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Abstract
We give a Type B analog of Whitehouse’s lifts of the Eulerian representations from Sn to
Sn+1 by introducing a family of Bn-representations that lift to Bn+1. As in Type A, we
interpret these representations combinatorially via a family of orthogonal idempotents in the
Mantaci-Reutenauer algebra, and topologically as the graded pieces of the cohomology of
a certain Z2-orbit configuration space of R

3. We show that the lifted Bn+1-representations
also have a configuration space interpretation, and further parallel the Type A story by giving
analogs of many of its notable properties, such as connections to equivariant cohomology
and the Varchenko-Gelfand ring.
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1 Introduction

Let V be a representation of a finite group H ; then V is said to have a lift to a group G
containing H if there is a representation of G that restricts to V . The goal of this paper is
to (1) identify a family of representations of the hyperoctahedral group Bn that decompose
the regular representation Q[Bn] and lift to Bn+1, and (2) interpret these representations
combinatorially and topologically.

1.1 Type Amotivation

Our work is inspired by the well-documented Type A story of a family of Sn-representations
lifting to representations of Sn+1 studied by Whitehouse [52], Early–Reiner [23], Mathieu
[37], Getzler–Kapranov [28], Moseley–Proudfoot–Young [40], and others. These Sn-
representations and their lifts arose from two distinct perspectives. The first is via a family
of orthogonal idempotents {ek}0≤k≤n−1 known as the Eulerian idempotents. The ek lie in
Solomon’s descent algebra �[Sn], the subalgebra of Q[Sn] generated by sums of permuta-
tions σ = (σ1, . . . , σn) with the same descent set

Des(σ1, · · · , σn) := {i ∈ [n − 1] : σi > σ(i + 1)}.
The Eulerian idempotents have been extensively researched in the world of algebraic combi-
natorics, and generate the Eulerian representations E (k)

n := ek Q[Sn], which lift to a family
of Sn+1-representations called the Whitehouse representations F (k)

n+1 [52].
The second viewpoint comes from the study of the configuration space

Confn(Rd) := {(x1, · · · , xn) ∈ R
dn : xi �= x j }.

As a ring, the cohomology H∗ Confn(Rd) has an elegant description due to Arnol’d [4] (for
d = 2), F. Cohen [18] (for d ≥ 2), and Varchenko-Gelfand (for d = 1) [50]. When d is
even, H∗ Confn(Rd) is the Type A Orlik-Solomon algebra. The relevant scenario here will
be when d is odd, which can be split into two cases:
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• d = 1: The space Confn(R) is the complement of the Braid arrangement, and its coho-
mology H∗ Confn(R) is a disjoint union of n! contractible pieces. As a representation,
H∗ Confn(R) is the regular representation Q[Sn]. Varchenko–Gelfand gave a presen-
tation of H∗ Confn(R) in terms of certain combinatorial functions called Heaviside
functions; these functions impose an ascending filtration by degreewith associated graded
ring gr(H∗ Confn(R)) [50]. For 0 ≤ k ≤ n − 1, denote by gr(H∗ Confn(R))k the k-th
graded piece of gr(H∗ Confn(R)).

• d ≥ 3 and odd: In this case, H∗ Confn(Rd) is concentrated in degrees 0, d − 1, 2(d −
1), · · · , (n − 1)(d − 1). The presentation for H∗ Confn(Rd) and the representations
carried on each graded piece are the same for all odd d ≥ 3, and in this way one obtains
a family of n representations of Sn which decompose Q[Sn].
When d = 1 and d = 3, one obtains lifts from Sn to Sn+1 of the representations carried

by H∗ Confn(Rd). Recall that U (1), the unitary group, is homeomorphic to the 1-sphere
S
1 (e.g. the 1-point compactification of R) and SU2, the group of 2 × 2 unitary matrices of

determinant 1 over C, is homeomorphic to S
3 (e.g. the 1-point compactification of R

3). Our
lifts will come from the quotient spaces

V1
n+1 := Confn+1(U (1))/U (1), V3

n+1 := Confn+1(SU2)/SU2; (1.1.1)

in both cases the quotient is by (left) diagonal multiplication.
As in the case of Confn(R), the cohomology of V1

n+1 has a presentation in terms of cyclic
Heaviside functions due to Moseley–Proudfoot–Young [40], and again the cyclic Heaviside
functions give rise to an ascending filtration with associated graded ring gr(H∗ V1

n+1) =
⊕n−1

k=0 gr(H∗ V1
n+1)k . The presentation of H∗ V3

n+1 was computed by Early–Reiner in [23].
Though not obvious, these viewpoints—the Eulerian and Whitehouse representations on

one hand and “d odd” configuration space cohomology on the other—turn out to be equiv-
alent and serve as a beautiful link between classical combinatorial objects and important
topological ones. In particular they are connected by the following representation isomor-
phisms:

E (n−1−k)
n

∼=Sn H2k Confn(R3) ∼=Sn gr(H∗ Confn(R))k (1.1.2)

F (n−1−k)
n+1

∼=Sn+1 H2k V3
n+1

∼=Sn+1 gr(H∗ V1
n+1)k . (1.1.3)

Note that each term in (1.1.2) simultaneously lifts to the corresponding term in (1.1.3). The
first isomorphism in (1.1.2) was proved by the author in [16] in the context of Coxeter groups,
while the second is a result of Moseley [39]. The isomorphisms in (1.1.3) are due to Early–
Reiner [23] and Moseley–Proudfoot–Young [40], respectively. In Sect. 2.1.3, we summarize
the notable properties of the Eulerian and Whitehouse representations, including a recursion
relating them, a description of H∗ V3

n+1 as an induced representation, and connections to
equivariant cohomology.Ourmain results provide aType B analog of each of these properties.

1.2 Type B analog

Our goal is to construct an analog to both Type A perspectives discussed above for Type
B. Perhaps the most obvious generalization of the Type A descent algebra �[Sn] is the
Type B descent algebra �[Bn], with Coxeter length used to describe Des(σ ) and Type B
Eulerian idempotents1 defined by Bergeron–Bergeron in [8]. However, it turns out that the

1 In fact, in [9], Bergeron–Bergeron–Howlett–Taylor defined analogous idempotents for any finite Coxeter
group.

123



58 Page 4 of 60 S. Brauner

corresponding Eulerian representations of Bn (studied by the author in [16] for instance) do
not lift to Bn+1!

Instead, the right analogy in the context of lifts is to replace Solomon’s descent algebra
by the Mantaci-Reutenauer algebra �′[Bn], a combinatorially defined subalgebra of Q[Bn]
generalizing �[Sn] and containing �[Bn]. It was introduced by Mantaci–Reutenauer in [35]
and has a basis indexed by signed integer compositions (a1, · · · , a�), where ai ∈ Z \{0}
and |a1| + · · · |a�| = n. The Mantaci-Reutenauer algebra has rich combinatorics and rep-
resentation theory studied by Aguiar–Bergeron–Nyman [2], Bonnafé–Hohlweg [15] and
Douglass–Tomlin [22], much of which generalizes properties of �[Sn].

The role of the Eulerian idempotents will be played by a family of orthogonal idempotents
{gk}0≤k≤n, obtained as a sum of idempotents g(λ+,λ−) in�′[Bn] introduced by Vazirani [51]:

gk :=
∑

(λ+,λ−)

�(λ+)=k

g(λ+,λ−). (1.2.1)

The above analogies are quite natural in the following sense. Let τ : Bn → Sn be the
projection which forgets the signs of σ ∈ Bn . In [2], Aguiar–Bergeron–Nyman study the
properties of τ and show that it extends to a surjective algebra homomorphism τ : �′[Bn] →
�[Sn]. In Proposition 6.8, we show that τ(g0) = 0 and τ(gk) = ek−1 for 0 < k ≤ n.

The Bn-representations of interest are then defined for 0 ≤ k ≤ n to be

G(k)
n := gk Q[Bn].

We obtain analogs of the “hidden” action2 spaces V1
n+1 and V3

n+1 by considering the Z2-
orbit configuration spaces on U (1) and SU2 induced from the antipodal action on the sphere,
and taking their respective quotients by the relevant diagonal action:

Y1
n+1 := ConfZ2

n+1(U (1))/U (1), Y3
n+1 := ConfZ2

n+1(SU2)/SU2. (1.2.2)

Both Y1
n+1 and Y3

n+1 carry a natural action by Bn+1 (e.g. permutation and negation of each
coordinate), and we show that there are Bn-equivariant homeomorphisms Yd

n+1
∼= Zd

n for
d = 1, 3, where

Zd
n := Conf〈ϕ〉

n (Rd \{0}) :=
{

(x1, · · · , xn) ∈ (Rd \{0})n : xi �= x j �= − x j

|x j |2
}

.

The strangeness in the definition ofZd
n (first studied by Feichtner–Ziegler in [24]) comes from

the fact that the composition of the antipodal map x �→ −x with stereographic projection
π : S

d → R
d gives a map ϕ sending x to−x/|x |2. (Here we take take |x | to be themagnitude

of x ∈ R
d \{0} and S

d to be embedded in R
d+1 by placing its south pole at the origin of

R
d+1.)
Nonetheless, many of the properties of Zd

n mirror those of Confn(Rd) for odd d . In
particular, we again have two cases:

• d = 1: In direct parallel with Type A, the spaces Y1
n+1 andZ1

n are disjoint unions of 2nn!
contractible pieces. In Theorems 3.7 and 3.10, we give a presentation for H∗ Y1

n+1 and
H∗Z1

n , respectively. Our presentation is in terms of signed cyclic Heaviside functions and
signed Heaviside functions; again, these combinatorial functions impose an ascending

2 The word hidden refers to the fact that there is not an obvious Sn+1 action on Confn(Rd ).
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filtration on both rings by degree, with corresponding associated graded rings

gr(H∗ Y1
n+1) =

n⊕

k=0

gr(H∗ Y1
n+1)k, gr(H∗Z1

n) =
n⊕

k=0

gr(H∗Z1
n)k . (1.2.3)

• d ≥ 3 and odd: Oncemore, the analysis of H∗Zd
n is identical for all odd d ≥ 3, so assume

d = 3. Feichtner-Ziegler prove that H∗Z3
n is concentrated in degrees 0, 2, 4, · · · , 2n; in

Theorem 4.7 and Corollary 5.15 we give presentations for H∗Z3
n and H∗ Y3

n+1, respec-
tively, that bear a strong resemblance to the F. Cohen [18] presentation for H∗ Confn(R3)

and Early–Reiner [23] presentation for H∗ V3
n+1.

Our main results give an analogy of the Type A story:

Theorem 1.1 For 0 ≤ k ≤ n, there are Bn-representation isomorphisms:

G(n−k)
n

∼= H2kZ3
n

∼= gr(H∗Z1
n)k, (1.2.4)

lifting to Bn+1-representation isomorphisms

H2kY3
n+1

∼= gr(H∗Y1
n+1)k . (1.2.5)

We further

• show that the circle groupU (1) acts on bothZ3
n andY3

n+1 (Proposition 5.8), and compute
presentations for their U (1)-equivariant cohomologies (Theorem 5.12);

• prove that for both H∗Z1
n and H∗Y1

n+1 the associated graded ring with respect to the
filtration induced by the U (1)-equivariant cohomology coincides with (1.2.3) (Theo-
rem 5.13);

• compute a recursion relating H∗Z3
n and H∗Y3

n (Corollary 4.4); and
• show that as ungraded rings,

H∗Z3
n

∼=Bn Q[Bn], H∗Y3
n+1

∼=Bn+1 Ind
Bn+1
〈c〉 1,

where c is a Coxeter element of Bn+1 and 1 is the trivial representation. (Theorem 5.10).

In addition to drawing upon and generalizing techniques of Berget [10], Moseley [39], and
Moseley–Proudfoot–Young [40], the primary novelties in our methodology will be to (1)
study the “lifted” spaces Yd

n+1 to deduce information about the spaces Zd
n and (2) to utilize

various filtrations in the signed Heaviside and signed cyclic Heaviside functions.

1.3 Outline of the paper

The remainder of the paper proceeds as follows:

• Section 2 first gives a more detailed description of the Type A motivation including a
“property wishlist” for the Type B analog (§ 2.1.3). We then discuss a general framework
for obtaining hidden action spaces from orbit configuration spaces (Proposition 2.10).
Our Type B work will serve as the primary example of this framework. We conclude
with a review of properties of Bn and its representation theory.

• Section 3 focuses on the spaces Y1
n+1 and Z1

n , and their cohomology. We introduce
the signed cyclic Heaviside functions and use their combinatorial properties to give
presentations for H∗ Y1

n+1 (Theorem 3.7) and H∗Z1
n (Theorem 3.10), as well as their

respective associated graded rings (Corollaries 3.8 and 3.11.)
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• Section 4 then considers the d = 3 case and the spacesY3
n+1 andZ3

n ; we prove a recursion
relating their cohomologies (Corollary 4.4), compute the presentation of H∗Z3

n , and show
that it has a bi-grading (Corollary 3.15).

• Section 5 turns to equivariant cohomology. We compute H∗
U (1)Z3

n (Theorem 5.12), as

well as the ungraded representations H∗Z3
n and H∗Y3

n+1 (Theorem 5.10). This allows
us to fully understand the relationship between the d = 1 and d = 3 cases by show-
ing the filtrations by cyclic Heaviside functions and equivariant cohomology coincide
(Theorem 5.14).

• Section 6 introduces the idempotents g(λ+,λ−) and gk , as well as the representations of
Bn they generate. From here we are able to conclude Theorem 1.1 (Corollary 6.27) and
more specifically, relate the g(λ+,λ−) to H∗Z3

n .

2 Background

2.1 Type A revisited

We begin by fleshing out the Type A motivation described in Sect. 1.1.
One way to define the Eulerian idempotents ek is via the generating function due to

Garsia–Reutenauer [26]:

n−1∑

k=0

tk+1ek =
∑

σ∈Sn

(
t − 1 + n − des(σ )

n

)

σ. (2.1.1)

For more equivalent definitions, see Aguiar–Mahajan [1], Loday [34], Gerstenhaber–Schack
[27], and Saliola [44].

Example 2.1 When n = 3, the Eulerian idempotents are

e0 = 1

6

(
2 − (12) − (23) − (123) − (132) + 2(13)

)
,

e1 = 1

2

(
1 − (13)

)
,

e2 = 1

6

(
1 + (12) + (23) + (13) + (123) + (132)

)
.

Definition 2.2 The k-th Eulerian representation is the right ideal

E (k)
n := ek Q[Sn].

The Whitehouse lifts F (k)
n+1 of the Eulerian representations are obtained by introducing an

idempotent f (k)
n+1 in Q[Sn+1] as follows. View Sn ≤ Sn+1 as the subgroup fixing the element

n + 1, let wn+1 be the n + 1 cycle (12 . . . (n + 1)) ∈ Sn+1, and define

Wn+1 := 1

n + 1

n∑

i=0

(wn+1)
i .

Whitehouse shows the element f (k)
n+1 := Wn+1e(k)

n is an idempotent in Q[Sn+1], generating
a family of representations

F (k)
n+1 := f (k)

n+1 Q[Sn+1]
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which we will call the Whitehouse representations. She then proves that the F (k)
n+1 are lifts of

the E (k)
n [52, Prop 1.4].

Example 2.3 (n = 3) Denote by Sλ the irreducible symmetric group representation indexed
by the partition λ. Then the S3 Eulerian representations and their S4 lifts are

E (0)
3 = S(2,1) F (0)

4 = S(2,2)

E (1)
3 = S(2,1) ⊕ S(1,1,1) F (1)

4 = S(2,1,1)

E (2)
3 = S(3) F (2)

4 = S(4).

Each F (k)
4 restricts to the representation E (k)

3 via the symmetric group branching rules.

2.1.1 The spaces Confn(Rd) and their cohomology

We begin with the case that d = 1. Recall that the space Confn(R) is a disjoint union of
n! contractible pieces. Each piece is parametrized by a relative ordering of x1, · · · , xn in
R, and so H∗ Confn(R, Z) = H0 Confn(R, Z) can be understood as the space of Z-valued
functions on the set of connected components of Confn(R).

Varchenko-Gelfand give a combinatorial set of generators for H0 Confn(R) called Heav-
iside functions, defined by

ui j (x1, · · · , xn) :=
{
1 xi < x j

0 xi > x j

for i �= j ∈ [n] := {1, · · · , n}. A permutation σ ∈ Sn naturally acts on ui j :

σ · ui j = uσ(i)σ ( j).

The space of such Heaviside functions forms a Z-algebra, where the ui j add and multiply
pointwise as functions, so that multiplication is given by

ui j · uk�(x1, · · · , xn) =
{
1 xi < x j and xk < x�

0 otherwise.

This implies certain natural relations, for example that u2
i j = ui j . Similarly, one can deduce

that 1 − ui j = u ji , so that ui j · u jk · (1 − uik) = 0, since it is impossible that xi < x j < xk

but xi > xk . This is the essential idea behind Theorem 2.4.

Theorem 2.4 (Varchenko–Gelfand [50]) The ring H∗ Confn(R) has presentation Z[ui j ]/Q,
where Q is generated by

(i) u2
i j = ui j , (i i) ui j = (1 − u ji ),

(i i i) ui j u jk(1 − uik) − (1 − ui j )(1 − u jk)uik = 0,

for distinct i, j, k ∈ [n].

Call the ringZ[ui j ]/Q theVarchenko–Gelfand ring.The presentation inTheorem2.4 imposes
an ascending filtration on the Varchenko-Gelfand ring obtained from the natural degree
grading on Z[ui j ]/Q: the mth layer in the filtration is the span of monomials in the variables
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ui j having degree at most m. The associated graded ring from this filtration has presentation
Z[ui j ]/ indeg(Q) with indeg(Q) generated by3

(i) u2
i j = 0, (i i) ui j = −u ji , (i i i) ui j u jk − ui j uik − u jkuik = 0.

When d ≥ 2, the space Confn(Rd) is no longer comprised of contractible, disjoint pieces
but nonetheless has an elegant presentation due to F. Cohen (d ≥ 2) and Ar’nold (d = 2).

Theorem 2.5 (F. Cohen [18], Ar’nold [4]) For d ≥ 2, the ring H∗ Confn(Rd) has presenta-
tion Z〈ui j 〉/Q′ where Q′ is generated by the relations ui j uk� = (−1)d+1uk�ui j and

(i) u2
i j = 0 (i i) ui j = (−1)du ji , (i i i) ui j u jk + u jkuki + uki ui j = 0

for distinct i, j, k, � ∈ [n].
As in the d = 1 case, Sn acts on the ui j by permuting coordinates.

The generator ui j lies in Hd−1 Confn(Rd), which togetherwith the relations inQ′, implies
that H∗ Confn(Rd) is concentrated in degrees 0, (d−1), 2(d−1), · · · , (n−1)(d−1).Direct
comparison of the above presentations shows thatZ[ui j ]/ in(Q) ∼= H∗ Confn(Rd) for d ≥ 3
and odd.

