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Abstract—We consider the asymptotically optimal
control of input-queued switches under a cost-weighted
variant of MaxWeight scheduling, for which we estab-
lish theoretical properties that include showing the
algorithm exhibits optimal heavy-traffic queue-length
scaling. Our results are expected to be of theoretical
interest more broadly than input-queued switches.

I. INTRODUCTION

Data centers form the backbone of today’s big data
revolution. The interchange of data within a data center is
facilitated by huge n x n input-queued switches (IQSs) [9].
Hence, understanding scheduling problems in IQSs is es-
sential for real-world data center networks [8]. MaxWeight
scheduling, first introduced for wireless networks [11] and
then for IQSs [7], is well-known for being throughput
optimal. However, the issue of delay-optimal scheduling
for switches is less clear. MaxWeight scheduling has been
shown to be asymptotically optimal in heavy traffic for
an objective function of the summation of the squares of
queue lengths (QLs) under complete resource pooling [10].
MaxWeight scheduling has also been shown to have op-
timal scaling in heavy traffic for an objective function of
the summation of QLs under all ports saturated [6], which
was then extended to the case of incompletely saturated
ports [5]. Otherwise, the question of delay-optimal schedul-
ing in IQSs remains open for general objective functions.

We seek to gain fundamental insights on the delay-
optimal properties of a generalized MaxWeight scheduling
policy in n x n IQSs in which a linear cost function of
QL (delay) is associated with each queue. Specifically, we
extend the results in [6] to include per-queue costs and
prove that a cost-weighted generalization of MaxWeight
scheduling has optimal scaling in heavy traffic for an objec-
tive function consisting of a linear function of the steady-
state average QLs. Our results shed light on the delay
optimality of MaxWeight scheduling and its variants more
generally, including extensions to more general objective
functions. In addition, our results are expected to be of
theoretical interest beyond IQS and related models as im-
plied by our extension of the drift method, first introduced
in [2] and together with its subsequent developments. This
paper extends an earlier version [3] to include a tighter
universal lower bound (1.b.) on the average weighted QL
and an explicit expression for the weighted sum of QLs in
heavy traffic in general n x n IQSs.
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§IT presents our mathematical model and formulation,
and §III presents our analysis of cost-weighted MaxWeight
scheduling, followed by conclusions and some proofs.

II. MODEL AND FORMULATION

Consider an IQS with n input ports and n output
ports. Each input port has a queue associated with every
output port that stores packets waiting to be transmitted
to the output port. Let (i,5) € Z:={(¢,7) : 4,5 € [n]},
[n]:={1,...,n}, index the queue associated with the ith
input port and the jth output port. Let ¢;; > 0 denote the
cost associated with queue (i,7) and define ¢ := (¢;5) €
R™. Further define a new inner product on R™ with
respect to (w.r.t.) the vector c as follows

(@,9)e 1= Zcijxijyij' (1)
ij

Hence, the corresponding norm of a vector x € R™ is
given by ||X||3 = quj Ciszzj-

Packets arrive at queue (7, ) from a stochastic process.
Time is slotted and denoted by ¢t € Z;:={0,1,...}. At
each time t, a scheduling policy selects a set of queues
from which to simultaneously transmit packets under the
constraints: (1) At most one packet can be transmitted
from an input port; (2) At most one packet can be
transmitted to an output port. We refer to a schedule as
a subset of queues that satisfies these constraints.

A schedule is formally described by an n2-dimensional
binary vector s = (si;)(i,j)ez such that s;; = 1 if queue
(i,7) is in the schedule, and s;; = 0 otherwise. Let P
denote the set of all maximal schedules, i.e.,

P = {[s e {0,1}"] : 2jetm 55 =1, Vi € [n] }7

icin) 81 = 1, Vj € [n]
and S(t) € P the schedule for period ¢t under the c-
weighted MaxWeight scheduling algorithm defined below.
Let Q;;(t) € Z denote the length of the infinite capacity
queue (i,j) at time ¢ under this MaxWeight policy and
A;;(t) € Z4 the number of arrivals to queue (4, ) during
[t,t+1). The queueing dynamics then can be expressed as

