, and generate the Eulerian representations E ,2’” = ¢x Q[S,], which lift to a family
of S,+1-representations called the Whitehouse representations Frflj_)l [52].

The second viewpoint comes from the study of the configuration space

Conf, (R?) := {(x1, -+ , %) € R : x; # x;}.

As aring, the cohomology H* Conf, (]Rd) has an elegant description due to Arnol’d [4] (for
d = 2), F. Cohen [18] (for d > 2), and Varchenko-Gelfand (for d = 1) [50]. When d is
even, H* Conf, (R?) is the Type A Orlik-Solomon algebra. The relevant scenario here will
be when d is odd, which can be split into two cases:
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e d = 1: The space Conf, (R) is the complement of the Braid arrangement, and its coho-
mology H* Conf,(R) is a disjoint union of n! contractible pieces. As a representation,
H* Conf,(R) is the regular representation Q[S,]. Varchenko-Gelfand gave a presen-
tation of H* Conf,(R) in terms of certain combinatorial functions called Heaviside
functions; these functions impose an ascending filtration by degree with associated graded
ring gt(H* Conf, (R)) [50]. For 0 < k < n — 1, denote by gt(H* Conf, (R)); the k-th
graded piece of gt(H* Conf,(R)).

e d > 3 and odd: In this case, H* Conf, (]Rd) is concentrated in degrees 0, d — 1, 2(d —
1),---, (n — 1)(d — 1). The presentation for H* Conf, (Rd ) and the representations
carried on each graded piece are the same for all odd d > 3, and in this way one obtains
a family of n representations of S,, which decompose Q[S,].

When d = 1 and d = 3, one obtains lifts from S, to 5,11 of the representations carried
by H* Conf, (RY). Recall that U(1), the unitary group, is homeomorphic to the 1-sphere
S! (e.g. the 1-point compactification of R) and SUs, the group of 2 x 2 unitary matrices of
determinant 1 over C, is homeomorphic to S? (e.g. the 1-point compactification of R?). Our
lifts will come from the quotient spaces

Vi, = Conf,y 1 (U()/U1), Vi, :=Confui1(SU2)/SUs; (1.1.1)

in both cases the quotient is by (left) diagonal multiplication.

As in the case of Conf,, (R), the cohomology of V,ll .1 has a presentation in terms of cyclic
Heaviside functions due to Moseley—Proudfoot—Young [40], and again the cyclic Heaviside
functions give rise to an ascending filtration with associated graded ring gv(H* V,ll 1) =
@Z;é gr(H* V,ll +1)k- The presentation of H* V?l 11 was computed by Early—Reiner in [23].

Though not obvious, these viewpoints—the Eulerian and Whitehouse representations on
one hand and “d odd” configuration space cohomology on the other—turn out to be equiv-
alent and serve as a beautiful link between classical combinatorial objects and important
topological ones. In particular they are connected by the following representation isomor-
phisms:

E"=170 =¢ g2 Conf,(R3) =, ge(H* Conf,(R)) (1.1.2)
—1—k) ~ ~
FIT =g HEVEL =g ge(HE V) ke (1.1.3)

Note that each term in (1.1.2) simultaneously lifts to the corresponding term in (1.1.3). The
first isomorphism in (1.1.2) was proved by the author in [16] in the context of Coxeter groups,
while the second is a result of Moseley [39]. The isomorphisms in (1.1.3) are due to Early—
Reiner [23] and Moseley—Proudfoot—Young [40], respectively. In Sect. 2.1.3, we summarize
the notable properties of the Eulerian and Whitehouse representations, including a recursion
relating them, a description of H* Vfl 41 as an induced representation, and connections to
equivariant cohomology. Our main results provide a Type B analog of each of these properties.

1.2 Type B analog

Our goal is to construct an analog to both Type A perspectives discussed above for Type
B. Perhaps the most obvious generalization of the Type A descent algebra X[S,] is the
Type B descent algebra X[B, ], with Coxeter length used to describe Des(o) and Type B
Eulerian idempotents! defined by Bergeron-Bergeron in [8]. However, it turns out that the

! In fact, in [9], Bergeron—-Bergeron—-Howlett—Taylor defined analogous idempotents for any finite Coxeter
group.
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corresponding Eulerian representations of B,, (studied by the author in [16] for instance) do
not lift to B, 41!

Instead, the right analogy in the context of lifts is to replace Solomon’s descent algebra
by the Mantaci-Reutenauer algebra ¥'[ B, ], a combinatorially defined subalgebra of Q[B;]
generalizing X[S,,] and containing X[B,,]. It was introduced by Mantaci—Reutenauer in [35]
and has a basis indexed by signed integer compositions (ai, - - - , ag), where a; € Z\{0}
and |ay| + - - - la¢| = n. The Mantaci-Reutenauer algebra has rich combinatorics and rep-
resentation theory studied by Aguiar—Bergeron—Nyman [2], Bonnafé—Hohlweg [15] and
Douglass—Tomlin [22], much of which generalizes properties of X[S,].

The role of the Eulerian idempotents will be played by a family of orthogonal idempotents
{9k }o<k<n, obtained as a sum of idempotents g; + - in /[ B, ] introduced by Vazirani [51]:

= > 8ot (12.1)
ata)
z()ﬁr) k
The above analogies are quite natural in the following sense. Let 7 : B,, — S, be the
projection which forgets the signs of ¢ € B,. In [2], Aguiar—Bergeron—-Nyman study the
properties of T and show that it extends to a surjective algebra homomorphism t : £'[B,] —
2[S,]. In Proposition 6.8, we show that (gy) = 0 and t(g;) = ex—1 for0 < k < n.
The Bj,-representations of interest are then defined for 0 < k < n to be

Gy = g, QIB,).

We obtain analogs of the “hidden” action” spaces V +l and V3 1.1 by considering the Z-
orbit configuration spaces on U (1) and SU; induced from the antipodal action on the sphere,
and taking their respective quotients by the relevant diagonal action:

WL, o= Conf22 (UM)/UM), B, :=Conf (SU2)/SUs. (12.2)

Both V! a1 and :)/‘n 1 carry a natural action by By, (e.g. permutation and negation of each

coordinate), and we show that there are B,-equivariant homeomorphisms y;’ 1= Zd for
d =1, 3, where

2y := Conf} RY\{0}) := {m, s ) € (RINOD" < xi # xj # — x/'|2 }

|x Jj

The strangeness in the definition of ZZ (first studied by Feichtner—Ziegler in [24]) comes from
the fact that the composition of the antipodal map x +— —x with stereographic projection
7:8 > R? gives amap ¢ sending x to —x/|x |2. (Here we take take |x| to be the magnitude
of x € R? \{0} and S? to be embedded in R4+! by placing its south pole at the origin of
R4+1 )

Nonetheless, many of the properties of Zﬁ mirror those of Conf,(R?) for odd d. In
particular, we again have two cases:

e d = 1:Indirect parallel with Type A, the spaces y}l 41 and Z,]l are disjoint unions of 2" n!
contractible pieces. In Theorems 3.7 and 3.10, we give a presentation for H* Jirll 41 and

H *Z,ll, respectively. Our presentation is in terms of signed cyclic Heaviside functions and
signed Heaviside functions; again, these combinatorial functions impose an ascending

2 The word hidden refers to the fact that there is not an obvious S;+1 action on Conf, (Rd).
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filtration on both rings by degree, with corresponding associated graded rings

n n
ge(H* Yy ) = P arH* Yoy i, ov(H*Z)) = P ov(H* 2. (1.2.3)
k=0 k=0

e d > 3 and odd: Once more, the analysis of H *ZZ is identical for all odd d > 3, so assume
d = 3. Feichtner-Ziegler prove that H *Zﬁ is concentrated in degrees 0, 2, 4, - - - , 2n; in
Theorem 4.7 and Corollary 5.15 we give presentations for H *2,31 and H* yfl 41> fespec-
tively, that bear a strong resemblance to the F. Cohen [ 18] presentation for H* Conf, (R3)
and Early—Reiner [23] presentation for H* Vfl L1

Our main results give an analogy of the Type A story:

Theorem 1.1 For 0 < k < n, there are B,-representation isomorphisms:
Gy'™M = H* 2} = ge(H* 2)), (1.2.4)
lifting to B,,y1-representation isomorphisms
H*YS = ge(H* V), D (1.2.5)
We further

o show that the circle group U (1) acts on both Zﬁ and yZ 1 (Proposition 5.8), and compute
presentations for their U (1)-equivariant cohomologies (Theorem 5.12);

e prove that for both H *Z,ll and H *y,‘, 41 the associated graded ring with respect to the
filtration induced by the U(1)-equivariant cohomology coincides with (1.2.3) (Theo-
rem 5.13);

e compute a recursion relating H*Z> and H *)),31 (Corollary 4.4); and

e show that as ungraded rings,

~ ~r Bll
H*Z, =, QIB,l, H*Vpy; =g, Ind 3" 1,
where c is a Coxeter element of B, 1 and 1 is the trivial representation. (Theorem 5.10).

In addition to drawing upon and generalizing techniques of Berget [10], Moseley [39], and
Moseley—Proudfoot—Young [40], the primary novelties in our methodology will be to (1)
study the “lifted” spaces yj 1 to deduce information about the spaces Zﬂ and (2) to utilize
various filtrations in the signed Heaviside and signed cyclic Heaviside functions.

1.3 Outline of the paper

The remainder of the paper proceeds as follows:

e Section 2 first gives a more detailed description of the Type A motivation including a
“property wishlist” for the Type B analog (§ 2.1.3). We then discuss a general framework
for obtaining hidden action spaces from orbit configuration spaces (Proposition 2.10).
Our Type B work will serve as the primary example of this framework. We conclude
with a review of properties of B, and its representation theory.

e Section 3 focuses on the spaces :)),11 41 and Z}l and their cohomology. We introduce
the signed cyclic Heaviside functions and use their combinatorial properties to give
presentations for H* y}1 +1 (Theorem 3.7) and H *2,11 (Theorem 3.10), as well as their
respective associated graded rings (Corollaries 3.8 and 3.11.)
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e Section 4 then considers the d = 3 case and the spaces )J° 4 and 23 we prove a recursion

relating their cohomologies (Corollary 4.4), compute the presentation of H* 2,31 , and show
that it has a bi-grading (Corollary 3.15).
e Section 5 turns to equivariant cohomology. We compute H;}(l)Zfl (Theorem 5.12), as

well as the ungraded representations H *Z;”l and H *y?, 41 (Theorem 5.10). This allows
us to fully understand the relationship between the d = 1 and d = 3 cases by show-
ing the filtrations by cyclic Heaviside functions and equivariant cohomology coincide
(Theorem 5.14).

e Section 6 introduces the idempotents g, + ;- and gy, as well as the representations of
B, they generate. From here we are able to conclude Theorem 1.1 (Corollary 6.27) and
more specifically, relate the g+ -y to H *2,3,.

2 Background
2.1 Type A revisited

We begin by fleshing out the Type A motivation described in Sect. 1.1.
One way to define the Eulerian idempotents ¢ is via the generating function due to
Garsia—Reutenauer [26]:

n—1
PNATEDY <t -1 +"n_ des(a))a. @.1.1)
k=0

€S,

For more equivalent definitions, see Aguiar—Mahajan [1], Loday [34], Gerstenhaber—Schack
[27], and Saliola [44].

Example 2.1 When n = 3, the Eulerian idempotents are

e = é(z —(12) — (23) — (123) — (132) +2(13)),

1
o =5 (1-(13),

e = £(14(12)+ 23 +(13) + (123) + (132)).

Definition 2.2 The k-th Eulerian representation is the right ideal
EP = e Q[S,].

The Whitehouse lifts F’ (k)l of the Eulerian representations are obtained by introducing an

idempotent f, ( 4_)1 in Q[S),+1] as follows. View S,, < S,4 as the subgroup fixing the element
n+1,let w41 bethen + 1cycle (12...(n + 1)) € S,+1, and define

n+1 = +1 Z(wn—H)

Whitehouse shows the element fn( _’_)] =Wyt 1e,(1k) is an idempotent in Q[S,,+1], generating

a family of representations

¥ = £0 QUSusa]
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which we will call the Whitehouse representations. She then proves that the F,flfgl are lifts of
the EP [52, Prop 1.4].

Example 2.3 (n = 3) Denote by S* the irreducible symmetric group representation indexed
by the partition A. Then the S3 Eulerian representations and their Sy lifts are

E§0) — s@D F;O) — 522
Eél) = §@D g g.1.D Fjl) — s@1D
EY = 5® F? =s®.

Each F, ‘fk) restricts to the representation Egk) via the symmetric group branching rules.

2.1.1 The spaces Conf,(R9) and their cohomology

We begin with the case that d = 1. Recall that the space Conf, (R) is a disjoint union of
n! contractible pieces. Each piece is parametrized by a relative ordering of xp, --- , x, in
R, and so H* Conf, (R, Z) = H° Conf, (R, Z) can be understood as the space of Z-valued
functions on the set of connected components of Conf,, (R).

Varchenko-Gelfand give a combinatorial set of generators for H 0 Conf, (R) called Heav-
iside functions, defined by

1 xi <xj
uij(x17-~-,xn):={ o
0 x; >x;
fori # j € [n]:={L,---,n}. A permutation o € S, naturally acts on u;;:

O - Uij = Us(i)o(j)-
The space of such Heaviside functions forms a Z-algebra, where the u;; add and multiply

pointwise as functions, so that multiplication is given by

1 xi<xjandxk<xg
wij - uge(Xy, -+, Xp) = .
0 otherwise.

This implies certain natural relations, for example that utzj = u;;. Similarly, one can deduce
that 1 — u;j = uj;, sothatu;; - uji - (1 —u;x) = 0, since it is impossible that x; < x; < xx
but x; > xi. This is the essential idea behind Theorem 2.4.

Theorem 2.4 (Varchenko-Gelfand [50]) The ring H* Conf, (R) has presentation Z[u;;1/Q,
where Q is generated by

() ufy=uij, (i) uyj=(1—u),
@it) wijujre(l —wuig) — (1 —wuij)(1 — ujpuix =0,

for distinct i, j, k € [n].

Call thering Z[u;;]/ Q the Varchenko—Gelfand ring. The presentation in Theorem 2.4 imposes
an ascending filtration on the Varchenko-Gelfand ring obtained from the natural degree
grading on Z[u;;]/Q: the m'" layer in the filtration is the span of monomials in the variables
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58 Page 8of60 S. Brauner

u;; having degree at most m. The associated graded ring from this filtration has presentation
Z[u;j]/ ingeg (Q) with ingeg (Q) generated by3

. 2 ..
@) wiz =0, G0) wij=—uji, (@ii) wijuje—uijuix —ujiuix = 0.

When d > 2, the space Conf, (Rd) is no longer comprised of contractible, disjoint pieces
but nonetheless has an elegant presentation due to F. Cohen (d > 2) and Ar’nold (d = 2).

Theorem 2.5 (F. Cohen [18], Ar’nold [4]) For d > 2, the ring H* Conf,, (Rd) has presenta-
tion Z(uij)/Q’ where Q' is generated by the relations Ujjige = (—1)d+1uk5uij and
@) uizj =0 (i) wij = (D%, Gii) wijuji+ ujpu + ugiuij =0
for distinct i, j, k, £ € [n].
Asinthe d = 1 case, S, acts on the u;; by permuting coordinates.
The generator u;; liesin H d=1 Conf n (]Rd), which together with the relations in @', implies
that H* Conf, (Rd) is concentrated in degrees O, (d —1),2(d—1), --- , (n—1)(d —1). Direct

comparison of the above presentations shows that Z[u;;]/in(Q) = H* Conf, (Rd) ford > 3
and odd.

Example 2.6 (Lie,) The top degree cohomology of Conf,, (R?) has a particularly nice descrip-
tion:

H(d—l)(?l—l) Confn(Rd) ;Sn L%en d > 3 and odd
Lie, ® sgn d even,

where Lie, is the multilinear component of the free Lie algebra on n generators; see
Reutenauer [42] for more on the many wonderful properties of Lie, . A result of Kraskiewicz—
Weyman [33] says that Lie, can be described as the induced representation

Lie, = Ind’ o,
where Z, is the cyclic group generated by an n-cycle in S, and w is the character sending
the generator of Z,, to e>7i/",
The relations in Theorem 2.5 imply that Lie, has basis
Ulig UiyipUiniy « * Wiyy_yiy

for distinct iy, ip, - - - , in € [n], and is therefore (n — 1)! dimensional. There are other notable
bases for Lie,, in particular using Lyndon words; see Barcelo [6].