Example 2.6 (Lien) The top degree cohomology ofConfn(Rd) has a particularly nice descrip-
tion:

H (d−1)(n−1) Confn(Rd) ∼=Sn

{
Lien d ≥ 3 and odd

Lien ⊗ sgn d even,

where Lien is the multilinear component of the free Lie algebra on n generators; see
Reutenauer [42] formore on themanywonderful properties of Lien . A result of Kraskiewicz–
Weyman [33] says that Lien can be described as the induced representation

Lien = IndSn
Zn

ω,

where Zn is the cyclic group generated by an n-cycle in Sn and ω is the character sending
the generator of Zn to e2π i/n .

The relations in Theorem 2.5 imply that Lien has basis

u1i1ui1i2ui2i3 · · · uin−1in

for distinct i1, i2, · · · , in ∈ [n], and is therefore (n−1)! dimensional. There are other notable
bases for Lien , in particular using Lyndon words; see Barcelo [6].

We will return to Lien in Sect. 6, where it will play a key role in describing H∗Z3
n .

2.1.2 Hidden actions and lifts

Assume that d = 1, 3. The fact that H∗ Confn(Rd) lifts to an Sn+1-representation comes
from the fact that the spaces Confn(Rd) have hidden (e.g. non-obvious) actions of Sn+1 via
the Sn-equivariant maps

f d
A : Vd

n+1

∼=−→ Confn(Rd) (2.1.2)

(p0, · · · , pn−1, pn) �→ (π(p−1
0 p1), · · · , π(p−1

0 pn)) (2.1.3)

3 The notation indeg(Q) refers to the fact that indeg(Q) is an initial ideal for some degree (partial) ordering
on monomials. This will be rigorously defined and discussed in Sect. 3.1.
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where π : S
d \{∞} → R

d is the stereographic projection, and as in the introduction

V1
n+1 := Confn+1(U (1))/U (1), V3

n+1 := Confn+1(SU2)/SU2.

Here we identify the element 1 in SU2 and U (1) with ∞ (the point at infinity) in S
3 and S

1,
so that π is a homeomorphism between SU2 \ {1} → R

3 and U (1) \ {1} → R.
One can thus define an Sn+1-action onConfn(Rd) as the natural Sn+1-action by coordinate

permutation on Vd
n+1. Let

[n]0 := {0, 1, · · · , n}.
We will think of Sn+1 as the group of permutations on the set [n]0. The homeomorphism
(2.1.2) implies that one recovers the standard Sn-action on Confn(Rd) by permuting only the
last n coordinates of Vd

n+1. We will discuss a more general framework for obtaining hidden
actions in Sect. 2.2.

The space V1
n+1 can seem unwieldy, but it actually has an intuitive description; V1

n+1 has
representatives (1, p1, · · · , pn) for pi �= p j �= 1 and like Confn(R), is comprised of n!
contractible pieces. Each disjoint piece of V1

n+1 is parametrized by a relative ordering of
p0, · · · , pn around the circle. These disjoint pieces (Sn-equivariantly) biject with the pieces
of Confn(R). Tomove fromV1

n+1 to Confn(R), read the ordering of p1, · · · , pn aroundU (1)
counter-clockwise beginning after p0.

When we move to cohomology, the Heaviside functions ui j also lift to cyclic Heaviside
functions vi jk ∈ V1

n+1, defined in [40] by Moseley–Proudfoot–Young as:

vi jk(p0, · · · , pn) :=
{
1 pi < p j < pk in counter-clockwise order on U (1)

0 otherwise,

where now i, j, k ∈ [n]0.
Example 2.7 Consider the two representatives �q and �r of V1

3 and their images under f 1A:

Note that v123(�q) = u12( f 1A(�q)) = 1, while v123(�r) = u12( f 1A(�r)) = 0. On the other
hand v213(�q) = u21( f 1A(�q)) = 0 and v213(�r) = u21( f 1A(�r)) = 1.

The vi jk again form a Z-algebra and provide an elegant combinatorial description for the
ring H∗ V1

n+1. As in the case of H∗ Confn(R), the degree grading on H∗ V1
n+1 from the vi jk

imposes an ascending filtration with associated graded ring gr(H∗ V1
n+1).

For both d = 1, 3, an explicit presentation for H∗ Vd
n+1 can be recovered from the pre-

sentation in Theorem 2.4 via the induced isomorphism f ∗
A sending ui j to v0i j , along with

the additional relation due to Early–Reiner [23, Thm 3] (see alsoMoseley–Proudfoot–Young
[40, Rmk 2.9] and Matherne–Miyata–Proudfoot–Ramos [36, Thm. A.4]):

vi jk − vi j� + vik� − v jk� = 0.
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Remark 2.8 (Cyclic operads)Kontsevich in [32] showed there was a hidden action of Sn+1 on
Lien . In [28], Getzler–Kapranov then formalized his techniques to introduce cyclic operads
more generally. Using constructions of H∗ Confn(Rd) and Poisson operads (see for instance
Sinha [45]), one can apply the work of Getzler–Kapranov ([28, Prop 3.11]) to show that
there is a cyclic operad structure on all graded pieces of the homology of Confn(R3). It
would be interesting to relate this cyclic operad structure to the bases of H∗ Confn(R3) and
H∗ Confn(R3) more directly.

2.1.3 Property wishlist

We will finish the Type A summary by providing a “property wishlist” which will serve as
the inspiration and guiding motivation of our Type B work. In particular, we highlight the
following:

• There is an isomorphism of Sn-representations4 for 0 ≤ k ≤ n − 1:

E (n−1−k)
n

∼=Sn H2k Confn(R3). (2.1.4)

This was first deduced by comparing a result of Sundaram and Welker for subspace
arrangements [48, Thm 4.4(iii)] with descriptions of the characters of E (k)

n by Hanlon
[29], and was later proved in the context of Coxeter groups by the author in [16].

• Equation (2.1.4) lifts to an isomorphism of Sn+1-representations [23, Prop. 2]:

F (n−1−k)
n+1

∼=Sn+1 H2k(V3
n+1). (2.1.5)

• There is a recursion5 relating the Eulerian and Whitehouse representations of Sn :

E (k)
n = F (k−1)

n ⊕
(

S(n−1,1) ⊗ F (k)
n

)
, (2.1.6)

where S(n−1,1) is the irreducible reflection representation of Sn [23, Prop. 1].
• There is an Sn+1-representation isomorphism

n−1∑

k=0

F (k)
n+1

∼= IndSn+1
Zn+1

1,

where Zn+1 is the cyclic group generated by an (n + 1)-cycle in Sn+1 and 1 is the trivial
representation [52, Prop 1.5].

• The circle group U (1) acts on R
3 by rotation around the x-axis, thereby inducing an

action on Confn(R3). The filtration induced from the U (1)-equivariant cohomology
H∗

U (1) Confn(R3) implies an isomorphism of Sn-modules for 0 ≤ k ≤ n − 1 [39]:

gr(H∗ Confn(R))k ∼=Sn H2k Confn(R3), (2.1.7)

where gr(H∗ Confn(R)) coincides with the associated graded ring coming from the
filtration by Heaviside functions [39].

• Equation (2.1.7) also lifts to an Sn+1-module isomorphism for 0 ≤ k ≤ n − 1 [40]:

gr(H∗ V1
n+1)k ∼=Sn+1 H2k(V3

n+1). (2.1.8)

4 In fact (2.1.4) holds for any odd d ≥ 3 by replacing H2k Confn(Rd ) with H (d−1)k Confn(Rd ).
5 We think of this as a recursion in the sense that the formula relates the representation E(k)

n (which lifts to

F(k)
n+1) to the representation F(k)

n (which restricts to E(k)
n−1).
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where again (2.1.8) comes from a U (1) action on V3
n+1 and subsequent computation of

H∗
U (1) V3

n+1. The grading on the left-hand-side also coincides with the associated graded
ring coming from the filtration by cyclic Heaviside functions.

The remainder of this paper is devoted to obtaining an analogous Type B statement for each
of the properties listed above.

2.2 Orbit configuration spaces and hidden actions

We now introduce a general framework with which to construct spaces with hidden actions.
Our Type B spaces will emerge from this general framework (see Example 2.12).

Definition 2.9 For a group H acting freely on a topological space X , the n-th ordered orbit
configuration space is

ConfH
n (X) := {(x1, . . . , xn) ∈ Xn : h · xi ∩ h · x j = ∅ for i �= j and any h ∈ H}.

Orbit configuration spaces were first defined by Xicoténcatl in [53], and have proved
integral to the study of universal covers of certain configuration spaces [53], hyperplane
arrangements associated to root systems by Bibby [12] and Moci [38], and equivariant loop
spaces by Xicoténcatl [55]. Computing the cohomology of orbit configuration spaces is an
active area of study developed by Casto [17], Denham–Suciu [19], Feichtner–Ziegler [24],
Bibby–Nadish [11, 13] and others.

If H is the trivial group, Definition 2.9 recovers the classical configuration space of X .
More generally any orbit configuration space ConfH

n (X) has a natural action by the wreath
product H � Sn . Recall that the wreath product H � Sn is the group whose elements are of the
form

H � Sn = {(h1, · · · , hn, σ ) : hi ∈ H , σ ∈ Sn}
with multiplication defined by

(h′
1, h′

2, · · · , h′
n, σ ′) · (h1, h2, · · · , hn, σ ) = (h′

σ(1)h1, h′
σ(2)h2, · · · , h′

σ(n)hn, σ ′σ).

For instance if H = Z2, this wreath product Z2 �Sn is Bn , and if H = Zr for r ≥ 2,
one obtains the complex reflection group G(r , 1, n) (sometimes referred to as a generalized
symmtric group).

Our goal is to study orbit configuration spaces equipped with a hidden action. In other
words, given an orbit configuration space ConfH

n (X), we would like to identify a space Y on
which H � Sn+1 acts, and an H � Sn-equivariant homeomorphism

ConfH
n (X) ∼= Y .

If such a homeomorphism exists, we say that ConfH
n (X) has a hidden action by H � Sn+1.

Proposition 2.10 Let X be a topological space with

• A transitive (left)-action by a group G and
• A free (left)-action by a group H in the center of G.

Then there is an H � Sn-equivariant homeomorphism

ConfH
n+1(X)/G ∼= ConfH

n (X − OH (x0))/Gx0 ,

where both quotients are by left-diagonal multiplication, OH (x0) is the H-orbit of x0 ∈ X
and Gx0 is the G-stabilizer of x0.
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Proof Since H acts freely on X it will also act freely on the space X \ OH (x0)) obtained
by removing the H -orbit of some point x0 from X . The G-stabilizer of x0, denoted Gx0 ,
then acts on X \ OH (x0)) and since H necessarily commutes with Gx0 , one also obtains a
well-defined space ConfH

n (X − OH (x0))/Gx0 .

Fix a point (p0, p1, · · · , pn) ∈ ConfH
n+1(X)/G; because G acts transitively on X , there

is some g ∈ G sending x0 to p0. Thus in ConfH
n+1(X)/G,

(p0, · · · , pn) ∼ (x0, g−1 p1, . . . , g−1 pn).

Then the maps back-and-forth giving inverse homeomorphisms are

ConfH
n+1(X)/G −→ ConfH

n (X − OH (x0))/Gx0
(p0, p1, . . . , pn) �−→ (g−1 p1, . . . , g−1 pn)

ConfH
n (X − OH (x0))/Gx0 −→ ConfH

n+1(X)/G
(q1, . . . , qn) �−→ (x0, q1, . . . , qn).

To check that the first map is well-defined, note that pi and p j are in the same H -orbit if and
only if the same is true for gpi and gp j . Thus (g−1 p1, · · · g−1 pn) is indeed in ConfH

n (X −
OH (x0))/Gx0 . Further, if g1x0 = p0, then for any g2 ∈ G one has g2 p0 = g2g1x0 and

(g2 p0, · · · , g2 pn) �−→ (g−1
1 g−1

2 g2 pn, · · · , g−1
1 g−1

2 g2 pn) = (g−1
1 p1, · · · , g−1

1 pn)

(p0, · · · , pn) �−→ (g−1
1 p1, · · · , g−1

1 pn).

One can similarly check that the second map is well-defined and that their composition gives
the identity. The H � Sn equivariance follows from the fact that H commutes with G. ��

We will be interested in the special case that G acts simply transitively on X so that Gx0
is trivial, in which case one obtains the isomorphism

ConfH
n (X − OH (x0)) ∼= ConfH

n+1(X)/G.

Example 2.11 Take H to be the trivial group.

• Let X = G = SU2 and x0 = 1, the identity of SU2. Then Proposition 2.10 recovers the
Sn-equivariant homeomorphism

Confn+1(SU2)/SU2 ∼= Confn(R3),

where the map here is precisely (2.1.2), since SU2 \ {1} ∼= R
3.

• Let X = G = U (1) and set x0 = 1 ∈ U (1), so thatU (1)\{1} ∼= R. ThenProposition 2.10
(again via (2.1.2)) gives

Confn+1(U (1))/U (1) ∼= Confn(R).

One way of framing all subsequent work in this paper is to ask the question: what happens
to Example 2.11 when H is replaced by Z2, acting via the antipodal map?

Example 2.12 As suggested above, take H = Z2 acting as the antipodal map (e.g. by −1) on
SU2 and U (1). Then
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• When X = G = SU2 and x0 = 1, the orbit of 1 is ±1. Recall that for x ∈ R
d \{0},

ϕ(x) := −x/|x |2 and that Bn ∼= Z2 �Sn . Proposition 2.10 then implies there is a Bn-
equivariant homeomorphism

ConfZ2
n+1(SU2)/SU2 =: Y3

n+1
∼=Bn Z3

n := Conf〈ϕ〉
n (R3 \{0})

= {(x1, · · · , xn) ∈ R
3 \{0} : xi �= x j , ϕ(x j )}.

• When X = G = U (1), then Proposition 2.10 says that

ConfZ2
n+1(U (1))/U (1) =: Y1

n+1
∼=Bn Z1

n := Conf〈ϕ〉
n (R \{0})

= {(x1, · · · , xn) ∈ R \{0} : xi �= x j , ϕ(x j )}.

The space Zd
n arises naturally in the work of Feichtner–Ziegler in [24] as part of the fiber

sequence

Zd
n −→ ConfZ2

n+1(S
d) −→ S

d ,

where the last map sends a point (x1, · · · , xn+1) to xn+1. They then use the above sequence
to compute the cohomology of ConfZ2

n+1(S
d). In this sense, Zd

n is the natural analog of
Confn(Rd), which arises in the fiber sequence

Confn(Rd) −→ Confn+1(S
d) −→ S

d .

Remark 2.13 A priori, one might expect that to parallel the Type A story, the analog of
Confn(Rd) would be the more “standard” Z2-orbit configuration space

ConfZ2
n (Rd) = {(x1, · · · , xn) ∈ R

dn : xi �= ±x j �= 0}
whose cohomology was studied by Xicoténcatl in [53], Moseley in [40] and related to the
Type B Eulerian idempotents in [16] by the author. However, this is not the case because
there is no Bn-equivariant map between ConfZ2

n (Rd) and Yd
n+1.

That being said, the space ConfZ2
n (Rd) and its cohomology will not be completely irrel-

evant. In particular, we will see that

• some relations in H∗ ConfZ2
n (R3) will help us recover relations in H∗Z3

n ;
• the spaces H∗ ConfZ2

n (Rd) and H∗Zd
n are isomorphic as vector spaces but not as Bn

modules; and
• when d is odd, both H∗Zd

n and H∗ ConfZ2
n (Rd) have total representation Q[Bn], despite

carrying different representations on each graded piece.

Example 2.14 It is helpful to see a concrete example of the space Zd
n . Consider for instance

Z1
2 =

{

(x1, x2) ∈ R
2 \{0} : x1 �= x2, x1 �= ϕ(x2) = − x2

|x2|2
}

,

(shown on the left below), compared to to the space

ConfZ2
2 (R) := {

(x1, x2) ∈ R
2 \{0} : x1 �= x2, x1 �= −x2

}
,

which is the complement of the reflection arrangement associated to
B2 (shown on the right below).
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Z1
2 ConfZ2

2 (R)

Importantly, Z1
2 is not the complement of linear subspaces (and the same is true of Z1

n in
general).

Remark 2.15 In both Examples 2.11 and 2.12, the existence of a hidden action at the level of
topological spaces depends upon the sphere S

d having a realization as a Lie group. There is
no such description for S

d in the case that d is even. In [25], Giaffi obtains a hidden action of
Sn+1 on the space H∗ Confn(R2), but he shows that this action is on the level of cohomology
rather than topological spaces. It would be interesting to investigate whether the same is true
in Type B—that is, determine whether there is some hidden action on H∗Z2

n but not on Z2
n .

2.3 The hyperoctahedral group

We have seen that Bn is isomorphic to the wreath product Z2 �Sn . Now, we will view Bn

combinatorially as the group of signed permutations, and more abstractly as a Coxeter group.
In what follows, we will discuss conventions for both perspectives, and then discuss the
representation theory of Bn .

2.3.1 Bn as the group of signed permutations

Recall that [n] = {1, 2, · · · , n}, and define the following sets:

• [n]− := {1, · · · , n}, and
• [n]± := {1, 1, · · · , n, n}.

We adopt the convention that i behaves like −i , so that i = i and |i | (e.g. the absolute value
of i) is i . We will first think of Bn as a subgroup of the group of permutations of [n]±:
Definition 2.16 The hyperoctahedral group Bn is the group of bijective maps from [n]± to
[n]±, subject to the condition that for any σ ∈ Bn , if σ : i �→ j , then σ : i �→ j for
i, j ∈ [n]±.

A permutation in Sn can be written as a permutation matrix, in one-line notation, or in
cycle notation. The same is true of signed permutations. That is, σ ∈ Bn can be written

• as a signed permutation matrix; in this case, we realize σ as an n × n matrix M(σ ) with
i, j-th entry

M(σ )i j =

⎧
⎪⎨

⎪⎩

1 σ : j �→ i

−1 σ : j �→ i

0 otherwise;

123



A Type B analog of the Whitehouse representation Page 15 of 60 58

• in one-line notation, meaning that σ is written as (σ1, · · · , σn) where i �→ σi for σi ∈
[n]±;

• in cycle notation, meaning that σ is factored as a product of positive and negative cycles.
A negative cycle, written as (σ1σ2 · · · σ�)

− for σi ∈ [n]± means that σ sends σi �→ σi+1

for 1 ≤ i ≤ � − 1 and σ� �→ σ1. On the other hand, a positive cycle (σ1σ2 · · · σ�) sends
σi �→ σi+1 for 1 ≤ i ≤ � − 1 and σ� �→ σ1.

We will make clear from context whether we are using one-line or cycle notation.

Example 2.17 Consider σ ∈ B7 sending

1 �→ 2 2 �→ 3 3 �→ 1 4 �→ 7 5 �→ 6 6 �→ 5 7 �→ 4.

Then σ can be written

• as the matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 −1 0 0
0 0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

• in one-line notation as (2, 3, 1, 7, 6, 5, 4) and
• in cycle notation as

(123)− (47) (56)−.

We will see in Sect. 6 (for instance, Definition 6.1) that one-line notation is useful for
defining combinatorial statistics on Bn .