Qij (t + 1) = Qij(t) + Ai]‘ (t) - Sij(t) + Uij (t), (2)

where U,;(t) € Z4 denotes the unused service for queue
(i,7) at time ¢t. Any selected schedule is always a maximal
schedule in P, which results in an unused service at
those queues with no packets to serve. We assume that
{A;;(t) : t € Z4, (i,j) € I} are independent random
variables (r.v.s) and that, for each fixed (7, 7) € Z, {A;; (%) :
t € Zi} are identically distributed with E[A;;(¢)] =



Aij- Define Q(t):=(Qi;(t)) ez, A(t):=(Ai; (1)) ez,
S(t):=(Si;(t)) (i, jyez and U(t):=(Us;(t))(i,jyez-

Consider the above IQS model under the c-weighted
MaxWeight scheduling Algorithm 1.

Algorithm 1 c-Weighted MaxWeight Scheduling

Let ¢ € R be a given positive weight (cost) vector, i.e.,
cij > 0, Vi,j. Then, in every time slot ¢ under the c-
weighted MaxWeight algorithm, each queue is assigned a
weight ¢;;Q;;(t) and a schedule with the maximum weight
is chosen, namely

S(t) = arg max Z ¢i;Qij(t)si; = arg rsnef%((Q(t), S)c.

¥

Ties are broken uniformly at random.

The objective function consists of minimizing a weighted
summation of expected delay cost in steady state, based
on which we establish delay-optimal properties of the
c-weighted MaxWeight scheduling algorithm. Given the
relationship between delays and QLs via Little’s Law,
we henceforth focus on cost as a function of the
QLs. The objective function can then be expressed as

mingen E Z(i,j)ez cijQ?j:L, where M denotes the set of

all stationary policies. In this average cost case we also
know that, as long as the arrival rate vector is within
the capacity region [6], there exists an expected average
cost optimal stationary policy; see, e.g., [1]. Note that [6]
considers the specific case of ¢;; = 1,V4, 5.

III. HEAVY TRAFFIC ANALYSIS

We study the switch system when the arrival rate vector
A approaches a point on the boundary of the capacity
region such that all the ports are saturated. In other words,
we consider the arrival rate vector approaching the face F
of the capacity region where

F= {A ERY (A el)e=1,(A8V). =1, Vi,j € [n}},

and where ec ={x ¢ R STt = 0,Vi' # i}

and 8Y) = {XG]R" i = Cl , Tijr —0 vy # 5}

We will obtain an exact expression for the heavy traf-
fic scaled weighted sum of QLs under the c-weighted
MaxWeight algorithm in heavy traffic, along similar lines
as [5] but with the dot product redefined in (1) and
related technical differences. To obtain the desired re-
sult for heavy traffic performance under the c-weighted
MaxWeight algorithm, we first provide a universal 1.b. on
the average weighted QL. We then establish that the QL
vector concentrates close to a lower dimensional cone in
the heavy traffic limit, which is called state space collapse.
Finally, we exploit this state space collapse result to obtain
an exact expression for the heavy traffic scaled weighted
sum of QLs in heavy traffic. The proofs of the main results
in ITI-B and ITI-C follow a similar logical approach to
that in [6], though with derivations based on new methods

required to address important technical differences and
details for the c-weighted MaxWeight algorithm due to
the modified dot product, norms and projections w.r.t. c.

Throughout, we consider a base family of switch systems
having arrival processes A(€)(t) parameterized by 0 < € <
1 such that the mean arrival rate vector is given by A(€) =
E[A)(t)] = (1 — €)v for some v in the relative interior
of F with vpin:=min;; v;; > 0, and the arrival variance
vector is given by Var(A(9)) = (¢(9)? < cc.

A. Universal Lower Bound

Consider a priority queueing system P® under a fixed
priority ordering p¥) € £ among all L = n! schedules
in the set P, indexed by ¢, where L is the set of all
possible priority orderings of the L schedules. Let Qg,l(t),
Il =1,...,L, denote the QL process of the [th highest
priority class in the system P®) under ordering p®. Let
m( (1) be the set of queues (i,j) of the switch contained
within the Ith priority class in p(¥, and jlu(t) the com-
posite arrival r.v. from all A;;cme )(t) that leads to the
smallest QL among the queues (4,75) in the set m()(1).
Then, for the system P®), we can write an expression for
the QL process of the hlghest priority class 1 as