We will return to Lie, in Sect. 6, where it will play a key role in describing H *Zfl.
2.1.2 Hidden actions and lifts

Assume that d = 1, 3. The fact that H* Conf, (Rd) lifts to an S, -representation comes
from the fact that the spaces Conf,, (]Rd) have hidden (e.g. non-obvious) actions of S, 11 via
the S,,-equivariant maps

£4:v S Conf, (RY) 2.1.2)

n

(POs -+ » Puts pu) = ((py ' p1)s -+ 7(py  pa)) (2.1.3)

3 The notation indeg(Q) refers to the fact that indeg(Q) is an initial ideal for some degree (partial) ordering
on monomials. This will be rigorously defined and discussed in Sect. 3.1.
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where 7 : S¢ \{oo} — R? is the stereographic projection, and as in the introduction
Vi, = Confup 1 (U() /UML), V3, :=Conf,i1(SU2)/SUs.

Here we identify the element 1 in SU, and U (1) with oo (the point at infinity) in S* and S,
so that 77 is a homeomorphism between SU> \ {1} — R3and U(1) \ {1} = R.

One can thus define an S, 1-action on Conf,, (Rd) as the natural S,, 1 1-action by coordinate
permutation on Vz 41~ Let

[n]o :=1{0,1,--- ,n}.

We will think of S, as the group of permutations on the set [r]g. The homeomorphism
(2.1.2) implies that one recovers the standard S, -action on Conf, R by permuting only the
last n coordinates of VZ +1- We will discuss a more general framework for obtaining hidden
actions in Sect. 2.2.

The space V,ll 41 can seem unwieldy, but it actually has an intuitive description; Vi 41 has
representatives (1, py,---, py) for p; # p; # 1 and like Conf,(R), is comprised of n!
contractible pieces. Each disjoint piece of V,]l 41 Is parametrized by a relative ordering of
po, - -+ , pn around the circle. These disjoint pieces (S, -equivariantly) biject with the pieces
of Conf, (R). To move from V;11+1 to Conf,, (R), read the ordering of py, - - - , p, around U (1)
counter-clockwise beginning after po.

When we move to cohomology, the Heaviside functions u;; also lift to cyclic Heaviside
Sfunctions v;jx € V,ll 41 defined in [40] by Moseley—Proudfoot-Young as:

1 pi < pj < pk in counter-clockwise order on U (1)
0 otherwise,

vijk(Po, -+, Pn) = {

where now i, j, k € [n]o.

Example 2.7 Consider the two representatives g and 7 of Vé and their images under f A:

Po Po
p m(p1)  w(p2) fh m(p2)  7(p1)
P1 P2 — —_— e P2 P1 — —_—
7 i@ 7 fa()

Note that v123(¢) = u12(f4(g)) = 1, while vi23(F) = u12(f4(¥)) = 0. On the other
hand v213(¢) = u21(f4(§)) = 0 and v213(F) = u21 (f1(7)) = 1.

The v;jx again form a Z-algebra and provide an elegant combinatorial description for the
ring H* V,ll +1- As in the case of H* Conf,(R), the degree grading on H* Vrll 1 from the v;
imposes an ascending filtration with associated graded ring gt(H* V,ll -

For both d = 1, 3, an explicit presentation for H* VZ 41 can be recovered from the pre-
sentation in Theorem 2.4 via the induced isomorphism f} sending u;; to vg;;, along with
the additional relation due to Early—Reiner [23, Thm 3] (see also Moseley—Proudfoot—Young
[40, Rmk 2.9] and Matherne—Miyata—Proudfoot—Ramos [36, Thm. A.4]):

Vijk — Vije + Vike — Vjge = 0.
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58 Page 10 of 60 S. Brauner

Remark 2.8 (Cyclic operads)Kontsevich in [32] showed there was a hidden action of Sj, 41 on
Lie,. In [28], Getzler—Kapranov then formalized his techniques to introduce cyclic operads
more generally. Using constructions of H, Conf, (R%) and Poisson operads (see for instance
Sinha [45]), one can apply the work of Getzler—Kapranov ([28, Prop 3.11]) to show that
there is a cyclic operad structure on all graded pieces of the homology of Conf, (R3). It
would be interesting to relate this cyclic operad structure to the bases of H* Conf, (R?) and
H, Conf, (R3) more directly.

2.1.3 Property wishlist

We will finish the Type A summary by providing a “property wishlist” which will serve as
the inspiration and guiding motivation of our Type B work. In particular, we highlight the
following:

e There is an isomorphism of Sn—representations4 forO<k<n-1:
E"170 =¢ g2 Conf, (RY). (2.1.4)

This was first deduced by comparing a result of Sundaram and Welker for subspace
arrangements [48, Thm 4.4(iii)] with descriptions of the characters of Ef/‘) by Hanlon
[29], and was later proved in the context of Coxeter groups by the author in [16].

e Equation (2.1.4) lifts to an isomorphism of S, 1-representations [23, Prop. 2]:

F=1-h ~

Y = HROR ). 2.1.5)

e There is a recursion® relating the Eulerian and Whitehouse representations of S,
EY = Ff Ve (s o ), 2.1.6)

where §@~1.1) is the irreducible reflection representation of S, [23, Prop. 1].
e There is an S, -representation isomorphism

n—1

S R = a1

k=0
where Z,,+1 is the cyclic group generated by an (n 4 1)-cycle in S,,41 and 1 is the trivial
representation [52, Prop 1.5].

e The circle group U(1) acts on R? by rotation around the x-axis, thereby inducing an

action on Conf, (R3). The filtration induced from the U(1)-equivariant cohomology
H[”}(l) Conf, (]R3) implies an isomorphism of S,-modules for 0 < k <n — 1 [39]:

gt(H* Conf, (R)); =5, H>* Conf,(R?), (2.1.7)

where gr(H™* Conf, (R)) coincides with the associated graded ring coming from the
filtration by Heaviside functions [39].
e Equation (2.1.7) also lifts to an S,,41-module isomorphism for 0 < k <n — 1 [40]:

ge(H* Vi Dk =s,,, HEOS, ). (2.1.8)

4 In fact (2.1.4) holds for any odd d > 3 by replacing H2¥ Conf,, (R?) with H@—Dk Conf, (RY).

5 We think of this as a recursion in the sense that the formula relates the representation E, ,(,k) (which lifts to
(k)
F

1) o the representation F,Ek) (which restricts to E ’(11:) -
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where again (2.1.8) comes from a U (1) action on Vz +1 and subsequent computation of
H 5(1) Vf, 1 1- The grading on the left-hand-side also coincides with the associated graded
ring coming from the filtration by cyclic Heaviside functions.

The remainder of this paper is devoted to obtaining an analogous Type B statement for each
of the properties listed above.

2.2 Orbit configuration spaces and hidden actions

We now introduce a general framework with which to construct spaces with hidden actions.
Our Type B spaces will emerge from this general framework (see Example 2.12).

Definition 2.9 For a group H acting freely on a topological space X, the n-th ordered orbit
configuration space is

Conff(X) ={(x1,...,x) € X" th-x;Nh-x; =0fori # jandany h € H}.

Orbit configuration spaces were first defined by Xicoténcatl in [53], and have proved
integral to the study of universal covers of certain configuration spaces [53], hyperplane
arrangements associated to root systems by Bibby [12] and Moci [38], and equivariant loop
spaces by Xicoténcatl [55]. Computing the cohomology of orbit configuration spaces is an
active area of study developed by Casto [17], Denham—Suciu [19], Feichtner—Ziegler [24],
Bibby—Nadish [11, 13] and others.

If H is the trivial group, Definition 2.9 recovers the classical configuration space of X.
More generally any orbit configuration space Conf’ (X) has a natural action by the wreath
product H : S,,. Recall that the wreath product H : S, is the group whose elements are of the
form

H!S,={(hy, - ,hy,0):hi e H,o € S,}
with multiplication defined by
(h/ ) h/25 B h;” U/) ' (hls ha, -+, hy, 0) = (hla(l)hl’ h;(z)hb ) hlg(n)hm G/U)-

For instance if H = Zj, this wreath product Z,:S, is By, and it H = Z, for r > 2,
one obtains the complex reflection group G(r, 1, n) (sometimes referred to as a generalized
Symmtric group).

Our goal is to study orbit configuration spaces equipped with a hidden action. In other
words, given an orbit configuration space Conf ,’f (X), we would like to identify a space Y on
which H ? S,,4+1 acts, and an H : S,-equivariant homeomorphism

ConfH(x)=v.
If such a homeomorphism exists, we say that Conf (X) has a hidden action by H  S,41.
Proposition 2.10 Let X be a topological space with

e A transitive (left)-action by a group G and
e A free (left)-action by a group H in the center of G.

Then there is an H @ S,-equivariant homeomorphism
Conf? | (X)/G = Conff (X — Opy(x0))/Gx,»
where both quotients are by left-diagonal multiplication, Oy (xqg) is the H-orbit of xo € X

and G, is the G-stabilizer of xo.
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Proof Since H acts freely on X it will also act freely on the space X \ Og(xp)) obtained
by removing the H-orbit of some point xo from X. The G-stabilizer of x(, denoted G,
then acts on X \ Og(x0)) and since H necessarily commutes with G, one also obtains a
well-defined space Conff (X — O (x0))/Gx,.

Fix a point (po, p1,---, pn) € ConffH(X)/G; because G acts transitively on X, there
is some g € G sending xo to po. Thus in Conf” | (X)/G,
(P pu) ~ (X0, 8 P18 ).

Then the maps back-and-forth giving inverse homeomorphisms are

Conf! | (X)/G —> Confl (X — Op(x0))/Gx,

(PO P1s--os Pn) —> (@7 ' p1s oo 87 pp)

Conf (X — Op(x0))/Gx, — Confl, | (X)/G

@q1, .-, qn) —> (X0, 91, -+, qn)-

To check that the first map is well-defined, note that p; and p; are in the same H-orbit if and
only if the same is true for gp; and gp ;. Thus (g 'p1,---g ' pp) is indeed in Conf,’l" (X —
Om(x0))/Gyx,. Further, if g1xo = po, then for any g» € G one has g2 po = g281x0 and

-1 _—1 -1 _—1 —1 —1
(82p0, -+, 2pn) > (81182 gQan"]' 81 & &pn)=1(8 P1-"" -8 Pn)
(po, -+ pn) —> (&) P1,-+" .81 Pn)-

One can similarly check that the second map is well-defined and that their composition gives
the identity. The H @ S, equivariance follows from the fact that H commutes with G. O

We will be interested in the special case that G acts simply transitively on X so that G,
is trivial, in which case one obtains the isomorphism

Conf! (X — Op(x0)) = Confl, | (X)/G.

Example 2.11 Take H to be the trivial group.

e Let X = G = SU; and xg = 1, the identity of SU;. Then Proposition 2.10 recovers the
S,-equivariant homeomorphism

Conf,11(SU>)/SUs = Conf,(R?),

where the map here is precisely (2.1.2), since SU> \ {1} = R3.
e letX =G =U(l)andsetxg =1 € U(1),sothatU(1)\{1} = R. Then Proposition2.10
(again via (2.1.2)) gives

Conf 41 (U(1))/U(1) = Conf, (R).

One way of framing all subsequent work in this paper is to ask the question: what happens
to Example 2.11 when H is replaced by Z;, acting via the antipodal map?

Example 2.12 As suggested above, take H = Z; acting as the antipodal map (e.g. by —1) on
SU, and U (1). Then
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e When X = G = SU; and x¢ = 1, the orbit of 1 is £1. Recall that for x € R \{0},
p(x) = —)c/l)cl2 and that B, = ZS,. Proposition 2.10 then implies there is a B,-
equivariant homeomorphism

Conf?2 |(SU2)/SU, =: Y3, =p, 23 := Conff) (R®\{0})
={(x1, -, x0) € RIN[O} 1 x; # xj, @(x)).
e When X = G = U(1), then Proposition 2.10 says that

Conf?2 (U()/U1) =: V!, =p, Z} := Confl¥ (R\{0})
={(x1, -+, xz) € R\{0} : x; # xj, 0(x;)}.
The space Zﬁf arises naturally in the work of Feichtner—Ziegler in [24] as part of the fiber
sequence
24 — Conf?? (8% — ¢,

where the last map sends a point (xq, - - - , X,41) to x,4+1. They then use the above sequence
to compute the cohomology of Conffil(Sd). In this sense, Z‘,f is the natural analog of

Conf, (R?), which arises in the fiber sequence

Conf, (RY) —> Conf,41(S%) — $7.

Remark 2.13 A priori, one might expect that to parallel the Type A story, the analog of
Conf, (Rd) would be the more “standard” Z,-orbit configuration space

Confi2(RY) = {(x1, -+, x,) € R : x; # +x; # 0)

whose cohomology was studied by Xicoténcatl in [53], Moseley in [40] and related to the
Type B Eulerian idempotents in [16] by the author. However, this is not the case because
there is no B, -equivariant map between Conf%2 (Rd) and yj{ L1

That being said, the space Conf%2 (RY) and its cohomology will not be completely irrel-
evant. In particular, we will see that

e some relations in H* Conf%2 (RS) will help us recover relations in H *Zf,;

e the spaces H* Conf%2 (RY) and H *ZZ are isomorphic as vector spaces but not as By,
modules; and

e whend is odd, both H *fo and H* Conf%2 (]Rd) have total representation Q[ B, ], despite
carrying different representations on each graded piece.

Example 2.14 1t is helpful to see a concrete example of the space ZZ. Consider for instance

zl = {(XLXQ) e R2\{0} : x1 # x2, X1 # ¢(x2) = _I;CTZIZ}

(shown on the left below), compared to to the space
Conf7*(R) := {(x1, x2) € R*\{0} : x1 # x2, X1 # —x2},

which is the complement of the reflection arrangement associated to
B> (shown on the right below).
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z) Conf2? (R)

Importantly, Z% is not the complement of linear subspaces (and the same is true of Z,ll in
general).

Remark 2.15 In both Examples 2.11 and 2.12, the existence of a hidden action at the level of
topological spaces depends upon the sphere S? having a realization as a Lie group. There is
no such description for S? in the case that d is even. In [25], Giaffi obtains a hidden action of
Sn+1 on the space H* Conf, (Rz), but he shows that this action is on the level of cohomology
rather than topological spaces. It would be interesting to investigate whether the same is true
in Type B—that is, determine whether there is some hidden action on H* 22 but not on Z2.

2.3 The hyperoctahedral group

We have seen that B, is isomorphic to the wreath product Z;S,. Now, we will view B,
combinatorially as the group of signed permutations, and more abstractly as a Coxeter group.
In what follows, we will discuss conventions for both perspectives, and then discuss the
representation theory of B,,.

2.3.1 B, as the group of signed permutations

Recall that [n] = {1, 2, - - - , n}, and define the following sets:
o [n]” :={1, -+, m}, and
o [n)*:={1,1,---,n,7).

We adopt the convention that i behaves like —i, so thatl? =i and |i| (e.g. the absolute value
of i) is i. We will first think of B, as a subgroup of the group of permutations of n]*:

Definition 2.16 The hyperoctahedral group By, is the group of bijective maps from [#]* to
[n]%, subject to the condition that for any 0 € B,,ifo : i — j,theno : i — j for
i,j e nl*.

A permutation in S, can be written as a permutation matrix, in one-line notation, or in

cycle notation. The same is true of signed permutations. That is, o € B, can be written

e as a signed permutation matrix; in this case, we realize o as an n x n matrix M (o) with
i, j-th entry

1 o:j—i
M@)j=1-1 o:jri
0 otherwise;
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e in one-line notation, meaning that ¢ is written as (o1, - - - , 0,,) where i > o; for o; €
[n]%;

e in cycle notation, meaning that o is factored as a product of positive and negative cycles.
A negative cycle, written as (o107 - - - 0y)~ foro; € [n]* means that o sends o; > Oi+1
for1 <i <€ —1and oy — o1. On the other hand, a positive cycle (o107 - - - 0¢) sends
oi > oy forl <i <{¢—1andoy — o1.