The primary use of cycle notation is to describe the conjugacy classes of Bn via cycle
type. Signed permutations have cycle type described by signed partitions, which are ordered
pairs of partitions (λ+, λ−) where |λ+| + |λ−| = n. Note that we allow λ+ or λ− to be ∅,
the unique (empty) partition of zero.

Definition 2.18 The signed permutation σ ∈ Bn is said to have cycle type

(λ+, λ−) = (λ1, · · · , λk︸ ︷︷ ︸
λ+

, λk+1, · · · , λ�)︸ ︷︷ ︸
λ−

if σ can be factored into cycles

σ = c1 · · · ck · d1 · · · d�,

where the ci are positive cycles of length λi for 1 ≤ i ≤ k and the d j are negative cycles of
length λ j for k + 1 ≤ j ≤ �.

Define C(λ+,λ−) to be the conjugacy class comprised of elements in Bn of cycle type
(λ+, λ−).

For instance, the permutation (123)−(47)(56)− from Example 2.17 has cycle type
((2), (3, 2)).
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2.3.2 Bn as a Coxeter group

Importantly, Bn is also a Coxeter group, meaning that it has a presentation of the form

W = 〈r1, · · · , rk : (ri r j )
mi j = 1〉,

where mii = 1 and mi j ≥ 2 for i �= j . The elements r1, · · · , rk are called simple reflections.
We will only briefly survey Coxeter groups here; for a comprehensive treatment, the reader
should consult Björner–Brenti [14], Humphreys [30], or Kane [31].

When W = Bn , the simple reflections are (in cycle notation) the adjacent transpositions

si := (i, i + 1)

for 1 ≤ i ≤ n − 1 and the element

tn := (n)−.

More generally, it will be useful to think about the element ti = (i)− for 1 ≤ i ≤ n.
Any element of Bn can be written as a product of the si and tn (with repeats allowed), and

σ is said to be a reduced expression if there is no way to rewrite σ using fewer generators. In
this case, the number of generators used to write σ is the length of σ . Every Coxeter group
has a unique longest word, w0. In the case of Bn , this is (in one-line notation)

w0 = (1, · · · , n) = −1.

In cycle notation, w0 = (1)−(2)− · · · (n)− = t1t2 · · · tn .

We will also be interested in the Coxeter elements of Bn . For any Coxeter group W , a
Coxeter element c is a product of each simple reflection, without repeats:

c = ri1 · · · rik .

Coxeter elements are not unique but they are all conjugate to each other. In the case of Bn ,
Coxeter elements are of the form (in cycle notation)

(i1i2i3 · · · in)−.

for distinct i1, · · · , in ∈ [n]. Thus all Coxeter elements have cycle type (∅, (n)), and are in
the conjugacy class C∅,(n).

2.3.3 Representation theory of the hyperoctahedral group

This section will closely follow Stembridge’s write-up in [46]. Recall that τ : Bn → Sn is
the surjection which forgets the signs of permutations (e.g. τ(si ) = si and τ(tn) = 1). Let
S = {s1, · · · , sn−1, tn} and for σ ∈ Bn and s ∈ S, let cs(σ ) count the number of instances
of s in a reduced expression for w. Then define

δs(σ ) = (−1)cs (σ ).

Like conjugacy classes, irreducible representations of Bn are indexed by signed partitions
(λ+, λ−).

We define the irreducible characters χλ,μ of Bn as follows:

• χλ,∅ is obtained from the irreducible character χλ of Sn by pulling back along τ ; in other
words

χλ,∅(si ) = χλ(si ), χλ,∅(tn) = 1.
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Table 1 The 1-dimensional
representations of Bn

Representation Character of σ ∈ Bn

χ(n),∅ 1

χ∅,(n) δtn (σ )

χ(1n ),∅ δsi (σ )

χ∅,(1n ) δtn ⊗ δsi (σ ).

Table 2 The character table for
B1

C(1),∅ = {1} C∅,(1) = {t1}

χ(1),∅ 1 1

χ∅,(1) 1 −1

• χ∅,λ is obtained from the tensor product

χ∅,λ = χλ,∅ ⊗ δtn .

• χλ,μ is defined by the induction product:

χλ,μ = χλ,∅ · χ∅,μ := IndBn
B|λ|×B|μ|(χ

λ,∅ × χ∅,μ).

The induction product further implies that one inherits branching rules for χλ,μ · χν,ψ from
the Type A Littlewood-Richardson Rule by rewriting

χλ,μ · χν,ψ = (χλ,∅ · χν,∅) · (χ∅,μ · χ∅,ψ )

=
(
∑

α

cα
λ,νχ

α,∅
)

·
(
∑

α

cβ
μ,ψχ∅,β

)

=
∑

α,β

cα
λ,νcβ

μ,ψχα,β,

where cα
λ,ν, cβ

μ,ψ are the standard Littlewood-Richardson coefficients.

Example 2.19 There are four 1-dimensional representations of Bn , shown in Table 1 below.
Note that χ(1n),∅ has character δsi for any i ∈ [n − 1] because all such si are conjugate. The
representation χ(n),∅ is the trivial representation and χ∅,(1n) is the sign representation.

Example 2.20 Consider the character tables for B1 (Table 2) and B2 (Table 3), which will be
useful in the proof of Proposition 4.5.

3 The d = 1 case in Type B

Our first goal is to determine a presentation for the cohomology of Z1
n and Y1

n+1 with coeffi-
cients in Z; later in Sect. 4 we will change to having coefficients in Q (and indicate as much).
In contrast to Type A, we will begin with Y1

n+1.

123



58 Page 18 of 60 S. Brauner

Table 3 The character table for B2

C(1,1),∅={1} C(2),∅ = {s1, t2s1t2} C(1),(1) = {t2, s1t2s1} C∅,(2) = {s1t2, t2s1} C∅,(1,1) = {(s1t2)2 = w0}

χ(2),∅ 1 1 1 1 1

χ∅,(1,1) 1 −1 −1 1 1

χ(1,1),∅ 1 −1 1 −1 1

χ∅,(2) 1 1 −1 −1 1

χ(1),(1) 2 0 0 0 −2

3.1 Signed cyclic Heaviside functions andY1
n+1

The space Y1
n+1 is comprised of 2nn! contractible pieces, parametrized by arrangements

of p0, · · · , pn and their antipodal points −p0, . . . ,−pn on U (1). Given a point �p =
(p0, · · · , pn) ∈ Y1

n+1, write C( �p) = C(p0, · · · , pn) as the arrangement of �p with antipodes

on U (1) and −pi as pi . By convention i = i . Recall that

[n] = {1, · · · , n}, [n]0 = {0, 1, 2, · · · , n}, [n]− = {1, · · · , n}, [n]± = [n] ∪ [n]−.

Further define

[n]−0 := {0, 1, · · · , n}, [n]±0 := {0, 0, 1, 1, · · · , n, n}.

When considering C( �p), we will identify the point pi with i and −pi = pi with i , so that
C( �p) has entries in [n]±0 . We take Bn+1 to be the group of signed permutations on [n]±0 , so
that σ ∈ Bn+1 acts on elements of C( �p) by sending i ∈ [n]±0 to σ(i). We will also consider
the restricted action of Bn ≤ Bn+1, where Bn is thought of as the subgroup of Bn+1 fixing 0
and 0.

Example 3.1 Let �p = (x0, x1, x2, x3), where x j = eiζ j and x j = eiζ j , where ζ j = ζ j + π .
Suppose that

0 ≤ ζ0 < ζ1 < ζ2 < ζ3 < ζ0 < ζ1 < ζ2 < ζ3 < 2π.

Then we can write C( �p) = (0, 1, 2, 3, 0, 1, 2, 3), which is drawn below. Note that we are
only interested in the relative order of the x j , rather than their values.

00

2

2

1

1

3

3
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Table 4 Signed cyclic Heaviside
functions evaluating the 8
representatives in Y1

3

C( �p) y001 y002 y012 y012 y012 y012

(0, 1, 2, 0, 1, 2) 0 0 1 1 0 1

(0, 2, 1, 0, 2, 1) 0 0 0 1 0 0

(0, 1, 2, 0, 1, 2) 1 0 0 1 1 1

(0, 2, 1, 0, 2, 1) 1 0 0 0 0 1

(0, 1, 2, 0, 1, 2) 0 1 1 1 1 0

(0, 2, 1, 0, 2, 1) 0 1 1 0 0 0

(0, 1, 2, 0, 1, 2) 1 1 1 0 1 1

(0, 2, 1, 0, 2, 1) 1 1 0 0 1 0

We define signed cyclic Heaviside functions yi jk for distinct i, j, k ∈ [n]±0 as

yi jk( �p) :=
{
1 pi < p j < pk counter-clockwise in C( �p)

0 otherwise.

Once again, the yi jk form a Z-algebra with multiplication given by

yi jk · yqrs( �p) :=
{
1 pi < p j < pk and pq < pr < ps counter-clockwise in C( �p)

0 otherwise.

The Bn+1 action on Y1
n+1 induces an action on the signed cyclic Heaviside functions, where

σ ∈ Bn+1 acts by

σ · yi jk = yσ(i)σ ( j)σ (k).

Example 3.2 Consider the 8 representatives ofY1
3 and their evaluation via select cyclic Heav-

iside functions shown in Table 4. Note that if yi jk is included, there is no need to include y jik

since y jik = 1− yi jk . Each entry in Table 4 indicates the value of a signed cyclic Heaviside
function (columns) evaluated at a given representative in Y1

n+1 (rows).

Proposition 3.3 The Bn+1 action on the set of connected components of Y1
n+1 is isomorphic

to the coset action

Bn+1/〈c〉,
where c is a Coxeter element of Bn+1. The Bn action on the set of connected components of
Y1

n+1 is simply transitive.

Proof It is not difficult to see that the Bn+1 action on the connected components of Y1
n+1 is

transitive. Consider a “typical” point C( �p) = (0, 1, 2, . . . , n, 0, 1, . . . , n) ∈ Y1
n+1; it is fixed

by the cyclic subgroup generated by the Coxeter element

c = (012 · · · n)−.

This proves the first claim.
For the second, since Bn fixes 0 and 0, any σ ∈ Bn will act on our typical point C( �p) as

σ · (0, 1, 2, . . . , n, 0, 1, . . . , n) = (0, σ (1), σ (2), . . . , σ (n), 0, σ (1), . . . , σ (n)),

and is thus fixed-point free. This Bn action is also transitive, and so the second claim follows.
��
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Table 5 Relation (iv) on all possible cyclic orderings of elements i, j, k, �

yi jk yi j� yik� y jk� yi jk − yi j� + yik� − y jk�

(i, j, k, �) 1 1 1 1 0

(i, k, j, �) 0 1 1 0 0

( j, i, k, �) 0 0 1 1 0

( j, k, i, �) 1 0 0 1 0

(k, i, j, �) 1 1 0 0 0

(k, j, i, �) 0 0 0 0 0

The next step is to give a presentation of H∗Y1
n+1 using the signed cyclic Heaviside

functions as generators. First we determine relations that hold in H∗Y1
n+1.

Proposition 3.4 The following relations hold in H∗Y1
n+1 for i, j, k, � ∈ [n]±0 :

(i) yi jk(1 − yi jk) = 0, (i i) yi jk = 1 − yik j , (i i i) y i j k = yi j k,

(iv) yi jk − yi j� + yik� − y jk� = 0, (v) yi jk yik�(1 − yi j�)

+(1 − yi jk)(1 − yik�)yi j� = 0.

Proof Relations (i) follows from the fact that yi jk and (1 − yi jk) have disjoint support.
Relation (i i) holds because yi jk and yik j have disjoint support and yi jk + yik j = 1. Relation
(i i i) comes from noting that by definition of the antipode, (i, j, k) appears in �p if and only
if (i, j , k) appears in �p. For relation (iv), consider the six possible relative cyclic orderings
of distinct elements i, j, k and �, and their evaluations on yi jk, yi j�, yik� and y jk�, shown in
Table 5.

Relation (v) follows because yi jk , yik� and (1− yi j�) have disjoint support, implying that
(1 − yi jk), (1 − yik�) and yi j� do as well. ��
Note that relations (i), (i i) and (v) deal only with the two of the three coordinates in the yi jk

(and will therefore be useful in the restriction to H∗Z1
n), whereas relations (i i i) and (iv) use

all three coordinates, and so are only useful to H∗Z1
n in specific cases, discussed in Remark

3.5.

Remark 3.5 Relation (iv) has several noteworthy special cases that will be important in
computing the presentation for H∗Y1

n+1 (Theorem 3.7) and H∗Z1
n (Theorem 3.10) in § 3.2.

(1) Taking i = 0 gives a method of rewriting any y jk� as

y jk� = y0 jk − y0 j� + y0k�.

This allows us to write any signed cyclic Heaviside function in terms of yi jk with i = 0,
which we will use in the proof of Theorem 3.7 and when restricting from H∗Y1

n+1 to
H∗Z1

n .
(2) Taking j = 0, k = i and � = 0 gives

0 = y0i i − y0i0 + y0i i − y00i

= y0i i − y00i + y0i i − y00i

= 2(y0i i − y00i ),

where the second line follows by using Relation (i i i). This relation will prove to be a
useful reduction in the proof of Theorem 3.7.
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(3) Taking j = i gives

0 = yiik − yii� + yik� − yik�

= yiik − yii� + yik� − yik�.

This case is most relevant when i = 0, in which case

0 = y00k − y00� + y0k� − y0k�.

Similarly, using relations (i i i) and (i i),

0 = y00k − y00� + y0k� − y0k�

= y00k − y00� + y0k� − y0k�

= y00k − (1 − y00�) + y0k� − y0k�.

In addition to appearing as a reduction in the proof of Theorem 3.7, these relations will
be instrumental in computing a presentation for H∗Z1

n in Theorem 3.10 and will appear
again in Sect. 4 (Proposition 4.6).

Next, we show that the relations in Proposition 3.4 are sufficient to describe H∗Y1
n+1. In

order to do so, we will employ a Gröbner basis lemma used by Dorpalen-Barry in [21]. For
vectors

(i, j, k) := (i1, j1, k1), (i2, j2, k2), · · · , (i�, j�, k�),

a := (a1, · · · , a�)

write

ya
(i, j,k) := ya1

i1 j1k1
ya2

i2 j2k2
· · · ya�

i� j�k�
.

Then given a polynomial

f =
∑

caya
(i, j,k),

with ca ∈ Z, the degree of f is

deg( f ) := max

{
∑

i

ai : ca �= 0

}

and the degree-initial form of f is

indeg( f ) :=
∑

a∑
i ai =deg( f )

caya
(i, j,k).

In other words, indeg( f ) picks off the top degree terms of f . Given a polynomial idealQ, let
indeg(Q) be the ideal generated by indeg( f ) for f ∈ Q.

A similar notion exists for any total ordering ≺ on monomials provided that ≺ is a well-
ordering, meaning that if f ≺ f ′, then for any monomial g, one has f g ≺ f ′g. Suppose ≺
is a well-ordering on monomials in Z[yi jk] for i, j, k ∈ [n]±0 . Then given a polynomial

f =
∑

caya
(i, j,k) ∈ Z[yi jk],
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define in≺( f ) to be the ≺-leading monomial in f . The ordering ≺ is said to be a degree
order if it is compatible with the natural degree ordering on f in the sense that in≺( f ) =
in≺(indeg( f )).

Our goal is to define a degree order ≺ on the set of polynomials Z[yi jk] for any distinct
i, j, k ∈ [n]±0 . To do so, first order [n]±0 :

{0 < 0 < 1 < 1 < · · · < n < n.} (3.1.1)

Given yi jk with i, j, k ∈ [n]±0 , order the indices so that i < j, k in (3.1.1); this is
always possible because the yi jk are equivalent up to cyclic rotation. From there, define ≺
by lexicographically ordering the indices in yi jk using the total order in (3.1.1). One can
check that≺ does indeed define a well-ordering onZ[yi jk] for i, j, k ∈ [n]±0 . We will use the
ordering ≺ to argue that the relations in Proposition 3.4 are the only ones needed to generate
H∗Y1

n+1.
Given a set of polynomials I = { fi }i∈I indexed by a set I , the polynomials which are

not divisible by the terms in≺( fi ) for each fi are called the in≺(I)-standard monomials. For
example, if I = {y2i jk − yi jk}, then

in≺(y2i jk − yi jk) = y2i jk,

and so in this case yi jk is an in≺(I)-standard monomial. To foreshadow, when I is the set
of relations in Proposition 3.4, the set of in≺(I)-standard monomials will be a Z-basis for
Y1

n+1.
Finally, recall that an ascending filtration of a commutative ring R is a nested sequence

of Z-submodules F0 ⊆ F1 ⊆ · · · such that for f ∈ Fi and f ′ ∈ Fj , one has f · f ′ ∈ Fi+ j .
The associated graded ring of R with respect to this filtration is then defined to be

gr(R) :=
⊕

i≥0

Fi/Fi−1.

In our case, the ring we are interested in is H∗Y1
n+1 and the filtration is the natural filtration

by degree, so that Fd consists of polynomials of degree d or less.
From these definitions we may now state the relevant lemma. Let S = Z[e1, · · · , er ],

where the ei are standard basis vectors.

Lemma 3.6 (Dorpalen-Barry, [21] Lemma 8) Let R be a free Z-module of rank r. Given a
surjection γ : S � R, let I = { fi }i∈I ⊂ S be a set of polynomials such that

(1) Each fi is monic (e.g. the coefficient of indeg( fi ) is ±1),
(2) I ⊂ ker(γ ), and
(3) the set of in≺(I)-standard monomials N = {m1, · · · , mt } has cardinality t ≤ r .

Then

(1) R ∼= S/(I) as Z-modules, where (I) is the ideal generated by I and
(2) the cardinality of N is r , so that γ (m1), · · · , γ (mr ) is a Z-basis for R.

In the case that ≺ is a degree-ordering, then there is a further Z-module isomorphism

S/ indeg(I) ∼= gr(R).

The Hilbert series for gr(R) is then given by

Hilb(gr(R), t) =
r∑

i=1

tdeg(mi ).
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We will see that Lemma 3.6 is precisely what we need to give a presentation for H∗Y1
n+1.

Define the sets

{y001}︸ ︷︷ ︸
h1

, {y002, y012, y012}︸ ︷︷ ︸
h2

, · · · , {y00n, y01n, y01n, · · · , y0(n−1)n, y0(n−1)n}
︸ ︷︷ ︸

hn

,

and let N be the set of monomials obtained by multiplying at most one term in each hi .
Intuitively, think of each hi as a hand and the elements in hi as its fingers; then N is the set
of monomials obtained by picking at most one finger from each hand6.

Theorem 3.7 Let I be the ideal generated by the relations in Proposition 3.4. Then

H∗Y1
n+1 = Z

[
yi jk

]
/I

where i, j, k are distinct elements in [n]±0 . Further, the set N is a basis for H∗Y1
n+1.

