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Abstract—We consider the asymptotically optimal
control of input-queued switches under a cost-weighted
variant of MaxWeight scheduling, for which we estab-
lish theoretical properties that include showing the
algorithm exhibits optimal heavy-traffic queue-length
scaling. Our results are expected to be of theoretical
interest more broadly than input-queued switches.

I. Introduction
Data centers form the backbone of today’s big data

revolution. The interchange of data within a data center is
facilitated by huge n×n input-queued switches (IQSs) [9].
Hence, understanding scheduling problems in IQSs is es-
sential for real-world data center networks [8]. MaxWeight
scheduling, first introduced for wireless networks [11] and
then for IQSs [7], is well-known for being throughput
optimal. However, the issue of delay-optimal scheduling
for switches is less clear. MaxWeight scheduling has been
shown to be asymptotically optimal in heavy traffic for
an objective function of the summation of the squares of
queue lengths (QLs) under complete resource pooling [10].
MaxWeight scheduling has also been shown to have op-
timal scaling in heavy traffic for an objective function of
the summation of QLs under all ports saturated [6], which
was then extended to the case of incompletely saturated
ports [5]. Otherwise, the question of delay-optimal schedul-
ing in IQSs remains open for general objective functions.

We seek to gain fundamental insights on the delay-
optimal properties of a generalized MaxWeight scheduling
policy in n × n IQSs in which a linear cost function of
QL (delay) is associated with each queue. Specifically, we
extend the results in [6] to include per-queue costs and
prove that a cost-weighted generalization of MaxWeight
scheduling has optimal scaling in heavy traffic for an objec-
tive function consisting of a linear function of the steady-
state average QLs. Our results shed light on the delay
optimality of MaxWeight scheduling and its variants more
generally, including extensions to more general objective
functions. In addition, our results are expected to be of
theoretical interest beyond IQS and related models as im-
plied by our extension of the drift method, first introduced
in [2] and together with its subsequent developments. This
paper extends an earlier version [3] to include a tighter
universal lower bound (l.b.) on the average weighted QL
and an explicit expression for the weighted sum of QLs in
heavy traffic in general n× n IQSs.
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§II presents our mathematical model and formulation,
and §III presents our analysis of cost-weighted MaxWeight
scheduling, followed by conclusions and some proofs.

II. Model and Formulation
Consider an IQS with n input ports and n output

ports. Each input port has a queue associated with every
output port that stores packets waiting to be transmitted
to the output port. Let (i, j) ∈ I:={(i, j) : i, j ∈ [n]},
[n]:={1, . . . , n}, index the queue associated with the ith
input port and the jth output port. Let cij > 0 denote the
cost associated with queue (i, j) and define c := (cij) ∈
Rn2 . Further define a new inner product on Rn2 with
respect to (w.r.t.) the vector c as follows

〈x, y〉c :=
∑
ij

cijxijyij . (1)

Hence, the corresponding norm of a vector x ∈ Rn2 is
given by ||x||2c =

∑
ij cijx

2
ij .

Packets arrive at queue (i, j) from a stochastic process.
Time is slotted and denoted by t ∈ Z+:={0, 1, . . .}. At
each time t, a scheduling policy selects a set of queues
from which to simultaneously transmit packets under the
constraints: (1) At most one packet can be transmitted
from an input port; (2) At most one packet can be
transmitted to an output port. We refer to a schedule as
a subset of queues that satisfies these constraints.
A schedule is formally described by an n2-dimensional

binary vector s = (sij)(i,j)∈I such that sij = 1 if queue
(i, j) is in the schedule, and sij = 0 otherwise. Let P
denote the set of all maximal schedules, i.e.,

P =
{[

s ∈ {0, 1}n
2]

:
∑
j∈[n] sij = 1, ∀i ∈ [n]∑
i∈[n] sij = 1, ∀j ∈ [n]

}
,

and S(t) ∈ P the schedule for period t under the c-
weighted MaxWeight scheduling algorithm defined below.
Let Qij(t) ∈ Z+ denote the length of the infinite capacity
queue (i, j) at time t under this MaxWeight policy and
Aij(t) ∈ Z+ the number of arrivals to queue (i, j) during
[t, t+1). The queueing dynamics then can be expressed as

Qij(t+ 1) = Qij(t) +Aij(t)− Sij(t) + Uij(t), (2)

where Uij(t) ∈ Z+ denotes the unused service for queue
(i, j) at time t. Any selected schedule is always a maximal
schedule in P, which results in an unused service at
those queues with no packets to serve. We assume that
{Aij(t) : t ∈ Z+, (i, j) ∈ I} are independent random
variables (r.v.s) and that, for each fixed (i, j) ∈ I, {Aij(t) :
t ∈ Z+} are identically distributed with E[Aij(t)] =



λij . Define Q(t):=(Qij(t))(i,j)∈I , A(t):=(Aij(t))(i,j)∈I ,
S(t):=(Sij(t))(i,j)∈I and U(t):=(Uij(t))(i,j)∈I .
Consider the above IQS model under the c-weighted

MaxWeight scheduling Algorithm 1.