[Qea(t+1)]? = [Qea (1))

=[Qea(t) + Apr(t+1) — 1+ Vor(t+ 1] = [Qea (1))
=[Qua () + Apa(t+1) = 1> = VA (t+1) — Q71 (t)
=[Apa(t+1) =12 +2Qe 1 (D[Ar1 (t+1) — 1] = V2 (E+1)

where Vg)u(t) denotes the time spent serving all lower
priority classes v > u and idling. From the relationship

[Qea(t) + Ap1(t+1) — 1+ Ve (t+ 1)V (t+1) =0,
we therefore have
[Qea(t) + Aga(t+1) = Ve (t+1) = =V (t+1).

Similarly, for the next highest priority class 2, we obtain

[Qea(t + DI = [Qea())? = [Ae2(t +1) = Vea(t + 1))
+2Qu2(t)[Ap 1 (t+1) — Ver(t+1)] = VA (t+ 1),
thus rendering in stationarity
E[(1 — Ag1)?] — 2E[Qe1 (1 — Ap1)] — E[VA] = 0.

Hence, Qf,l will be finite, and more specifically

E[(1 - Acn)’] E[VZ] _ E[(1 - Ara)?)

]E[Qé,l] = 1— E[lzlf,l] — E[Az,l] ’

which then yields for Qg’g in stationarity
2E[Qr2|E[Ve,1 — Aro] > E[A7 o] — 2E[A]E[Ve,] — E[V/:].

Continuing in this manner, we have in general for class [

E[Ar; — VA1) — 2€E[Qui] —E[V7] =0, VI=2,...,L.
Upon expanding the first term, we obtain
E[A7 )] — 2E[A ]E[Vii-1] — E[V)]

E[Qe,] >

5 (3)



which, since we know E[f/fl] = O(e), renders

lirg%nf eE[Qr] > E[A7)] — 2E[AgJE[Vei—1].  (4)

Let Q < and Qu be the RHS of (3) and (4), respec-

tively. Deﬁne Qz 4 = Mibggiemo ) Qez and Oy ij =
MmN jem®) (1) Qu We then have the desired universal 1.b.

Proposition III.1. Consider the base family of switches
and fix a scheduling policy under which the system is stable
for any 0 < e < 1. Suppose the QL process Q' (t)
converges in distribution to a steady state random wvector

6(6), and assume (6(9))? — a?. Define

min

Ale) . ), =
+7 = min E c”Q“], Qi = E cij Quij-
pWeL peL

Then, for each of these switch systems, the average
weighted QL is lower bounded by E[Z” cij@g)] > Aff),
and, in the heavy-traffic limit as € | 0, we have

hmlnde[Zc”Q(()] > Q.. (5)

Proof. The overall average QL Y, E[Q;] for each L-
class priority queueing system P under ordering p®,
vpl¥ e L, forms the vertices of the performance region
polytope in which must lie the overall average QL of any
scheduling policy in the L-class queueing system. Since,
by construction, the Ith queue under any p'¥ € £ can
be scheduled whenever at least one queue (4, 7) in m‘® (1)
has a packet, this polytope together with Qgezj and ngij
provide a 1.b. on the overall average QL of any scheduling
policy in the original switch system. It follows that the
average weighted QL under any scheduling policy in the
switch is lower bounded by Q* , with the corresponding
heavy-traffic limit lower bounded by 0.. O

Remark IT1.1. The L.b. (5) — based on multiclass priority
queues — improves upon the looser bound of cumin(||]|?/2) -
based on a single-class queue — established in [3].

B. State Space Collapse

Since [6] considers ¢;; = 1, V4, j, the state space collapse
in our general case is to a different cone. To establish this
state space collapse result, we first define the cone K. to

be the cone spanned by the vectors ef;) and e(j ) , namely

2 w; + W; -
KCZZ{XERn Zl‘ijZQ, wi,ijR+}.

cij
For any x € R”2, define x| :=arg minyex, |[x — yl|c to
be the projection of x onto the cone .. The error after
projection is denoted by x,x, = x — x| k.. To simplify
the notation throughout the paper, we will write x_ to
mean Xk, and write x; _ to mean x, x_. Let S¢ denote
the space spanned by the cone K¢, or more formally

w; + ’J}j

2
SC:{XER” DTy = , Wi, Wy ER}.

C,’j

The projection of x € R"™ onto the space S, is denoted
by x|s,, with the error after projection denoted by x s, .