Proof Suppose m is an in≺(I)-standard monomial. We make the following reductions:

• By Proposition 3.4 (i), we may assume m is square free;
• Using Proposition 3.4 (iv) and setting i = 0, we may also assume that m is comprised

of generators of the form y0 jk ;
• Furthermore, using Proposition 3.4 (iv) and Remark 3.5 (2) we have that m cannot

contain y0i i for i ∈ [n];
• Using 3.4 (i i), we may assume further for y0 jk that j < k with respect to the ordering

in (3.1.1);
• By Remark 3.5 (3) we have that m cannot contain any generator of the form y0 jk or y0 jk

for j, k ∈ [n].
Finally, we must use relation (v) to show that m is in fact in N. Note that (v) can be
understood as a choice of three elements i < j < k ∈ [n]±0 \ {0}, corresponding to the three
monomials y0i j , y0 jk and y0ik . Applying relation 3.4 (v) to these generators implies that the
term y0ik y0 jk cannot divide m. We use this logic to underline terms that are not divisible by
m for i, j, k ∈ [n]:
• (i < j < k) :

0 = y0i j y jk − y0i j y0ik − y0ik y jk + y0ik .

• (i < j < k) :
0 = y0i j y jk − y0i j y0ik − y0ik y jk + y0ik .

• (0 < i < j):

0 = y00i y0i j − y00i y00 j − y0i j y00 j + y00 j .

• (0 < i < j): Noting that y00 j = y00 j = (1 − y00 j ) by 3.4 (i i i) and 3.4 (i i):

0 = y00i y0i j − y00i y00 j − y0i j y00 j − y00 j

= y00i y0i j − y00i (1 − y00 j ) − y0i j (1 − y00 j ) − (1 − y00 j ).

6 The terminology of “hands” and “fingers” originates in Hélène Barcelo’s thesis [5, Thm 2.1] and was later
used in Barcelo–Goupil [7], both in the context of describing an nbc-basis. Such bases arise in the study of
matroids. While we are not in the matroid (e.g. hyperplane) setting, because our description of N uses the
hand/finger description, we may refer to it basis as an nbc-basis nonetheless.
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• (i < j < j): Noting that y0 j j = 1 − y0 j j = 1 − y00 j by 3.4 (i i i) and 3.4 (i i):

0 = y0i j y0 j j − yi j y0i j − y0 j j y0i j

= y0i j (1 − y00 j ) − yi j y0i j − (1 − y00 j )y0i j .

• (i < j < k) : By 3.4 (iv), Remark 3.5 (3) one has y0 jk = y00 j + y00k + y0 jk − 1, and
so

0 = y0i j y jk − y jk yik − y0i j yik + yik

= y0i j (y00 j + y00k + y0 jk − 1) − (y00 j + y00k + y0 jk − 1)yik − y0i j yik + yik .

• (i < j < k) : Again, we have y0i j = y00i + y00 j + y0i j − 1, and y0ik = y00i + y00k +
y0ik − 1. Hence

0 = y0i j y0 jk − y0i j y0ik − y0 jk y0ik + y0ik

= (y00i + y00 j + y0i j − 1)y0 jk − (y00i + y00 j + y0i j − 1)(y00i + y00k + y0ik − 1)

− y0 jk(y00i + y00k + y0ik − 1) + (y00i + y00k + y0ik − 1).

It follows that m ∈ N, because all of the terms violating the definition of N (e.g. picking
multiple generators from the same set hi ) are in blue above. Thus the hypotheses inLemma3.6
are satisfied, and the claim follows. ��

Note that ≺ is also a degree ordering, which by Lemma 3.6 implies the following.

Corollary 3.8 The associated graded ring of H∗Y1
n+1 with respect to the filtration by degree

has presentation

gr(H∗Y1
n+1)

∼= Z[yi jk]/ indeg(I),

for distinct i, j, k ∈ [n]±0 , where indeg(I) is generated by the relations

(i) y2i jk, (i i) yi jk − yi j� + yik� − y jk� (i i i) yi j k = yi j k

(iv) yi jk = −yik j (v) yi jk yik� − yi jk yi j� − yik�yi j�.

Further,

Hilb(gr(H∗Y1
n+1), t) = (1 + t)(3 + t)(5 + t) · · · ((2n − 1) + t).

Proof The relations generating indeg(I) come from computing indeg( fi ) for each fi ∈ I in
Theorem 3.7. Note that expanding relation 3.4 (v) gives

yi jk yik�(1 − yi j�) + (1 − yi jk)(1 − yik�)yi j�

= yi jk yik� − yi jk yik�yi j� + yi j − yi jk yik� − yik�yi j� + yi jk yik�yi j�

= yi jk yik� + yi j − yi jk yik� − yik�yi j�.

Removing the single degree 1 term here gives a homogeneous degree 2 relation. The Hilbert
series follows from a standard counting argument using the set N. ��
Example 3.9 Suppose n + 1 = 3. Then a basis for H∗ Y1

3, separated by degree in the yi jk is

deg(0) : 1

deg(1) : y001, y012, y012, y002,

deg(2) : y001y012, y001y012, y001y002
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The Hilbert series for gr(H∗ Y1
3) is

1 + 4t + 3t2 = (1 + t)(3 + t).

3.2 A presentation for H∗Z1
n

The Bn module isomorphism induced from Proposition 2.10 (applied as in Example 2.12)
recovers a presentation for H∗Z1

n and gr(H∗Z1
n). The isomorphism can be described as

follows: for each Heaviside function yi jk , fix i = 0 and define for j, k ∈ [n]±,
z jk :=y0 jk

z j :=y00 j .

These z jk and z j inherit a Bn action: σ ∈ Bn acts by

σ · z jk =zσ( j)σ (k),

σ · z j =zσ( j).

The elements z jk and z j are (by construction) functionals on Z1
n . The latter generator has a

simple description:

z j (x1, · · · , xn) =
{
1 x j > 0

0 otherwise.

The z jk are a bit more complicated; if j, k ∈ [n], then

z jk(x1, · · · , xn) =
{
1 x j < xk

0 otherwise,

and

z jk(x1, · · · , xn) =
{
1 x j < ϕ(xk)

0 otherwise,

where ϕ(x j ) = −x j/|x j |2. The generator z jk can analogously be interpreted as 1 when
ϕ(x j ) < xk , and the generator z jk is 1 when ϕ(x j ) < ϕ(xk). Note that ϕ(x j ) < ϕ(xk) is not
equivalent to −x j < −xk .

We now obtain from Theorem 3.7 a presentation for H∗Z1
n .

Theorem 3.10 There is an isomorphism of Z-modules

H∗Z1
n = Z[zi j , zi ]/J

for i �= j ∈ [n]±, where J is generated by the relations:

(i) zi j (1 − zi j ) (i i) zi (1 − zi ) (i i i) zi − z j + zi j − zi j (iv) zi − (1 − zi )

and

(v) zi j z jk(1 − zik) + (1 − zi j )(1 − z jk)zik

(vi) zi j zi (1 − z j ) + (1 − zi j )(1 − zi )z j

(vi i) z j zi j (1 − zi j ) + (1 − z j )(1 − zi j )zi j .
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The “extra” relations (vi) and (vi i) compared to H∗Y1
n+1 are necessary because unlike the

yi jk , there are now two types of generators, z j and z jk .

Proof The isomorphism between H∗Y1
n+1 and H∗Z1

n implies that H∗Z1
n has a Z-basis con-

sisting of monomials that are a product of at most one element from each set

{z1}, {z2, z12, z12}, · · · {zn, z1n, · · · , z(n−1)n, z1n, · · · , z(n−1)n}.
That Relations (i)—(v) hold in H∗Z1

n follows immediately from the identification of
variables discussed above. Relation (vi) can be seen directly: for i, j ∈ [n], the function
zi j zi (1− z j ) is nonzero on (x1, . . . , xn) if xi < x j , xi > 0, and x j < 0, which is impossible.
Similarly, (1− zi j )(1− zi )z j is always 0, so the sum must be 0 as well. The relation is then
closed under the action by Bn .

An analogous argument holds for (vi i); z j zi j (1 − zi j ) is non-zero on (x1, · · · , xn) if
xi > x j , xi < ϕ(x j ) and x j > 0. However if x j > 0, this means that ϕ(x j ) < 0, and so
xi < 0, contradicting the assumption that xi > x j . Analogously, the second summand in
(vi i) is 0. A similar argument as the proof of Theorem 3.7 (e.g. using the ordering induced
from (3.1.1) and Lemma 3.6) then shows that these relations are sufficient to generate H∗Z1

n .
��

Using Theorem 3.8, we obtain a presentation for gr(H∗Z1
n) as well.

Corollary 3.11 The associated graded ring of H∗Z1
n with respect to the filtration by degree

is given by

gr(H∗Z1
n) = Z[zi j , zi ]/ indeg(J)

for distinct i, j ∈ [n]± where indeg(J) is generated by

(i) z2i j (i i) z2i (i i i) zi − z j + zi j − zi j (iv) zi + zi

(v) zi j z jk − zi j zik − z jk zik (vi) zi zi j − zi j z j − zi z j (vi i) z j zi j − zi j zi j − z j zi j .

Example 3.12 (n = 2) The above restriction tells us that when n = 2, the basis for gr(H∗Z1
n)

is

deg(0) : 1

deg(1) : z1, z12, z12, z2,

deg(2) : z1z12, z1z12, z1z2,

and the Hilbert series of gr(H∗Z1
2) is the same as that of gr(H∗ Y1

3).

3.2.1 A bi-grading on H∗Z1
n

Finally, we introduce a further filtration on gr(H∗Z1
n).

Proposition 3.13 Let P� be the ideal in gr(H∗Z1
n) with monomials of degree � or higher in

the zi for i ∈ [n]±. Then there is a descending filtration on gr(H∗Z1
n) that is stable under

the Bn-action on gr(H∗Z1
n):

Pn ⊂ Pn−1 ⊂ · · · ⊂ P1 ⊂ P0.
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Proof Consider first the polynomial ring Z[zi j , zi ] for i, j ∈ [n]±; it is clear that it has a
filtration by zi degree, and that this filtration respects the action by Bn . One can further check
that the ideal indeg(J) in Corollary 3.11 also respects the filtration because each relation (and
its Bn orbit) is in either P0, P1 or P2. ��
Definition 3.14 Define the associated graded ring of gr(H∗Z1

n) with respect to the filtration
in Proposition 3.13 to be

G =
⊕

0≤k≤n

Gk =
⊕

0≤�≤k≤n

Gk,�,

where Gk consists of monomials of degree k in the variables zi j and zi for i, j ∈ [n]± and
Gk,� consists of monomials in Gk which are degree � in the zi variables.

Corollary 3.15 As a bi-graded ring, G has a presentation

Z[zi j , zi ]/L
for i, j ∈ [n]±, where L is generated by z2i j = z2i = 0 and

(i) zi j + z ji (i i) zi + zi (i i i) zi j − zi j (iv) zi j zi j (v) zi j z jk − zi j zik − z jk zik .

Remark 3.16 The fact that Q[Bn] is semisimple means that for any filtration stable under the
action of Bn , passing to the associated graded ring will not change the isomorphism type
of the representation. Hence we will study representations on Gk,� and use this to deduce
information about H∗Z1

n and H∗Z3
n .

Remark 3.17 The filtration in Proposition 3.13 (using the identification zi ↔ y00i ) does not
respect the lifted Bn+1 action, and therefore does not give a bi-grading on H∗Y1

n+1.

4 The d = 3 case in Type B

We now turn to the spaceZ3
n , which was studied by Feichtner–Ziegler in [24] and Xicoténcatl

in [54]; we will first review their work7 in Sect. 4.1. Then, we will work to understand
the action of Bn on the basis for H∗Z3

n (Sect. 4.2). The presentation for H∗Z3
n and its

consequences are given in Sect. 4.3.

4.1 Tools from topology

In [24], Feichtner–Ziegler use the space Zd
n to compute a presentation for the cohmology of

the Z2 orbit configuration space ConfZ2
n (Sd). Let

�[n] : Zd
n+1 −→ Zd

n

(x1, · · · , xn+1) �−→ (x1, · · · , xn)

7 In [24], Feichtner–Ziegler give a presentation of H∗Zd
n for d ≥ 2. However, their computation of the action

of Bn on the generators of H∗Zd
n has an error [24, Lemma 7(iv)]. Xicoténcatl also gives a presentation of

H∗Zd
n , which agrees with our presentation; however his work does not explicitly compute the action of Bn

on the generators of H∗Zd
n . We will see in Proposition 4.6 that the Bn -action on H∗Zd

n is delicate, and so we
include all the details of our computations for completeness.
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be the map which “forgets” the last coordinate in Zd
n+1, and define

Qn = {0, x1, ϕ(x1), · · · xn−1, ϕ(xn−1)},
where ϕ(xi ) = −xi/|xi |2, as before. This induces a locally trivial fiber bundle

R
d \Qn −→ Zd

n+1 −→ Zd
n . (4.1.1)

Feichtner–Ziegler prove that the associated spectral sequence collapses in its second term
whenever d > 2, and that the corresponding cohomology ring H∗Zd

n is torsion-free with
Hilbert series8

Hilb(H∗Zd
n , t) = (1 + td−1)(1 + 3td−1) · · · (1 + (2n − 1)td−1). (4.1.2)

Using the spectral sequence induced by (4.1.1), Feichtner–Ziegler provide amultiplicative
generating set and Z-module basis for H∗Zd

n .

Proposition 4.1 ([24]: Prop 8) A Z-linear basis for H∗Zd
n is given by choosing one element

from each set:

Z{1, z1} · Z{1, z2, z12, z12, } · · · Z{1, zn, z1n, z1n, · · · , z(n−1)n, z(n−1)n}.
A number of relations that hold in H∗Z3

n can be established from the above topological
framework. Recall that ti ∈ Bn is the element sending i �→ −i and j �→ j for all other j ,
and si ∈ Bn is the Coxeter generator (i, i +1). Let (i, j) be the transposition swapping i and
j .

Proposition 4.2 The following identities hold in H∗Z3
n for distinct i, j, k ∈ [n]±

(1) (Feichtner–Ziegler [24, Lemma 7(iii)]): ti · zi = zi = −zi ;
(2) (i, j) · zi j = z ji = −zi j ;
(3) z2i j = z2i = 0.
(4) (Feichtner–Ziegler [24, Prop. 11]): zi j z jk − zik zi j − zik z jk = 0
(5) (Feichtner–Ziegler [24, Prop. 11]): zi j zi − zi j z j − zi z j = 0.
(6) z j zi j − zi j zi j − z j zi j = 0.

We give a general sketch of each of these relations for intuition.

Proof (1) The first claim in Proposition 4.2 follows because the generator zi is the image of
the (dual) fundamental class induced from the projection map

πi : Zd
n −→ Sd−1

(x1, · · · , xn) �−→ xi

|xi | .

The action of ti then restricts to the antipodal action on Sd−1.
(2) Analogously, the second claim in Proposition 4.2 can be understood via the projection

map

πi j : Zd
n −→ Sd−1

(x1, · · · , xn) �−→ xi − x j

|xi − x j | .

The generator zi j is similarly defined as the image of π∗
i j ([Sd−1]) (where [Sd−1] is the

dual fundamental class of Sd−1). Once again the action of (i, j) can be traced back via
πi j , where it restricts to the antipodal map on Sd−1.

8 They further prove (with a bit more work) that the d = 2 case is also torsion free and satisfies (4.1.2).
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(3) Again, the third claim comes from the fact that the generators zi j and zi are the images
of [Sd−1], and [Sd−1]2 = 0 in H∗(Sd−1).

(4) Let U+
i j := {(x1, · · · , xn) ∈ R

3n : xi = x j }, and consider the complement space

M{U+
i j , U+

jk} ⊂ R
3n . There is a natural inclusion

Z3
n ↪→ M{U+

i j , U+
jk};

the induced map in cohomology must send the relation zi j zi − zi j z j − zi z j = 0 in
H∗(M{U+

i j , U+
jk}) to 0 in H∗Z3

n .

(5) Let Ui := {(x1, · · · , xn) ∈ R
3n : xi = 0}, and again consider the complement and

corresponding inclusion Z3
n ↪→ M{U+

i j , Ui , U j }. Then (5) holds by the same logic as
relation (4).

(6) Finally,we obtain the relation (6) using a similar argument as the last part of [24, Prop 11.].
It is sufficient to work in the case that n = 2. Let

U−
12 := {(x1, x2 ∈ (R3 \{0})2 : x1 �= x2, x1 �= ϕ(x2)},

and U1, U2, U+
12 be as before. Consider the map

� : M{U1, U2, U+
12} −→M{U+

12, U−
12, U2}

(x1, x2) �−→(x1 − x2, x1 − ϕ(x2)).

Let d1, d2 and d12 be the respective generators of U1, U2, U12. The same argument used
in (i) of the proof of [24, Prop. 11] shows that �∗(d1) = z12.
To show that �∗(d2) = z12, note that

� ◦ s2(x1, x2) = (x1 − ϕ(x2), x1 − x2) = s1 ◦ �(x1, x2).

Hence

�∗(d2) = �∗ ◦ s1(d1) = s2 ◦ �∗(d1) = s2(z12) = z12.

Finally, we show that �∗(d12) = −c2. Let σ : M{U1, U2, U+
12} → S

2 be the projection
onto the second coordinate, and then the unit sphere. Thus σ ∗(c) = d2, where c is the
generator of S

2. Let

θ : M{U1, U2, U+
12} −→ S

2

(x1, x2) �−→ 1

|x1 − x2| (x1 − x2).

Then

θ ◦ �(x1, x2) = 1

|ϕ(x2) − x2| (ϕ(x2) − x2)

= 1

| −x2
|x2|2

(

1 + 1
|x22 |

)

|
· −x2
|x2|2

(

1 + 1

|x22 |

)

= 1
(

1 + 1
|x22 |

) · −x2
|x2|2

(

1 + 1

|x22 |

)

= −x2
|x2|2
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Table 6 The action of B2 on the basis of H∗Z3
2. Bold indicates an element not in the basis

s1 t2 s1t2 (s1t2)
2 = −1

1 1 1 1 1

z1 z2 z1 z2 −z1
z2 z1 −z2 −z1 −z2
z12 −z12 z12 −z12 z12
z12 −z12 z12 −z12 z12
z1z2 z1z2 −z1z2 −z1z2 z1z2
z1z12 −z2 z12 = −z1z12 + z1z2 z1z12 −z2 z12 = −z1 z12 −z1z2 −z1 z12
z1z12 −z2 z12 = −z1 z12 −z1z2 z1z12 −z2 z12 = −z1z12 + z1z2 −z1 z12

= − σ(x1, x2).

Thus �∗ ◦ θ
∗ = −σ ∗ because the antipodal map in this context has degree −1.

Noting that θ
∗
(c) = z12 implies that

�∗(d12) = �∗ ◦ θ
∗
(c) = −σ ∗(c) = −z2,

and therefore

�∗(d12d1 − d12d2 − d1d2) = −z2z12 + z2z12 − z12z12.