Algorithm 1 c-Weighted MaxWeight Scheduling
Let c ∈ Rn2 be a given positive weight (cost) vector, i.e.,
cij > 0, ∀i, j. Then, in every time slot t under the c-
weighted MaxWeight algorithm, each queue is assigned a
weight cijQij(t) and a schedule with the maximum weight
is chosen, namely

S(t) = arg max
s∈P

∑
ij

cijQij(t)sij = arg max
s∈P
〈Q(t), s〉c.

Ties are broken uniformly at random.

The objective function consists of minimizing a weighted
summation of expected delay cost in steady state, based
on which we establish delay-optimal properties of the
c-weighted MaxWeight scheduling algorithm. Given the
relationship between delays and QLs via Little’s Law,
we henceforth focus on cost as a function of the
QLs. The objective function can then be expressed as
minπ∈M E

[∑
(i,j)∈I cijQ

π

ij

]
, whereM denotes the set of

all stationary policies. In this average cost case we also
know that, as long as the arrival rate vector is within
the capacity region [6], there exists an expected average
cost optimal stationary policy; see, e.g., [1]. Note that [6]
considers the specific case of cij = 1, ∀i, j.

III. Heavy Traffic Analysis
We study the switch system when the arrival rate vector

λ approaches a point on the boundary of the capacity
region such that all the ports are saturated. In other words,
we consider the arrival rate vector approaching the face F
of the capacity region where

F =
{

λ ∈ Rn
2

+ : 〈λ, e(i)
c 〉c = 1, 〈λ, ẽ(j)

c 〉c = 1, ∀i, j ∈ [n]
}
,

and where e(i)
c = {x ∈ Rn2

, xij = 1
cij
, xi′j = 0, ∀i′ 6= i}

and ẽ(j)
c = {x ∈ Rn2

, xij = 1
cij
, xij′ = 0, ∀j′ 6= j}.

We will obtain an exact expression for the heavy traf-
fic scaled weighted sum of QLs under the c-weighted
MaxWeight algorithm in heavy traffic, along similar lines
as [5] but with the dot product redefined in (1) and
related technical differences. To obtain the desired re-
sult for heavy traffic performance under the c-weighted
MaxWeight algorithm, we first provide a universal l.b. on
the average weighted QL. We then establish that the QL
vector concentrates close to a lower dimensional cone in
the heavy traffic limit, which is called state space collapse.
Finally, we exploit this state space collapse result to obtain
an exact expression for the heavy traffic scaled weighted
sum of QLs in heavy traffic. The proofs of the main results
in III-B and III-C follow a similar logical approach to
that in [6], though with derivations based on new methods

required to address important technical differences and
details for the c-weighted MaxWeight algorithm due to
the modified dot product, norms and projections w.r.t. c.
Throughout, we consider a base family of switch systems

having arrival processes A(ε)(t) parameterized by 0 < ε <
1 such that the mean arrival rate vector is given by λ(ε) =
E[A(ε)(t)] = (1 − ε)ν for some ν in the relative interior
of F with νmin:= minij νij > 0, and the arrival variance
vector is given by Var(A(ε)) = (σ(ε))2 <∞.

A. Universal Lower Bound
Consider a priority queueing system P̃(`) under a fixed

priority ordering p(`) ∈ L among all L = n! schedules
in the set P, indexed by `, where L is the set of all
possible priority orderings of the L schedules. Let Q̃`,l(t),
l = 1, . . . , L, denote the QL process of the lth highest
priority class in the system P̃(`) under ordering p(`). Let
m(`)(l) be the set of queues (i, j) of the switch contained
within the lth priority class in p(`), and Ã`,l(t) the com-
posite arrival r.v. from all Aij∈m(`)(l)(t) that leads to the
smallest QL among the queues (i, j) in the set m(`)(l).
Then, for the system P̃(`), we can write an expression for
the QL process of the highest priority class 1 as