We will make clear from context whether we are using one-line or cycle notation.
Example 2.17 Consider o € B; sending

12 2331 457 56 65 T4,
Then o can be written

e as the matrix

coococo~o
cooco oo
coocoo o~
—ococococoo

cocococo
co—~ocooo
coo—ocoo

(=)

e in one-line notation as (2, 3, 1,7, 6, 5, 4) and
e in cycle notation as

(123)~ (47) (56)".

We will see in Sect. 6 (for instance, Definition 6.1) that one-line notation is useful for
defining combinatorial statistics on B;,.

The primary use of cycle notation is to describe the conjugacy classes of B, via cycle
type. Signed permutations have cycle type described by signed partitions, which are ordered
pairs of partitions (A*, ™) where |[AT| 4+ |A7| = n. Note that we allow AT or A~ to be @,
the unique (empty) partition of zero.

Definition 2.18 The signed permutation o € By, is said to have cycle type
AT = Qaae Mt he)
At A~
if o can be factored into cycles
o} :Cl del "'dlv

where the ¢; are positive cycles of length A; for 1 < i < k and the d; are negative cycles of
length A; fork +1<j <¢.

Define C(;+ -y to be the conjugacy class comprised of elements in B, of cycle type
(Tt a0,

For instance, the permutation (123)7(47)(56)~ from Example 2.17 has cycle type
(2, (3,2)).
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2.3.2 B, as a Coxeter group

Importantly, B, is also a Coxeter group, meaning that it has a presentation of the form
W= (ri, e s (rirp)™i = 1),

where m;; = 1 andm;; > 2fori # j.The elements ry, - - - , ry are called simple reflections.
We will only briefly survey Coxeter groups here; for a comprehensive treatment, the reader
should consult Bjorner—Brenti [14], Humphreys [30], or Kane [31].

When W = B, the simple reflections are (in cycle notation) the adjacent transpositions

si =, i+1)
for 1 <i <n — 1 and the element
t, = (n)".

More generally, it will be useful to think about the element t; = (i)™ for 1 <i < n.
Any element of B, can be written as a product of the s; and ¢, (with repeats allowed), and
o is said to be a reduced expression if there is no way to rewrite o using fewer generators. In
this case, the number of generators used to write o is the length of o. Every Coxeter group
has a unique longest word, wy. In the case of B, this is (in one-line notation)
wo=(1,---,7)=—1.

In cycle notation, wo = (1)"(2)™ - (n)~ =t1tr - - 1.
We will also be interested in the Coxeter elements of B,. For any Coxeter group W, a
Coxeter element c is a product of each simple reflection, without repeats:

C=Tj - TFi.

Coxeter elements are not unique but they are all conjugate to each other. In the case of B,
Coxeter elements are of the form (in cycle notation)

(i1izi3 -+ in)™.
for distinct iy, - - - , i, € [n]. Thus all Coxeter elements have cycle type (4, (n)), and are in
the conjugacy class Cg, ().

2.3.3 Representation theory of the hyperoctahedral group

This section will closely follow Stembridge’s write-up in [46]. Recall that t : B,, — S, is
the surjection which forgets the signs of permutations (e.g. 7(s;) = s; and t(#,) = 1). Let
S ={s1,---,su_1,tx,}and foro € B, and s € S, let c;(0) count the number of instances
of s in a reduced expression for w. Then define

5(0) = (=)=,

Like conjugacy classes, irreducible representations of B, are indexed by signed partitions
(AT, A7),
We define the irreducible characters x*** of B, as follows:

o x*? is obtained from the irreducible character x* of S, by pulling back along t; in other
words

s = 16, x ) = 1.
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Table 1 The 1-dimensional

representations of By, Representation Character of o € By,
PN 1
1" 81, (0)
X 8, (@)
X@-(ln) at,, ® 55’- (©).

'Lalble 2 The character table for o= 1) S = ]
x (D9 1 1
x?@ 1 -1

e x”7* is obtained from the tensor product

$Ih = MY ® 6, .
e x**" is defined by the induction product:

B’l E} k)
x P = X)"@ . Xg'/‘ = IndBmXBM (x* b X@ "y.

The induction product further implies that one inherits branching rules for x**# - x*-¥ from
the Type A Littlewood-Richardson Rule by rewriting

XY = Oy )
o o

=2,
o.p

where cj\"’v, cﬁ’w are the standard Littlewood-Richardson coefficients.
Example 2.19 There are four 1-dimensional representations of B, shown in Table 1 below.

Note that X(I")’” has character &, for any i € [n — 1] because all such s; are conjugate. The
representation y - is the trivial representation and x? (I") is the sign representation.

Example 2.20 Consider the character tables for B (Table 2) and B; (Table 3), which will be
useful in the proof of Proposition 4.5.

3 Thed = 1 casein Type B
Our first goal is to determine a presentation for the cohomology of Z} and y}l 41 With coeffi-

cients in Z; later in Sect. 4 we will change to having coefficients in QQ (and indicate as much).
In contrast to Type A, we will begin with y}l L1
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Table 3 The character table for B;

Cunp=y Cayg = {51,510} Cuya) = {2, 510251} Cp,2) = {5182, 251} Cy,1,1) = {(512)? = wo)
x®@9 1 1 1 1 1
PN 1 -1 1 1
x D0 -1 1 -1 1
x?@ 1 -1 -1 1
x WM 2 0 0 0 -2

3.1 Signed cyclic Heaviside functions and y},H

The space y; 41 is comprised of 2"n! contractible pieces, parametrized by arrangements
of po,---, pn and their antipodal points —py, ..., —p, on U(1). Given a point p =
(po, -+, pn) € y;H, write C(p) = C(po, -- - , pn) as the arrangement of p with antipodes

on U(1) and —p; as p;. By convention i = i. Recall that
(Ml ={l,---.n}, [nlo={0,1,2,---,n}, [n]" ={L,---.,a}, [n]*=[m1U[n]".
Further define
[nly ={0,1,--- .7}, [n]y:={0,0,1,1,--- nnl
When considering C(p), we will identify the point p; withi and —p; = p; with i, so that
C(p) has entries in [n]f)t. We take B, 41 to be the group of signed permutations on [n]a—L, SO
that o € B,y acts on elements of C(p) by sending i € [n]g to o (i). We will also consider

the restricted action of B,, < B,y 1, where B, is thought of as the subgroup of B, fixing 0
and 0.

Example 3.1 Let p = (xo, X1, X2, x3), where x; = €'%/ and x; = eili, where {; = ¢j + 7.
Suppose that

0<lo<li<bh<B<l<li<i<y3<2m

Then we can write C(p) = (0, 1, 2,3,0,1,2,3), which is drawn below. Note that we are
only interested in the relative order of the x, rather than their values.
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Table 4 Signed cyclic Heaviside c(p)

functions evaluating the 8 Yoo Yooz Y01z Yoz Yoz Yoi2

representatives in y; ©,1,2, 0.1. E) 0 0 1 1 0 1
0,2,1,0,2,1) 0 0 0 1 0 0
0,1,2,0,1,2) 1 0 0 1 1 1
0,2,1,0,2,1) 1 0 0 0 0 1
0,1,2,0,1,2) 0 1 1 1 1 0
0,2,1,0,2,1) 0 1 1 0 0 0
0,1,2,0,1,2) 1 1 1 0 1 1
0,2,1,0,2,1) 1 1 0 0 1 0

We define signed cyclic Heaviside functions y;ji for distinct i, j, k € [n]ojE as

. 1 pi < pj < pk counter-clockwise in C(p)
Yijk(p) == .
0 otherwise.

Once again, the y;j; form a Z-algebra with multiplication given by

- 1 pi < pj < prand p; < p, < pg counter-clockwise in C(p)
Yijk * yqrs(p) = ~
0 otherwise.

The B+ action on y}1 1 induces an action on the signed cyclic Heaviside functions, where
0 € By41 acts by

O Yijk = Yo(i)o(j)o(k)-

Example 3.2 Consider the 8 representatives of y§ and their evaluation via select cyclic Heav-
iside functions shown in Table 4. Note that if y; j is included, there is no need to include y i«
since y;ix = 1 — y;jx. Each entry in Table 4 indicates the value of a signed cyclic Heaviside
function (columns) evaluated at a given representative in y}l 41 (rows).

Proposition 3.3 The B, 41 action on the set of connected components of y; 41 Is isomorphic
to the coset action

Bu+1/(c),

where c is a Coxeter element of B,+1. The B, action on the set of connected components of
y}l 11 is simply transitive.

Proof Tt is not difficult to see that the B,4 action on the connected components of y; L1
transitive. Consider a “typical” point C(p) = (0, 1,2, ...,n,0,1,...,7) € y}m; itis fixed
by the cyclic subgroup generated by the Coxeter element

c=(012---n)".

This proves the first claim. B
For the second, since B, fixes 0 and 0, any o € B, will act on our typical point C(p) as

c-0,1,2,....n,0,1,....1) = (0,0(1),0(2),...,0m),0,0(1),...,0{)),

and is thus fixed-point free. This B, action is also transitive, and so the second claim follows.
O
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Table 5 Relation (iv) on all possible cyclic orderings of elements i, j, k, £

Yijk Yije Yike Yjke Yijk = Yije + Yike = Yjke
(tj. k. O 1 1 1 1 0
@ik, j, 20 0 1 1 0 0
(j,i,k, ) 0 0 1 1 0
(J,k,i,0) 1 0 0 1 0
(k,i,j,0) 1 1 0 0 0
(k, j,i,0) 0 0 0 0 0

The next step is to give a presentation of H *y; 11 using the signed cyclic Heaviside
functions as generators. First we determine relations that hold in H*))} 1
Proposition 3.4 The following relations hold in H*)J}H_l fori,j,k,te [n](j)ﬁ:
@ yijpd = yij) =0, i) yijk =1=yikj, @) yi;0 = Y75
@iv) Yijk — Yije + Yike — Yjke =0, (V) YijkYike(1 — yije)
+(1 = yij) (1 — yike)yije = 0.
Proof Relations (i) follows from the fact that y;jx and (1 — y;jx) have disjoint support.
Relation (ii) holds because y;jx and y;x; have disjoint support and y;jx + yikj = 1. Relation
(ii7) comes from noting that by definition of the antipode, (i, j, k) appears in p if and only
if (i, j, k) appears in p. For relation (iv), consider the six possible relative cyclic orderings
of distinct elements i, j, k and £, and their evaluations on y;jx, yij¢, Yike and yjk¢, shown in
Table 5.
Relation (v) follows because y;jx, yixe and (1 — y;j¢) have disjoint support, implying that
(1 = iji), (1 — yike) and yjj¢ do as well. O

Note that relations (i), (ii) and (v) deal only with the two of the three coordinates in the y; jx
(and will therefore be useful in the restriction to H *Z,ll), whereas relations (iii) and (iv) use
all three coordinates, and so are only useful to H *Z,l, in specific cases, discussed in Remark
3.5.

Remark 3.5 Relation (iv) has several noteworthy special cases that will be important in
computing the presentation for H *y}l 11 (Theorem 3.7) and H *Z,ll (Theorem 3.10) in § 3.2.

(1) Taking i = O gives a method of rewriting any y ¢ as

Yjke = Yojk — Yoje + Yoke-
This allows us to write any signed cyclic Heaviside function in terms of y;jx withi =0,
which we will use in the proof of Theorem 3.7 and when restricting from H *y; 4 to
H*Z). . B
(2) Taking j =0,k =i and £ = 0 gives
0= Yoi; = ¥oio + ¥oir — Yoor
= Yoi; — Yoo: + Yoii — Yovi
= 207 — Yooi)»
where the second line follows by using Relation (iii). This relation will prove to be a
useful reduction in the proof of Theorem 3.7.
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(3) Taking j =i gives
0= Yk — Yire + Yike = Yike
= Yiik — Yite T ikt — YVigg-
This case is most relevant when i = 0, in which case
0 = Yoor — Yooe T Yoke = Yorz-
Similarly, using relations (iii) and (ii),
0 = Yoor — Yoor + Yokz — Yore
= Yook — Yooe T Yoz — Yoke
= Yook — (I = Yo5e) + Yoxz — Yore-

In addition to appearing as a reduction in the proof of Theorem 3.7, these relations will
be instrumental in computing a presentation for H *Z,ll in Theorem 3.10 and will appear
again in Sect. 4 (Proposition 4.6).

Next, we show that the relations in Proposition 3.4 are sufficient to describe H *)),11 41-In
order to do so, we will employ a Grobner basis lemma used by Dorpalen-Barry in [21]. For
vectors

i, j, k) == (i1, j1, k1), (i2, j2, k2), -+, (ie, je, ke),
a:=(ay, - ,a)

write
a A ay A
Ya.jky = Yivjikr Yigjoka = Vigjeke”
Then given a polynomial
_ a
f=2ca¥i

with ¢, € Z, the degree of f is
deg(f) := max {Zai leq #E 0}
i
and the degree-initial form of f is
indeg(f) = Z Cayz',j,ky

Y, aimdeg(f)

In other words, ingeg () picks off the top degree terms of f. Given a polynomial ideal Q, let
ingeg (Q) be the ideal generated by ingeg (f) for f € Q.

A similar notion exists for any total ordering < on monomials provided that < is a well-
ordering, meaning that if f < f’, then for any monomial g, one has fg < f’g. Suppose <
is a well-ordering on monomials in Z[y; ] for i, j, k € [n](j)t. Then given a polynomial

f= anY?i,j,k) € Zlyijkl,
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define in<(f) to be the <-leading monomial in f. The ordering < is said to be a degree
order if it is compatible with the natural degree ordering on f in the sense that in.(f) =
ing (indeg(f))-

Our goal is to define a degree order < on the set of polynomials Z[y; ] for any distinct
i,j, ke [n]i To do so, first order [n]oi:

(0<0<l<l<---<n<mnl} 3.1.1)

Given y;jx with i, j, k € [n](j)t, order the indices so that i < j, k in (3.1.1); this is
always possible because the y;;; are equivalent up to cyclic rotation. From there, define <
by lexicographically ordering the indices in y;;; using the total order in (3.1.1). One can
check that < does indeed define a well-ordering on Z[y; jx ] for i, j, k € [n](j)t. We will use the
ordering < to argue that the relations in Proposition 3.4 are the only ones needed to generate
YL,

Given a set of polynomials Z = {f;};c; indexed by a set I, the polynomials which are
not divisible by the terms in< (f;) for each f; are called the in (Z)-standard monomials. For
example, if Z = {yizjk — Yijk}, then

: 2 2

< (Vi — Yijk) = Yijio
and so in this case y;jx is an in< (Z)-standard monomial. To foreshadow, when T is the set
of relations in Proposition 3.4, the set of in (Z)-standard monomials will be a Z-basis for

1
Y n+1*
Finally, recall that an ascending filtration of a commutative ring R is a nested sequence

of Z-submodules Fy € F C --- such that for f € F; and ' € Fj,onehas f - f' € Fiy;.
The associated graded ring of R with respect to this filtration is then defined to be

gt(R) .= P Fi/Fi1.
i>0

In our case, the ring we are interested in is H *y,ﬁ _1 and the filtration is the natural filtration
by degree, so that F,; consists of polynomials of degree d or less.

From these definitions we may now state the relevant lemma. Let S = Z[ey, --- , e/],
where the ¢; are standard basis vectors.

Lemma 3.6 (Dorpalen-Barry, [21] Lemma 8) Let R be a free Z-module of rank r. Given a
surjectiony : S — R, let T = {fi}ic; C S be a set of polynomials such that

(1) Each f; is monic (e.g. the coefficient of ingeg(f;) is £1),
(2) I C ker(y), and
(3) the set of inL (Z)-standard monomials N' = {my, - -- , m;} has cardinality t < r.

Then

(1) R = S/(2D) as Z-modules, where (I) is the ideal generated by T and
(2) the cardinality of N'is r, so that y (my), - - - , y (m;) is a Z-basis for R.

In the case that < is a degree-ordering, then there is a further Z-module isomorphism
S/ indeg(I) = gt(R)~
The Hilbert series for gt(R) is then given by

,
Hilb(gr(R), 1) = ) _ 1480,

i=1
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We will see that Lemma 3.6 is precisely what we need to give a presentation for H *y}l 1
Define the sets

(Voo1 b ooz Yo12, Yoiz)s -+ » (Vogns Yoins Yoims ==+ » Yo(—1yns You—1)ii}s
S —’
hy ho hn

and let N\ be the set of monomials obtained by multiplying at most one term in each A;.
Intuitively, think of each 4; as a hand and the elements in A; as its fingers; then A is the set
of monomials obtained by picking at most one finger from each hand®.