��

4.2 Tools from representation theory

The relations in Proposition 4.2 are insufficient to give an algebra presentation for H∗Z3
n—

that is, they do not give all the relations among the generators of the algebra. In particular, we
are missing information about how to rewrite the generators zi j and zi j in terms of the basis
discussed in Proposition 4.1. This is relevant in part because we would like to understand the
action of Bn on H∗Z3

n . Consider, for example, what is known based on Proposition 4.2 about
the action of B2 on the basis for H∗Z3

2, summarized in Table 6. The teal entries indicate
elements which are not in the basis.

Thus the next step is to develop tools to complete the presentation of H∗Z3
n . In order

to understand the representations carried by H∗Z3
n and H∗Y3

n+1, assume henceforth that
both spaces have coefficients in Q. Our subsequent computations will use the representation
theory of the hyperoctahedral group, reviewed in § 2.3.3.

4.2.1 A recursion for H∗Y3
n+1

Wewill nowdevelop a recursion between the Bn-representations carried by H∗Z3
n and H∗Y3

n ;
in addition to being of independent interest, this recursionwill be instrumental to determining
the presentation for H∗Z3

n .
Recall that the two spacesZ3

n andY3
n+1 are homeomorphic, and therefore their cohomolo-

gies are isomorphic as Bn-representations. We will use this fact to understand H∗Y3
n+1 as a

Bn+1-representation. The space Y3
n+1 has a fiber sequence
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SU2 \ {±p1,±p2, · · · ,±pn} −→ Y3
n+1 −→ Y3

n . (4.2.1)

Note that there is a Bn-action on F , which comes from the Bn action on {±p1, · · · ,±pn}.
In particular, for σ ∈ Bn , the point (p1, · · · , pn, pn+1) and (pσ(1), · · · , pσ(n), pn+1) have
homeomorphicfibers in thefiber sequence (4.2.2), and the actionof Bn permutes the punctures
of F . It follows that Bn acts on each space in (4.2.2), and is equivariant with respect to both
maps.

Because Z3
n is simply connected and has homology concentrated only in even degrees,

the same must be true for Y3
n+1. It follows that the spectral sequence collapses, yielding the

isomorphism:

H∗Y3
n+1

∼=Bn H∗Y3
n ⊗ H∗(F) ∼=Bn H∗Z3

n, (4.2.2)

where F is the fiber SU2 \ {±p1,±p2, · · · ,±pn} from (4.2.1).
Since F is connected, H0(F) ∼= Q and carries the trivial representation. The only other

non-trivial degree is H2(F), which is 2n − 1 dimensional.

Lemma 4.3 As a Bn-representation,

H2(F) ∼=Bn χ(n−1),(1) + χ(n−1,1),∅.

Proof Since F is a punctured sphere, the generators of the homology can be understood as
cycles around these punctures. Let ei be the cocycle dual to the cycle around the point pi and
ei the cocycle dual to the cycle around its antipodal point −pi . The Bn action on H2(F) is
determined by how Bn permutes these cocycles. It follows that

H2(F) ∼= Q e1 ⊕ Q e1 ⊕ · · · ⊕ Q en ⊕ Q en

Q(e1 + e1 + · · · + en + en)
. (4.2.3)

The denominator carries the trivial representation, which we shall denote by 1. To compute
the numerator, note that the subgroup fixing e1 pointwise is S1 × Bn−1, which has index 2n
in Bn . Hence

Q e1 ⊕ Q e1 ⊕ · · · ⊕ Q en ⊕ Q en ∼=Bn IndBn
S1×Bn−1

1 ∼=Bn IndBn
B1×Bn−1

(
IndB1×Bn−1

S1×Bn−1
1
)

by transitivity of induction. The inner term on the left-hand-side can be expanded as

IndB1×Bn−1
S1×Bn−1

1 = (χ(1),∅ ⊕ χ∅,(1)) × χ(n−1),∅ = (χ(1),∅ × χ(n−1),∅) ⊕ (χ∅,(1) × χ(n−1),∅).

Using the Type B branching rules, it follows that

IndBn
B1×Bn−1

(χ∅,(1) × χ(n−1),∅) = χ∅,(1) · χ(n−1),∅ = χ(n−1),(1),

which is an n-dimensional representation of Bn .
The other term is

IndBn
B1×Bn−1

(1B1 × 1Bn−1) = Q[Bn/(B1 × Bn−1)],
which is also n-dimensional and decomposes as χ(n),∅ ⊕χ(n−1,1),∅. The numerator in (4.2.3)
therefore has description

Q e1 ⊕ Q e1 ⊕ · · · ⊕ Q en ⊕ Q en = χ(n),∅ ⊕ χ(n−1,1),∅ ⊕ χ(n−1),(1)

and so

H2(F) = Q e1 ⊕ Q e1 ⊕ · · · ⊕ Q en ⊕ Q en

Q(e1 + e1 + · · · + en + en)
= χ(n−1,1),∅ ⊕ χ(n−1),(1). (4.2.4)

��
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Plugging the description of H∗(F) into (4.2.2) yields the following recursion.

Corollary 4.4 There is a isomorphism of Bn-modules

H2 jZ3
n

∼=Bn H2 jY3
n ⊕

(
H2( j−1)Y3

n ⊗ V
)

for 0 ≤ j ≤ n, where V = χ(n−1,1),∅ ⊕ χ(n−1),(1).

4.2.2 The case that n = 2

Our strategy will be to compute the representation for H∗Z3
2 using Corollary 4.4, and then

use the fact that the cohomology generators zi j , zi are compatible with projections between
configuration spaces to deduce a presentation for H∗Z3

n . In particular, if

�[S] : H∗Z3
n −→ H∗Z3|T |

is the map projecting (x1, · · · , xn) to the points with index T ⊂ [n], then Feichtner-Ziegler
show in [24, Lemma 6] that in cohomology, �∗|T |(zi j ) = zi j for i, j ∈ T .

Part of our upcoming argumentwill rely onTheorem5.10, which states that as an ungraded
representation,

H∗Z3
n

∼=Bn Q[Bn].
We will defer the proof9 of Theorem 5.10 to Sect. 5. One consequence of this fact is that
H∗Z3

n will contain exactly one copy of every 1-dimensional representation of Bn .
Our goal in Proposition 4.5 is to determine where each irreducible of Q[B2] appears in

H∗Z3
2. Denote by ρ[ j] a representation ρ in cohomological degree j .

Proposition 4.5 As B2 representations, H∗Z3
2 decomposes as

H0Z3
2 = χ(2),∅

H2Z3
2 = χ(1,1),∅ + χ∅,(1,1) + χ(1),(1)

H4Z3
2 = χ∅,(2) + χ(1),(1).

Proof By Corollary 4.4, when n = 2,

V = χ(1,1),∅ ⊕ χ(1),(1)

and H0Z3
2 = χ(2),∅. Since H0Z3

1 = χ(1),∅, by Theorem 5.10 it follows that H2Z3
1 = χ∅,(1).

Write the B2 representation carried by H2Y3
2 as χ ; note that χ is 1-dimensional and must

restrict to χ∅,(1). Inspection of Tables 2 and 3 then shows that χ must be either χ∅,(1,1) or
χ∅,(2).

Expanding the recursion in Corollary 4.4 gives

H∗Z3
2 = (χ(2),∅(0) + (χ(1),(1) + χ(1,1),∅[2])) ⊗ (χ(2),∅[0] + χ[2])

= χ(2),∅[0] + (χ(1),(1) + χ(1,1),∅ + χ)[2] + (χ(1),(1) + χ(1,1),∅ ⊗ χ)[4],
where we use the fact that χ(1),(1) ⊗ χ = χ(1),(1) no matter which 1-dimensional represen-
tation χ is.

9 The proof of Theorem 5.10 does not rely on the remaining results in § 4. In particular, all subsequent work
in §4 will focus on computing the presentation of H∗Z3

n . Theorem 5.10 will be proved using equivariant
formality, which we will see follows from the Hilbert series for H∗Z3

n given in (4.1.2).
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Observe by Proposition 4.2 that z1z2 ∈ H4Z3
2 is an eigenbasis for χ∅,(2). Since the total

representation of H∗Z3
2 is the regular representation of B2, it follows that χ∅,(2) must appear

in cohomological degree 4 only, and so it must be that

χ∅,(2) = χ(1,1),∅ ⊗ χ.

Again using the fact that the total representation in this context is Q[B2], one deduces that
χ = χ∅,(1,1) and therefore

H∗Z3
2 = χ(2),∅[0] + (χ(1),(1) + χ(1,1),∅ + χ∅,(1,1))[2] + (χ(1),(1) + χ∅,(2))[4].

��
Wewill now determine (1) the 1-dimensional eigenspaces of H∗Z3

2 as B2 representations
and (2) a complete description of the B2 action on the generators of H∗Z3

2, which can then be
extended to the Bn action on H∗Z3

n . Recall that since H∗Z3
n

∼= Q[Bn], each 1-dimensional
representation of Bn will occur once in H∗Z3

n .

Proposition 4.6 Let V (χ) be an eigenvector in H∗Z3
2 of a 1-dimensional representation χ

of B2. The four 1-dimensional representations χ of B2 occur in H∗Z3
2 as the span of the

following elements:

V (χ) Eigenvector

V (χ(2),∅) 1
V (χ(1,1),∅) z12 + z12 + z1
V (χ∅,(1,1)) z12 − z12 − z2
V (χ∅,(2)) z1z2

This in turn determines the following relations:

z12 = z12 + z1 − z2 (4.2.5)

z12 = z12 + z1 + z2. (4.2.6)

Proof The copy of χ(1),(1) in H2Z3
2 has basis z1 and z2. By Proposition 4.5, the remaining

representations in H2Z3
2 are χ(1,1),∅ and χ∅,(1,1). For vectors α = (α+

12, α
−
12, α1, α2) ∈ Q

4

and β = (β+
12, β

−
12, β1, β2) ∈ Q

4, write

V (χ(1,1),∅) = α+
12z12 + α−

12z12 + α1z1 + α2z2

and

V (χ∅,(1,1)) = β+
12z12 + β−

12z12 + β1z1 + β2z2.

Our goal will be to solve for the undetermined coefficients above.
Starting with V (χ(1,1),∅), we have that

t2 · V (χ(1,1),∅) = α+
12z12 + α−

12z12 + α1z1 − α2z2

= V (χ(1,1),∅)
= α+

12z12 + α−
12z12 + α1z1 + α2z2.
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This forces α+
12 = α−

12 and α2 = 0. Note that α+
12 �= 0, because otherwise V (χ(1,1),∅) would

not be linearly independent with 〈z1, z2〉. Thus without loss of generality, scale α+
12 = α−

12 =
1; write α1/α

+
12 = α, so that

V (χ(1,1),∅) = z12 + z12 + αz1.

Acting by s1 gives

s1 · V (χ(1,1),∅) = −z12 − z12 + αz2

= −V (χ(1,1),∅)
= −z12 − z12 − αz1.

This implies that

z12 = z12 + αz1 + αz2.

By a similar argument,

t2 · V (χ∅,(1,1)) = β+
12z12 + β−

12z12 + β1z1 − β2z2

= −V (χ∅,(1,1))

= −β+
12z12 − β−

12z12 − β1z1 − β2z2.

Hence one can conclude that β+
12 = −β−

12 �= 0 and β1 = 0. Again, normalize by β+
12 = 1

and set β = β2/β
+
12; therefore

V (χ∅,(1,1)) = z12 − z12 + βz2.

Acting again by s1 gives

s1 · V (χ∅,(1,1)) = −z12 + z12 + βz1

= −V (χ∅,(1,1))

= −z12 + z12 − βz2,

which implies that

z12 = z12 − βz1 − βz2. (4.2.7)

We therefore conclude that α = −β, and so

V (χ(1,1),∅) = z12 + z12 − βz1.

Applying w0 to both expressions gives:

w0 · V (χ(1,1),∅) = z12 + z12 + βz1 = V (χ(1,1),∅) = z12 + z12 − βz1

w0 · V (χ∅,(1,1)) = z12 − z12 − βz2 = V (χ∅,(1,1)) = z12 − z12 + βz2.

Simplifying and adding the above two expressions gives

2z12 = 2z12 − 2βz1 + 2βz2.

Finally, we must show that β = −1. By Proposition 4.2 (5),

z12z1 − z12z2 − z1z2 = 0
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holds in H∗Z3
2. Acting by t2 gives

z12z1 + z12z2 + z1z2 = 0.

One the other hand, acting by s1t2s1 gives

−z12z1 − z12z2 + z1z2 = 0.

Using (4.2.7), and Propopsition 4.2 (3), we have

−z12z1 − z12z2 + z1z2 = −(z12 − βz1 − βz2)z1 − (z12 − βz1 − βz2)z2 + z1z2

= −z12z1 − z12z2 + (1 + 2β)z1z2.

It follows that

0 =
(

z12z1 + z12z2 + z1z2
)

+
(

− z12z1 − z12z2 + (1 + 2β)z1z2
)

= (2 + 2β)z1z2.

Since z1z2 is a basis element, β = −1. ��
The relations (4.2.5) and (4.2.6) are the final relations needed to determine a presentation for
H∗Z3

n ; note that they precisely match the relation (2) in Corollary 3.11.

4.3 Presentation for H∗Z3
n

We are now ready to give a presentation for H∗Z3
n . As before, the action of σ ∈ Bn on the

variables zi j and zi for i, j ∈ [n]± is given by

σ ·
{

zi j = zσ(i)σ ( j)

zi = zσ(i),

with the convention that i = i .

Theorem 4.7 There is a Bn-equivariant ring isomorphism

H∗Z3
n

∼= Z[zi j , zi ]/J′,

for i, j ∈ [n]±, where J′ is generated by

• zi j = zi j + zi + z j and
• The relations in Proposition 4.2.

Proof Proposition 4.2 and 4.6 show that the relations in J′ hold in H∗Z3
n . (The relation

zi j = zi j + zi + z j comes from (4.2.6); note that it also implies zi j = zi j + zi − z j from the
action by t j .)

Hence it is sufficient to prove these are the only relations needed to generate J′. To do so
we will employ a standard argument, very similar in spirit to the proof of Theorem 3.7, to
show that

Z{1, z1}︸ ︷︷ ︸
h′
1

· Z{1, z2, z12, z12, }︸ ︷︷ ︸
h′
2

· · · Z{1, zn, z1n, z1n, · · · , z(n−1)n, z(n−1)n}
︸ ︷︷ ︸

h′
n

.

forms a Gröbner basis for H∗Z3
n . We will again use the lexicographic ordering on zi , zi j for

i, j ∈ [n]± induced by the ordering

0 < 1 < 1 < 2 < 2 < · · · < n < n.
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Table 7 Action of the elements
ti , t j and (i, j) ∈ Bn on the

generators z+
i j , z−

i j , zi ∈ H∗Z3
n

ti t j (i, j)

z+
i j z−

i j + zi + z j z−
i j −z+

i j

z−
i j z+

i j + zi − z j z+
i j −z−

i j − zi − z j

zi −zi zi z j

Here we identify zi with z0i so that for i < j one has zi < z j < zi j < zi j < zi j < zi j .
The argument amounts to showing that any monomial with two terms from the same set h′

i
can be rewritten in terms of elements lower in the above ordering using the relations in J′.
Call such monomials broken-circuits. The same argument as in Theorem 3.7 shows that these
broken-circuits (the underlined terms) can be rewritten using relations in J′:
• 0 = zi j z jk − zi j z jk − z jk zik

• 0 = zi j z jk − zi j z jk − z jk zik

• 0 = zi zi j − zi j z j − zi z j

• 0 = zi zi j + zi j z j + zi z j

• 0 = z j zi j − z j zi j − zi j zi j

• 0 = z j zi j + zk zi j + zi j z jk − z j zik − zk zik − z jk zik − zi j zik

• 0 = (zi + z j + zi j )z jk − (zi + z j + zi j )(zi + zk + zik) − z jk(zi + zk + zik)

for i, j, k ∈ [n]. Note that each underlined term is the largest with respect to our ordering,
which completes the proof. ��
The presentation of H∗Z3

n in Theorem 4.7 is identical to the presentation of G = gr(H∗Z1
n)

in Corollary 3.11, which gives the following.

Corollary 4.8 There is an isomorphism of Bn-modules

H∗Z3
n

∼= gr(H∗Z1
n) = G.

It turns out that Corollary 4.8 can be lifted to the spaces H∗Y3
n+1 and H∗Y1

n+1:

Corollary 4.9 There is an isomorphism of Bn+1-modules

H∗Y3
n+1

∼= gr(H∗Y1
n+1)

The proof of Corollary 4.9 requires additional tools that will be discussed in Sect. 5.

Remark 4.10 Theorem4.7 and its proof reveal an asymmetry in the space H∗Z3
n ; in particular,

only the generators zi j , zi j and zi for 1 ≤ i < j ≤ n are needed, but the presentation can be
describedmore compactly (and elegantly) if the generator zi j is also included.One alternative

way to describe the presentation of H∗Z3
n is to set z+

i j := zi j and z−
i j := zi j with the action

of Bn given by Table 7.

One could then write the presentation of H∗Z3
n as Z[z+

i j , z−
i j , zi ]/K,whereK is generated

by the Bn-image of the relations (z+
i j )

2 = (zi j )
2 = (zi )

2 and

(i) z+
i j z

+
jk − z+

i j z
+
jk − z+

jk z+
ik (i i) zi z

+
i j − z+

i j z j − zi z j (i i i) z j z
−
i j − z j z

+
i j − z+

i j z
−
i j .

This is more or less a rewriting of Theorem 4.7, but has the disadvantage of being less
explicit and less obviously related to the presentation of H∗Z1

n . However, there are some
advantages to this perspective, and we will return to it in Sect. 5.
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Table 8 Action of the elements
ti , t j and (i, j) ∈ Bn on the

generators z+
i j , z−

i j , zi ∈ G
ti t j (i, j)

z+
i j z−

i j z−
i j −z+

i j

z−
i j z+

i j z+
i j −z−

i j

zi −zi zi z j

Similarly, the presentation of the ring G can be re-written

G = Z[z+
i j , z−

i j , zi ]/L′

for 1 ≤ i < j ≤ n, where L′ is generated by (z+
i j )

2 = (z−
i j )

2 = (zi )
2 and

(i) z+
i j z

−
i j (i i) z+

i j z j − z+
i j zi (i i i) z−

i j z j + z−
i j zi (iv) z+

i j z
+
jk − z+

i j z
+
ik − z+

jk z+
ik ,

(v) z−
i j z

+
jk − z−

i j z
−
ik − z+

jk z−
ik

(vi) z−
i j z

−
jk − z−

i j z
+
ik − z−

jk z+
ik (vi i) z+

i j z
−
jk − z+

i j z
−
ik − z−

jk z−
ik

Now the action by Bn on the generators (see Table 8) is significantly simpler.

5 T-equivariant cohomology

There are several results whose proofs we have deferred thus far. In this section, we will
build the tools to prove these theorems and more deeply understand the connections between
the d = 1 and d = 3 cases for Zd

n and Yd
n+1. To do so, we will delve into the world of

equivariant cohomology; background material on equivariant cohomology can be found in
Sect. 5.1. Experts on the topic can proceed directly to Sect. 5.2.