[Q̃`,1(t+ 1)]2 − [Q̃`,1(t)]2

=[Q̃`,1(t) + Ã`,1(t+ 1)− 1 + Ṽ`,1(t+ 1)]2 − [Q̃`,1(t)]2

=[Q̃`,1(t) + Ã`,1(t+ 1)− 1]2 − Ṽ 2
`,1(t+ 1)− Q̃2

`,1(t)
=[Ã`,1(t+ 1)− 1]2 + 2Q̃`,1(t)[Ã`,1(t+ 1)− 1]− Ṽ 2

`,1(t+ 1)

where Ṽ`,u(t) denotes the time spent serving all lower
priority classes v > u and idling. From the relationship

[Q̃`,1(t) + Ã`,1(t+ 1)− 1 + Ṽ`,1(t+ 1)]Ṽ`,1(t+ 1) = 0,

we therefore have

[Q̃`,1(t) + Ã`,1(t+ 1)− 1]Ṽ`,1(t+ 1) = −Ṽ 2
`,1(t+ 1).

Similarly, for the next highest priority class 2, we obtain

[Q̃`,2(t+ 1)]2 − [Q̃`,2(t)]2 = [Ã`,2(t+ 1)− Ṽ`,1(t+ 1)]2

+ 2Q̃`,2(t)[Ã`,1(t+ 1)− Ṽ`,1(t+ 1)]− Ṽ 2
`,2(t+ 1),

thus rendering in stationarity

E[(1− Ã`,1)2]− 2E[Q̃`,1(1− Ã`,1)]− E[Ṽ 2
`,1] = 0.

Hence, Q̃`,1 will be finite, and more specifically

E[Q̃`,1] =
E[(1− Ã`,1)2]− E[Ṽ 2

`,1]
1− E[Ã`,1]

≤ E[(1− Ã`,1)2]
1− E[Ã`,1]

,

which then yields for Q̃`,2 in stationarity

2E[Q̃`,2]E[Ṽ`,1 − Ã`,2] ≥ E[Ã2
`,2]− 2E[Ã`,2]E[Ṽ`,1]− E[Ṽ 2

`,2].

Continuing in this manner, we have in general for class l

E[Ã`,l − Ṽ 2
`,l−1]− 2εE[Q̃`,l]− E[Ṽ 2

`,l] = 0, ∀l = 2, . . . , L.

Upon expanding the first term, we obtain

E[Q̃`,l] ≥
E[Ã2

`,l]− 2E[Ã`,l]E[Ṽ`,l−1]− E[Ṽ 2
`,l]

2ε , (3)



which, since we know E[Ṽ 2
`,l] = O(ε), renders

lim inf
ε↓0

εE[Q̃`,l] ≥ E[Ã2
`,l]− 2E[Ã`,l]E[Ṽ`,l−1]. (4)

Let Q̃(ε)
`,l and Q̃`,l be the RHS of (3) and (4), respec-

tively. Define Q̂(ε)
`,ij := minl:ij∈m(`)(l) Q̃

(ε)
`,l and Q̂`,ij :=

minl:ij∈m(`)(l) Q̃`,l. We then have the desired universal l.b.

Proposition III.1. Consider the base family of switches
and fix a scheduling policy under which the system is stable
for any 0 < ε < 1. Suppose the QL process Q(ε)(t)
converges in distribution to a steady state random vector
Q(ε), and assume (σ(ε))2 → σ2. Define

Q̂(ε)
∗ := min

p(`)∈L

∑
ij

cijQ̂(ε)
`,ij , Q̂∗ := min

p(`)∈L

∑
ij

cijQ̂`,ij .

Then, for each of these switch systems, the average
weighted QL is lower bounded by E[

∑
i,j cijQ

(ε)
ij ] ≥ Q̂(ε)

∗ ,
and, in the heavy-traffic limit as ε ↓ 0, we have

lim inf
ε↓0

εE
[∑
i,j

cijQ
(ε)
ij

]
≥ Q̂∗. (5)

Proof. The overall average QL
∑
l E[Q̃`,l] for each L-

class priority queueing system P̃(`) under ordering p(`),
∀p(`) ∈ L, forms the vertices of the performance region
polytope in which must lie the overall average QL of any
scheduling policy in the L-class queueing system. Since,
by construction, the lth queue under any p(`) ∈ L can
be scheduled whenever at least one queue (i, j) in m(`)(l)
has a packet, this polytope together with Q̂(ε)

`,ij and Q̂`,ij
provide a l.b. on the overall average QL of any scheduling
policy in the original switch system. It follows that the
average weighted QL under any scheduling policy in the
switch is lower bounded by Q̂(ε)

∗ , with the corresponding
heavy-traffic limit lower bounded by Q̂∗.