Theorem 3.7 Let 7 be the ideal generated by the relations in Proposition 3.4. Then
H* Y1 =Z[yijx] /T
where i, j, k are distinct elements in [n](j):. Further, the set N is a basis for H*yli_H.

Proof Suppose m is an in (Z)-standard monomial. We make the following reductions:

e By Proposition 3.4 (i), we may assume m is square free;

e Using Proposition 3.4 (iv) and setting i = 0, we may also assume that m is comprised
of generators of the form yg;

e Furthermore, using Proposition 3.4 (iv) and Remark 3.5 (2) we have that m cannot
contain yg;; for i € [n];

e Using 3.4 (ii), we may assume further for ygj that j < k with respect to the ordering
in (3.1.1);

e By Remark 3.5 (3) we have that m cannot contain any generator of the form Yojk OF Yojx
for j, k € [n].

Finally, we must use relation (v) to show that m is in fact in N. Note that (v) can be
understood as a choice of three elements i < j <k € [n]§ \ {0}, corresponding to the three
monomials yo;;, Yok and yo;x. Applying relation 3.4 (v) to these generators implies that the
term Yo; Yok cannot divide m. We use this logic to underline terms that are not divisible by
mfori, j, k € [n]:

e i<j<k):

0 = y0ijyjk — Y0ijYoik — YoikYjk + Yoik-
o (i<j<k:

0= Yoij ¥z = Yoij Yoix — YoirY & T Yoik-
o (0<i< )

0 = Yo0: Y0ij = Yovi Yoo; — Y0ij Yoo, T Yoo,
e (0 <i < j): Noting that Yoo = Yo, = (1 = ¥5;) by 3.4 (iii) and 3.4 (ii):

0 = Yo5i Yoi7 — YoviYoo; — YoijYoo; — Yoo;
= Yooi Yoij — Yooi (1 — yoﬁj) - y0i7(1 - yoﬁj) -(1- yoﬁj)-

6 The terminology of “hands” and “fingers” originates in Héleéne Barcelo’s thesis [5, Thm 2.1] and was later
used in Barcelo—Goupil [7], both in the context of describing an nbc-basis. Such bases arise in the study of
matroids. While we are not in the matroid (e.g. hyperplane) setting, because our description of A uses the
hand/finger description, we may refer to it basis as an nbc-basis nonetheless.
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e (i < j < j): Noting that Yoj7=1- o7, =1 — ¥g5; by 3.4 (iii) and 3.4 (ii):
0= y0ij¥o;7 = YijYoi7 = YojjYoi7
= )’Oij(1 - yoa,-) — YijYoij — 1 - yoﬁj)y0,‘7~

e (i < j <k):By 3.4 (iv), Remark 3.5 (3) one has Yojk = Yoo; T Yoor T Yoz — 1, and
SO

0= Yo, 755k — YjxYik = YoijYik + ik
= Y0i7 Voo T Yoor + Yojx — D — Ooo;j + Yook + Yojx — DYik — Yoi7Vik + Yik-

o (i < j <k): Again, we have yo;; = Yog; + Yoo; + Yoi7 — 1 and Yo, = Yooi + Yoo +
Yoix — 1. Hence

0 = Yo7 Y0k = Yo7 jYoix — Y0jkYoix T Yoik
= ooi + Yoo; T Yoi7 — DYojx — 0o + Yoo; + Yoi7 — DWosi + Yoor + Yoix — D
— Y0k Yogi + Yook T Yoix — D) + Ooni + Yoo + Yoix — D-

It follows that m € N, because all of the terms violating the definition of A/ (e.g. picking
multiple generators from the same set 4; ) are in blue above. Thus the hypotheses in Lemma 3.6
are satisfied, and the claim follows. O

Note that < is also a degree ordering, which by Lemma 3.6 implies the following.

Corollary 3.8 The associated graded ring of H* ,11 11 with respect 1o the filtration by degree
has presentation

ge(H*Vy41) = Zyijil/ ingeg (D),
for distinct i, j, k € [n](f, where ingeg (Z) is generated by the relations
() Yo G yijk = vije+ yike — yjke  GiD) ¥ = Vi7%
(V) yijk = —yikj (V) YijkYike — YijkYije — VikeYije-
Further,
Hilb(ge(H*Y, ). ) = (1 + NG+ DG +1) -+ (2n — 1) +1).

Proof The relations generating ingeg(Z) come from computing ingeg (f;) for each f; € Tin
Theorem 3.7. Note that expanding relation 3.4 (v) gives

YijkYike(1 = yije) + (1 — yije) (A = yice) yije
= YijkYike = YijkYikeYije + Yij = YijkYike = YikeYije t YijkYikeYije
= YijkYike + Yij = YijkYike — YikeYije-
Removing the single degree 1 term here gives a homogeneous degree 2 relation. The Hilbert
series follows from a standard counting argument using the set . O

Example 3.9 Suppose n + 1 = 3. Then a basis for H* y;, separated by degree in the y; jx is
deg(0) : 1
deg(1) : Y51, Yo12: Yorz» Yoo
deg(2)  yom Y012, Yoo1Yorz»  Yoo1 Yooz
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The Hilbert series for gt(H* )%) is

1+4t+32=1+D3B+1).

3.2 A presentation for H* Z]

The B,, module isomorphism induced from Proposition 2.10 (applied as in Example 2.12)
recovers a presentation for H *Z}L and gv(H *Z}l). The isomorphism can be described as
follows: for each Heaviside function y;j, fix i = 0 and define for j, k € [n]F,
Zjk *=Y0jk
Zj =Yoo i
These z jx and z; inherit a B, action: o € B, acts by
O - Zjk =Zo(j)o k)
0 2j =Zo(j)-
The elements z j; and z; are (by construction) functionals on Z,ll. The latter generator has a
simple description:
1 x j = 0
0 otherwise.

Zj('xli... ’xn):i

The z i are a bit more complicated; if j, k € [n], then

I xj <xx

0 otherwise,

Zjk (X1, 00 X)) = {

and
gy = LN < 90w
AR 0 otherwise,
where ¢(x;) = —x;/Ix j|2. The generator z7, can analogously be interpreted as 1 when

@(x;) < xi, and the generator e is 1 when ¢(x;) < @(x;). Note that (x;) < ¢(xy) is not
equivalent to —x; < —xi. '
We now obtain from Theorem 3.7 a presentation for H*Z..

Theorem 3.10 There is an isomorphism of Z-modules
H*Z) = 2z, 21/ T
fori # j € [n]*, where J is generated by the relations:
(0) zij(d =zij) i) zi(l=z) Gii) zi —zj+zij—z75 (v) zi— (1 —2zp)
and

W) zijzjk( = zi) + (1 = zi)) (A — k) zik
i) zijzil —z;) + A —z;;) —zi)z;
wii) zjz;7(1 —zij) + (1 = z2))(1 — z;7)zij.-
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The “extra” relations (vi) and (vii) compared to H* }11 41 are necessary because unlike the

Yijk» there are now two types of generators, z; and z ji.

Proof The isomorphism between H*))! L1and H *Z! implies that H* Z! has a Z-basis con-
sisting of monomials that are a product of at most one element from each set

{z1h {z2, 212, 203} - Az Z1ns -+ 5 Z—yns 21705~ 7+ > Ty} -

That Relations (i)—(v) hold in H *Z,ll follows immediately from the identification of
variables discussed above. Relation (vi) can be seen directly: for i, j € [n], the function
zijzi(1 —z;j) isnonzeroon (xy, ..., x,) if x; < xj,x; > 0,and x; < 0, which is impossible.
Similarly, (1 — z;;)(1 — z;)z; is always 0, so the sum must be 0 as well. The relation is then
closed under the action by B,,.

An analogous argument holds for (vii); zjzl?(l — zjj) is non-zero on (xp, - -+ , x,) if
X; > xj,x; < @(x;)and x; > 0. However if x; > 0, this means that ¢(x;) < 0, and so
x; < 0, contradicting the assumption that x; > x;. Analogously, the second summand in
(vii) is 0. A similar argument as the proof of Theorem 3.7 (e.g. using the ordering induced
from (3.1.1) and Lemma 3.6) then shows that these relations are sufficient to generate H *Z,l,.

O

Using Theorem 3.8, we obtain a presentation for gr(H *Z,ll) as well.

Corollary 3.11 The associated graded ring of H *Z,]l with respect to the filtration by degree
is given by
gr(H*Z)) = Zlzij, 21/ ingeg ()
for distinct i, j € [n]* where ingeg () is generated by
() zp i)z (i) zi—zj+zj—z5 (V) zi+z
W) zijzjk = zijzik — Zjkzie WI) zizij — 2ijzj — 2izj WID) 2jZ5 = 252 = 2j%ij-

Example 3.12 (n = 2) The above restriction tells us that when n = 2, the basis for gt(H *Z,ll)
is

deg(0) : 1
deg(l) : z1, z12, 243 22,
deg(2) : z1z12, 21253, <2122,

and the Hilbert series of gt(H *Z;) is the same as that of gv(H* y;).

3.2.1 A bi-grading on H* Z}

Finally, we introduce a further filtration on gt(H *Z,i).

Proposition 3.13 Let P; be the ideal in gt(H*Z,ll) with monomials of degree £ or higher in
the z; fori € [n]*. Then there is a descending filtration on ge(H *Z,ll) that is stable under
the By-action on gt(H*Zli):

P,CP,_yC---CPCP.
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Proof Consider first the polynomial ring Z[z;;, z;] for i, j € [n]%; it is clear that it has a
filtration by z; degree, and that this filtration respects the action by B,,. One can further check
that the ideal ingeg () in Corollary 3.11 also respects the filtration because each relation (and
its B, orbit) is in either Py, P; or Ps. ]

Definition 3.14 Define the associated graded ring of gt(H *Zrll) with respect to the filtration

in Proposition 3.13 to be
=P a= P G

0<k=n 0<t<k=<n

where Gy consists of monomials of degree k in the variables z;; and z; fori, j € [n]* and
Gk.¢ consists of monomials in G which are degree ¢ in the z; variables.

Corollary 3.15 As a bi-graded ring, G has a presentation

Zlzij, zil/L
fori, j € [n]F, where L is generated by zizj = Ziz = 0and
) zij+zji () zi+zp (i) 77—z () zijz; (V) 202k — 2ij2ik — 2jkZik-
Remark 3.16 The fact that Q[ B, ] is semisimple means that for any filtration stable under the
action of By, passing to the associated graded ring will not change the isomorphism type

of the representation. Hence we will study representations on Gi ; and use this to deduce
information about H *Z,ll and H *Zf,.

Remark 3.17 The filtration in Proposition 3.13 (using the identification z; <> yg,;) does not
respect the lifted B, action, and therefore does not give a bi-grading on H *J),IZ 11

4 Thed = 3 casein Type B

‘We now turn to the space Z?l, which was studied by Feichtner—Ziegler in [24] and Xicoténcatl

in [54]; we will first review their work’ in Sect. 4.1. Then, we will work to understand
the action of B, on the basis for H *ZZ (Sect. 4.2). The presentation for H *Zfl and its
consequences are given in Sect. 4.3.

4.1 Tools from topology
In [24], Feichtner—Ziegler use the space Zz to compute a presentation for the cohmology of
the Z, orbit configuration space Conf%2 (Sd). Let

M 2 24y — 2

X1, Xpg1) > (X1, -, Xp)

7 In[24], Feichtner—Ziegler give a presentation of H *Zﬁf ford > 2. However, their computation of the action
of B, on the generators of H *Zﬁ has an error [24, Lemma 7(iv)]. Xicoténcatl also gives a presentation of
H *Zﬁ, which agrees with our presentation; however his work does not explicitly compute the action of B,

on the generators of H *Zﬂ. We will see in Proposition 4.6 that the By -action on H *Zﬂ is delicate, and so we
include all the details of our computations for completeness.
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be the map which “forgets” the last coordinate in Z¢_ , and define

n+1°
On =10, x1, 0(x1), -+ Xp—1, @ (xp—1)},
where ¢(x;) = —x;/|x;|%, as before. This induces a locally trivial fiber bundle
RINQ, — 2¢,, — 2. 4.1.1)

Feichtner—Ziegler prove that the associated spectral sequence collapses in its second term
whenever d > 2, and that the corresponding cohomology ring H *Zﬁ is torsion-free with
Hilbert series®

Hilb(H* 2%, 1) = (1 + 1970 + 397 . (14 @n — D7, (4.1.2)

Using the spectral sequence induced by (4.1.1), Feichtner—Ziegler provide a multiplicative
generating set and Z-module basis for H *Zﬁ.

Proposition 4.1 ([24]: Prop 8) A Z-linear basis for H*Zz is given by choosing one element
from each set:

Z{1, 21} - Z{1, 22, 212, 2453, } - - {1, Zns ZAns 207 0 5 Z(n—Dyns =17}

A number of relations that hold in A *Zz can be established from the above topological
framework. Recall that t; € B, is the element sending i — —i and j +> j for all other j,
and s; € By, is the Coxeter generator (i, i +1). Let (i, j) be the transposition swapping i and
Jj-

Proposition 4.2 The following identities hold in H*Zf, for distinct i, j, k € [n]*

(1) (Feichtner—Ziegler [24, Lemma 7(iii)]): ; - zi = z; = —2i;

(2) (,])-zij =2zji = —Zij;

(3) z}; =27 =0.

(4) (Feichtner—Ziegler [24, Prop. 111): z;jzjx — zikzij — zikZjk =0

(5) (Feichtner—Ziegler [24, Prop. 11]): z;;z; — zijzj — zizj = 0.

(6) zjz;7 — zijg;7 — 2j2ij = 0.

We give a general sketch of each of these relations for intuition.

Proof (1) The first claim in Proposition 4.2 follows because the generator z; is the image of
the (dual) fundamental class induced from the projection map

T ZZ —s gd-1
Xi

(1, xn) > .
| |
The action of ¢ then restricts to the antipodal action on $¢~!.
(2) Analogously, the second claim in Proposition 4.2 can be understood via the projection
map
Tj - ZZ — Sd_l
Xi — Xj
(X1, 00y X)) > ————.
[xi — x;jl
The generator z;; is similarly defined as the image of 711.*; ([Sd_l]) (where [S971] is the

dual fundamental class of S~ ). Once again the action of (i, j) can be traced back via
7jj, where it restricts to the antipodal map on §a-1,

8 They further prove (with a bit more work) that the d = 2 case is also torsion free and satisfies (4.1.2).

@ Springer



A Type B analog of the Whitehouse representation Page29of 60 58

(3) Again, the third claim comes from the fact that the generators z;; and z; are the images
of [§%~1], and [S?~1]> = 0 in H*($971).

(4) Let Uier = {(x1,---,xy) € R . x; = x;}, and consider the complement space
M{U;JT, U;;c} C R . There is a natural inclusion

3 + pr.
Zn — M{UU ) Ujk}’
the induced map in cohomology must send the relation z;;z; — zjjz; — ziz; = 0 in
H*(M{U, U} 10 0in H*Z;.

5) Let U; := {(x1,-+-,x,) € R . x; = 0}, and again consider the complement and
corresponding inclusion Z,31 — M{U;j?, Ui, Uj}. Then (5) holds by the same logic as
relation (4).

(6) Finally, we obtain the relation (6) using a similar argument as the last part of [24, Prop 11.].
It is sufficient to work in the case that n = 2. Let

Up = {(x1.x2 € ®\[OD? : x1 # x2, X1 # 0(x2)},
and Uy, Uy, U 12 be as before. Consider the map
O M{Uy, Up, UsY — M{ULS, Uy, Un)
(x1, x2) > (x1 — x2, x1 — @(x2)).

Let dy, dy and d1, be the respective generators of Uy, Us, Uj;. The same argument used
in (i) of the proof of [24, Prop. 11] shows that ®*(d;) = z1».
To show that ®*(d>) = z;3, note that

D oso(x1, x2) = (x1 — @(x2), X1 — x2) =51 0 D(x1, x2).
Hence

D (d2) = @ 051(d1) = 520 P*(d1) = 52(212) = 243

Finally, we show that ®*(dj2) = —cp. Let o : M{Uy, Ua, UE} — S? be the projection
onto the second coordinate, and then the unit sphere. Thus 0*(¢) = dp, where c is the
generator of S?. Let

6 : M{Uy, Up, Uy} —> §?