5.1 Background

Equivariant topology is a powerful tool by which to study a topological space X with a group
action by a Lie group T ; see Anderson [3], Proudfoot [41], and Tymoczko [49] for excellent
introductions to the topic. Recently in [39], Moseley successfully used equivariant cohomol-
ogy to study complements of hyperplane and subspace arrangements in real Euclidean space.
Our approach will follow Moseley’s lead.

Henceforth, the key objects will be:

• T , a Lie group. For us, T will almost exclusively be U (1), the unit circle;
• X , a topological space that T acts on; call X a T -space and let X T be the space fixed by

T . For our purposes X will be an oriented manifold. Call such a manifold a T -manifold,
and any submanifold of X that is stable under the action of T a T -submanifold;

• ET , a contractible space which T acts upon freely;
• XT := ET ×T X , is defined to be the quotient of ET × X by

(t · e, x) ∼ (e, t · x)

for t ∈ T , e ∈ ET and x ∈ X . A nice special case is when X is a point; then XT is
simply the classifying space of T , written BT . See example 5.1 for more details.

• H∗
T (X) := H∗(XT ) is the T -equivariant cohomology of X . This is precisely the ordinary

cohomology for XT . Intuitively, if T acts freely on X then H∗
T (X) = H∗(X/T ).
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• [Y ]T ∈ Hk
T (X) is the class of a codimension k oriented T -stable submanifold of X .

To make the above more concrete, consider the following example.

Example 5.1 Let X be a single point, denoted pt, and T = U (1). To determine ET , one must
find a space that (1) T acts upon freely and (2) is contractible. There is a natural free action
of T on S

2n+1 ⊂ C
n+1 by rotation, where eπ i ∈ U (1) acts on (z0, · · · , zn) by

eπ i · (z0, · · · , zn) = (eπ i z0, · · · , eπ i zn).

While S
2n+1 satisfies the first requirement, it is not contractible. To correct for this, note

that S
2n+1 can be successively embedded in S

2n+2�+1 for � ≥ 0. Following this procedure
iteratively allows us to view S

2n+1 inside of S
∞ (defined as the union of S

2n+1 for all n)
which is a contractible space. Thus ET = S

∞. Since X = pt, the space ptT is simply

ptT = S
∞ ×T pt = S

∞/S
1.

In general, the quotient of S
2n+1 by the rotation action of S

1 gives complex projective space
C P

n , and in the limit

S
∞ /S

1 = C P
∞,

where C P
∞ is infinite complex projective space. Hence H∗

T (pt) = H∗(C P
∞). The coho-

mology of C P
∞ (with coefficients in Q) is the univariate polynomial ring Q[u] where

u ∈ H2(C P
∞).

Here, we understand u as the image of [0]T under the induced map from the inclusion

i : pt ↪−→ C

pt �→ 0.

Example 5.1 illustrates one of the key differences between ordinary and equivariant
cohomology: in the latter, H∗(pt) = Q a (relatively) uninteresting ring. By contrast,
H∗

T (pt) = Q[u] has a richer structure.
Many of the important tools in ordinary cohomology also hold in the equivariant setting,

including functoriality, cohomological ring structure, Poincare duality for smooth orientable
spaces, the Leray-Serre spectral sequence, the Künneth formula, and more (see [49]). This
means, for starters, that the argument showing that H∗(pt) = Q is a module over H∗(X) can
be used to show that H∗

T (pt) is a module over H∗
T (X). In the case most relevant to us, where

T = U (1), this says that H∗
T (X) is a Q[u]-module. Remark 5.2 discusses another “standard”

fact.

Remark 5.2 One property which we will use repeatedly is that if T -manifolds Y , Z ⊂ X
have empty intersection, then in H∗

T (X), their product [Y ]T · [Z ]T is 0. This is a special case
of the more general fact that if Y and Z intersect transversely their product in equivariant
cohomology will be an intersection number. The same statement is a standard fact in ordinary
cohomology, and can be proved in much the same way for equivariant cohomology. See
Dorpalen-Barry–Proudfoot–Wang [20, § 2.5] for a proof of this fact over Z, along with more
intuition for the equivariant classes represented by submanifolds.

The space XT is a fiber bundle over the classifying space BT = ET /T :

X −→ XT −→ BT . (5.1.1)
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In principal, one might try to compute the ordinary cohomology of XT using a Leray spectral
sequence. In general this is very difficult, but we will see that in our case the relevant spectral
sequence collapses.

In particular, a space X is equivariantly formal (with respect to T ) if the spectral sequence
in (5.1.1) collapses at the E2 page; this means that H∗

T (X) is a free module over HT (pt).
Importantly, if X and BT have cohomology concentrated only in even degrees, then X is
equivariantly formal with respect to T . All of the spaces we consider (e.g.Z3

n and Y3
n+1) will

satisfy this hypothesis.
If X is equivariantly formal with respect to T , there is an H∗

T (pt)-module isomorphism

H∗
T (X) = H∗(X) ⊗ H∗

T (pt).

Again, we almost exclusively care about the case that T = U (1); the above then says that

H∗
T (X) = H∗(X) ⊗ Q[u].

Equivariant formality thus allows us to recover information about H∗(X) from H∗
T (X) and

vice-versa. For instance, if X is equivariantly formal, then any Q-basis for H∗(X) is an
H∗

T (pt)-basis for H∗
T (X); ifT = U (1) andv1, · · · , vk is a basis for H∗(X), thenv1, · · · , vk, u

is a Q-basis for H∗
T (X).

Example 5.3 Let T = U (1) and X = R
3 \{0}. Then T acts on R

3 \{0} by rotation around
the x-axis. Let Z+ and Z− be the positive and negative x-axes, respectively. Once we fix an
orientation ofR3 \{0} and orient Z+ and Z− outwards, we obtain two classes in H2

T (R3 \{0}),
namely [Z+]T and [Z−]T .

Consider the map

f : Q[x, y]/(xy) −→ H∗
T (R3 \{0})

y �−→ [Z+]T

x �−→ [Z−]T .

By Remark 5.2, since Z+ ∩ Z− = ∅, their corresponding classes in equivariant cohomol-
ogy multiply as

[Z+]T · [Z−]T = 0,

and so f is well-defined. In fact, f defines an isomorphism; this argument is written out in
detail in [41, Prop 5.22] and [39, Example 2.4].

Since both R
3 \{0} and BT = C P

∞ have cohomology concentrated in even degrees,
R
3 \{0} is equivariantly formal, and therefore

H∗
T (R3 \{0}) ∼= Q[x, y]/(xy) ∼= Q[u] ⊗ H∗(R3 \{0}).

We would like an explicit map between Q[x, y]/(xy) and Q[u] ⊗ H∗(R3 \{0}). To this end,
consider the T -equivariant projection

π : R
3 \{0} −→ R

2

(x, y, z) �−→ (y, z),

so that π−1(0) = Z+ � −Z− (when accounting for orientation). We are interested in the
image of u under the induced maps

H∗
T (pt)

i∗−→ H∗
T (R2)

π∗−→ H∗
T (R3 \{0}).
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The first map sends u to [0]T . By the above discussion, π∗([0]T ) = y − x , and therefore

π∗(i∗(u)) = y − x .

Note that in H∗(R3 \{0}), the classes [Z+] and [Z−] represent the same generator of
H∗(R3 \{0}). This gives a (non-canonical) isomorphism:

f ′ : Q[x, y]/(xy) −→ Q[u] ⊗ H∗(R3 \{0})
y − x �−→ u

y �−→ [Z+].
See [41, Prop 5.22] and [39, Example 2.4] for a more in-depth description of this example.

There are several consequences of equivariant formality proved by Moseley in [39] that
will play an important role in our analysis.

Proposition 5.4 (Moseley [39, Prop. 2.5, Prop 2.9]) Let X be an equivariantly formal T -
space. Then there are surjections

�0 : H∗
T (X) → H∗(X)

sending u to 0 and

�1 : H∗
T (X) → H∗(X T )

sending u to 1, which induce the ring isomorphisms

H∗
T (X)/〈u〉 ∼= H∗(X),

H∗
T (X)/〈u − 1〉 ∼= H∗(X T ).

If a group W acts on X and commutes with the action of T , then there is a W -action on
H∗

T (X) which fixes u, and the maps �0 and �1 are W -equivariant.

One corollary to Proposition 5.4 is that there is a natural filtration on H∗(X T ) coming from
the cohomological grading on H∗

T (X). Note that u has cohomological degree 2 in H∗
T (X).

Definition 5.5 (Equivariant filtration) Suppose X is an equivariantly formal T -space, so that
H∗

T (X)/〈u − 1〉 ∼= H∗(X T ). The equivariant filtration on H∗(X T ) is then

F0(X) ⊂ F1(X) ⊂ · · · ⊂ H∗(X T ),

where Fk(X) is the image under �1 of the classes in H∗
T (X) of cohomological degree at

most k.
Write the associated graded ringwith respect to the equivariant filtration as grT (H∗(X T )).

Corollary 5.6 (Moseley, [39, Cor. 2.7] There is an isomorphism

grT (H∗(X T )) ∼= H∗(X).

Corollary 5.6 has a similar flavor toCorollaries 4.8 and4.9. This connectionwill be formalized
in Corollary 5.13 and Theorem 5.14.

It is useful to see Proposition 5.4 and Corollary 5.6 in the context of Example 5.3.
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Example 5.7 ContinuingExample 5.3, consider first the subspaceR
3 \{0}fixedby the rotation

action of T = U (1). Since T rotates around the x-axis,

(R3 \{0})T = {(x, 0, 0) : x ∈ R \{0}} = Z+ � Z−.

By Example 5.3 and Proposition 5.4:

H∗
T (R3 \{0})/〈u〉 ∼= Q[y]/(y2) ∼= H∗(R3 \{0}), (5.1.2)

H∗
T (R3 \{0})/〈u − 1〉 ∼= Q[y]/(y2 − y) ∼= H∗(Z+ � Z−). (5.1.3)

The first isomorphism in (5.1.2) follows because f ′ : y − x �→ u so we identify y − x = 0 in
H∗

T (R3 \{0})/〈u〉. The first isomorphism in (5.1.3) is because y−x = 1 in H∗
T (R3 \{0})/〈u−

1〉, so
0 = xy = (y − 1)y = y2 − y.

The second isomorphisms in both (5.1.2) and (5.1.3) are applications of Proposition 5.4,
but can be verified directly by computing H∗(R3 \{0}) and H∗(Z+ � Z−). The former is
standard; the latter is concentrated in degree 0, and can be thought of as the Q-vector space
of linear functionals on Z+ � Z−. One can then understand y as a single Heaviside function
y : Z+ � Z− → Z given by

y(p) :=
{
1 p ∈ Z+

0 p ∈ Z−.

It follows naturally that y2 = y and that y is the only function needed to generate this space.
(This line of reasoning should feel reminiscent of § 3!)

Finally, note that although Q[y]/(y2 − y) is not graded, it has an ascending filtration by
degree, and the associated graded ring with respect to this filtration is Q[y]/(y2). Corollary
5.6 says

grT (H∗
T R

3 \{0}) ∼= H∗(R3 \{0}),
and so we see that the two associated graded rings—e.g. coming from the equivariant
filtration and the filtration by degree in the Heaviside functions—coincide. One way
of interpreting this is that the presentation of H∗(Z+ � Z−) using Heaviside functions is
particularly natural with respect to equivariant cohomology. We will see this phenomena
again in the case of H∗Z1

n and H∗Y1
n+1.

5.2 Applications toZ3
n andY3

n+1

Our goal is to apply Proposition 5.4 and Corollary 5.6 to Z3
n and its lift, Y3

n+1. To do so, we
must identify a torus action and prove that it commutes with the respective actions of Bn and
Bn+1.

Proposition 5.8 There is an action by the circle group T = U (1) on Z3
n and Y3

n+1 which
commutes with the actions of Bn and Bn+1 respectively, and has fixed spaces

(Z3
n)U (1) = Z1

n

(Y3
n+1)

U (1) = Y1
n+1.
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Proof Identify R
3 with C ⊕ R, and let ω ∈ U (1) act on (z, x) ∈ C ⊕ R by

ω · (z, x) = (ωz, x).

Let |(z, x)| be the magnitude of (z, x), thought of as a vector in R
3. Importantly,

|(ωz, x)|2 = |(z, x)|2.
This shows that the action by ω commutes with the action by ϕ:

ω · (ϕ · (z, x)) = ω · −(z, x)

|(z, x)|2 = −(ωz, x)

|(z, x)|2 = ϕ(ωz, x).

The Sn-action onZ3
n by coordinate permutation commutes with the action byU (1) in a more

straightforward way, and hence the action of Bn commutes with the U (1) action. The fixed
space of the U (1) action on C ⊕ R is {0} ⊕ R, from which it follows that

(Z3
n)U (1) = {(p1, · · · , pn) ∈ ({0} ⊕ (R \{0}))n ⊂ (C ⊕ R)n : pi �= p j , pi �= ϕ(p j )} ∼= Z1

n .

To study the action of U (1) on Y3
n+1, first embed U (1) into SU2 via the isomorphism

U (1) ∼=
{(

ω 0
0 ω

)

: ω = e2π iθ
}

.

From this identification it follows that U (1) acts on SU2 on the right by multiplication,
inducing a diagonal action on Y3

n+1. (Recall that SU2 acts on the left in Y3
n+1). The action

by U (1) commutes with the Z2 antipodal action on Y3
n+1 (e.g. left multiplication by −1)

because −1 is in the center of SU2. Since U (1) acts diagonally, it must also commute with
the action of Sn+1 on Y3

n+1 by coordinate permutation. Hence the U (1) action commutes
with the Bn+1-action on Y3

n+1. To determine the fixed space of the U (1)-action, note that
g ∈ SU2 commutes with every element of U (1) if and only g ∈ U (1). Thus in Y3

n+1

(p1, · · · , pn) ∼ (p1ω, · · · , pnω)

for every ω ∈ U (1) if and only if pi ∈ U (1) forall 1 ≤ i ≤ n, and so

(Y3
n+1)

U (1) = Y1
n+1.

��
As a Corollary, we immediately obtain the following:

Corollary 5.9 The spaces Z3
n and Y3

n+1 are equivariantly formal with respect to the action
by T = U (1). Hence

• H∗
T (Z3

n) and H∗
T (Y3

n+1) are Q[u] modules;
• There is an action of Bn (resp. Bn+1) on H∗

T (Z3
n) (resp. H∗

T (Y3
n+1)) that fixes u;

• The maps �0 and �1 as in Proposition 5.4 are surjective and Bn (resp. Bn+1) equivariant;
• There are isomorphisms

grT (H∗Z1
n) ∼=Bn H∗Z3

n

grT (H∗Y1
n+1)

∼=Bn+1 H∗Y3
n+1,

where here the associated graded ring is with respect to the equivariant filtration.
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Proof The equivariant formality follows from the fact that both Z3
n and Y3

n+1 have coho-
mology concentrated in even degrees. The remainder of the statement follows by applying
Corollary 5.6. ��

The equivariant setting allows us to give a description of the total representations of H∗Z3
n

and H∗Y3
n+1 by applying Proposition 3.3 and adapting techniques used in [39] and [40].

Theorem 5.10 As ungraded representations

H∗Z3
n

∼=Bn Q[Bn],
H∗Y3

n+1
∼=Bn+1 Ind

Bn+1
〈c〉 1 = Q[Bn+1/〈c〉],

where c is a Coxeter element of Bn+1 and 1 is the trivial representation.

Proof By Proposition 3.3, Y1
n+1 is isomorphic to the Bn+1 action on the cosets Bn+1/〈c〉.

Since Y1
n+1 is a disjoint union of contractible pieces, H0Y1

n+1 = H∗Y1
n+1 and so passing to

cohomology simply gives

H∗Y1
n+1

∼=Bn+1 Q[Bn+1/〈c〉].
Proposition 3.3 then says that the Bn action on the set of connected components of Y1

n+1

is simply transitive. Since Y1
n+1 is Bn-equivariantly homeomorphic to Z1

n , this implies that
Bn also acts simply transitively on the set of connected components of Z1

n .
Thus in cohomology,

H0Z1
n = H∗Z1

n = Q[Bn].
Finally, passing to the associated graded ring grT (H∗Y1

n+1) = H∗Y3
n+1 and grT (H∗Z1

n)

= H∗Z3
n will not change the isomorphism type, so the claim follows. ��

5.3 Presentation of equivariant cohomology

Having established some basic properties of H∗
T (Z3

n) and H∗
T (Y3

n+1), we turn to computing
their presentations. Our arguments will closely resemble Moseley [39].

Recall that the equivariant formality of Z3
n implies that

(1) H∗
T (Z3

n) ∼= H∗Z3
n ⊗ Q[u] as a Q[u]-module, where u is the image of H2

T (pt) under the
map induced from Z3

n → pt, and
(2) Any generating set for H∗Z3

n can be lifted to a generating set of H∗
T (Z3

n) over Q[u].
We will take a slight shortcut here and use the smaller generating set for H∗Z3

n discussed
in Remark 4.10: in particular, pick generators of H∗Z3

n as z+
i j , z−

i j , and zi for integers 1 ≤
i < j ≤ n. Since the maps �0 : H∗

T (Z3
n) → H∗Z3

n and �1 : H∗
T (Z3

n) → H∗Z1
n are

Bn-equivariant by Corollary 5.9, the Bn action on the generators in H∗
T (Z3

n) is inherited from
these spaces (see Table 7).

Wewould first like to relate these generators to T -submanifolds ofZ3
n . Recall the definition

of the hyperplanes

Hi j :={(x1, · · · , xn) ∈ R
n : xi �= x j }

Hi :={(x1, · · · , xn) ∈ R
n : xi �= 0}
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and that the action of ti on Z3
n is

ti · (x1, · · · , xi , · · · , xn) = (x1, · · · , ϕ(xi ), · · · , xn).

Let wi = (xi , yi , zi ) ∈ R
3 \{0}. For integers i, j ∈ [n], define the maps from

(R3 \{0})n → R
3 by

ωi j : (w1, · · · , wn) �−→ w j − wi ,

ωi j : (w1, · · · , wn) �−→ ϕ(w j ) − wi ,

ωi : (w1, · · · , wn) �−→ wi .

These maps are not linear. However, they are T -equivariant and have the property that
(ωi j )

−1(R3 \{0}) = R
3n − (

Hi j ⊗ R
3) (and similarly for ωi ). Note that

t j · (ωi j )
−1(R3 \{0}) = (ωi j )

−1(R3 \{0})
and that

Z3
n =

⋂

1≤i �= j≤n

(
(ωi j )

−1(R3 \{0}) ∩ (ωi j )
−1(R3 \{0})

)
∩

⋂

1≤i≤n

(
ω−1

i (R3 \{0})
)

.