Now, consider the base family of switch systems un-
der the c-weighted MaxWeight scheduling algorithm with
the maximum possible arrivals in any queue denoted by
Anax. Let the variance of the arrival process be such that
o> < &2 for some &2 that is not dependent on e.

Let Q' denote the steady state random vector of the QL
process for each switch system parameterized by e. We
then have the following proposition.

Proposition I11.2. For each system above with 0 < € <
the steady state Q)L vector satisfies

mln )

B[IQ0] <0y, weqe.,

where v];,, and M, are functions of r,0,V, Amaxs Vmin but

independent of €.

Proof. Omitting superscript (€) to simplify the notation
and clarify the presentation, our general approach consists
of defining a Lyapunov function W _(Q):=[/Q__||c and its

drift AW, (Q):=(W L. (Q(t+1)) =W (Q(t ))) (Q)=ay
for all Q € R, Then, from Lemma A.1 in Appendix A,
there exist positive numbers 7, x and D that depend on
0, v, Amax and vpmin, but not on ¢, such that

EAWL.(QIQt) =Q] < -, VQ, WL.(Q) >+x
PAW. (Q)<D]=1, vQ

from which we derive, by Lemma 3 in [6],

e[1Q7)1r] < @+ ZEL) any

< (20)" + e <4DTD77+">T
< 2<maX {25, (Vre )1/T4DTDT]+77}>T
=(M,)" = (21/T max {2/{, (fe)l/TélDT D:n}) ;
this is a function of 7, o, v, Anax and vy, but indepen-
dent of €, hence completing the proof. O

Remark IIL.2. The special case of ¢ = 1 renders the
standard MaxWeight algorithm and our results coincide
with the state space collapse in [6]. More generally, the
capacity region and mazximal face F are not dependent on
the choice of the weight vector c. However, for any positive
weight vector, the state space collapses into the normal cone
of the face F w.r.t. the dot product defined by the weight
vector c. This cone depends upon the choice of ¢, and thus
the choice of the weight vector “tilts” the cone of collapse.

C. Weighted Sum of Queue Lengths in Heavy Traffic

We next exploit the above state space collapse result
to obtain an exact expression for the heavy traffic scaled
weighted sum of QLs in heavy traffic. Our main results are
provided in the following theorem, with the next section



providing a general matrix solution approach to calculate
the corresponding limit and obtain an explicit expression
for this heavy traffic limit.

Theorem II1.1. Consider the base family of switches un-
der the c-weighted MaxzWeight algorithm as in Proposition
II1.2. Then, in the heavy traffic limit as € | 0, we have

lgr%eE[ZcijQ§§)} = Z<02,C> ; (6)
i c

where a® = (03,)ij, and the vector ¢ is defined by
Ciji=(ei;) s 12 and the matriz e;; by 1 in position (i, j)
and 0 elsewhere.

Proof. We again omit the superscript (€¢) to simplify the
notation and clarify the presentation. Let A denote the
arrival vector in steady state, which is distributed iden-
tically to the random vector A(t) for any ¢. Further let
S(Q) and U(Q) denote the steady state schedule and
unused service vector, respectively, both of which depend
on the QL vector in steady state Q. Recalling the queueing
dynamics in (2), define Q =Q+A- S(Q)+U(Q) to be
the QL vector at time (t+1), given the QL vector at time
tis Q. Clearly, Q and Q have the same distribution.

The proof proceeds by setting the drift of the Lyapunov
function V(Q) = ||Q;s. || to 0 in steady state, from which
we obtain

0=E[V(Q") - V(Q)]
=E[||(A - S(Q))s.ll2 + 2<Q||s (A =8(Q))js.)e
— U5 Q)12+ 2(Qfs, . U, (Q)el.