Remark III.1. The l.b. (5) – based on multiclass priority
queues – improves upon the looser bound of cmin(‖σ‖2/2) –
based on a single-class queue – established in [3].

B. State Space Collapse
Since [6] considers cij = 1, ∀i, j, the state space collapse

in our general case is to a different cone. To establish this
state space collapse result, we first define the cone Kc to
be the cone spanned by the vectors e(i)

c and ẽ(j)
c , namely

Kc:=
{

x ∈ Rn
2

: xij = wi + w̃j
cij

, wi, w̃j ∈ R+

}
.

For any x ∈ Rn2 , define x‖Kc := arg miny∈Kc ||x − y||c to
be the projection of x onto the cone Kc. The error after
projection is denoted by x⊥Kc = x − x‖Kc . To simplify
the notation throughout the paper, we will write x‖c to
mean x‖Kc and write x⊥c to mean x⊥Kc . Let Sc denote
the space spanned by the cone Kc, or more formally

Sc =
{

x ∈ Rn
2

: xij = wi + w̃j
cij

, wi, w̃j ∈ R
}
.

The projection of x ∈ Rn2 onto the space Sc is denoted
by x‖Sc , with the error after projection denoted by x⊥Sc .
Now, consider the base family of switch systems un-

der the c-weighted MaxWeight scheduling algorithm with
the maximum possible arrivals in any queue denoted by
Amax. Let the variance of the arrival process be such that
‖σ(ε)‖2 ≤ σ̃2 for some σ̃2 that is not dependent on ε.
Let Q(ε) denote the steady state random vector of the QL
process for each switch system parameterized by ε. We
then have the following proposition.

Proposition III.2. For each system above with 0 < ε ≤
ν′min, the steady state QL vector satisfies

E
[
‖Q(ε)
⊥c
‖r
]
≤ (Mr)r, ∀r ∈ {1, 2, . . .},

where ν′min and Mr are functions of r, σ̃,ν, Amax, νmin but
independent of ε.

Proof. Omitting superscript (ε) to simplify the notation
and clarify the presentation, our general approach consists
of defining a Lyapunov functionW⊥c(Q):=‖Q⊥c‖c and its
drift ∆W⊥c(Q):=

(
W⊥c(Q(t+1))−W⊥c(Q(t))

)
I{Q(t)=Q},

for all Q ∈ Rn2 . Then, from Lemma A.1 in Appendix A,
there exist positive numbers η, κ and D that depend on
σ̃, ν, Amax and νmin, but not on ε, such that

E[∆W⊥c(Q)|Q(t) = Q] ≤ −η, ∀Q, W⊥c(Q) ≥ κ,
P[|∆W⊥c(Q)| ≤ D] = 1, ∀Q,

from which we derive, by Lemma 3 in [6],

E
[
‖Q(ε)
⊥c
‖r
]
≤ (2κ)4 + r

(
D + η

η

)r
(4D)r

≤ (2κ)r +
√
re

(
4Dr

e

D + η

η

)r
≤ 2
(

max
{

2κ, (
√
re)1/r4Dr

e

D + η

η

})r
= (Mr)r =

(
21/r max

{
2κ, (

√
re)1/r4Dr

e

D + η

η

})r
;

this is a function of r, σ̃, ν, Amax and νmin, but indepen-
dent of ε, hence completing the proof.

Remark III.2. The special case of c = 1 renders the
standard MaxWeight algorithm and our results coincide
with the state space collapse in [6]. More generally, the
capacity region and maximal face F are not dependent on
the choice of the weight vector c. However, for any positive
weight vector, the state space collapses into the normal cone
of the face F w.r.t. the dot product defined by the weight
vector c. This cone depends upon the choice of c, and thus
the choice of the weight vector “tilts” the cone of collapse.

C. Weighted Sum of Queue Lengths in Heavy Traffic
We next exploit the above state space collapse result

to obtain an exact expression for the heavy traffic scaled
weighted sum of QLs in heavy traffic. Our main results are
provided in the following theorem, with the next section



providing a general matrix solution approach to calculate
the corresponding limit and obtain an explicit expression
for this heavy traffic limit.

Theorem III.1. Consider the base family of switches un-
der the c-weighted MaxWeight algorithm as in Proposition
III.2. Then, in the heavy traffic limit as ε ↓ 0, we have

lim
ε→0

εE
[∑

ij

cijQ
(ε)
ij

]
= n

2

〈
σ2, ζ

〉
c
, (6)

where σ2 = (σ2
ij)ij, and the vector ζ is defined by

ζij :=‖(eij)||Sc‖2
c and the matrix eij by 1 in position (i, j)

and 0 elsewhere.