For ease of notation, write ωJ to refer to an arbitrary ω-map, so ωJ is the place-holder for
ωi j for i, j ∈ [n]± and ωi for i ∈ [n]. Define

Y +
J :=ω−1

J (Z+)

Y −
J :=ω−1

J (Z−),

where Z+ (resp. Z−) is the positive (resp. negative) part of the x-axis inR
3 \{0}. This induces

classes ω∗
J ([Y +]T ) and ω∗

J ([Y −]T ) in H∗
T (Z3

n). By Example 5.3, and functoriality,

ω∗
J ([Y −]T ) = ω∗

J ([Y +]T − u) = ω∗
J ([Y +]T ) − u.

We are now ready to obtain relations in H∗
T (Z3

n). Our primary method will be to show
that Y ±

J ∩ Y ±
J ′ = ∅ for certain J , J ′ ⊂ [n]±, which by Remark 5.2 will imply that the

corresponding classes in equivariant cohomology multiply to 0.

Lemma 5.11 For 1 ≤ i < j ≤ n, let

� : Q[z+
i j , z−

i j , zi , u] −→ H∗
T (Z3

n)

be the map sending

z+
i j �→ ω∗

i j ([Z+]T ) z−
i j �→ ω∗

i j
([Z+]T ) zi �→ ω∗

i ([Z+]T ) u �→ u.

Then � is surjective and the following relations lie in ker(�):

0 = z+
i j (z

+
i j − u) = z−

i j (z
−
i j − u) = zi (zi − u) (5.3.1)

0 = u−1
(

z+
i j z

+
jk(z

+
ik − u) − (z+

i j − u)(z+
jk − u)z+

ik

)
(5.3.2)

0 = u−1
(

z+
i j zi (z j − u) − (z+

i j − u)(zi − u)z j

)
(5.3.3)

0 = u−1
(

z+
i j z

−
i j (zi − u) − (z+

i j − u)(z−
i j − u)zi

)
(5.3.4)

Note that relations (5.3.2)—(5.3.4) are all polynomials (i.e. the expression in the parentheses
has a factor of u).
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Proof Because Z3
n is formal and z+

i j , z−
i j and zi for 1 ≤ i < j ≤ n is a generating set

for H∗Z3
n , it follows that z+

i j , z−
i j , zi and u form a generating set for H∗

T (Z3
n). Hence � is

surjective.
For (5.3.1),

�(z J (z J − u)) = ω∗
J ([Z+]T ) ω∗

J ([Z−]T ) = ω∗
J (0) = 0

because Z+ ∩ Z− = ∅.
For 1 ≤ i < j < k ≤ n, consider

Y +
i j = {(w1, · · · , wn) : xi < x j },

Y +
jk = {(w1, · · · , wn) : x j < xk},

Y −
ik = {(w1, · · · , wn) : xk < xi }.

Then Y +
i j ∩ Y +

jk ∩ Y −
i j = ∅ since we cannot have xi < x j < xk < xi . This implies that

�(z+
i j z

+
jk(z

+
ik − u)) = ω∗

i j ([Z+]T ) ω∗
jk([Z+]T ) ω∗

ik([Z−]T ) = 0,

and analogously,

�((z+
i j − u)(z+

jk − u)z+
ik) = ω∗

i j ([Z−]T ) ω∗
jk([Z−]T ) ω∗

ik([Z+]T ) = 0.

The expansion of the above expression has a factor of u; removing this factor recovers (5.3.2).
Relations (5.3.3) and (5.3.4) follow similarly. For the former, Y +

i j ∩ Y +
i ∩ Y −

j = ∅ since

we cannot have 0 < xi < x j < 0. By the same argument, Y −
i j ∩ Y −

i ∩ Y +
j = ∅ and following

the logic of (5.3.2), we obtain (5.3.3).
For (5.3.4), elements in Y +

j ∩Y +
i j
must have xi < 0 since 0 < x j implies ϕ(x j ) < 0, From

this it follows that Y +
j ∩ Y +

i j
∩ Y −

i j = ∅ since we cannot have 0 < x j < xi < 0. Analogously

Y −
j ∩ Y −

i j
∩ Y +

i j = ∅, and (5.3.4) follows. ��

We now use these relations to give a presentation for H∗
T (Z3

n).

Theorem 5.12 Let K′ be the ideal generated by Bn-images of the relations in Lemma 5.11.
Then

H∗
T (Z3

n) = Z[z+
i j , z−

i j , zi , u : 1 ≤ i < j ≤ n]/K′ .

Proof Lemma 5.11 shows that � induces a surjective map

� : Q[z J , u]/K′ → H∗
T (Z3

n).

We would like to show � is injective as well.
Recall that �0 is the map defined by sending u to 0. By Corollary 5.9, applying �0 to

H∗
T (Z3

n) gives a surjective, Bn equivariant map to H∗Z3
n . Applying �0 to Z[z J , u] via

�0 : Z[z J , u] −→ Z[z J ]
we see that�0(K′

) = K from Remark 4.10. (Note that the image of relations (5.3.2), (5.3.3),
(5.3.4) under �0 is the negation of the relations (i), (i i) and (i i i) in H∗Z3

n given in Remark
4.10.)
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It follows that we have a commutative diagram with exact bottom row and surjective
columns:

K′
Z[z J , u] H∗

T (Z3
n) 0

0 K Z[z J ] H∗Z3
n 0.

�0

�

�0 �0

The same diagram chase argument used by Moseley in [39, Thm 4.6] then applies to show
that ker(�) = K′. ��
One key takeaway from Theorem 5.12 is that (as in Example 5.3) the Heaviside function
presentation of H∗Z1

n is quite natural with respect to equivariant cohomology.

Corollary 5.13 The filtration by Heaviside-like functions zi j , zi for i, j ∈ [n]± and the equiv-
ariant filtration on H∗Z1

n coincide. Thus

H∗
T (Z3

n)/〈u〉 = grT (H∗Z1
n) ∼= gr(H∗Z1

n) ∼= H∗Z3
n .

Proof This follows from noting that setting u = 1 in H∗
T (Z3

n) recovers the presentation of
H∗Z1

n in Corollary 3.11. ��

5.4 Lifting toY3
n+1

We would like make an analogous statement to Corollary 5.13 for H∗
T (Y3

n+1) by applying
two key facts established earlier:

(1) there is a Bn-equivariant homeomorphism between Z1
n and Y1

n+1 and
(2) grT (Z1

n) coincides with gr(Z1
n).

Using a similar argument to [40, Remark 2.9], this is enough to establish the desired connec-
tion.

Theorem 5.14 The filtration by signed cyclic Heaviside functions yi jk for i, j, k ∈ [n]±0 and
the equivariant filtration on H∗Y1

n+1 coincide. Thus

H∗
T (Y3

n+1)/〈u〉 = grT (H∗Y1
n+1)

∼= gr(H∗Y1
n+1)

∼= H∗Y3
n+1.

Proof The key idea here is to recognize that the homeomorphism between Z1
n and Y1

n+1
derived from Proposition 2.10 is a special case (� = 0) of a more general family of homeo-
morphisms for 0 ≤ � ≤ n:

f� : Y1
n+1 −→ Z1

n

(p0, · · · , pn) �−→ (p−1
� p0, · · · , p−1

� p�−1, p−1
� p�+1, · · · p−1

� pn).

In cohomology, this induces a family of maps f ∗
� sending zi j to y�i j and zi to y��i . By

Corollary 5.6, in Z1
n the filtration by Heaviside-like functions coincides with the filtration

arising from equivariant cohomology. It follows that for a fixed �, the same must be true
of H∗Y1

n+1 with respect to the filtration arising from the y�i j and the filtration arising from
H∗

T (Y3
n+1). Since the latter filtration is stable under the action of Bn+1, it must coincide with

the filtration by all signed cyclic Heaviside functions (e.g. allowing the indices i, j, k ∈ [n]±0
to vary.) ��
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Since we have already obtained a description of gr(H∗Y1
n+1) by Corollary 3.8, we obtain

a description of H∗Y3
n+1 as a Corollary.

Corollary 5.15 The ring H∗Y3
n+1 has presentation

H∗Y3
n+1

∼= Z[yi jk]/ I′,

for distinct i, j, k ∈ [n]±0 , where I′ is generated by the relations

(i) y2i jk, (i i) yi jk − yi j� + yik� − y jk� (i i i) yi j k − yi j k

(iv) yi jk = y jik (v) yi jk yik� − yi jk yi j� − yik�yi j�.

6 Connection to theMantaci-Reutenauer algebra

Finally, we will complete the Type B story by studying the family of Bn-representations
arising in the Mantaci–Reutenauer algebra (Definition 6.4), introduced in [35]. Our pri-
mary goal is to prove Theorem 6.26 relating the topological spaces from Sect. 3–5 to these
representations. In order to do so, we will need to define a family of idempotents in the
Mantaci-Reutenauer algebra (§ 6.1) and the representations they generate (§ 6.1.1), as well
as decompose the ring G further by signed set compositions (§ 6.1.2).

An integer composition of n is a sequence (a1, · · · , a�) where ai ∈ [n] and |a1| + · · · +
|a�| = n. Similarly a signed integer composition of n will be a sequence (a1, · · · , a�) where
ai ∈ [n]± and again |a1| + · · · + |a�| = n.

Definition 6.1 For σ in one-line notation, the Mantaci-Reutenauer descent set of σ is

MRDes(σ ) :=
{

i ∈ [n − 1] : |σi | > |σi+1| and σi and σi+1 have the same sign or

σi and σi+1 have opposite signs.

Note that MRDes(σ ) partitions σ into � := |MRDes(σ )| + 1 many blocks, b1, · · · , b� of
size m1, · · · , m�. By construction every element in bi will have the same sign; let

sgn(mi ) =
{

mi if bi ⊂ [n]
mi if bi ⊂ [n]−.

Then the shape of σ ∈ Bn is the signed integer composition

sh(σ ) := (sgn(m1), · · · , sgn(m�)).

Example 6.2 If σ = (3, 4, 1, 5, 2) ∈ B5, then MRDes(σ ) = {2, 4}, which partitions σ into
ordered blocks ({3, 4}, {1, 5}, {2}). Therefore sh(σ ) = (2, 2, 1).

Remark 6.3 Recall that forσ ∈ Sn , the descent set ofσ isDes(σ ) = {i ∈ [n−1] : σi > σi+1}.
Because Sn ≤ Bn , both MRDes(σ ) and sh(σ ) are well-defined for σ ∈ Sn . In particular,
when σ ∈ Sn , MRDes(σ ) = Des(σ ) and sh(σ ) will be an unsigned integer composition of
n.
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Definition 6.4 The Mantaci-Reutenauer algebra is the algebra �′[Bn] generated by Yα in
Q[Bn] where

Yα :=
∑

σ∈Bn
sh(σ )=α

σ.

The dimension of �′[Bn] is 2 · 3n−1; for other bases of �′[Bn], see [2].

6.1 TheVazirani idempotents

In [51], Vazirani introduces a complete family of orthogonal idempotents for �
′ [Bn]. These

idempotents generalize a family of idempotents {eλ}λ�n introduced by Garsia–Reutenauer in
[26] for �[Sn]; see [22, § 3] for complete details on both definitions.

We will use an equivalent construction of Vazirani’s idempotents given by Douglass–
Tomlin in [22, Prop. 2.5]. This will require the following objects and maps:

• Let C(n) and SC(n) be the set of unsigned and signed integer compositions of n, respec-
tively.

• For p = (p1, · · · , p�) ∈ SC(n), let |p| := (|p1|, · · · , |p�|) ∈ C(n).
• For p = (p1, · · · , p�) ∈ SC(n), define

p̂i =
i∑

j=1

|p j | ∈ [n],

and the map ̂ sending signed compositions to subsets of [n − 1]:
̂ : SC(n) −→ 2[n−1]

p = (p1, · · · , p�) �−→ p̂ = ( p̂1, · · · , p̂�−1).

If we restrict the domain of ̂ to ordinary compositions C(n), then ̂ defines a bijection,
and allows us to identify the sets

{

σ ∈ Sn : sh(σ ) = p ∈ C(n)

}

=
{

σ ∈ Sn : Des(σ ) = p̂

}

.

• A set composition of [n] is a partition of [n] into disjoint blocks (b1, · · · , b�). Let �[n]
be the set of such compositions. Define

� : SC(n) −→ �[n]
p = (p1, · · · , p�) �−→ �(p) = (�(p1), · · · ,�(p�)),

where �(pi ) := { p̂i−1 + 1, · · · , p̂i }. Note that p̂ and �(p) differ because the former is
a subset of [n − 1] while the latter is a genuine set composition of [n].

• Recall that a signed partition of n is a pair of partitions λ = (λ+, λ−) such that λ+ is
a partition of n1 ≤ n, λ− is a partition of n2 ≤ n, and n1 + n2 = n. Let �(λ+) (resp.
�(λ−)) be the number of parts in λ+ (resp. λ−), and �(λ) = �(λ+) + �(λ−).

• For p ∈ SC(n), let ←−p be the reordering of the parts of p into a signed partition (λ+, λ−)

so that λ+ consists of all positive parts of p in decreasing order and λ− consists of all
negative parts of p in decreasing order.
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• For a set A ⊂ [n − 1], define an element in the Type A Descent algebra �[Sn]:
X A :=

∑

w∈Sn
Des(w)⊂A

w.

Varying over all subsets A ⊂ [n − 1] gives a basis for �[Sn].
• For m > 0, the Reutenauer idempotent rm ∈ �[Sm] ⊂ Q[Sn] is

rm =
∑

A⊂[m−1]

(−1)|A|

|A| + 1
X A.

Note that the definition of rm can be extended to any ordered subset J ⊂ [n] by replacing
[m] by J , in which case we will write rJ ∈ Q[SJ ]. Furthermore, since Sn ≤ Bn , one also
has rJ ∈ Q[Bn].

• For J ⊂ [n] the element w0,J ∈ Bn is the product
∏

i∈J

ti .

In other words, w0,J acts like −1 on J and 1 off J .
• For J ⊂ [n], define

ε±
J := 1

2
(1 ± w0,J ).

Example 6.5 Suppose p = (2, 2, 1). Then |p| = (2, 2, 1), p̂ = {2, 4, 5} and �(p) =
{{1, 2}, {3, 4}, {5}}. Finally,

←−p = (
(2, 1)
︸ ︷︷ ︸

λ+
, (2)
︸︷︷︸
λ−

)
,

so �(λ+) = 2, �(λ−) = 1.

We are at last ready to define the Vazirani idempotents.

Definition 6.6 (Douglass-Tomlin [22, Prop 2.5]). Given p = (p1, · · · , p�) ∈ SC(n), define
the element

Ip := X p̂ · ε
ζ1
�(p1)

· r�(p1) · · · εζ�

�(p�)
· r�(p�),

where ζi is the sign of pi . Then for each signed partition (λ+, λ−), the Vazirani idempotent
is

g(λ+,λ−) :=
∑

p∈SC(n)←−p =(λ+,λ−)

1

�(λ)! Ip.

The Vazirani idempotents extend the Garsia-Reutenauer idempotents in �[Sn], which are
defined as:

eλ = 1

�(λ)!
∑

p∈C(n)←−p =λ

X p̂ · r�(p1) · · · r�(p�). (6.1.1)

In fact, we can make the relationship between the g(λ+,λ−) and eλ precise. In [2], Aguiar–
Bergeron–Nyman study the surjection τ : Bn → Sn that forgets the signs of σ ∈ Bn . For
example, if σ = (2, 1, 3), then τ(σ ) = (2, 1, 3).
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Theorem 6.7 (Aguiar–Bergeron–Nyman [2, Prop 7.5]). The map τ is an algebra homomor-
phism from

τ : Q[Bn] → Q[Sn].
When restricted to �

′ [Bn], the map τ surjects onto �[Sn].
This will allow us to precisely relate the g(λ+,λ−) to the eλ; the author is grateful to M.

Aguiar for suggesting this line of inquiry.

Proposition 6.8 For a signed partition (λ+, λ−), one has

τ(g(λ+,λ−)) =
{
eλ+ λ− = ∅
0 otherwise.

Proof Since τ is an algebra homomorphism, it is enough to consider how τ maps each term
in Ip for ←−p = (λ+, λ−). In particular, for any �(pi ), since τ(w0,Pi ) = 1, it follows that

τ(ε
ζi
�(pi )

) =
{
1 ζi = +
0 ζi = −.

Thus τ(Ip) = 0 if p has any negative parts, from which it follows that τ(g(λ+,λ−)) = 0 if
λ− �= ∅. On the other hand, if ←−p = (λ+,∅), then p ∈ C(n), |p| = p and τ(ε+

Pi
) = 1 for all

i . Hence τ(g(λ+,∅)) = eλ+ by (6.1.1). ��
In [26], Garsia andReutenauer show that the definition of the Type A Eulerian idempotents

given in (2.1.1) is equivalent to

ek =
∑

λ�n
�(λ)=k−1

eλ. (6.1.2)

Our analog of the Eulerian idempotents will take inspiration from (6.1.2):

Definition 6.9 For 0 ≤ k ≤ n, define the idempotent in �′[Bn]
gk :=

∑

λ=(λ+,λ−)

�(λ+)=k

g(λ+,λ−). (6.1.3)

Proposition 6.8 implies the following relationship between the gk and the ek .

Corollary 6.10 The map τ : �′[Bn] → �[Sn] sends

τ(gk) =
{
0 k = 0

ek−1 k > 0.

6.1.1 Representations generated by g(�+,�−) and gk

The idempotents in Definitions 6.6 and 6.9 generate families of Bn-representations.

Definition 6.11 For any signed partition (λ+, λ−) of n, define the Bn-representation

G(λ+,λ−) := g(λ+,λ−) Q[Bn].
Further, for 0 ≤ k ≤ n define the Bn-representation

G(k)
n := gk Q[Bn].
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Douglass–Tomlin proved in [22] that the characters of the G(λ+,λ−) could be described as
induced representations from one-dimensional characters of certain centralizers. In order to
describe and analyze these induced characters, we will temporarily extend scalars from Q to
C.

Recall from Definition 2.18 that conjugacy classes in Bn are determined by cycle type
and are parametrized by signed partitions (λ+, λ−). Our first goal is to construct a standard
element for each conjugacy class C(λ+,λ−) of Bn which we will call σ(λ+,λ−). We will then
express the representationG(λ+,λ−) as an induced representation from the centralizer Z(λ+,λ−)

of σ(λ+,λ−).
Fix the signed partition λ = (λ+, λ−); we first obtain σ(λ+,λ−) as follows. As before, let

λ̂i = ∑i
j=1 |λ j | and define�i := �(λi ) := {λ̂i−1+1, λ̂i−1+2, · · · , λ̂i }. If λi ∈ λ+, define

the positive λi -cycle

ci := ((λ̂i−1 + 1)λ̂i−1 · · · λ̂i ).

By construction ci has order |λi |.
To construct a “standard”negative cycle, recall that for any J ⊂ [n], the elementw0,J ∈ Bn

is the product of ti for i ∈ P and that for j1, j2, · · · , j� ∈ [n],

( j1 · · · j�)
−

is the negative cycle in Bn where ji �→ ji+1 for 1 ≤ i ≤ � − 1 and j� �→ j1. Then for
λi ∈ λ−, define the negative |λi | cycle

di :=
{

ci · w0,�i |λi | is odd
((λ̂i−1 + 1)λ̂i−1 · · · λ̂i )

− |λi | is even.