This yields an equation of the form
2E[(Qs.. (S(Q) ~ A)s.). | = E[I(A ~ S(Q))s. 2]

B[ Uy, (@12] +2E[(Qf,. Uy (@),

The desired result then follows from Lemmas A.3 and A .4
in Appendix B, matching the LHS and RHS of (6). O

D. Ezxplicit Expression for Heavy Traffic Limit

Given the important differences in the cone for our
general case of ¢;; > 0 in comparison to the cone in [6],
we now seek to obtain an explicit expression for the RHS
of (6). More specifically, we want to calculate (;; for each
(i, 7). To start, let us consider the following n?-dimensional
vectors, given in matrix form for any 4,7 € [n — 1],

B. _E
ne (B )
where F;; is an (n—1) x (n—1) matrix with the (¢, j)th ele-
ment 1 and all other elements 0, F; is an (n—1)-vector with
the ith element 1 and all other elements 0, and superscript
T denotes the transpose operator. The B;; are linearly
independent, and it can be readily verified that the c-inner
product of B;; with any of e . elM el . s
is 0. Recalling ¢;; = ||(ei;)s. [|2, our approach consists of
calculating the projection of e;; to the Lc-space, which

yields its projection to the [.-space. Additional details
are provided in [4], including an alternative approach to
establish an explicit expression for the RHS of (6).
Clearly (e;j, Bre)e = ¢ij only when ¢ =k, j = ¢, and is
0 otherwise. Without loss of generality, let us consider eq;.
We seek to find the vector (e;1).s, that is perpendicular
to all B;; except By, as well as to ec) and eg) Let ;5
denote the Kronecker delta. From the special structure

of Bij, we can see that ((eu)J_SC)ij = (cijéh«élj — l‘i(l —

Sin) — yi(1 = Gjn) — 2[(1 = i) (1 = 8jn) — dindjnl)ey;’

for some L1, 22,3 Tn-1,Y1,Y25- - Yn—-1,%2

satisfying a system of 2n — 1 linear equations

T (2n—1)

G(x1,T2, -y T 1, Y1, Y2y« -+ Y1, 2) = e;;

where eﬁnfl is a (2n — 1)-dimensional vector with the

first and (n + 1)st elements being 1, and all others being
D, C H,

0,and G = 0 HI —¢} Jisa@n—-1)x(2n—1)
ct Dy, H,

nonsingular matrix representing the coefficients of

the system of equations. Here C = [071 ij=1,..n—1,

D, = diag[>7_, ”1]1‘:1,..4%1 and Dy =
diag[Y 7, ¢;;']j=1,...n—1 are (n—1) x (n—1) matrices, and
H, = n—1 1T H, — n—1 —11T

1 = [Zy 1 C;_] ]z 1,...,n—1> 2 = [Zz 1 Cz] ]] 1,...,n—1
and Hs = [c njl j=1...n—1 are (n — 1)-dimensional column
Vectorg. I?ence, (1,025 T 1, Y15 Y25 - -5 Yno1,2) L =
G~V Meanwhile, we know [(e)s.llz =

<(ell)\|8ca (911)\\30>c = <e11 - (911)L5C7811 - (911)L5c>c =
(e11,e11)c — 2(e11,(e11)1s.)c + ((€11)1s.: (€11)18.)e =
(e11,€11)c— (€11, (€11) 1.5, )c, Where the last equality is due
to the fact that <611, (eu)J_sc)c = <(e11)J_SC, (eu)lgc>c.
This together with the above yields |[/(e11))s.[2 =
z+x1+ Y1

The same approach can be taken for all the other e;;.
Specifically, we need to identify the vector (e;;) s, that
satisfies ((ei;) 1s., Bij)e = ¢ij and ((e;;)1s,, Bre)e = 0 for
all other (k,¢). Here, (e;;)1s, can have a similar repre-
sentation as above with the position of 1 changed from
(1,1) to (4,7). The variables x Y2 will satlsfy a system of

- ij ij T _
equations G(x?, 2, ... a7 |y g, .. ZNT =

7yn 1%
egfn_l) where G is the same matrix defined above and
where eg Visa (2n—1)-dimensional vector with the ith
and (n+j)th elements being 1, and all others being 0 when
j <n—1, and with only the ith element being 1 and all
others being 0 when j = n. Hence, following the above ap-
proach, we have in general ||(e;;)|s.]|2 = 27 +x7 +y}’ with

ij ij ij i\T —1,(2n-1)
(xy, ... 2 1,y1,...,yn71723) G e .