Proof. We again omit the superscript (ε) to simplify the
notation and clarify the presentation. Let A denote the
arrival vector in steady state, which is distributed iden-
tically to the random vector A(t) for any t. Further let
S(Q) and U(Q) denote the steady state schedule and
unused service vector, respectively, both of which depend
on the QL vector in steady state Q. Recalling the queueing
dynamics in (2), define Q+:=Q + A−S(Q) + U(Q) to be
the QL vector at time (t+ 1), given the QL vector at time
t is Q. Clearly, Q+ and Q have the same distribution.
The proof proceeds by setting the drift of the Lyapunov

function V (Q) = ‖Q||Sc‖2
c to 0 in steady state, from which

we obtain

0 =E[V (Q+)− V (Q)]
=E[‖(A− S(Q))||Sc‖

2
c + 2〈Q||Sc , (A− S(Q))||Sc〉c

− ‖U||Sc(Q)‖2
c + 2〈Q+

||Sc
,U||Sc(Q)〉c].

This yields an equation of the form

2E
[〈

Q||Sc , (S(Q)−A)||Sc

〉
c

]
= E

[
‖(A− S(Q))||Sc‖

2
c

]
− E

[
‖U||Sc(Q)‖2

c

]
+ 2E

[〈
Q+
||Sc

,U||Sc(Q)
〉

c

]
.

The desired result then follows from Lemmas A.3 and A.4
in Appendix B, matching the LHS and RHS of (6).

D. Explicit Expression for Heavy Traffic Limit
Given the important differences in the cone for our

general case of cij > 0 in comparison to the cone in [6],
we now seek to obtain an explicit expression for the RHS
of (6). More specifically, we want to calculate ζij for each
(i, j). To start, let us consider the following n2-dimensional
vectors, given in matrix form for any i, j ∈ [n− 1],

Bij =
(
Eij −Ei
−ETj 1

)
where Eij is an (n−1)×(n−1) matrix with the (i, j)th ele-
ment 1 and all other elements 0, Ei is an (n−1)-vector with
the ith element 1 and all other elements 0, and superscript
T denotes the transpose operator. The Bij are linearly
independent, and it can be readily verified that the c-inner
product of Bij with any of e(1)

c , . . . , e(n)
c , ẽ(1)

c , . . . , ẽ(n−1)
c

is 0. Recalling ζij = ‖(eij)||Sc‖2
c, our approach consists of

calculating the projection of eij to the ⊥c-space, which

yields its projection to the ‖c-space. Additional details
are provided in [4], including an alternative approach to
establish an explicit expression for the RHS of (6).
Clearly 〈eij , Bk`〉c = cij only when i = k, j = `, and is

0 otherwise. Without loss of generality, let us consider e11.
We seek to find the vector (e11)⊥Sc that is perpendicular
to all Bij except B11, as well as to e(i)

c and ẽ(j)
c . Let δij

denote the Kronecker delta. From the special structure
of Bij , we can see that ((e11)⊥Sc)ij = (cijδ1iδ1j − xi(1 −
δin) − yj(1 − δjn) − z[(1 − δin)(1 − δjn) − δinδjn])c−1

ij

for some x1, x2, . . . , xn−1, y1, y2, . . . , yn−1, z
satisfying a system of 2n − 1 linear equations
G(x1, x2, . . . , xn−1, y1, y2, . . . , yn−1, z)T = e(2n−1)

11 ,
where e(2n−1)

11 is a (2n − 1)-dimensional vector with the
first and (n + 1)st elements being 1, and all others being

0, and G =

 D1 C H1
0 HT

3 −c−1
nn

CT D2 H2

 is a (2n−1)× (2n−1)

nonsingular matrix representing the coefficients of
the system of equations. Here C = [c−1

ij ]i,j=1,...,n−1,
D1 = diag[

∑n
j=1 c

−1
ij ]i=1,...,n−1 and D2 =

diag[
∑n
i=1 c

−1
ij ]j=1,...,n−1 are (n−1)×(n−1) matrices, and

H1 = [
∑n−1
j=1 c

−1
ij ]Ti=1,...,n−1, H2 = [

∑n−1
i=1 c

−1
ij ]Tj=1,...,n−1

and H3 = [c−1
nj ]Tj=1,...,n−1 are (n − 1)-dimensional column

vectors. Hence, (x1, x2, . . . , xn−1, y1, y2, . . . , yn−1, z)T =
G−1e(2n−1)