The cycle di has order 2|λi | in Bn . The signed permutation

σ(λ+,λ−) := c1 · · · c�(λ+)d�(λ+)+1 · · · d�(λ)−1

will be our standard representative of C(λ+,λ−).
Finally, suppose λi = λi+1 and both λi , λi+1 occur in either λ+ or λ−. Define δi to be a

particular choice of permutation swapping the blocks �i and �i+1. Specifically,

δi : j �→

⎧
⎪⎨

⎪⎩

j j /∈ �i ∪ �i+1

j + |λi | j ∈ �i

j − |λi | j ∈ �i+1.

The centralizer Z(λ+,λ−) of σ(λ+,λ−) is then generated by

• ci and w0,�i for every λi ∈ λ+
• di for every λi ∈ λ−;
• δi for every pair λi = λi+1 for 1 ≤ i ≤ �(λ) − 1. (Again, we require that λi , λi+1 are

both in λ+ or both in λ−.)
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Example 6.12 Suppose λ = (λ+, λ−) = ((2, 1), (2, 2)). Then the relevant elements of B7

(written in one-line notation) are

c1 = (2, 1, 3, 4, 5, 6, 7)

w0,{1,2} = (1, 2, 3, 4, 5, 6, 7)

c2 = (1, 2, 3, 4, 5, 6, 7)

w0,{3} = (1, 2, 3, 4, 5, 6, 7)

d3 = (1, 2, 3, 5, 4, 6, 7)

d4 = (1, 2, 3, 4, 5, 7, 6)

σ((2,1),(2,2) = (2, 1, 3, 5, 4, 7, 6)

δ3 = (1, 2, 3, 6, 7, 4, 5).

Since ci , di , w0,J and δi generate Z(λ+,λ−), any representation of Z(λ+,λ−) is determined by
its values on these elements.

Defineωk := e2π i/k . The representation of Z(λ+,λ−) we are interested in is 1-dimensional,
that is, a map Z(λ+,λ−) → C.

Definition 6.13 Let ρ(λ+,λ−) be the character of Z(λ+,λ−) given by

ρ(λ+,λ−)(σ ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω|λi | σ = ci for λi ∈ λ+

ω2|λi | σ = di for λi ∈ λ−

1 σ = w0,�i for 1 ≤ i ≤ �(λ+)

1 σ = δi for 1 ≤ i ≤ �(λ) − 1 and λi = λi+1.

The representation ρ(λ+,λ−) is of interest because of the following theorem.

Theorem 6.14 (Douglass–Tomlin [22]) There is an isomorphism of Bn-representations

G(λ+,λ−) = IndBn
Z(λ+,λ−)

ρ(λ+,λ−).

Our aim going forward is to connect the representations G(λ+,λ−) to the topological spaces
we have been studying.

6.1.2 Decomposition ofG by signed set partitions

Recall from Definition 3.14 that G is the associated graded ring of gr(H∗Z1
n) ∼= H∗Z3

n
with respect to the filtration described in Proposition 3.13. We will use the presentation of G
described by Remark 4.10 to show that G admits an even finer decomposition by signed set
compositions, defined below.

Definition 6.15 Let J1, J2 ⊂ [n] be any partition of [n]. Then α = (α+, α−) is a signed set
partition of [n] if α+ is a set partition of J1 and α− is a set partition of J2.
Let �±

[n] be the collection of all such signed set partitions of [n].
Note that we allow either α+ or α− to be empty. The blocks in α+ are said to be positive
while the blocks in α− are said to be negative. Let �(α+) (respectively, �(α−)) be the number
of parts of α+ (respectively, α−).

Write E = Z[z+
i j , z−

i j , zi ] for 1 ≤ i < j ≤ n. In order to decompose E by �±
[n], we

introduce the type map of a monomial f ∈ E .
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Definition 6.16 From f , create a graph G( f ) = (V , E), with V = [n] and E described by:

• For every z+
i j or z−

i j appearing in f , there is an edge between i and j
• For every zi appearing in f , there is a loop at the vertex i .

Define the typen( f ) ∈ �±
[n] to be the signed set partition with blocks comprised of the

connected components of G( f ); if a connected component contains a loop, it is a negative
block, and otherwise it is a positive block.

Example 6.17 Suppose n = 8 and f = (z−
12)

2z5z−
56z37. Then

type8((z
−
12)

2 · z5z−
56 · z37) = (({1, 2}, {3}, {4}, {8})

︸ ︷︷ ︸
(type8( f ))+

, ({5, 6}, {7})
︸ ︷︷ ︸
(type8( f ))−

).

The map typen is well-defined on monomials, but not polynomials. Note that typen is
surjective but not injective. (To see that it is surjective, note that for any α ∈ �±

[n], one can
easily construct an f ∈ E with type( f ) = α.)

Definition 6.18 For a signed set partition α = (α+, α−) ∈ �±
[n], define

Eα := Z[{monomials f ∈ E : typen( f ) = α}].
Note that by the above description, there is a vector space decomposition

E =
⊕

α∈�±
[n]

Eα.

We would like to show that this decomposition descends to the quotient G as well.
Recall that

G = Z[z+
i j , z−

i j , zi ]/L′

for 1 ≤ i < j ≤ n, where L′ is generated by (z+
i j )

2 = (z−
i j )

2 = (zi )
2 and

(i) z+
i j z

−
i j (i i) z+

i j z j − z+
i j zi (i i i) z−

i j z j + z−
i j zi (iv) z+

i j z
+
jk − z+

i j z
+
ik − z+

jk z+
ik ,

(v) z−
i j z

+
jk − z−

i j z
−
ik − z+

jk z−
ik (vi) z−

i j z
−
jk − z−

i j z
+
ik − z−

jk z+
ik (vi i) z+

i j z
−
jk − z+

i j z
−
ik − z−

jk z−
ik .

Proposition 6.19 With G as above, there is a vector space decomposition

L′ =
⊕

α∈�±
[n]

L′ ∩ Eα,

inducing the decomposition

G =
⊕

α∈�±
[n]

Gα,

where Gα := Eα/(L′ ∩ Eα).

Proof It is sufficient to check that each relation in L′ has summands in a single Eα for some
α ∈ �±

[n]. Relation (i) has type α+ = {{i, j}, {k}k �=i, j } and α− = ∅. Each summand in
relations (i i) and (i i i) has type α+ = {{k}}k �=i, j and α− = {i, j}, while each summand in
relations (iv)—(vi i) has type α+ = {i, j, k}, {{�}}��=i, j,k, and α− = ∅. ��
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The decomposition of G by signed set partitions is also compatible with the bi-grading
on G.
Proposition 6.20 For 0 ≤ � ≤ k ≤ n,

Gk,� =
⊕

α=(α+,α−)∈�±
[n]

�(α+)=n−k,

�(α−)=�

Gα

Proof Fix α ∈ �±
[n] with �(α+) = n − k and �(α−) = �. Consider f ∈ Gα . Factor f by the

blocks of α, and write fi as the factor of f with support αi ∈ α. Note that if αi ∈ α+, then
fi ∈ G|αi |−1,0. Similarly, if α j ∈ α−, then f j ∈ G|α j |,1.
Hence

f = f1 · · · fn−k · fn−k+1 · · · fn−k+� ∈ (G|α1|−1,0 · G|α2|−1,0 · · ·G|αn−k |−1,0
)

︸ ︷︷ ︸
α+

· (G|αn−k+1|,1 · · ·G|αn−k+�|,1
)

︸ ︷︷ ︸
α−

⊆ G|α+|−(n−k),0 · G|α−|,�
⊆ Gk,�,

because |α+| + |α−| = n.
For the other containment, consider any monomial f ∈ Gk,� and let α = typen( f ). Using

the above notation, we have that fi ∈ G|αi |−1,0 if αi ∈ α+ and G|αi |,1 if αi ∈ α−. Since
f ∈ Gk,�, we must therefore have �(α−) = �, and

deg

⎛

⎜
⎜
⎝

∏

1≤i≤n
αi ∈α+

fi

⎞

⎟
⎟
⎠ = |α+| − �(α+),

deg

⎛

⎜
⎜
⎜
⎝

∏

1≤ j≤n
α j ∈α−

f j

⎞

⎟
⎟
⎟
⎠

= |α−|.

Since deg( f ) = k,

k = |α+| − �(α+) + |α−| = n − �(α+),

from which it follows that �(α+) = n − k. ��

6.2 Induced representations

Using the decomposition of G by �±
[n], we may begin to describe the pieces Gα as induced

representations.
Given α = (α+, α−) = (α1, · · · , α�) ∈ �±

[n], let [α] ∈ SC(n) be the signed integer
composition

[α] = (#α1, · · · , #α�),
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where #αi ∈ [n]± is the size of the set αi with #αi ∈ [n] if αi ∈ α+ and in [n]− if αi ∈ α−.
As before,

←−[α] = (
←−−[α]+,

←−−[α]−) is the signed integer partition obtained by ordering the parts
of [α] in decreasing order.

Consider the Bn orbit of Gα , which will be indexed by signed partitions (λ+, λ−):

G(λ+,λ−) :=
⊕

α∈�±
[n]←−[α]=(λ+,λ−)

Gα.

The first step is to compute the characters of Gn,1 = G(0,(n)) and Gn−1,0 = G((n),0) which
will form a base-case for the other pieces of G(λ+,λ−).

Theorem 6.21 As Bn-representations

Gn,1 = IndBn
Z(∅,(n))

ρ(∅,(n)) = G(∅,(n)), Gn−1,0 = IndBn
Z((n),∅)

ρ((n),∅) = G((n),∅).

To prove Theorem 6.21, we will first prove that Gn,1 is isomorphic to a different induced rep-
resentation, and then appeal to Lemma 6.22. Both the proof of Theorem 6.21 and Lemma 6.22
will use techniques developed by Berget [10] and in the case of Lemma 6.22, by Douglass–
Tomlin [22].

Lemma 6.22 Let η be the n-cycle (12 · · · n) ∈ Sn. Then as Bn-representations,

IndBn〈η,−1〉 χ = IndBn
Z(∅,(n))

ρ(∅,(n))

where χ(η) = ωn and χ(−1) = −1.

Proof Note that Z(∅,(n)) is the cyclic group generated by a Coxeter element c of Bn and

ρ(∅,(n))(c) = ω2n .

When n is odd, we use similar methods to Berget in [10, Corollary 9.2]. In this case,−η is
a Coxeter element with eigenvalue −e2π i/n , implying that 〈η,−1〉 = Z(∅,(n)). Because n is
odd,−e2π i/n has order 2n and is in fact a primitive 2n-th root of unity. Thus the representation
χ of 〈η,−1〉 coincides with the representation ρ(∅,(n)) of Z(∅,(n)).

When n is even, we use a result by Douglass-Tomlin [22, Prop 4.1], which states that for
even n,

IndBn〈η,−1〉 χ = IndBn
Z(∅,(n))

ρ(∅,(n)).

Note that unlike the odd case, the above is a statement about the induced representations
rather than the representations χ and ρ(∅,(n)). ��

We may now prove Theorem 6.21.

Proof of Theorem 6.21 Define v := z1z+
12z+

23 · · · z+
(n−1)n ∈ Gn,1, and let Vn be the Sn-

module generated by v (cf. proof of Berget [10, Thm. 9.1, Cor. 9.2].) We claim that
as an Sn-representation, Vn ∼=Sn Lien , the multilinear component of the free Lie alge-
bra on n generators (see Example 2.6). This follows from comparing the presentation in
Remark 4.10 with the presentation of Lien discussed in Example 2.6. In particular, sending
v to z12z23 · · · z(n−1)n ∈ H (d−1)(n−1) Confn(Rd) (for d ≥ 3, odd) induces an Sn equiv-
ariant isomorphism since zi z

+
i j = z j z

+
i j in Vn (see Remark 4.10, relation (i i) of L′). Thus

Vn ∼= IndSn〈w〉 e2π i/n , where η is an n-cycle in Sn .
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Note that w0 = −1 acts on z+
i j trivially in G, and w0zi = −zi . Hence for any monomial

in Gn,1, w0 acts as −1. Because w0 is central, it follows that the 〈Sn, w0〉 module generated
by v is isomorphic to

Ind〈Sn ,w0〉
〈η,w0〉 χ,

where χ(η) = e2π i/n and χ(w0) = −1. Write this module as V ′
n , and note that

dim(V ′
n) = dim(Vn) = (n − 1)!

Now consider the Bn-module generated by v. Inspection shows that one obtains all of
Gn,1 by acting on v by Bn . Hence there is a surjection of Bn-modules:

IndBn〈Sn ,w0〉 V ′
n → Gn,1,

where

dim
(
IndBn〈Sn ,w0〉 V ′

n

)
= n!2n

2n! dim(V ′
n) = 2n−1(n − 1)! = dim(Gn,1).

The dimension count of Gn,1 follows from picking a cyclic ordering on the set [n] which
will determine the indices of the n − 1 generators zζ1

i1i2
zζ2

i2i3
· · · zζn−1

in−1in
, and then choosing

ζ j ∈ {+,−} for 0 ≤ j ≤ n − 1. (The choice of zi is irrelevant by the relations in G.)
Thus this surjection is in fact an isomorphism. By transitivity of induction,

IndBn〈η,−1〉 χ = IndBn〈Sn ,−1〉 Ind
〈Sn ,−1〉
〈η,−1〉 (χ)

= IndBn〈Sn ,−1〉(V ′
n)

= Gn,1.

The claim then follows by Lemma 6.22.
An identical argument (without the need for Lemma 6.22) shows the claim for Gn−1,0,

where now −1 acts as trivially on every monomial in Gn−1,0. ��
Remark 6.23 As suggested by the proof of Theorem 6.21, the space Gn,1 seems to be a good
candidate for a Type B analog of Lien in the sense that

• Gn,1 can be described as an induced representation from a Coxeter element of Bn and
• One can show that as a Bn−1-representation, Gn,1 restricts to the regular representation

Q[Bn−1].
A natural next step would be to extend some of the other properties of Lien in Type A; see
for instance [1].

Remark 6.24 In the case that n is odd, the Bn-representation carried by Gn,1 coincides with
a representation studied by Berget in [10] coming from the internal zonotopal algebra of the
Type B hyperplane arrangement. In the case that n is even, the Bn-module structure is almost
the same, except that the element w0 acts trivially in Berget’s representation while it acts as
−1 on Gn,1.

We are almost ready to prove the main result of this Sect. (Theorem 6.26), but need one
last lemma. For (λ+, λ−), write

λ+ = (1m1 , · · · , nmn ) (6.2.1)

λ− = (1q1 , · · · , nqn ), (6.2.2)
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where mi , q j ≥ 0. Then fix α ∈ �±
[n] so that [α] = λ = (λ+, λ−), and

αi = {λ̂i−1 + 1, λ̂i−1, · · · λ̂i }.
Consider Hα , the set-wise stabilizer of Gα . One can write explicitly the isomorphism type of
Hα:

Hα =
∏

1≤i≤n
mi �=0

Bi � Smi ×
∏

1≤ j≤n
q j �=0

B j � Sq j .

By construction, Z(λ+,λ−) is a subgroup of Hα .

Lemma 6.25 For α ∈ �±
[n] as described above, there is an Hα-isomorphism

Gα = IndHα

Z(λ+,λ−)
ϕ(λ+,λ−).

Proof Recall that in the character description of ϕ(λ+,λ−), we have ϕ(λ+,λ−)(δi ) = 1, where
δi swaps blocks of the same size that are both in the positive (resp. negative) part of α. Hence
in considering the induced representation of ϕ(λ+,λ−) from Z(λ+,λ−) to Hα , it is enough to
understand the representation on the distinct, commuting factors of Hα coming from each
αi .

Similarly, the action by δi on Gα is trivial, so again to understand the Hα-representation
on Gα it is sufficient to describe the distinct commuting factors of Hα .

Write ai := #αi . In the case of IndHα

Z(λ+,λ−)
ϕ(λ+,λ−), the Bai -representation coming from

the block αi in α+ is precisely

Ind
Bai
Z((ai ),∅)

ϕ((ai ),∅)

and for the block of size α j in α− the corresponding Ba j -representation is

Ind
Ba j
Z(∅,(a j ))

ϕ(∅,(a j )).

By Theorem 6.21,

Gai −1,0 = Ind
Bai
Z(ai ),∅)

ϕ((ai )∅)

Ga j ,1 = Ind
Ba j
Z(∅,(a j ))

ϕ(∅,(a j )).

Hence the representations agree on each commuting factor of Hα , and therefore must agree
on all of Hα . ��
Theorem 6.26 As Bn-representations,

G(λ+,λ−) = IndBn
Z(λ+,λ−)

ϕ(λ+,λ−),

and therefore

G(λ+,λ−)
∼= G(λ+,λ−).

Proof By construction,

IndBn
Hα

Gα = G(λ+,λ−).
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By transitivity of induction and Lemma 6.25,

IndBn
Z(λ+,λ−)

ϕ(λ+,λ−) = IndBn
Hα

(
IndHα

Zλ
ϕ(λ+,λ−)

)
= IndBn

Hα
Gα = G(λ+,λ−).

��
6.3 Consequences

Theorem 6.26 has several implications for the representations generated by the idempotents
gk ,

G(k)
n = gk Q[Bn].

Theorem 6.27 There is a Bn-representation isomorphism

G(n−k)
n

∼= Gk = H2kZ3
n .

Proof Note that

gn−k =
∑

(λ+,λ−)

�(λ+)=n−k

g(λ+,λ−)

and

Gk =
k⊕

�=0

Gk,� =
⊕

(α+,α−)∈�±
[n]

�(α+) = n−k

Gα.

The claim follows by applying Theorem 6.26. ��
As a further consequence, this implies that the G(n−k)

n have a lift to Bn+1.

Theorem 6.28 The representations G(k)
n lift to Bn+1, where they are described by H2kY3

n+1.

Proof By Corollary 4.8, Gk ∼= H2kZ3
n , which lifts to H2kY3

n+1. ��

6.4 Further questions

We conclude with some lingering questions that our investigation has brought to light:

(1) In Type A, the Whitehouse representations have the form Q[Sn+1] f (k)
n+1 for certain idem-

potents f (k)
n+1 ∈ Q[Sn+1]. Is there a family of idempotents in Q[Bn+1] that generate

representations isomorphic to the graded pieces of H∗Y3
n+1?

(2) The Type A Eulerian idempotents generate a commutative subalgebra of �[Sn] spanned
by elements with the same descent number (e.g. descent set size). The idempotents gk
also generate a commutative subalgebra of �′[Bn]. Is there a combinatorial description
of this subalgebra?

(3) TheWhitehouse representation F (0)
n+1 has other combinatorial-topological interpretations,

for instance related to the homology of the space of trees by work of Robinson–
Whitehouse [43], as well as the homology of subposets of the partition lattice by work
of Sundaram [47]. Do the Type B lifts have analogous interpretations?

(4) Can the results of this paper be extended to the complex reflection groups G(r , 1, n) ∼=
Zr �Sn?
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