1
(x1, x2) /> ———(x1 — x2).

|x1 — x2]
Then
_ 1
0o d(x1, x2) =————(p(x2) — x2)
lo(x2) — x2|
1 —X 1
N I |22 (1 " |2|>
—X2 1 2 X2
a2 (1 * |x§\> |
1 —X 1
= R
14 L |2 x5
X3
— —*2
lx2|?

@ Springer



58 Page 30 of 60 S. Brauner

Table 6 The action of By on the basis of H*Z%‘ Bold indicates an element not in the basis

51 ) s112 (s112)* = —1
1 1 1 1 1
21 22 21 22 —Z1
22 21 —22 —Z1 —22
212 —a12 i —i1 )
2 12 <12 12 12
2122 2122 —2122 —2122 2122
21212 —22212 = —21212 + 2122 2123 —2227; = —Z127p —2122 —21213
ZlZ1§ _ZZZTZ = _ZIZTZ —Z1122 21212 —22212 = —21212 + 2122 _ZIZTZ
= —o(x1, x2).
Thus ®* 0 6 = —o* because the antipodal map in this context has degree —1.

Noting that " (¢) = z15 implies that
*(d1z) = P* 06 (c) = —0*(c) = —22,
and therefore

@*(di2dy — dindy — dids) = —22212 + 22245 — 21223-

4.2 Tools from representation theory

The relations in Proposition 4.2 are insufficient to give an algebra presentation for H *Zz—
that is, they do not give all the relations among the generators of the algebra. In particular, we
are missing information about how to rewrite the generators z; j and %5 in terms of the basis
discussed in Proposition 4.1. This is relevant in part because we would like to understand the
action of B, on H *2,31. Consider, for example, what is known based on Proposition 4.2 about
the action of B, on the basis for H *23, summarized in Table 6. The teal entries indicate
elements which are not in the basis.

Thus the next step is to develop tools to complete the presentation of H *ZZ In order
to understand the representations carried by H *Zfl and H* Z +1» assume henceforth that
both spaces have coefficients in Q. Our subsequent computations will use the representation
theory of the hyperoctahedral group, reviewed in § 2.3.3.

4.2.1 A recursion for H*y?,+1

We will now develop a recursion between the B,,-representations carried by H* Zf, and H *yfl ;
in addition to being of independent interest, this recursion will be instrumental to determining
the presentation for H *Zfl.

Recall that the two spaces 2,31 and yfl 1 are homeomorphic, and therefore their cohomolo-
gies are isomorphic as B,-representations. We will use this fact to understand H*)? Lr1asa
B, ;1 -representation. The space )/‘Z 1 has a fiber sequence
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SU2\{:l:p]7:|:p2» s:l:pﬂ}_)yl}‘k‘rl _>y,3,. (4.2.1)
Note that there is a Bj-action on F, which comes from the B, action on {£py,---, x£p,}.
In particular, for o € B,, the point (p1, -+, pn, Pn+1) and (Po(1), *** » Po(n)> Pnt1) have

homeomorphic fibers in the fiber sequence (4.2.2), and the action of B,, permutes the punctures
of F. It follows that B, acts on each space in (4.2.2), and is equivariant with respect to both
maps.

Because Zfl is simply connected and has homology concentrated only in even degrees,
the same must be true for yf, 11- It follows that the spectral sequence collapses, yielding the
isomorphism:

H*)S, | =5, H*Y} @ H'(F) =5, H*Z3, 4.22)

where F is the fiber SU, \ {£p1, £p2, -+, £p,} from (4.2.1).
Since F is connected, H?(F) = Q and carries the trivial representation. The only other
non-trivial degree is H 2(F), which is 2n — 1 dimensional.

Lemma 4.3 As a B,-representation,
HA(F) Zp, 700 4 (01D,

Proof Since F is a punctured sphere, the generators of the homology can be understood as
cycles around these punctures. Let e; be the cocycle dual to the cycle around the point p; and
e; the cocycle dual to the cycle around its antipodal point — p;. The B,, action on H2(F) is
determined by how B,, permutes these cocycles. It follows that
HQ(F)g@el@QeLEB---@Qenﬂi@en. 42.3)
Qer +er+---+eutey)
The denominator carries the trivial representation, which we shall denote by 1. To compute
the numerator, note that the subgroup fixing e; pointwise is S1 x B,—_1, which has index 2n
in B,,. Hence

— — ~ By ~ By B X By,
Qer®Qerd®---®© Qe ®Qe, =5, Indg', , 1 =p, Indy!, 5 (Indsll:Bnil' IL)
by transitivity of induction. The inner term on the left-hand-side can be expanded as
By xBy— - - _
IndSII:Bn71] ]]. — (X(l),® @ X(D.(l)) X X(n ]),@ — (X(l),ﬂ X X(l‘t 1),@) @ (X@,(]) X X(n 1),@)

Using the Type B branching rules, it follows that

7,(1) % X(nfl),V)) — Xﬂ.(l) .X(nfl),V) — (nfl),(l)’

By
IndBl X Bp—1 (x X

which is an n-dimensional representation of B,,.
The other term is
B,
IndleBn_l (Ip, x1p, )= QIB,/(B1 x By_1)],

which is also n-dimensional and decomposes as x .0 gy x =1.1D.% The numerator in (4.2.3)
therefore has description

Qe ©QeET @ ©Qey ® Q7 = x @7 @ "D g x DO
and so

Qer®Qer®--- Qe ®Qen _ (=10 gy (=D (1)

HX(F) =
(F) Qer+er+--+e,+en)

4.2.4)

m}
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Plugging the description of H*(F) into (4.2.2) yields the following recursion.

Corollary 4.4 There is a isomorphism of B,,-modules
H 2} =y, HYY @ (H ) @ V)

for0 < j <n, where V = yx=1LDI g, (=1,
4.2.2 Thecasethatn =2

Our strategy will be to compute the representation for H *Z; using Corollary 4.4, and then
use the fact that the cohomology generators z;;, z; are compatible with projections between
configuration spaces to deduce a presentation for H *ZZ. In particular, if

H[S] . H*Z?l — H*Z?T‘
is the map projecting (xy, - - - , x,,) to the points with index 7" C [n], then Feichtner-Ziegler
show in [24, Lemma 6] that in cohomology, HTTl(Zij) =zjfori, jeT.

Part of our upcoming argument will rely on Theorem 5.10, which states that as an ungraded
representation,

H*Z} =5 Q[B,].

We will defer the proof” of Theorem 5.10 to Sect. 5. One consequence of this fact is that
H *ZZ will contain exactly one copy of every 1-dimensional representation of B,,.

Our goal in Proposition 4.5 is to determine where each irreducible of Q[B] appears in
H *Z; Denote by p[j] a representation p in cohomological degree j.

Proposition 4.5 As B; representations, H *Z% decomposes as
HOZ3 = y@
sz% — DA AD (D,
HYZ3 = PO 4 0.0,
Proof By Corollary 4.4, when n = 2,
V= X(l,l),ﬂ @ X(l)’(l)

and H23 = x@. Since H°Z3 = x-Y, by Theorem 5.10 it follows that H2 23 = x (1.
Write the B; representation carried by H 2))% as x; note that x is 1-dimensional and must

restrict to x (D, Inspection of Tables 2 and 3 then shows that x must be either ¥ 24D or
8,(2)
X .

Expanding the recursion in Corollary 4.4 gives
H* 23 = (PP + O + 02D © (P P101 + x12D)
= x01+ DO+ WD 4 o1+ DO+ NP @ 014,

where we use the fact that x ():(D @ y = x1-(D no matter which 1-dimensional represen-
tation x is.

9 The proof of Theorem 5.10 does not rely on the remaining results in § 4. In particular, all subsequent work
in §4 will focus on computing the presentation of H *Zﬁ. Theorem 5.10 will be proved using equivariant
formality, which we will see follows from the Hilbert series for H *Zf, given in (4.1.2).
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Observe by Proposition 4.2 that z;zp € H 423 is an eigenbasis for x . Since the total
representation of H *Z% is the regular representation of By, it follows that x - must appear
in cohomological degree 4 only, and so it must be that

KO — 5 Dh g

Again using the fact that the total representation in this context is Q[ B2], one deduces that
x = x? @D and therefore

H* 25 = x @101+ (DO 4 x B0 R0y 214 (D0 4 P4,

[m}

We will now determine (1) the 1-dimensional eigenspaces of H *Z% as B, representations
and (2) a complete description of the B; action on the generators of H *Z%, which can then be
extended to the B, action on H *ZZ Recall that since H *Zf’l = Q[B, ], each 1-dimensional
representation of B, will occur once in H*Z>.

Proposition 4.6 Let V (x) be an eigenvector in H *Z% of a 1-dimensional representation x
of By. The four 1-dimensional representations x of B> occur in H *Z; as the span of the
following elements:

V(x) Eigenvector
V(x D7) 1

v (x1D2) 2tz ta
V(XQ’(I’I)) 12— 253 — 22
V(@) 2122

This in turn determines the following relations:

p=z2ta—2 4.2.5)
27, =23 +21 + 22 (4.2.6)

Proof The copy of x-() in HZZ% has basis z; and z,. By Proposition 4.5, the remaining
representations in HZZ% are X(l’l)’“ and X”'(l*l). For vectors o = (afrz, ap,, 0, 02) € Q4

and 8 = (B}, B B1, B2) € Q*, write

V(DY = ahzi2 + a2y Az + e
and

VD) = Bhzio + Baziz + Bizi + Baza.

Our goal will be to solve for the undetermined coefficients above.
Starting with V(x1DP) we have that

n- Vit = b2z + Az + @iz — a2z
= vt

+ —
= w5212 + 0r23 + @121 + @222,
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This forces afrz = ay, and az = 0. Note that aE # 0, because otherwise V(X(M)*“) would
not be linearly independent with (z1, z2). Thus without loss of generality, scale aB =a, =
1; write Oll/Ol]+2 = «, so that

Vix"DP) =215 + 215 + @21
Acting by s1 gives
sp-V(x IOy = 7y — 1, T oz

==V

= —Z12 — 23 — OZ1.
This implies that

7y = 213 taz1 +azs.
By a similar argument,

V)

Bihz s + Braziz + Przi — Baza
= -V (")

= —Bhzi2 — Bpzs — Bizi — Paza.

Hence one can conclude that ﬂfz = —f, # 0and B; = 0. Again, normalize by 51+2 =1
and set 8 = B/ ,BE; therefore

V(P Dy =z, — Z;5 + Bza.
Acting again by s gives
s1- VD) = —z15 4 25, + Bz
= -V
= —z12 + 25 — P22,
which implies that
7 =253 — Bz1 — B2 4.2.7)
We therefore conclude that « = —f, and so
VixIDY =z, + z;5 — Bz1.
Applying wy to both expressions gives:
wo - Vx IV = 255 4 25, + Bz1 = VWD) = 210 + 2,5 — Bz
wo - V(x*ID) = 255 — 25, — Bz2 = V(X UD) = 215 — 215 + B2a.
Simplifying and adding the above two expressions gives

2775 = 2212 — 2Bz1 + 2Bz2.

Finally, we must show that § = —1. By Proposition 4.2 (5),

Z1221 — 21222 — 2122 =0
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holds in H *Z%. Acting by 1, gives
7321 + 2322 + 2122 = 0.

One the other hand, acting by s1t2s1 gives
—27p21 — 2722 + 2122 = 0.

Using (4.2.7), and Propopsition 4.2 (3), we have

—Z1p21 — 22 + 2122 = —(293 — Bz1 — Bz2)z1 — (23 — Bz — B2z + 2122
= —zpp21 — 222 + (1 +26)z122.
It follows that
0= (ZQZ] +zp22 + mzz) + ( —zZ321 — 2322 + (1 + Zﬂ)zlm)
=2 +2p)z1z2.
Since z1z7 is a basis element, § = —1. O

The relations (4.2.5) and (4.2.6) are the final relations needed to determine a presentation for
H *2,31; note that they precisely match the relation (2) in Corollary 3.11.

4.3 Presentation for H* 23

We are now ready to give a presentation for H *Zf’l As before, the action of 0 € B, on the
variables z;; and z; fori, j € [n]F is given by

I ET AR ZIOLI)
Zi = Zo (i),

with the convention that i = i.

Theorem 4.7 There is a By,-equivariant ring isomorphism
H*Z = Lzj, 211/ T,
fori, j € [n]*, where J is generated by

° z;; =z5+zi+zjand
e The relations in Proposition 4.2.

Proof Proposition 4.2 and 4.6 show that the relations in J hold in H *2,31 (The relation
2 = 2;7+2i +2j comes from (4.2.6); note that it also implies 5 =2ijtzi—2 from the
action by ¢;.)

Hence it is sufficient to prove these are the only relations needed to generate 7. To do so
we will employ a standard argument, very similar in spirit to the proof of Theorem 3.7, to
show that

Z{1, z1} - Z{1, 22, 212, 243, } - Z{1, Zns Zins T 0 s Zn—Dyns 2=y} -
———
n A h

forms a Grobner basis for H *ZZ We will again use the lexicographic ordering on z;, z;; for
i, j € [n]* induced by the ordering

0<l<1<2<2<---<n<n.
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Table 7 Action of the elements

ti t; i,J
i, and (i, j) € By on the ! J @n
+ = . * 23 — _
generators > Zije G € H*Z;, ZiJ; o T zij _le;
= + R, + T g — s
% LT —Ej % LT T
Zi —zi Zi Zj

Here we identify z; with zg; so that fori < jonehasz; < z; < z;; < 37 < % < 3
The argument amounts to showing that any monomial with two terms from the same set hf
can be rewritten in terms of elements lower in the above ordering using the relations in 7.
Call such monomials broken-circuits. The same argument as in Theorem 3.7 shows that these
broken-circuits (the underlined terms) can be rewritten using relations in 7

o 0=72z;Zjk — ZijZjk — ZjkZik

. O:zijzj;—zijzjg—%

o 0=1zizij —zijzj —2izj

e 0=ziz5+z z,+zzz,

. O_ZJz-- 2jZij — Zij

o 0=1z;z5+2k2;7 + 2,725 — 2jZik — ZkZik — Z;xZik — Z;Zik

ij jk
'0—(Zz+Z]+Zij)Z]k (@i +2j + 3@+ + 20 — 2@ + 2+ )

for i, j, k € [n]. Note that each underlined term is the largest with respect to our ordering,
which completes the proof. O

The presentation of H*Z> in Theorem 4.7 is identical to the presentation of G = gt(H*Z})
in Corollary 3.11, which gives the following.

Corollary 4.8 There is an isomorphism of B,-modules
H*Z = gu(H*Z}) =¢.
It turns out that Corollary 4.8 can be lifted to the spaces H*Y, , | and H* y; i
Corollary 4.9 There is an isomorphism of B,y1-modules
H*yfz-ﬁ-l = Bt(H*y;laﬂ)
The proof of Corollary 4.9 requires additional tools that will be discussed in Sect. 5.

Remark 4.10 Theorem 4.7 and its proof reveal an asymmetry in the space H* Z3 in particular,
only the generators 270 Zij and z; for 1 <i < j < n are needed, but the presentation can be
described more compactly (and elegantly) if the generator z; j is also included. One alternative
way to describe the presentation of H *Zz is to set z; = z;; and 2 =247 with the action
of B, given by Table 7.

One could then write the presentation of H *23 as Z[z;‘]'., zl.;, zi]1/KC, where K is generated
by the B,-image of the relations (er)2 (z; ])2 (zi)* and

+ + + + + + + _ o+ + _ -

@ z T2k T Zii% K~ ZjkZik (i) TiZj; %% T Tgj (@iii) Z]Z,, 2jZij — ZjjZij
This is more or less a rewriting of Theorem 4.7, but has the disadvantage of being less
explicit and less obviously related to the presentation of H*Z.. However, there are some

advantages to this perspective, and we will return to it in Sect. 5.
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Table 8 Action of the elements

- - —
i, and (i, j) € By on the i J @n

+ - _ _
enerators 7., .., Z; € + _,*
& ij2ijp i €9 Zjj % Zjj 2
Zjj Zj zj; ~Zj
Zj -z Zj Zj

Similarly, the presentation of the ring G can be re-written

G =2z}, 77, u)/ L

for1 <i < j <n, where £ is generated by (Z+)2 (Z,/)2 (zi)? and
+ + + = - S S S S
(@) z,jz,j (0) zizj =gz (D) zzj + 2520 (V) 2525 = 2520 — 2l
W) 253 = 2% — T
-t =t + Fom o
Wi) 2z = 2z — 2 WD) 2525 = 4520 — T

Now the action by B, on the generators (see Table 8) is significantly simpler.