11 . Meanwhile, we know ‖(e11)||Sc‖2
c =

〈(e11)||Sc , (e11)||Sc〉c = 〈e11− (e11)⊥Sc , e11− (e11)⊥Sc〉c =
〈e11, e11〉c − 2〈e11, (e11)⊥Sc〉c + 〈(e11)⊥Sc , (e11)⊥Sc〉c =
〈e11, e11〉c−〈e11, (e11)⊥Sc〉c, where the last equality is due
to the fact that 〈e11, (e11)⊥Sc〉c = 〈(e11)⊥Sc , (e11)⊥Sc〉c.
This together with the above yields ‖(e11)||Sc‖2

c =
z + x1 + y1.
The same approach can be taken for all the other eij .

Specifically, we need to identify the vector (eij)⊥Sc that
satisfies 〈(eij)⊥Sc , Bij〉c = cij and 〈(eij)⊥Sc , Bk`〉c = 0 for
all other (k, `). Here, (eij)⊥Sc can have a similar repre-
sentation as above with the position of 1 changed from
(1, 1) to (i, j). The variables x, y, z will satisfy a system of
equations G(xij1 , x

ij
2 , . . . , x

ij
n−1, y

ij
1 , y

ij
2 , . . . , y

ij
n−1, z

ij)T =
e(2n−1)
ij where G is the same matrix defined above and

where e(2n−1)
ij is a (2n−1)-dimensional vector with the ith

and (n+j)th elements being 1, and all others being 0 when
j ≤ n − 1, and with only the ith element being 1 and all
others being 0 when j = n. Hence, following the above ap-
proach, we have in general ‖(eij)||Sc‖2

c = zij+xij1 +yij1 with
(xij1 , . . . , x

ij
n−1, y

ij
1 , . . . , y

ij
n−1, z

ij)T given by G−1e(2n−1)
ij .

Remark III.3. For the n = 2 case, the explicit expression
above can be used to recover the heavy-traffic limit of
(1/2)

∑
ij σ

2
ijcij(1− [c2

ij/
∑
i′j′ c2

i′j′ ]) in [3] for RHS of (6).

IV. Conclusions
In this paper we considered the optimal control of

n × n IQSs under the c-weighted MaxWeight algorithm,
with the goal of gaining fundamental insights on the
delay-optimal properties of this cost-weighted variant of
MaxWeight scheduling in real-world IQSs. We established



theoretical properties that include showing the c-weighted
MaxWeight algorithm exhibits optimal scaling in heavy
traffic under an objective function consisting of a gen-
eral linear function of the steady-state average QLs. Our
results shed light on the delay optimality of variants of
MaxWeight scheduling and are expected to be of theoret-
ical interest more broadly than IQSs.

Appendix
A. Proof of State Space Collapse

To simplify the notation, we use EQ[ · ] to denote
E[ · |Q(t) = Q] throughout this section.

Lemma A.1. For Lyapunov function drift ∆W⊥c(Q) :=(
W⊥c(Q(t+ 1))−W⊥c(Q(t))

)
I{Q(t)=Q}, we have

P[|∆W⊥c(Q)| ≤ D] = 1, ∀Q, (7)
EQ[∆W⊥c(Q)] ≤ −η, ∀Q,W⊥c(Q) ≥ κ, (8)

for some positive numbers η, κ and D that depend on σ̃,
ν, Amax and νmin, but not on ε.

Proof. First of all, (7) follows from

|∆W⊥c(Q)| ≤
∣∣∣∣‖Q⊥c(t+ 1)‖c − ‖Q⊥c(t)‖c

∣∣∣∣
≤ ‖Q(t+ 1)−Q(t)‖c

=
√∑

ij

cij(Qij(t+ 1)−Qij(t))2

≤
√∑

ij

cijA2
ij ≤ n

√
cmax Amax,

with D = n
√
cmax Amax. To prove (8) we start with a

version of Lemma 4 in [6], which can be shown to hold
more generally for the new dot product by appropriately
adapting the arguments in the proof of Lemma 7 in [2].

Lemma A.2. For all Q ∈ Rn2 , we have

∆W⊥c(Q) ≤ 1
2||Q⊥c ||c

(∆V (Q)−∆V‖c(Q)), (9)

where V (Q):=‖Q‖2
c, V‖c(Q):=‖Q‖c‖2

c and

∆V (Q):=
(
V (Q(t+ 1))− V (Q(t))

)
I{Q(t)=Q}

∆V‖c(Q):=
(
V‖c(Q(t+ 1))− V‖c(Q(t))

)
I{Q(t)=Q}.