Remark IT1.3. For the n = 2 case, the explicit expression
above can be used to recover the heavy-traffic limit of

(1/2) Zz] O—z_jcl]( [ 1_]/21 5! Cl/j/]) in /B/fOT’ RHS Of ( )

given by

IV. CONCLUSIONS

In this paper we considered the optimal control of
n x n 1QSs under the c-weighted MaxWeight algorithm,
with the goal of gaining fundamental insights on the
delay-optimal properties of this cost-weighted variant of
MaxWeight scheduling in real-world IQSs. We established



theoretical properties that include showing the c-weighted
MaxWeight algorithm exhibits optimal scaling in heavy
traffic under an objective function consisting of a gen-
eral linear function of the steady-state average QLs. Our
results shed light on the delay optimality of variants of
MaxWeight scheduling and are expected to be of theoret-
ical interest more broadly than IQSs.

APPENDIX
A. Proof of State Space Collapse

To simplify the notation, we use Eq[-] to denote
E[-|Q(t) = Q] throughout this section.

Lemma A.1l. For Lyapunov function drift AW, _(Q) :=
(WL (Q(t+1)) = Wi (Q1))liq)=q), we have

PIAW. (Q[ < D] =1, vQ, (7)

EQAW. . .(Q)] < —n, YVQ WL .(Q) >k, (8)

for some positive numbers n, K and D that depend on o,
vV, Amax and Vpin, but not on €.

Proof. First of all, (7) follows from

AW,.(Q)] < |||Qlc<t+ Dlle — 1Qu. ()]
< Qe+ 1)~ QW)
= Z ¢ij(Qiz(t +1) — Qi;(1))?

j

E 2
Cij A,‘j S N/ Cmax Amax7
v ij

with D = n/Cmax Amax. To prove (8) we start with a
version of Lemma 4 in [6], which can be shown to hold
more generally for the new dot product by appropriately
adapting the arguments in the proof of Lemma 7 in [2]. O

Lemma A.2. Forall Q € R"Q, we have

1
AW, (Q) < m(AV(Q) —AVL(Q),  (9)

where V(Q):=[1Q|Z, V. (Q):=[Qy. Iz and
AV(Q):=(V(Q(t+1)) = V(Q(1))iqu)-q}
AV} (Q):=(V.(Q(t + 1)) = V|.(Q(1)) 1o —-q}-

Proof. Let us separately consider the two quantities
AV(Q) and AV}_(Q), recalling the queueing dynamics in
(2). For the first quantity, we obtain

EQ[AV(Q)]
=Eq[llQ(t) + A(t) - Sl - UMl - llQ
<Eq[||A(t) - S(t)lli +2(Q(t), A(t) = S(t))e]

=Eq [Z cijA 2¢5Ai()Si; ()

+2(Q, A —Eq[S(¥)])e

<ch Xij + %) +Zc” 15 (1) —

+2 m1n<Q, V—Tr)e,

IN

OllH

t) +cijiSij(t) —

26(Q,v)e

where we exploit the facts that (Q(t + 1),U(¢))e = 0
and that arrivals are independent of the QL and service
processes in each time slot, together with our definition
of the c-weighted MaxWelght algorithm. The selection
of r will be v + I® "““H Q_.., where v is an arrival rate
vector that resides on the boundary of the capacity region
with all mput and output ports saturated and where
Ve in'= . This selection of r guarantees that it is

within the capamty region, which is readlly verified by
first observing v;; + HQ‘I”‘HCQJ_C,” > v — >0

+ g Q.. e)e < 1 and (v
&) < 1. We therefore have

le’ﬂ

and then observing (v

min

G Qe

Eq[AV(Q)] < Z%‘(Aij +07;) + Nemax
iJ

—26(Q, V)e — 2Vimin QL. e

taking advantage of the fact that (Q)_,QL.)c = 0. Turn-
ing to the second quantity, we obtain

QlAV)] =Eqll|Q.(t +1) — Q). (1)][2]
+2EQ[(Q. (1), Q). (t + 1) — Q). (t))c]
>2EqQ[(Q. (1), Q). (t +1) — Q). (1))c]
1 (t

(

)s

>2EqQ[(Q. (1), A(t) — S(t) + U(t
>2(Qy (¢ )7>\>c —2Eq[(Q.(¥),S
=—26(Qy. (1), v)c — 2Eq[(Qy. (¢
= —2¢(Q).(t), V),

Qj.
t)
)el
(®))c]

):S(t) = v)c]

where we again take advantage of the above facts together
with (Qy. (1), QL. (t+1))c <0, both Q) and U(t) being
nonnegative componentwise, and properties related to the
cone K and its spanned space S.