5 T-equivariant cohomology

There are several results whose proofs we have deferred thus far. In this section, we will
build the tools to prove these theorems and more deeply understand the connections between
thed = 1 and d = 3 cases for ZZ and yjH. To do so, we will delve into the world of
equivariant cohomology; background material on equivariant cohomology can be found in
Sect. 5.1. Experts on the topic can proceed directly to Sect. 5.2.

5.1 Background

Equivariant topology is a powerful tool by which to study a topological space X with a group
action by a Lie group T'; see Anderson [3], Proudfoot [41], and Tymoczko [49] for excellent
introductions to the topic. Recently in [39], Moseley successfully used equivariant cohomol-
ogy to study complements of hyperplane and subspace arrangements in real Euclidean space.
Our approach will follow Moseley’s lead.

Henceforth, the key objects will be:

e T, alLie group. For us, T will almost exclusively be U (1), the unit circle;

e X, atopological space that T acts on; call X a T-space and let XT be the space fixed by
T . For our purposes X will be an oriented manifold. Call such a manifold a T-manifold,
and any submanifold of X that is stable under the action of T a T -submanifold;

e ET, acontractible space which T acts upon freely;

e X7 :=ET xr X, is defined to be the quotient of ET x X by

(t-e,x)~ (e,t-x)

fort € T,e € ET and x € X. A nice special case is when X is a point; then X7 is
simply the classifying space of T, written BT'. See example 5.1 for more details.

e H7(X) := H*(Xr)isthe T-equivariant cohomology of X. This is precisely the ordinary
cohomology for Xr. Intuitively, if T acts freely on X then H; (X) = H*(X/T).
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o [Y]r € H’; (X) is the class of a codimension k oriented T -stable submanifold of X.

To make the above more concrete, consider the following example.

Example 5.1 Let X be a single point, denoted pt, and 7 = U(1). To determine E T, one must
find a space that (1) 7 acts upon freely and (2) is contractible. There is a natural free action
of T on S?"*! ¢ C"*! by rotation, where ¢ € U(1) acts on (29, - - - , 2n) by

e (20, ,zn) = (€720, -+, €7 Zp).

While S+ satisfies the first requirement, it is not contractible. To correct for this, note
that >+ can be successively embedded in S T2+ for ¢ > 0. Following this procedure
iteratively allows us to view S?"*! inside of S (defined as the union of S*'*! for all n)
which is a contractible space. Thus ET = S°. Since X = pt, the space pty is simply

pty = S® x7 pt = S*/S!.

S2n+1

In general, the quotient of by the rotation action of S' gives complex projective space

CP", and in the limit
s*® /st = CP>,

where CP™ is infinite complex projective space. Hence Hj(pt) = H*(CPP*°). The coho-
mology of CP* (with coefficients in Q) is the univariate polynomial ring Q[«] where
u € H*(CP>).

Here, we understand u as the image of [0]7 under the induced map from the inclusion

i:pt—C
pt — O.

Example 5.1 illustrates one of the key differences between ordinary and equivariant
cohomology: in the latter, H*(pt) = Q a (relatively) uninteresting ring. By contrast,
H7 (pt) = Q[u] has a richer structure.

Many of the important tools in ordinary cohomology also hold in the equivariant setting,
including functoriality, cohomological ring structure, Poincare duality for smooth orientable
spaces, the Leray-Serre spectral sequence, the Kiinneth formula, and more (see [49]). This
means, for starters, that the argument showing that H*(pt) = Q is a module over H*(X) can
be used to show that H7 (pt) is a module over H7.(X). In the case most relevant to us, where
T = U(1), this says that H}(X) is a Q[u]-module. Remark 5.2 discusses another “standard”
fact.

Remark 5.2 One property which we will use repeatedly is that if T-manifolds Y, Z C X
have empty intersection, then in A7 (X), their product [Y]7 - [Z]7 is 0. This is a special case
of the more general fact that if ¥ and Z intersect transversely their product in equivariant
cohomology will be an intersection number. The same statement is a standard fact in ordinary
cohomology, and can be proved in much the same way for equivariant cohomology. See
Dorpalen-Barry—Proudfoot—Wang [20, § 2.5] for a proof of this fact over Z, along with more
intuition for the equivariant classes represented by submanifolds.

The space X7 is a fiber bundle over the classifying space BT = ET/T:

X — X7 — Br. (5.1.1)
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In principal, one might try to compute the ordinary cohomology of X r using a Leray spectral
sequence. In general this is very difficult, but we will see that in our case the relevant spectral
sequence collapses.

In particular, a space X is equivariantly formal (with respect to T') if the spectral sequence
in (5.1.1) collapses at the E page; this means that H7(X) is a free module over Hr (pt).
Importantly, if X and BT have cohomology concentrated only in even degrees, then X is
equivariantly formal with respect to 7. All of the spaces we consider (e.g. 2,31 and )/‘Z L) will
satisfy this hypothesis.

If X is equivariantly formal with respect to T', there is an Hj (pt)-module isomorphism

HE(X) = H*(X) ® H (p).
Again, we almost exclusively care about the case that T = U (1); the above then says that
HE(X) = H*(X) ® Qlul.

Equivariant formality thus allows us to recover information about H*(X) from H7(X) and
vice-versa. For instance, if X is equivariantly formal, then any Q-basis for H*(X) is an
Hj (pt)-basis for H} (X);if T = U(1)and vy, - - - , vrisabasisfor H*(X),thenvy, - -+, vg, u
is a Q-basis for H7(X).

Example5.3 Let T = U(1) and X = R>\{0}. Then T acts on R3\{0} by rotation around
the x-axis. Let ZT and Z~ be the positive and negative x-axes, respectively. Once we fix an
orientation of R3 \{0} and orient Z* and Z~ outwards, we obtain two classes in H% (R3 \{0}),
namely [ZT]7 and [Z7 7.
Consider the map
£ Qlx, yl/(xy) —> HFR*\{0))
yr—[Z"]r
x+— [Z7]r.
By Remark 5.2, since Zt N Z~ = f, their corresponding classes in equivariant cohomol-
ogy multiply as
[ZFr - [Z71r =0,
and so f is well-defined. In fact, f defines an isomorphism; this argument is written out in
detail in [41, Prop 5.22] and [39, Example 2.4].

Since both R*\{0} and BT = CP> have cohomology concentrated in even degrees,
R? \{0} is equivariantly formal, and therefore

HER?\{0) = Qlx, y1/(xy) = Qlu] ® H*(R*\{0}).

We would like an explicit map between Q[x, y]/(xy) and Q[u] ® H *(R3 \{0}). To this end,
consider the T-equivariant projection

7 RI\{0} — R?
(x,y,2) — (v, 2),

so that 7~1(0) = ZT U —Z~ (when accounting for orientation). We are interested in the
image of u under the induced maps

Hi(pn) S HERY 5> HERP\(0D).
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The first map sends u to [0]7. By the above discussion, 7*([0]7) = y — x, and therefore
(i) =y —x.

Note that in H*(R3 \{0}), the classes [ZT] and [Z~] represent the same generator of
H *(R3 \{0}). This gives a (non-canonical) isomorphism:

£ Qlx, y1/(xy) — Qlul ® H*(R*\{0})
y—XrH—>1u

y+—[ZT].
See [41, Prop 5.22] and [39, Example 2.4] for a more in-depth description of this example.

There are several consequences of equivariant formality proved by Moseley in [39] that
will play an important role in our analysis.

Proposition 5.4 (Moseley [39, Prop. 2.5, Prop 2.9]) Let X be an equivariantly formal T -
space. Then there are surjections

®g: H (X) - H*(X)
sending u to 0 and

@ : Hj(X) — H*(XT)
sending u to 1, which induce the ring isomorphisms

H(X)/(u) = H*(X),
HF(X)/(u —1) = H*(X").

If a group W acts on X and commutes with the action of T, then there is a W-action on
H;i (X) which fixes u, and the maps ®¢ and ®1 are W-equivariant.

One corollary to Proposition 5.4 is that there is a natural filtration on H*(X”) coming from
the cohomological grading on H7(X). Note that u has cohomological degree 2 in H; (X).

Definition 5.5 (Equivariant filtration) Suppose X is an equivariantly formal 7' -space, so that
Hi(X)/(u—1)= H* (XT). The equivariant filtration on H*(XT) is then

Fo(X) C Fi(X) C --- c H*(XT),

where Fy(X) is the image under @ of the classes in H}(X) of cohomological degree at
most k.
Write the associated graded ring with respect to the equivariant filtration as gvy (H*(XT)).

Corollary 5.6 (Moseley, [39, Cor. 2.7] There is an isomorphism
ger (H* (X)) = H*(X).
Corollary 5.6 has a similar flavor to Corollaries 4.8 and 4.9. This connection will be formalized

in Corollary 5.13 and Theorem 5.14.
It is useful to see Proposition 5.4 and Corollary 5.6 in the context of Example 5.3.
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Example 5.7 Continuing Example 5.3, consider first the subspace R> \ {0} fixed by the rotation
action of T = U (1). Since T rotates around the x-axis,

R\ {OH" = {(x,0,0): x e R\{0}} = ZT L Z".
By Example 5.3 and Proposition 5.4:

Hy (RP\{0})/(u) = Qlyl/(y?) = H*(R?\{0}), (5.1.2)
HE®RI\(OD/(u — 1) = QIyl/O* —y) = H*(ZTuzZ7). (5.1.3)

The first isomorphism in (5.1.2) follows because f’ : y —x + u so we identify y —x = O in
H} (]R3 \{0})/{u). The firstisomorphism in (5.1.3) is because y —x = 1in H} (R3 0D /(u—
1), so

0=xy=(y—Dy=y"—y.

The second isomorphisms in both (5.1.2) and (5.1.3) are applications of Proposition 5.4,
but can be verified directly by computing H *(R3 \{0}) and H*(Z* U Z~). The former is
standard; the latter is concentrated in degree 0, and can be thought of as the Q-vector space
of linear functionals on Z* LI Z~. One can then understand y as a single Heaviside function
y:ZTUZ" — Zgivenby

(p) = 1 pez*
TP 0 pez.

It follows naturally that y> = y and that y is the only function needed to generate this space.
(This line of reasoning should feel reminiscent of § 3!)

Finally, note that although Q[y]/(y* — y) is not graded, it has an ascending filtration by
degree, and the associated graded ring with respect to this filtration is Q[y]/(y?). Corollary
5.6 says

ger (HER3\(0)) = H*(R3\{0)),

and so we see that the two associated graded rings—e.g. coming from the equivariant
filtration and the filtration by degree in the Heaviside functions—coincide. One way
of interpreting this is that the presentation of H*(Z™ U Z™) using Heaviside functions is
particularly natural with respect to equivariant cohomology. We will see this phenomena
again in the case of H*Z} and H*)} .

5.2 Applications to Z} and )3 |

Our goal is to apply Proposition 5.4 and Corollary 5.6 to Zf, and its lift, )7,31 +1- To do so, we
must identify a torus action and prove that it commutes with the respective actions of B, and
But1.

Proposition 5.8 There is an action by the circle group T = U (1) on Zf, and )/?H_l which
commutes with the actions of B,, and By respectively, and has fixed spaces

' =z,
D"V =3
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Proof Identify R? with COR, and let w € U(1)acton (z,x) e C&R by
- (z,x) = (wz, X).

Let |(z, x)| be the magnitude of (z, x), thought of as a vector in R3. Importantly,
@z, 0 = |z, 1)

This shows that the action by w commutes with the action by ¢:

—(z,x) _ —(wz, x)
Iz, )7 1z, x)?

w-(p-(z,x) =w- = g(wz, x).

The S, -action on Z,Sl by coordinate permutation commutes with the action by U (1) in a more
straightforward way, and hence the action of B, commutes with the U (1) action. The fixed
space of the U (1) action on C @ R is {0} & R, from which it follows that

EHYD =A(p1, -+, pn) € {0} ® R\(O})" C (COR)" : pi # pj, pi # 0(pj)} = 2.

To study the action of U (1) on yg 41 first embed U (1) into SU; via the isomorphism

U(l) = {(‘(‘)’g) :w:ezm}.

From this identification it follows that U(1) acts on SU> on the right by multiplication,

inducing a diagonal action on J)i 11+ (Recall that SU; acts on the left in 'y,i +1)- The action

by U(1) commutes with the Z; antipodal action on yf, 11 (e.g. left multiplication by —1)
because —1 is in the center of SU,. Since U (1) acts diagonally, it must also commute with
the action of S, on J)z 41 by coordinate permutation. Hence the U (1) action commutes

with the B, 1-action on yfl +1- To determine the fixed space of the U (1)-action, note that
g € SU; commutes with every element of U (1) if and only g € U(1). Thus in ;)),31 11

(P1s- 5 pn) ~ (P10, -+, pp®)
forevery w € U(1) if and only if p; € U(1) forall 1 <i < n, and so
(3);31+1)U(1) = yrlt+1-

As a Corollary, we immediately obtain the following:

Corollary 5.9 The spaces Zﬁ and yﬁ 1 are equivariantly formal with respect to the action
by T = U(1). Hence

H} (Zz) and H} (y?m) are Q[u] modules;

e There is an action of B, (resp. By41) on HF (2,31) (resp. HF (:)),31+] )) that fixes u;

o Themaps ©gand @ as in Proposition 5.4 are surjective and By, (resp. By, +1) equivariant;
o There are isomorphisms

g (H 2 = H*Z3
ger (H* Y1) =g, H*V 4,

where here the associated graded ring is with respect to the equivariant filtration.
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Proof The equivariant formality follows from the fact that both Z> and yf, 41 have coho-
mology concentrated in even degrees. The remainder of the statement follows by applying
Corollary 5.6. O

The equivariant setting allows us to give a description of the total representations of H *Zfl
and H *yf, 1 by applying Proposition 3.3 and adapting techniques used in [39] and [40].

Theorem 5.10 As ungraded representations
H*Z, =g, Q[By],
~ By
H*Y) 1 Zp, Ind )" T = Q[But1/(c)],

where c is a Coxeter element of B,+1 and 1 is the trivial representation.

Proof By Proposition 3.3, y,‘l 1 1s isomorphic to the B, action on the cosets Byt1/(c).
Since y;11+1 is a disjoint union of contractible pieces, HOJ)}HI = H”‘y,ll+1 and so passing to
cohomology simply gives

H*Y) ) Z5,.1 QBut1/(c)].

Proposition 3.3 then says that the B, action on the set of connected components of y}l 11
is simply transitive. Since y}, 11 18 By-equivariantly homeomorphic to Z}l, this implies that
B,, also acts simply transitively on the set of connected components of Z,ll.

Thus in cohomology,

H°Z! = H*Z! = Q[B,].

Finally, passing to the associated graded ring gty (H* :L ) =H" 2 41 and grp (H *Zly
=H *Zg will not change the isomorphism type, so the claim follows. O

5.3 Presentation of equivariant cohomology

Having established some basic properties of Hj (2,31) and H} ())fl +1)» We turn to computing
their presentations. Our arguments will closely resemble Moseley [39].
Recall that the equivariant formality of ZZ implies that

(1) H; (Zz) = H*Z?1 ® Q[u] as a Q[u]-module, where u is the image of H% (pt) under the
map induced from Zf, — pt, and
(2) Any generating set for H *Z;O’l can be lifted to a generating set of H;i (Zf,) over Q[u].

We will take a slight shortcut here and use the smaller generating set for H *Zﬁ discussed
in Remark 4.10: in particular, pick generators of H *Zﬁ as zlJ; Zl_j and z; for integers 1 <
i < j < n. Since the maps @ : H;(Zﬁ) — H*Zfl and ®; : H;(Zfl) — H*Z,ll are
B,,-equivariant by Corollary 5.9, the B, action on the generators in Hy’ (Z;z) is inherited from
these spaces (see Table 7).