Proof. Let us separately consider the two quantities
∆V (Q) and ∆V‖c(Q), recalling the queueing dynamics in
(2). For the first quantity, we obtain

EQ[∆V (Q)]
=EQ[||Q(t) + A(t)− S(t)||2c − ||U(t)||2c − ||Q(t)||2c]
≤EQ[||A(t)− S(t)||2c + 2〈Q(t),A(t)− S(t)〉c]

=EQ

[∑
ij

cijA
2
ij(t) + cijSij(t)− 2cijAij(t)Sij(t)

]
+ 2〈Q,λ− EQ[S(t)]〉c

≤
∑
ij

cij(λij + σ2
ij) +

∑
ij

cijSij(t)− 2ε〈Q,ν〉c

+ 2 min〈Q,ν − r〉c,

where we exploit the facts that 〈Q(t + 1),U(t)〉c = 0
and that arrivals are independent of the QL and service
processes in each time slot, together with our definition
of the c-weighted MaxWeight algorithm. The selection
of r will be ν + νc

min
||Q⊥c ||c

Q⊥c , where ν is an arrival rate
vector that resides on the boundary of the capacity region
with all input and output ports saturated and where
νcmin:= min νij

cij
. This selection of r guarantees that it is

within the capacity region, which is readily verified by
first observing νij + νc

min
||Q⊥c ||c

Q⊥c,ij ≥ νij − νmin ≥ 0
and then observing 〈ν + νc

min
||Q⊥c ||c

Q⊥c , ei〉c ≤ 1 and 〈ν +
νc

min
||Q⊥c ||c

Q⊥c , ẽj〉c ≤ 1. We therefore have

EQ[∆V (Q)] ≤
∑
ij

cij(λij + σ2
ij) + ncmax

− 2ε〈Q,ν〉c − 2νcmin||Q⊥c ||c,

taking advantage of the fact that 〈Q‖c ,Q⊥c〉c = 0. Turn-
ing to the second quantity, we obtain

EQ[∆V‖c ] =EQ[||Q‖c(t+ 1)−Q‖c(t)||2c]
+ 2EQ[〈Q‖c(t),Q‖c(t+ 1)−Q‖c(t)〉c]
≥2EQ[〈Q‖c(t),Q‖c(t+ 1)−Q‖c(t)〉c]
≥2EQ[〈Q‖c(t),A(t)− S(t) + U(t)〉c]
≥2〈Q‖c(t),λ〉c − 2EQ[〈Q‖c(t),S(t)〉c]
=− 2ε〈Q‖c(t),ν〉c − 2EQ[〈Q‖c(t),S(t)− ν〉c]
=− 2ε〈Q‖c(t),ν〉c,

where we again take advantage of the above facts together
with 〈Q‖c(t),Q⊥c(t+ 1)〉c ≤ 0, both Q‖c and U(t) being
nonnegative componentwise, and properties related to the
cone Kc and its spanned space Sc.
Upon substituting the above expressions for both quan-

tities into (9), we have

EQ[∆W⊥c(Q)] ≤ 1
2||Q⊥c ||

[∑
ij

cij(λij + σ2
ij)

+ ncmax − 2ε〈Q,ν〉c − 2νcmin||Q⊥c ||c + 2ε〈Q‖c(t),ν〉c
]

≤
∑
ij cij(λij + σ2

ij) + ncmax

||Q⊥c ||
− νcmin −

ε

||Q⊥c ||
〈Q⊥c(t),ν〉c.

Given ε < νcmin/(2||ν||c), then on the set of W⊥c(Q) ≥
4(
∑
ij cij(λij + σ2

ij) + ncmax)/νcmin, we obtain

EQ[∆W⊥c(Q)]

≤ 1
2||Q⊥c ||

(
∑
ij

cij(λij + σ2
ij) + ncmax − 2ε〈Q,ν〉c

− 2νcmin||Q⊥c ||c + 2ε〈Q‖c(t),ν〉c)

≤
∑
ij cij(λij + σ2

ij) + ncmax

2||Q⊥c ||
− νcmin − ε||ν||c

≤
∑
ij cij(λij + σ2

ij) + ncmax

2||Q⊥c ||
− νcmin

2 ≤ −ν
c
min
4 .

Hence, (8) holds with η = −νcmin/4.



B. Proof of Theorem III.1
Lemma A.3. In the limit as ε ↓ 0, we have

nE
[〈

Q||Sc , (S(Q)−A)||Sc

〉
c

]
= lim
ε→0

εE
[∑

ij

cijQ
(ε)
ij

]
.