Upon substituting the above expressions for both quan-
tities into (9), we have

1
Q[AWL (Q)] Sm [%: cij(Aij + 075)

+ NCmax — 2€<Q7 V>C - 2VICnin||QicHC + 26<Q|‘c(t)7 ’/>C
Zz] Cij ()\’L] + a; ) + NCmax c _
< L Vi = g Qe e

Given € < me/(2\|u|| ), then on the set of W, _(Q) >
40305 cii(Nij + 07;) 4 Nemax) /Viin, We obtain

EqQ[AW .. (Q)]

1
chj Nij + 0} ) + NeCmax — 2€

<ga. Qe
V>C)

mlnHQJ-cHC + 26<Q||c( )7
le Clj ()‘ZJ + 0 ) + NCmax

C

= 2HQJ_ H _Vmin_EHVHC
Z i Cij (/\ZJ + a; )+ NCmax . chnin < _Vr?nin
- 2|Q.L.|l 2 — 4

Hence, (8) holds with n = —v5;, /4. O



B. Proof of Theorem III.1

Lemma A.3. In the limit as € | 0, we have

EKQSC, (S(Q) - A)||Sc>j = lim GE[%:C”QS)} '

Proof. The LHS of above can be written as

E[<Q”sc, (S(Q) - A>sc>c_

_ zeEKQH&,VM + QEK?&’ S@Q) - "H
2ee]{ Qo) | +26] (s 1) |
wel(ar) - Sef(aur) ]

where the second equality follows from the fact that
S(Q),v € F, and therefore S(Q) — v is orthogonal to
the space spanned by the normal vectors of F, i.e., to the
space S¢; and the next to last equality follows from the
fact that v,1/n € F. Since the second term of the last
equation goes to 0 as € | 0 by the state space collapse
from Proposition I11.2, we have

13&)1E[<Q||5c7 (S(Q) - A)SC>C] =lim “E [2; cz-j@z,] :

thus yielding the LHS of (6) in Theorem IIIL.1. O

Lemma A.4. In the limit as € | 0, we have

B[ 104 - 8@y, 2] - B[ 105, (@]
ol @) 3,
Proof. First of al, from the equation
- E[%Qu(wr - izjcz@m(t) -q
:E[;Aij ZSJ ZU,J}

we can conclude that E[Z - U;;(Q)] = ne, which implies
that the second term on the LHS of (10) converges to 0
as € O

E [|U|sc (Q)Hg} <E { Z cijUij (Q)Q] =E [; cijUij (Q)}

< Cmaxne — 0, as el 0.

For the third term on the LHS of (10

2E[<QﬁschISc(Q)>c] - 2E[<Q+,USC(Q)>J

(10)

), we have

- 2E[<QISCaUH&(Q)>J
_ —2E[<QISC’U|ISC(Q)>C:|’

because @; =0 if U;;(Q) = 1. Furthermore,

(@ Uis@) || < \/ QL 7| E [ 10)s. @12

< My [B[U)5, (QI | < Mo

where the first inequality is just Cauchy-Schwartz, M is
the constant in Proposition II1.2, and the last inequality
is due to E[}; ; Ui;(Q)] = ne. This then implies that the
third term also converges to 0 as € | 0.

Finally, turning to investigate the first term, let
fi,f2,.-., fon_1 be an orthonormal base for space S.
Then, from basic properties of the space, there exist v, ;

and 7y ; such that fg; = % Thus, we can derive
2n—1
El|(A-S(Q)s. 71 = Y E[(A-8(Q), f)2]

£=1

_ Z Var {ZWZZA” +Z%ZAU]
[Z v%i Z afj + Z ﬁfj Z afj +2 ngif)gjofj]

{=1 %

2n—1
_ Ve + 'Uéj 2
= CUUU 07 Czjazj féa eij)e
* =1

=1
= Zcz‘jgijﬂ(eij)uscllz = <02,C> :
ij c

which establishes the desired result. O

DN
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