We would first like to relate these generators to T -submanifolds of Z3 . Recall the definition

of the hyperplanes

Hij :={(x1, - ,x,) € R" 1 x; # x;}
H; :={(x1,-,x;) e R" : x; #0}
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and that the action of #; on 23 is

i (X1, o Xy X)) = (X1, L (), e Xn).
Let wi = (xi,yi,2i) € R3 \{0}. For integers i, j € [n], define the maps from
®*\(0})" — R’ by
wij (W, -+, wy) > Wi — w;,
w7 (W, wy) > @(wj) —wi,
Wi (W, -, Wy) —> w;.

These maps are not linear. However, they are T-equivariant and have the property that
(@i)) "' (R3*\{0}) = R*" — (H;; ® R?) (and similarly for w;). Note that
tj - (i) R\{OD) = (0,7) " R \{0)
and that
Zi= N (ep @ \opnep ' ®@\op)n ) (o7 ®\op).
l<i#j<n l<i<n

For ease of notation, write w; to refer to an arbitrary w-map, so wy is the place-holder for
w;j fori, j € [n]* and w; for i € [n]. Define

Y) =, (21
Y; =, (Z7),

where ZT (resp. Z7) is the positive (resp. negative) part of the x-axis in R3 \{0}. This induces
classes ([YT]r) and @} ([Y~]r) in H;E(Zﬁ). By Example 5.3, and functoriality,

@ (Y7 1r) = &5 (Y Iy —u) = 5 (YT 1) — .

We are now ready to obtain relations in H} (Z; ) Our primary method will be to show
that Yi Nny: 7 = @ for certain J, J e [n]jE Wthh by Remark 5.2 will imply that the
correspondmg classes in equivariant cohomology multiply to 0.

Lemma5.11 Forl <i < j <n, let
Y Qlzf, 2 7 ] — HF(Z))
be the map sending
oy = (207 2 e 05127 0r) e o] (Z8]0) ue .

Then V is surjective and the following relations lie in ker(\W):

0=z;;(z<+- —u) =zi;(zj u) =zi(zi —u) (5.3.1)
0=u"" (zljzjk(ztk u) — (z?/'- — u)(sz - u)zfi) (5.3.2)
0=u" (g2 —w) — & — W —wyz;) (533)
0=u"" (z;';zl; (zi —u) — (zl-’; — u)(zi; — u)zi) (5.3.4)

Note that relations (5.3.2)—(5.3.4) are all polynomials (i.e. the expression in the parentheses
has a factor of u).
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Proof Because Z; is formal and z;, z;; and z; for 1 < i < j < nis a generating set
for H *2,31 it follows that z: z; z; and u form a generating set for H; (2,31). Hence W is
surjective.
For (5.3.1),
W(zs(zs —w) =5 Z7]7) @527 17) = 05(0) =0

because ZT NZ~ = 0.
For1 <i < j <k < n, consider

Yi}r:{(wl,-'- , Wy) DX < Xj},
Y;{:{(wl»"' s Wy) D Xj < Xk},
Y =A{(wi, -, wn) 1 xx < xi}.

Then Yl.j.' a Y;]“c NY;; = @ since we cannot have x; < x; < x¢ < x;. This implies that

V(g2 G —w) = o (1Z7 1) @527 1) i (Z717) =0,

and analogously,
V(G = wh —wzf) = 012710 0 (Z71r) 0 (ZM1r) =0.

The expansion of the above expression has a factor of u; removing this factor recovers (5.3.2).
Relations (5.3.3) and (5.3.4) follow similarly. For the former, YJ N YI.Jr n Yj’ = () since

we cannot have 0 < x; < x; < 0. By the same argument, Yl; ny, N Y;r = () and following
the logic of (5.3.2), we obtain (5.3.3).
For (5.3.4), elements in Yj+ N Y; must have x; < Osince 0 < x; implies ¢(x;) < 0, From

this it follows that Y;L N Y;, ny; = # since we cannot have 0 < x; < x; < 0. Analogously
Yy nYsn Yl.j. = @, and (5.3.4) follows. o

We now use these relations to give a presentation for H} (Zz).

Theorem 5.12 Let K be the ideal generated by B, -images of the relations in Lemma 5.11.
Then

Hi(2) =2l 2 zou: 1 <i < j<nl/K.
Proof Lemma 5.11 shows that W induces a surjective map
W Qlzs,ul/ K — HE(ZD).

We would like to show W is injective as well.
Recall that @ is the map defined by sending u to 0. By Corollary 5.9, applying ®¢ to
H} (Z,Sq) gives a surjective, B, equivariant map to H *Zﬁ. Applying ®g to Z[z,, u] via

Do : Zlzy, u]l — Zlzy]

we see that dg (IC/) = K from Remark 4.10. (Note that the image of relations (5.3.2), (5.3.3),
(5.3.4) under Wy is the negation of the relations (i), (i7) and (iii) in H *Z; given in Remark
4.10.)
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It follows that we have a commutative diagram with exact bottom row and surjective
columns:

K' — Zlzy, ul = HX(Z})) — 0

q>0l l<1>0 10

0 — K — Zlzy] —— H*Z) —— 0.

The same diagram chase argument used by Moseley in [39, Thm 4.6] then applies to show
that ker(W) = K. O

One key takeaway from Theorem 5.12 is that (as in Example 5.3) the Heaviside function
presentation of H *Z,ll is quite natural with respect to equivariant cohomology.

Corollary 5.13 The filtration by Heaviside-like functions z;j, z; fori, j € [n]* and the equiv-
ariant filtration on H* 2} coincide. Thus

Hi(Z)/(u) = gep (H*Z)) = ge(H*2)) = H* 23,

Proof This follows from noting that setting u = 1 in Hy (Zz) recovers the presentation of
H*Z! in Corollary 3.11. u]

5.4 Lifting to )7,3,+1

We would like make an analogous statement to Corollary 5.13 for H} (yﬁ +1) by applying
two key facts established earlier:

(1) there is a Bj,-equivariant homeomorphism between Z,ll and y}l 41 and
(2) gtr(2)) coincides with ge(Z21).

Using a similar argument to [40, Remark 2.9], this is enough to establish the desired connec-
tion.

Theorem 5.14 The filtration by signed cyclic Heaviside functions y;ji fori, j, k € [n]g and
the equivariant filtration on H *y}l 41 coincide. Thus

Hy VB )/ () = gep (H*Yh ) = ge(H* Y, ) = H* )2 .

Proof The key idea here is to recognize that the homeomorphism between Z,ll and y,ll 41
derived from Proposition 2.10 is a special case (¢ = 0) of a more general family of homeo-
morphisms for 0 < £ < n:

fe: V1 — 2,
(Pos -+ pu) > (p7 " pos -+ Py pects Py Pests - Py ).

In cohomology, this induces a family of maps f; sending z;; to y¢;; and z; to y,z;. By
Corollary 5.6, in Z}, the filtration by Heaviside-like functions coincides with the filtration
arising from equivariant cohomology. It follows that for a fixed ¢, the same must be true
of H *y}l 1 with respect to the filtration arising from the yy;; and the filtration arising from
H} (y?, 1) Since the latter filtration is stable under the action of B, 1, it must coincide with
the filtration by all signed cyclic Heaviside functions (e.g. allowing the indices i, j, k € [n]aE
to vary.) O
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Since we have already obtained a description of gv(H™* ,11 +1) by Corollary 3.8, we obtain
a description of H *)/,31 41 as a Corollary.

Corollary 5.15 The ring H*y3+1 has presentation
H*YVY | = Zlyiil/ T,
for distinct i, j, k € [n](f, where T is generated by the relations

() ¥ GO yijk = yije +viee = yjke  GiD) yi = Yi7x
@) yijk = yjik (V) YijkYike — YijkYije — YikeYije-

6 Connection to the Mantaci-Reutenauer algebra

Finally, we will complete the Type B story by studying the family of Bj,-representations
arising in the Mantaci—Reutenauer algebra (Definition 6.4), introduced in [35]. Our pri-
mary goal is to prove Theorem 6.26 relating the topological spaces from Sect. 3-5 to these
representations. In order to do so, we will need to define a family of idempotents in the
Mantaci-Reutenauer algebra (§ 6.1) and the representations they generate (§ 6.1.1), as well
as decompose the ring G further by signed set compositions (§ 6.1.2).

An integer composition of n is a sequence (ay, - -- , ag) where a; € [n] and |aj| + - - +
lag| = n. Similarly a signed integer composition of n will be a sequence (ay, - - - , ag) where
a; € [n]* and again |a(| + - - - + |a¢| = n.

Definition 6.1 For o in one-line notation, the Mantaci-Reutenauer descent set of o is

MRDes(o) = ie[n—1]: |oj| > |oj+1] and o; an(? o,-Jfl have the same sign or
o; and o;4+1 have opposite signs.
Note that MRDes(o) partitions o into £ := | MRDes(o')| + 1 many blocks, by, --- , by of
size mp, - -- , mg. By construction every element in b; will have the same sign; let

sen(m;) m; ifb; C [n]
num;) =
Bl m; ifb; C [n]”.

Then the shape of o € B,, is the signed integer composition

sh(o) := (sgn(my), - -+, sgn(mye)).

5,2) € Bs, then MRDes(c) = {2, 4}, which partitions o into

Example6.2 If o = (3, 4, I
1,5}, {2}). Therefore sh(c) = (2,2, 1).

ordered blocks ({3, 4}, {

Remark 6.3 Recall thatforo € S,,thedescent setof o isDes(c) = {i € [n—1] : 0; > 0j41}.
Because S, < By, both MRDes(c) and sh(o) are well-defined for o € S,. In particular,
when o € §,;, MRDes(c) = Des(o) and sh(o) will be an unsigned integer composition of
n.
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Definition 6.4 The Mantaci-Reutenauer algebra is the algebra ¥'[ B, ] generated by Y, in
QI[B,] where

Yy = Z o.

o€B,
sh(o)=«a

The dimension of X/[B,]is 2 - 3"~1; for other bases of £'[B,], see [2].

6.1 The Vazirani idempotents

In [51], Vazirani introduces a complete family of orthogonal idempotents for i [B);]. These
idempotents generalize a family of idempotents {e; } -, introduced by Garsia—Reutenauer in
[26] for X[S,]; see [22, § 3] for complete details on both definitions.

We will use an equivalent construction of Vazirani’s idempotents given by Douglass—
Tomlin in [22, Prop. 2.5]. This will require the following objects and maps:

e Let C(n) and SC(n) be the set of unsigned and signed integer compositions of n, respec-

tively.
e Forp=(p1,---, pp) € SC(n), let |p| := (Ip1l, -, [pel) € C(n).
e For p = (p1, -, pr) € SC(n), define

i
pi=Y_lpjl€lnl,
j=1

and the map ~ sending signed compositions to subsets of [n — 1]:

~:8C(n) — 21
p:(plv"' ’PZ)’—> ﬁ:(ﬁ\la 7P/Z—:)

If we restrict the domain of ~ to ordinary compositions C(n), then ~ defines a bijection,
and allows us to identify the sets

{aeS,,:sh(a):peC(n)} = {oeSn:Des(o)=ﬁ}.

e A set composition of [n] is a partition of [n] into disjoint blocks (b1, - - - , be). Let Ay
be the set of such compositions. Define

A SC(H) —> A[n]

p=(p1, -, po) > A(p) = (A(p1), - -+, A(pe)),
where A(p;) := {pi_1+1,---, pi}. Note that p and A (p) differ because the former is

a subset of [n — 1] while the latter is a genuine set composition of [r].

e Recall that a signed partition of n is a pair of partitions A = (AT, A7) such that AT is
a partition of ny < n, A~ is a partition of ny < n, and ny + ny = n. Let £(A™) (resp.
£(A7)) be the number of parts in AT (resp. A7), and £(1) = £(AT) + £(L7).

e For p € SC(n),let  be the reordering of the parts of p into a signed partition (A*, 17)
so that AT consists of all positive parts of p in decreasing order and A~ consists of all
negative parts of p in decreasing order.
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e Foraset A C [n — 1], define an element in the Type A Descent algebra X[S,]:

XA = Z w.

wes,
Des(w)CA

Varying over all subsets A C [n — 1] gives a basis for X[S,].
e Form > 0, the Reutenauer idempotent r,, € [S,,] C Q[S,]is

(-~
- X,
=) JAT+1 4

AC[m—1

Note that the definition of r,, can be extended to any ordered subset J C [n] by replacing
[m] by J, in which case we will write r; € Q[S;]. Furthermore, since S,, < By, one also
has r; € Q[B,].
e For J C [n] the element wy ; € B, is the product
l_[ t;.
ieJ
In other words, wo, s acts like —1 on J and 1 off J.
e For J C [n], define

1
€t = S Ewo,)).

Example 6.5 Suppose p = (2,2,1). Then |p| = (2,2,1), p = {2,4,5} and A(p) =
{{1, 2}, {3, 4}, {5}}. Finally,

P=(2D, @),
N S~
At AT

soL(AT) =2,¢4(A7) = 1.
We are at last ready to define the Vazirani idempotents.

Definition 6.6 (Douglass-Tomlin [22, Prop 2.5]). Given p = (p1,--- , pr) € SC(n), define
the element

N ¢ e
Ip = X5 €500 " TAP) """ €n(py) ~TAPO>

where ¢; is the sign of p;. Then for each signed partition (AT, A7), the Vazirani idempotent
is

1
Bara = 2 gl
peSC(n) ’
P=0+27)
The Vazirani idempotents extend the Garsia-Reutenauer idempotents in X[S, ], which are
defined as:

1
ey = E X,;-rA(pl)~-~rA(pl). (6.1.1)
L(M)!
peCn)
<
p =X

In fact, we can make the relationship between the g, + 5~y and e, precise. In [2], Aguiar—
Bergeron-Nyman study the surjection T : B, — S, that forgets the signs of o € B,. For
example, if o = (2, 1, 3), then t(0) = (2, 1, 3).
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Theorem 6.7 (Aguiar-Bergeron—Nyman [2, Prop 7.5]). The map t is an algebra homomor-
phism from

7 : Q[B,] = Q[S,].
When restricted to E/[Bn], the map t surjects onto £[S,].

This will allow us to precisely relate the g+ - to the ¢;; the author is grateful to M.
Aguiar for suggesting this line of inquiry.
Proposition 6.8 For a signed partition (A", A7), one has
€+ AT =0
0  otherwise.

T(go+am)) = {

Proof Since 7 is an algebra homomorphism, it is enough to consider how t maps each term
in I, for (]7 = (AT, A7). In particular, for any A(p;), since 7(wo,p;) = 1, it follows that

i I &=+
T(Ef\(pi)) = io fi - _

Thus 7(/,) = 0if p has any negative parts, from which it follows that t(g+ ,-)) = 0 if
A~ # (. On the other hand, if <17 = (A1, 9), then p € C(n), |p| = p and r(e;) = 1 for all
i. Hence T(g,+ ) = ex+ by (6.1.1). O

In [26], Garsia and Reutenauer show that the definition of the Type A Eulerian idempotents
given in (2.1.1) is equivalent to
e = Z ¢ (6.1.2)

An
(M)=k—1
Our analog of the Eulerian idempotents will take inspiration from (6.1.2):
Definition 6.9 For 0 < k < n, define the idempotent in X[ B,,]
Ok = Z 9o+ ) (6.1.3)

A=t A7)
H=k

Proposition 6.8 implies the following relationship between the g; and the e.

Corollary 6.10 The map t : ¥'[B,] — X[S,] sends

0 k=0

T(gk) - €k—1 k > 0.

6.1.1 Representations generated by g;+ 1-) and gy

The idempotents in Definitions 6.6 and 6.9 generate families of B, -representations.

Definition 6.11 For any signed partition (A", A7) of n, define the B,-representation
G()L-%—’)L—) = g(;\#—,k—) @[Bn]

Further, for 0 < k < n define the B,-representation

G® := g, Q[ByI.
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Douglass—Tomlin proved in [22] that the characters of the G+ ;- could be described as
induced representations from one-dimensional characters of certain centralizers. In order to
describe and analyze these induced characters, we will temporarily extend scalars from Q to
C.

Recall from Definition 2.18 that conjugacy classes in B, are determined by cycle type
and are parametrized by signed partitions (AT, A 7). Our first goal is to construct a standard
element for each conjugacy class Cg,+ -y of B, which we will call o+ ,-). We will then
express the representation G, + ;- as an induced representation from the centralizer Z, + -
of o5+ 5-)-

Fix the signed partition A = (AT, A7); we first obtain oo+,-) as follows. As before, let
ki =Y :_ |rjl and define A; := A1) := i+ 1, M1 +2, - %) . If A € AT, define
the positive A;-cycle

ci = ((hio1 + Dhizg -+ 2.
By construction ¢; has order |A;].