Proof. The LHS of above can be written as

2E
[〈

Q||Sc , (S(Q)−A)||Sc

〉
c

]
= 2εE

[〈
Q||Sc ,ν

〉
c

]
+ 2E

[〈
Q||Sc ,S(Q)− ν

〉
c

]
= 2
n
εE

[〈
c
Q||Sc ,1

〉
c

]
+ 2εE

[〈
Q||Sc ,ν −

1
n

1
〉

c

]
= 2
n
εE

[〈
Q,1

〉
c

]
− 2
n
εE

[〈
Q⊥Sc ,1

〉
c

]
,

where the second equality follows from the fact that
S(Q),ν ∈ F , and therefore S(Q) − ν is orthogonal to
the space spanned by the normal vectors of F , i.e., to the
space Sc; and the next to last equality follows from the
fact that ν,1/n ∈ F . Since the second term of the last
equation goes to 0 as ε ↓ 0 by the state space collapse
from Proposition III.2, we have

lim
ε↓0

E
[〈

Q||Sc , (S(Q)−A)||Sc

〉
c

]
=lim
ε↓0

ε

n
E
[∑

ij

cijQij

]
,

thus yielding the LHS of (6) in Theorem III.1.

Lemma A.4. In the limit as ε ↓ 0, we have

E
[
‖(A− S(Q))||Sc‖

2
c

]
− E

[
‖U||Sc(Q)‖2

c

]
+ 2E

[〈
Q+
||Sc

,U||Sc(Q)
〉

c

]
= n

2

〈
σ2, ζ

〉
c
. (10)

Proof. First of all, from the equation

0 = E
[∑
i,j

Qij(t+ 1)−
∑
ij

Q(t)|Q(t) = Q
]

= E
[∑
i,j

Aij −
∑
i,j

Si,j(Q)−
∑
i,j

Ui,j

]
,

we can conclude that E[
∑
i,j Uij(Q)] = nε, which implies

that the second term on the LHS of (10) converges to 0
as ε ↓ 0:

E
[
‖U||Sc(Q)‖2

c

]
≤E
[∑
i,j

cijUij(Q)2
]
=E
[∑
i,j

cijUij(Q)
]

≤ cmaxnε→ 0, as ε ↓ 0.

For the third term on the LHS of (10), we have

2E
[〈

Q+
||Sc

,U||Sc(Q)
〉

c

]
= 2E

[〈
Q+,U||Sc(Q)

〉
c

]
− 2E

[〈
Q+
⊥Sc

,U||Sc(Q)
〉

c

]
= −2E

[〈
Q+
⊥Sc

,U||Sc(Q)
〉

c

]
,

because Q+
ij = 0 if Uij(Q) = 1. Furthermore,∣∣∣∣E[〈Q+

||Sc
,U||Sc(Q)

〉
c

]∣∣∣∣ ≤
√
E
[
‖Q+
⊥Sc
‖2
]
E
[
‖U||Sc(Q)‖2

]

≤M2

√
E
[
‖U||Sc(Q)‖2

]
≤M2

√
2nε,

where the first inequality is just Cauchy-Schwartz, M2 is
the constant in Proposition III.2, and the last inequality
is due to E[

∑
i,j Uij(Q)] = nε. This then implies that the

third term also converges to 0 as ε ↓ 0.
Finally, turning to investigate the first term, let

f1, f2, . . . , f2n−1 be an orthonormal base for space S.
Then, from basic properties of the space, there exist v`,i
and ṽ`,j such that f`ij = v`i+ṽ`j

cij
. Thus, we can derive

E[||(A− S(Q))||Sc ||
2] =

2n−1∑
`=1

E
[
〈A− S(Q), f`〉2c

]
=

2n−1∑
`=1

Var
[∑

i

v`i
∑
j

Aij +
∑
j

ṽ`j
∑
i

Aij

]

=
2n−1∑
`=1

[∑
i

v2
`i

∑
j

σ2
ij +

∑
j

ṽ2
ij

∑
j

σ2
ij + 2

∑
ij

v`iṽ`jσ
2
ij

]

=
∑
ij

cijσij

2n−1∑
`=1

(
v`i + ṽ`j
cij

)2
cij =

∑
ij

cijσij

2n−1∑
`=1
〈f`, eij〉2c

=
∑
ij

cijσij ||(eij)‖Sc
||2 =

〈
σ2, ζ

〉
c
,

which establishes the desired result.
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