To constructa “standard” negative cycle, recall thatforany J C [n], theelementwg ; € B,
is the product of #; fori € P and that for ji, j2, -, je € [n],

Gr---Jjo~

is the negative cycle in B, where j; — ji.1for1 <i < £ —1and j, — ji. Then for
Ai € A7, define the negative |A;| cycle

)G - wo,n; |Ai] is odd
Tl (ot A+ Dhior -k |Ag] s even.

d;

The cycle d; has order 2|A;| in B,,. The signed permutation
OO+ ) »= €L Coo)ydeoty+1 -+ dey—1

will be our standard representative of €+ ;-).
Finally, suppose A; = A;4+1 and both A;, A;+1 occur in either A* or A~. Define §; to be a
particular choice of permutation swapping the blocks A; and A;y;. Specifically,

J JE N UA

Sitjr N Il J e
J =Ml J € Aigr.
The centralizer Z,+ ;- of o3+ - is then generated by
e ¢; and wo , forevery A; € AT
e d; forevery A; € A7;

e §; for every pair A; = Aj4 for 1 <i < £(A) — 1. (Again, we require that A;, ;| are
both in AT or both in A7.)
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Example 6.12 Suppose L. = (AT, A7) = ((2, 1), (2, 2)). Then the relevant elements of B;
(written in one-line notation) are

c1=(2,1,3,4,5,6,7)
wo.12 = (1,2,3,4,5,6,7)
¢ =(1,2,3,4,5,6,7)
wo,i3y = (1,2,3,4,5,6,7)
d3=(1,2,3,5,4,6,7)
ds=(1,2,3,4,5,7,6)
o@n.a = 2,1,3,54,7,6)
83 =(1,2,3,6,7,4,5).
Since ¢;, d;, wo,y and §; generate Z;+ -, any representation of Z,+ ;- is determined by
its values on these elements.

Define wy, := ¢*"/k. The representation of Z;+ ,—) we are interested in is 1-dimensional,
thatis, amap Z;+ -y — C.

Definition 6.13 Let p(;+ ;- be the character of Z;+ ;- given by

wp;| o =cifork; et

wyp;| 0 =d;fork; e A”

1 o =wgx, forl <i <e(h)

1 o=¢forl <i<{l(A)—1landX; = Aj41.

Po+ (o) =

The representation o+ ,-y is of interest because of the following theorem.
Theorem 6.14 (Douglass—Tomlin [22]) There is an isomorphism of B,-representations

B,
G()L+!)L—) = Indz(}ﬁr,)ﬁ) ,0()»4—’)‘—).

Our aim going forward is to connect the representations G, + ; -y to the topological spaces
we have been studying.

6.1.2 Decomposition of G by signed set partitions

Recall from Definition 3.14 that G is the associated graded ring of gv(H*Z) = H*Z3
with respect to the filtration described in Proposition 3.13. We will use the presentation of G
described by Remark 4.10 to show that G admits an even finer decomposition by signed set
compositions, defined below.

Definition 6.15 Let Jy, Jo C [n] be any partition of [n]. Then @ = (a™, @ ™) is a signed set
partition of [n] if " is a set partition of J; and «~ is a set partition of J;.
Let A?;] be the collection of all such signed set partitions of [r].

Note that we allow either ™ or ™ to be empty. The blocks in a™ are said to be positive
while the blocks in ™ are said to be negative. Let £(a™) (respectively, £(c ™)) be the number
of parts of ™ (respectively, o ™).

Write £ = Z[z;;,zi;, zi]for 1 < i < j < n.In order to decompose E by Af;], we
introduce the type map of a monomial f € E.
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Definition 6.16 From f, create a graph G(f) = (V, E), with V = [r] and E described by:

e For every z . or z appearing in f, there is an edge between i and j
e For every z, appearmg in f, there is a loop at the vertex i.

Define the type,(f) € A[in] to be the signed set partition with blocks comprised of the
connected components of G(f); if a connected component contains a loop, it is a negative
block, and otherwise it is a positive block.

Example 6.17 Supposen = 8 and f = (zfz)zzsz;6z%. Then

types((z15)% - 25256 - 23) = (({1, 2}, {3}, {4}, {8)), ({5, 6}, {7})).
(typeg(f)F (typeg ()~

The map type,, is well-defined on monomials, but not polynomials. Note that type, is
surjective but not injective. (To see that it is surjective, note that for any o € A?;], one can
easily construct an f € E with type(f) = «.)

Definition 6.18 For a signed set partition o = (a1, a7) € A[n], define
Ey := Z[{monomials f € E : type,(f) = a}].

Note that by the above description, there is a vector space decomposition

We would like to show that this decomposition descends to the quotient G as well.
Recall that

G= Z[zu,z zil/L

ij?
for 1 <i < j <n, where L' is generated by (zJ’)2 (zu)2 (zi)* and

ot + N o I N
(1) zjjzj =z (i) 7525 + 25z () g ij zjzk Tk Ziks

(z)z 2 ij

ij
(v) Zijzjk =% — Z}LkZFk (i) z;;2;; — Zi;ZiJ;c - Z;kzik (vii) Zijzjk - Zijzik = 2%
Proposition 6.19 With G as above, there is a vector space decomposition
= P £'NE,,
aeA[i"]
inducing the decomposition

g: @ got,

aeA[in]
where Gy = Eo /(L' N Ey).

Proof 1t is sufficient to check that each relation in £’ has summands in a single E,, for some

a € A?,E,J- Relation (i) has type «™ = {{i, j}, {k}ki j} and @~ = ¢. Each summand in
relations (ii) and (iii) has type a™ = {{k}}ki,j and o™ = {i, j}, while each summand in
relations (iv)—(vii) has type o™ = {i, j, k}, {{€}}¢xi jk, and @™ = @. O
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The decomposition of G by signed set partitions is also compatible with the bi-grading

onG.

Proposition 6.20 For0 <{¢ <k <n,

gk,ﬁ = @ goz

a:(a*,a*)eA[ﬁ]
Lat)=n—k,
£(a)=¢

Proof Fix a € A, with £(a*) =n — k and £(e~) = £. Consider f € G,. Factor f by the
blocks of a, and write f; as the factor of f with support «; € . Note that if o; € ™, then
fi € Gja;|-1,0- Similarly, if o; € ¢~ , then f; € gw,l.

Hence
F=01 famk famik1 o faitt € (Glar=1,0 - Glaa|=1,0 * * * Gl 1-1,0)
O[+
(Gl ss111* Glan el 1)
P
€ Glat|—m—k),0 - Gla .
C Gr,e,
because |at| + |~ | = n.

For the other containment, consider any monomial f € Gi ¢ and let @ = type, (f). Using
the above notation, we have that f; € Go;|-1,0 if & € at and Glo,;1,1 if @; € a™. Since
f € Gk ¢, we must therefore have £(«¢~) = ¢, and

deg| [T # | =let1—t@h,
1<i<n
ajcat

deg| T fil=le"L.

I<j=n
ojEx

Since deg(f) =k,
k=lat| =L@t +la"|=n—L@h),

from which it follows that £(a™) = n — k. ]

6.2 Induced representations

Using the decomposition of G by A[in], we may begin to describe the pieces G, as induced
representations.

Given o = (@™, a”) = (a1, -+, ) € A?;], let [¢] € SC(n) be the signed integer
composition

[Ot] = (#a17 o 7#af)a

@ Springer



A Type B analog of the Whitehouse representation Page 550f60 58

where #a; € [n]T is the size of the set o; with #a; € [n] if o; € ot and in [n]” if @ € ™.
< <—— <—
As before, [a] = ([a]T, [@]7) is the signed integer partition obtained by ordering the parts
of [a] in decreasing order.
Consider the B, orbit of G, which will be indexed by signed partitions (AT, A7):

g(,w,,\—) = @ ga.
otEAlinJ
fal=007)
The first step is to compute the characters of G, 1 = G(0,(n)) and G,—1,0 = G((n),0) Which
will form a base-case for the other pieces of G+ ;-).

Theorem 6.21 As B, -representations
Bn B"
Gn1 =1Indzy Py = G@.ms Gn—t,0=Ind7l = om).0) = G0

To prove Theorem 6.21, we will first prove that G, ; is isomorphic to a different induced rep-
resentation, and then appeal to Lemma 6.22. Both the proof of Theorem 6.21 and Lemma 6.22
will use techniques developed by Berget [10] and in the case of Lemma 6.22, by Douglass—
Tomlin [22].

Lemma 6.22 Let n be the n-cycle (12---n) € S,. Then as By,-representations,
B, B,
Ind/ 4 x = Indzwx(n)) P@.(m))

where x(n) = wy and x(—1) = —1.
Proof Note that Z g, (n)) is the cyclic group generated by a Coxeter element ¢ of B, and

0@,(n)) (€) = wop.

When 7 is odd, we use similar methods to Berget in [10, Corollary 9.2]. In this case, —7 is
a Coxeter element with eigenvalue —e>™//", implying that (n, —1) = Zy,(n))- Because n is
odd, —e?™/" has order 2n and is in fact a primitive 2x-th root of unity. Thus the representation
x of (n, —1) coincides with the representation p(g, (n)) of Z, (n))-

When 7 is even, we use a result by Douglass-Tomlin [22, Prop 4.1], which states that for
even n,

B" — Bn
Ind ") x =TIndzl, = pw.m)-

Note that unlike the odd case, the above is a statement about the induced representations
rather than the representations x and o, (1)) ]

We may now prove Theorem 6.21.

Proof of Theorem 6.21 Define v = 21Zfr222+3"'2(+,,_1),, € Gn,1, and let V,, be the S,-
module generated by v (cf. proof of Berget [10, Thm. 9.1, Cor. 9.2].) We claim that
as an S,-representation, V,, =g, Lie,, the multilinear component of the free Lie alge-
bra on n generators (see Example 2.6). This follows from comparing the presentation in
Remark 4.10 with the presentation of Lie, discussed in Example 2.6. In particular, sending
V10 212223+ Zn—tyn € HY™D@=D Conf, (R?) (for d > 3, odd) induces an S, equiv-
ariant isomorphism since z,-z:; = zjz:; in V,, (see Remark 4.10, relation (ii) of £'). Thus

Ve & Indi;’}) e?™i/" where 7 is an n-cycle in S,,.
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Note that wg = —1 acts on z+ trivially in G, and wgz; = —z;. Hence for any monomial
in G, 1, wo acts as —1. Because wo is central, it follows that the (S, wo) module generated
by v is isomorphic to

(S, wo
Ind; (o) X
2mi/n and x (wg) = —1. Write this module as V/, and note that

where x(n) = e n
dim(V)) = dim(V,) = (n — 1)!

Now consider the B,-module generated by v. Inspection shows that one obtains all of
Gyu.1 by acting on v by B,,. Hence there is a surjection of B,-modules:

B"
Ind (So0)

!
V,, - gn,h

where

12"
dim (Indf§ ) V,) = 5 =2""'(n = D! = dim(Gu.1)-

The dimension count of G, ; follows from picking a cyclic ordering on the set [n] which

will determine the indices of the n — 1 generators 2L R g

f1irZinis i and then choosing
{j € {+, =} for0 < j <n — 1.(The choice of z; is irrelevant by the relations in G.)

Thus this surjection is in fact an isomorphism. By transitivity of induction,
By, By Sn
Indm,_l) X = Ind< Ind (X)
B,
= Ind<sn,_1>(Vn)
= gn,l-

The claim then follows by Lemma 6.22.
An identical argument (without the need for Lemma 6.22) shows the claim for G,_1 0,
where now —1 acts as trivially on every monomial in G,_1 0. O

Remark 6.23 As suggested by the proof of Theorem 6.21, the space G, | seems to be a good
candidate for a Type B analog of Lie, in the sense that

e G, 1 can be described as an induced representation from a Coxeter element of B, and
e One can show that as a B,_-representation, G, | restricts to the regular representation

Q[Bn—l]-

A natural next step would be to extend some of the other properties of Lie, in Type A; see
for instance [1].

Remark 6.24 1In the case that n is odd, the B,-representation carried by G, | coincides with
a representation studied by Berget in [10] coming from the internal zonotopal algebra of the
Type B hyperplane arrangement. In the case that n is even, the B, -module structure is almost
the same, except that the element wq acts trivially in Berget’s representation while it acts as
—longG, .

We are almost ready to prove the main result of this Sect. (Theorem 6.26), but need one
last lemma. For (A", A7), write

= n 6.2.1)
=17 ), 6.2.2)

@ Springer



A Type B analog of the Whitehouse representation Page 57 of 60 58

where m;, gj > 0. Then fix o € A?;] so that [@] = A = (A1, A7), and

@ =it + Ly, - hi)

Consider H,, the set-wise stabilizer of G, . One can write explicitly the isomorphism type of

H,:
Hy= [] BitSwm x [] BjtSy-
1<i<n I<j=n
mi#0 4,70

By construction, Z+ ;- is a subgroup of H,.
Lemma 6.25 Foro € AET:] as described above, there is an Hy-isomorphism
Hy
ga e Indz(“_.)\_) (p()ﬁr,)h—).

Proof Recall that in the character description of ¢+ ;-), we have @+ ,-)(8;) = 1, where
8; swaps blocks of the same size that are both in the positive (resp. negative) part of «. Hence
in considering the induced representation of ¢+ -y from Z+ - to Hy, it is enough to
understand the representation on the distinct, commuting factors of H, coming from each
.

Similarly, the action by §; on G, is trivial, so again to understand the H,-representation
on G, it is sufficient to describe the distinct commuting factors of H,.

Write a; := #c;. In the case of Indg(“A+ - @o+.2-)» the By, -representation coming from

the block a; in o™ is precisely
By,
Indy () @@

and for the block of size «r; in o™ the corresponding B, -representation is

Ba.
J
Indz(w.(aj» $@.aj)):-
By Theorem 6.21,
By,
Gai—1,0 = Indz 0w
Ba;
Gaj1 = IndZ(m.(aj» b,

Hence the representations agree on each commuting factor of H,, and therefore must agree
on all of H,. |

Theorem 6.26 As B, -representations,
By,
g()ﬁ—y)h—) = Indz(ﬁ.r) (/J()\-%—,)L—),
and therefore
g()ﬁr’)\—) ; G()LJr,)L—).
Proof By construction,

Indg'; Go = G0t am)-
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By transitivity of induction and Lemma 6.25,

By B, H, B,
Il’ldz(}ﬁv)ﬁ) (/J()L+7)\—) = IIldHut (Il’ldz}L (/J();%—J—)) = IndHa ga = g(,\+,,\—).

6.3 Consequences

Theorem 6.26 has several implications for the representations generated by the idempotents
k>

GP = g, QIB,I.

Theorem 6.27 There is a B, -representation isomorphism
Gh = g, = g 23
n n*
Proof Note that

In—k = Z gt

(A7)
LAT)=n—k
and
k
G=PG:c= P G
=0 (@ .a7)eAf,
Lat) =n—k
The claim follows by applying Theorem 6.26. O

As a further consequence, this implies that the Gﬁ,”_k) have a lift to B,11.
Theorem 6.28 The representations Gf,k) lift to B 41, where they are described by HZkyle.
Proof By Corollary 4.8, Gy = H? 2}, which lifts to H*)3_ . o

6.4 Further questions

We conclude with some lingering questions that our investigation has brought to light:

(1) InType A, the Whitehouse representations have the form Q[S,,+1] fn(ﬁ_)l for certain idem-

potents fn(i)l € QI[Sn+1]. Is there a family of idempotents in Q[B,+1] that generate
representations isomorphic to the graded pieces of H *yf, ?

(2) The Type A Eulerian idempotents generate a commutative subalgebra of %[S,,] spanned
by elements with the same descent number (e.g. descent set size). The idempotents g,
also generate a commutative subalgebra of X’[B,]. Is there a combinatorial description
of this subalgebra?

(3) The Whitehouse representation F,f(_)g] has other combinatorial-topological interpretations,
for instance related to the homology of the space of trees by work of Robinson—
Whitehouse [43], as well as the homology of subposets of the partition lattice by work
of Sundaram [47]. Do the Type B lifts have analogous interpretations?

(4) Can the results of this paper be extended to the complex reflection groups G(r, 1, n) =
Zy 2Sp?
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